1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
30 #include "embeddedice.h"
36 * This provides lowlevel glue to the EmbeddedICE (or EmbeddedICE-RT)
37 * module found on scan chain 2 in ARM7, ARM9, and some other families
38 * of ARM cores. The module is called "EmbeddedICE-RT" if it has
39 * monitor mode support.
41 * EmbeddedICE provides basic watchpoint/breakpoint hardware and a Debug
42 * Communications Channel (DCC) used to read or write 32-bit words to
43 * OpenOCD-aware code running on the target CPU.
44 * Newer modules also include vector catch hardware. Some versions
45 * support hardware single-stepping, "monitor mode" debug (which is not
46 * currently supported by OpenOCD), or extended reporting on why the
47 * core entered debug mode.
50 static int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf);
53 * From: ARM9E-S TRM, DDI 0165, table C-4 (and similar, for other cores)
63 /* width is assigned based on EICE version */
66 .name = "debug_status",
68 /* width is assigned based on EICE version */
80 [EICE_W0_ADDR_VALUE] = {
81 .name = "watch_0_addr_value",
85 [EICE_W0_ADDR_MASK] = {
86 .name = "watch_0_addr_mask",
90 [EICE_W0_DATA_VALUE ] = {
91 .name = "watch_0_data_value",
95 [EICE_W0_DATA_MASK] = {
96 .name = "watch_0_data_mask",
100 [EICE_W0_CONTROL_VALUE] = {
101 .name = "watch_0_control_value",
105 [EICE_W0_CONTROL_MASK] = {
106 .name = "watch_0_control_mask",
110 [EICE_W1_ADDR_VALUE] = {
111 .name = "watch_1_addr_value",
115 [EICE_W1_ADDR_MASK] = {
116 .name = "watch_1_addr_mask",
120 [EICE_W1_DATA_VALUE] = {
121 .name = "watch_1_data_value",
125 [EICE_W1_DATA_MASK] = {
126 .name = "watch_1_data_mask",
130 [EICE_W1_CONTROL_VALUE] = {
131 .name = "watch_1_control_value",
135 [EICE_W1_CONTROL_MASK] = {
136 .name = "watch_1_control_mask",
140 /* vector_catch isn't always present */
142 .name = "vector_catch",
149 static int embeddedice_get_reg(struct reg *reg)
153 if ((retval = embeddedice_read_reg(reg)) != ERROR_OK)
154 LOG_ERROR("error queueing EmbeddedICE register read");
155 else if ((retval = jtag_execute_queue()) != ERROR_OK)
156 LOG_ERROR("EmbeddedICE register read failed");
161 static const struct reg_arch_type eice_reg_type = {
162 .get = embeddedice_get_reg,
163 .set = embeddedice_set_reg_w_exec,
167 * Probe EmbeddedICE module and set up local records of its registers.
168 * Different versions of the modules have different capabilities, such as
169 * hardware support for vector_catch, single stepping, and monitor mode.
172 embeddedice_build_reg_cache(struct target *target, struct arm7_9_common *arm7_9)
175 struct reg_cache *reg_cache = malloc(sizeof(struct reg_cache));
176 struct reg *reg_list = NULL;
177 struct embeddedice_reg *arch_info = NULL;
178 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
179 int num_regs = ARRAY_SIZE(eice_regs);
181 int eice_version = 0;
183 /* vector_catch isn't always present */
184 if (!arm7_9->has_vector_catch)
187 /* the actual registers are kept in two arrays */
188 reg_list = calloc(num_regs, sizeof(struct reg));
189 arch_info = calloc(num_regs, sizeof(struct embeddedice_reg));
191 /* fill in values for the reg cache */
192 reg_cache->name = "EmbeddedICE registers";
193 reg_cache->next = NULL;
194 reg_cache->reg_list = reg_list;
195 reg_cache->num_regs = num_regs;
197 /* FIXME the second watchpoint unit on Feroceon and Dragonite
198 * seems not to work ... we should have a way to not set up
199 * its four registers here!
202 /* set up registers */
203 for (i = 0; i < num_regs; i++)
205 reg_list[i].name = eice_regs[i].name;
206 reg_list[i].size = eice_regs[i].width;
207 reg_list[i].dirty = 0;
208 reg_list[i].valid = 0;
209 reg_list[i].value = calloc(1, 4);
210 reg_list[i].arch_info = &arch_info[i];
211 reg_list[i].type = &eice_reg_type;
212 arch_info[i].addr = eice_regs[i].addr;
213 arch_info[i].jtag_info = jtag_info;
216 /* identify EmbeddedICE version by reading DCC control register */
217 embeddedice_read_reg(®_list[EICE_COMMS_CTRL]);
218 if ((retval = jtag_execute_queue()) != ERROR_OK)
220 for (i = 0; i < num_regs; i++)
222 free(reg_list[i].value);
230 eice_version = buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 28, 4);
231 LOG_INFO("Embedded ICE version %d", eice_version);
233 switch (eice_version)
236 /* ARM7TDMI r3, ARM7TDMI-S r3
238 * REVISIT docs say ARM7TDMI-S r4 uses version 1 but
239 * that it has 6-bit CTRL and 5-bit STAT... doc bug?
240 * ARM7TDMI r4 docs say EICE v4.
242 reg_list[EICE_DBG_CTRL].size = 3;
243 reg_list[EICE_DBG_STAT].size = 5;
247 reg_list[EICE_DBG_CTRL].size = 4;
248 reg_list[EICE_DBG_STAT].size = 5;
249 arm7_9->has_single_step = 1;
252 LOG_ERROR("EmbeddedICE v%d handling might be broken",
254 reg_list[EICE_DBG_CTRL].size = 6;
255 reg_list[EICE_DBG_STAT].size = 5;
256 arm7_9->has_single_step = 1;
257 arm7_9->has_monitor_mode = 1;
261 reg_list[EICE_DBG_CTRL].size = 6;
262 reg_list[EICE_DBG_STAT].size = 5;
263 arm7_9->has_monitor_mode = 1;
267 reg_list[EICE_DBG_CTRL].size = 6;
268 reg_list[EICE_DBG_STAT].size = 5;
269 arm7_9->has_single_step = 1;
270 arm7_9->has_monitor_mode = 1;
273 /* ARM7EJ-S, ARM9E-S rev 2, ARM9EJ-S */
274 reg_list[EICE_DBG_CTRL].size = 6;
275 reg_list[EICE_DBG_STAT].size = 10;
276 /* DBG_STAT has MOE bits */
277 arm7_9->has_monitor_mode = 1;
280 LOG_ERROR("EmbeddedICE v%d handling might be broken",
282 reg_list[EICE_DBG_CTRL].size = 6;
283 reg_list[EICE_DBG_STAT].size = 5;
284 arm7_9->has_monitor_mode = 1;
288 * The Feroceon implementation has the version number
289 * in some unusual bits. Let feroceon.c validate it
290 * and do the appropriate setup itself.
292 if (strcmp(target_type_name(target), "feroceon") == 0 ||
293 strcmp(target_type_name(target), "dragonite") == 0)
295 LOG_ERROR("unknown EmbeddedICE version "
296 "(comms ctrl: 0x%8.8" PRIx32 ")",
297 buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 0, 32));
300 /* On Feroceon and Dragonite the second unit is seemingly missing. */
301 LOG_INFO("%s: hardware has %d breakpoint/watchpoint unit%s",
302 target_name(target), arm7_9->wp_available_max,
303 (arm7_9->wp_available_max != 1) ? "s" : "");
309 * Initialize EmbeddedICE module, if needed.
311 int embeddedice_setup(struct target *target)
314 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
316 /* Explicitly disable monitor mode. For now we only support halting
317 * debug ... we don't know how to talk with a resident debug monitor
318 * that manages break requests. ARM's "Angel Debug Monitor" is one
319 * common example of such code.
321 if (arm7_9->has_monitor_mode)
323 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
325 embeddedice_read_reg(dbg_ctrl);
326 if ((retval = jtag_execute_queue()) != ERROR_OK)
328 buf_set_u32(dbg_ctrl->value, 4, 1, 0);
329 embeddedice_set_reg_w_exec(dbg_ctrl, dbg_ctrl->value);
331 return jtag_execute_queue();
335 * Queue a read for an EmbeddedICE register into the register cache,
336 * optionally checking the value read.
337 * Note that at this level, all registers are 32 bits wide.
339 int embeddedice_read_reg_w_check(struct reg *reg,
340 uint8_t *check_value, uint8_t *check_mask)
342 struct embeddedice_reg *ice_reg = reg->arch_info;
343 uint8_t reg_addr = ice_reg->addr & 0x1f;
344 struct scan_field fields[3];
345 uint8_t field1_out[1];
346 uint8_t field2_out[1];
349 retval = arm_jtag_scann(ice_reg->jtag_info, 0x2, TAP_IDLE);
350 if (retval != ERROR_OK)
353 retval = arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL, TAP_IDLE);
354 if (retval != ERROR_OK)
357 /* bits 31:0 -- data (ignored here) */
358 fields[0].num_bits = 32;
359 fields[0].out_value = reg->value;
360 fields[0].in_value = NULL;
361 fields[0].check_value = NULL;
362 fields[0].check_mask = NULL;
364 /* bits 36:32 -- register */
365 fields[1].num_bits = 5;
366 fields[1].out_value = field1_out;
367 field1_out[0] = reg_addr;
368 fields[1].in_value = NULL;
369 fields[1].check_value = NULL;
370 fields[1].check_mask = NULL;
372 /* bit 37 -- 0/read */
373 fields[2].num_bits = 1;
374 fields[2].out_value = field2_out;
376 fields[2].in_value = NULL;
377 fields[2].check_value = NULL;
378 fields[2].check_mask = NULL;
380 /* traverse Update-DR, setting address for the next read */
381 jtag_add_dr_scan(ice_reg->jtag_info->tap, 3, fields, TAP_IDLE);
383 /* bits 31:0 -- the data we're reading (and maybe checking) */
384 fields[0].in_value = reg->value;
385 fields[0].check_value = check_value;
386 fields[0].check_mask = check_mask;
388 /* when reading the DCC data register, leaving the address field set to
389 * EICE_COMMS_DATA would read the register twice
390 * reading the control register is safe
392 field1_out[0] = eice_regs[EICE_COMMS_CTRL].addr;
394 /* traverse Update-DR, reading but with no other side effects */
395 jtag_add_dr_scan_check(ice_reg->jtag_info->tap, 3, fields, TAP_IDLE);
401 * Receive a block of size 32-bit words from the DCC.
402 * We assume the target is always going to be fast enough (relative to
403 * the JTAG clock) that the debugger won't need to poll the handshake
404 * bit. The JTAG clock is usually at least six times slower than the
405 * functional clock, so the 50+ JTAG clocks needed to receive the word
406 * allow hundreds of instruction cycles (per word) in the target.
408 int embeddedice_receive(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
410 struct scan_field fields[3];
411 uint8_t field1_out[1];
412 uint8_t field2_out[1];
415 retval = arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
416 if (retval != ERROR_OK)
418 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
419 if (retval != ERROR_OK)
422 fields[0].num_bits = 32;
423 fields[0].out_value = NULL;
424 fields[0].in_value = NULL;
426 fields[1].num_bits = 5;
427 fields[1].out_value = field1_out;
428 field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
429 fields[1].in_value = NULL;
431 fields[2].num_bits = 1;
432 fields[2].out_value = field2_out;
434 fields[2].in_value = NULL;
436 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
440 /* when reading the last item, set the register address to the DCC control reg,
441 * to avoid reading additional data from the DCC data reg
444 field1_out[0] = eice_regs[EICE_COMMS_CTRL].addr;
446 fields[0].in_value = (uint8_t *)data;
447 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
448 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)data);
454 return jtag_execute_queue();
458 * Queue a read for an EmbeddedICE register into the register cache,
459 * not checking the value read.
461 int embeddedice_read_reg(struct reg *reg)
463 return embeddedice_read_reg_w_check(reg, NULL, NULL);
467 * Queue a write for an EmbeddedICE register, updating the register cache.
468 * Uses embeddedice_write_reg().
470 void embeddedice_set_reg(struct reg *reg, uint32_t value)
472 embeddedice_write_reg(reg, value);
474 buf_set_u32(reg->value, 0, reg->size, value);
481 * Write an EmbeddedICE register, updating the register cache.
482 * Uses embeddedice_set_reg(); not queued.
484 static int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf)
488 embeddedice_set_reg(reg, buf_get_u32(buf, 0, reg->size));
489 if ((retval = jtag_execute_queue()) != ERROR_OK)
490 LOG_ERROR("register write failed");
495 * Queue a write for an EmbeddedICE register, bypassing the register cache.
497 void embeddedice_write_reg(struct reg *reg, uint32_t value)
499 struct embeddedice_reg *ice_reg = reg->arch_info;
501 LOG_DEBUG("%i: 0x%8.8" PRIx32 "", ice_reg->addr, value);
503 arm_jtag_scann(ice_reg->jtag_info, 0x2, TAP_IDLE);
505 arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL, TAP_IDLE);
507 uint8_t reg_addr = ice_reg->addr & 0x1f;
508 embeddedice_write_reg_inner(ice_reg->jtag_info->tap, reg_addr, value);
512 * Queue a write for an EmbeddedICE register, using cached value.
513 * Uses embeddedice_write_reg().
515 void embeddedice_store_reg(struct reg *reg)
517 embeddedice_write_reg(reg, buf_get_u32(reg->value, 0, reg->size));
521 * Send a block of size 32-bit words to the DCC.
522 * We assume the target is always going to be fast enough (relative to
523 * the JTAG clock) that the debugger won't need to poll the handshake
524 * bit. The JTAG clock is usually at least six times slower than the
525 * functional clock, so the 50+ JTAG clocks needed to receive the word
526 * allow hundreds of instruction cycles (per word) in the target.
528 int embeddedice_send(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
530 struct scan_field fields[3];
531 uint8_t field0_out[4];
532 uint8_t field1_out[1];
533 uint8_t field2_out[1];
536 retval = arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
537 if (retval != ERROR_OK)
539 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
540 if (retval != ERROR_OK)
543 fields[0].num_bits = 32;
544 fields[0].out_value = field0_out;
545 fields[0].in_value = NULL;
547 fields[1].num_bits = 5;
548 fields[1].out_value = field1_out;
549 field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
550 fields[1].in_value = NULL;
552 fields[2].num_bits = 1;
553 fields[2].out_value = field2_out;
556 fields[2].in_value = NULL;
560 buf_set_u32(field0_out, 0, 32, *data);
561 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
567 /* call to jtag_execute_queue() intentionally omitted */
572 * Poll DCC control register until read or write handshake completes.
574 int embeddedice_handshake(struct arm_jtag *jtag_info, int hsbit, uint32_t timeout)
576 struct scan_field fields[3];
577 uint8_t field0_in[4];
578 uint8_t field1_out[1];
579 uint8_t field2_out[1];
585 if (hsbit == EICE_COMM_CTRL_WBIT)
587 else if (hsbit == EICE_COMM_CTRL_RBIT)
591 LOG_ERROR("Invalid arguments");
592 return ERROR_INVALID_ARGUMENTS;
595 retval = arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
596 if (retval != ERROR_OK)
598 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
599 if (retval != ERROR_OK)
602 fields[0].num_bits = 32;
603 fields[0].out_value = NULL;
604 fields[0].in_value = field0_in;
606 fields[1].num_bits = 5;
607 fields[1].out_value = field1_out;
608 field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
609 fields[1].in_value = NULL;
611 fields[2].num_bits = 1;
612 fields[2].out_value = field2_out;
614 fields[2].in_value = NULL;
616 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
617 gettimeofday(&lap, NULL);
619 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
620 if ((retval = jtag_execute_queue()) != ERROR_OK)
623 if (buf_get_u32(field0_in, hsbit, 1) == hsact)
626 gettimeofday(&now, NULL);
627 } while ((uint32_t)((now.tv_sec - lap.tv_sec) * 1000
628 + (now.tv_usec - lap.tv_usec) / 1000) <= timeout);
630 LOG_ERROR("embeddedice handshake timeout");
631 return ERROR_TARGET_TIMEOUT;
634 #ifndef HAVE_JTAG_MINIDRIVER_H
636 * This is an inner loop of the open loop DCC write of data to target
638 void embeddedice_write_dcc(struct jtag_tap *tap,
639 int reg_addr, const uint8_t *buffer, int little, int count)
643 for (i = 0; i < count; i++)
645 embeddedice_write_reg_inner(tap, reg_addr,
646 fast_target_buffer_get_u32(buffer, little));
651 /* provided by minidriver */