]> git.sur5r.net Git - openocd/blob - src/target/embeddedice.c
cleanup trailing whitespaces
[openocd] / src / target / embeddedice.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  ***************************************************************************/
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
29
30 #include "embeddedice.h"
31 #include "register.h"
32
33 /**
34  * @file
35  *
36  * This provides lowlevel glue to the EmbeddedICE (or EmbeddedICE-RT)
37  * module found on scan chain 2 in ARM7, ARM9, and some other families
38  * of ARM cores.  The module is called "EmbeddedICE-RT" if it has
39  * monitor mode support.
40  *
41  * EmbeddedICE provides basic watchpoint/breakpoint hardware and a Debug
42  * Communications Channel (DCC) used to read or write 32-bit words to
43  * OpenOCD-aware code running on the target CPU.
44  * Newer modules also include vector catch hardware.  Some versions
45  * support hardware single-stepping, "monitor mode" debug (which is not
46  * currently supported by OpenOCD), or extended reporting on why the
47  * core entered debug mode.
48  */
49
50 static int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf);
51
52 /*
53  * From:  ARM9E-S TRM, DDI 0165, table C-4 (and similar, for other cores)
54  */
55 static const struct {
56         char            *name;
57         unsigned short  addr;
58         unsigned short  width;
59 } eice_regs[] = {
60         [EICE_DBG_CTRL] = {
61                 .name =         "debug_ctrl",
62                 .addr =         0,
63                 /* width is assigned based on EICE version */
64         },
65         [EICE_DBG_STAT] = {
66                 .name =         "debug_status",
67                 .addr =         1,
68                 /* width is assigned based on EICE version */
69         },
70         [EICE_COMMS_CTRL] = {
71                 .name =         "comms_ctrl",
72                 .addr =         4,
73                 .width =        6,
74         },
75         [EICE_COMMS_DATA] = {
76                 .name =         "comms_data",
77                 .addr =         5,
78                 .width =        32,
79         },
80         [EICE_W0_ADDR_VALUE] = {
81                 .name =         "watch_0_addr_value",
82                 .addr =         8,
83                 .width =        32,
84         },
85         [EICE_W0_ADDR_MASK] = {
86                 .name =         "watch_0_addr_mask",
87                 .addr =         9,
88                 .width =        32,
89         },
90         [EICE_W0_DATA_VALUE ] = {
91                 .name =         "watch_0_data_value",
92                 .addr =         10,
93                 .width =        32,
94         },
95         [EICE_W0_DATA_MASK] = {
96                 .name =         "watch_0_data_mask",
97                 .addr =         11,
98                 .width =        32,
99         },
100         [EICE_W0_CONTROL_VALUE] = {
101                 .name =         "watch_0_control_value",
102                 .addr =         12,
103                 .width =        9,
104         },
105         [EICE_W0_CONTROL_MASK] = {
106                 .name =         "watch_0_control_mask",
107                 .addr =         13,
108                 .width =        8,
109         },
110         [EICE_W1_ADDR_VALUE] = {
111                 .name =         "watch_1_addr_value",
112                 .addr =         16,
113                 .width =        32,
114         },
115         [EICE_W1_ADDR_MASK] = {
116                 .name =         "watch_1_addr_mask",
117                 .addr =         17,
118                 .width =        32,
119         },
120         [EICE_W1_DATA_VALUE] = {
121                 .name =         "watch_1_data_value",
122                 .addr =         18,
123                 .width =        32,
124         },
125         [EICE_W1_DATA_MASK] = {
126                 .name =         "watch_1_data_mask",
127                 .addr =         19,
128                 .width =        32,
129         },
130         [EICE_W1_CONTROL_VALUE] = {
131                 .name =         "watch_1_control_value",
132                 .addr =         20,
133                 .width =        9,
134         },
135         [EICE_W1_CONTROL_MASK] = {
136                 .name =         "watch_1_control_mask",
137                 .addr =         21,
138                 .width =        8,
139         },
140         /* vector_catch isn't always present */
141         [EICE_VEC_CATCH] = {
142                 .name =         "vector_catch",
143                 .addr =         2,
144                 .width =        8,
145         },
146 };
147
148
149 static int embeddedice_get_reg(struct reg *reg)
150 {
151         int retval;
152
153         if ((retval = embeddedice_read_reg(reg)) != ERROR_OK)
154                 LOG_ERROR("error queueing EmbeddedICE register read");
155         else if ((retval = jtag_execute_queue()) != ERROR_OK)
156                 LOG_ERROR("EmbeddedICE register read failed");
157
158         return retval;
159 }
160
161 static const struct reg_arch_type eice_reg_type = {
162         .get = embeddedice_get_reg,
163         .set = embeddedice_set_reg_w_exec,
164 };
165
166 /**
167  * Probe EmbeddedICE module and set up local records of its registers.
168  * Different versions of the modules have different capabilities, such as
169  * hardware support for vector_catch, single stepping, and monitor mode.
170  */
171 struct reg_cache *
172 embeddedice_build_reg_cache(struct target *target, struct arm7_9_common *arm7_9)
173 {
174         int retval;
175         struct reg_cache *reg_cache = malloc(sizeof(struct reg_cache));
176         struct reg *reg_list = NULL;
177         struct embeddedice_reg *arch_info = NULL;
178         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
179         int num_regs = ARRAY_SIZE(eice_regs);
180         int i;
181         int eice_version = 0;
182
183         /* vector_catch isn't always present */
184         if (!arm7_9->has_vector_catch)
185                 num_regs--;
186
187         /* the actual registers are kept in two arrays */
188         reg_list = calloc(num_regs, sizeof(struct reg));
189         arch_info = calloc(num_regs, sizeof(struct embeddedice_reg));
190
191         /* fill in values for the reg cache */
192         reg_cache->name = "EmbeddedICE registers";
193         reg_cache->next = NULL;
194         reg_cache->reg_list = reg_list;
195         reg_cache->num_regs = num_regs;
196
197         /* FIXME the second watchpoint unit on Feroceon and Dragonite
198          * seems not to work ... we should have a way to not set up
199          * its four registers here!
200          */
201
202         /* set up registers */
203         for (i = 0; i < num_regs; i++)
204         {
205                 reg_list[i].name = eice_regs[i].name;
206                 reg_list[i].size = eice_regs[i].width;
207                 reg_list[i].dirty = 0;
208                 reg_list[i].valid = 0;
209                 reg_list[i].value = calloc(1, 4);
210                 reg_list[i].arch_info = &arch_info[i];
211                 reg_list[i].type = &eice_reg_type;
212                 arch_info[i].addr = eice_regs[i].addr;
213                 arch_info[i].jtag_info = jtag_info;
214         }
215
216         /* identify EmbeddedICE version by reading DCC control register */
217         embeddedice_read_reg(&reg_list[EICE_COMMS_CTRL]);
218         if ((retval = jtag_execute_queue()) != ERROR_OK)
219         {
220                 for (i = 0; i < num_regs; i++)
221                 {
222                         free(reg_list[i].value);
223                 }
224                 free(reg_list);
225                 free(reg_cache);
226                 free(arch_info);
227                 return NULL;
228         }
229
230         eice_version = buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 28, 4);
231         LOG_INFO("Embedded ICE version %d", eice_version);
232
233         switch (eice_version)
234         {
235                 case 1:
236                         /* ARM7TDMI r3, ARM7TDMI-S r3
237                          *
238                          * REVISIT docs say ARM7TDMI-S r4 uses version 1 but
239                          * that it has 6-bit CTRL and 5-bit STAT... doc bug?
240                          * ARM7TDMI r4 docs say EICE v4.
241                          */
242                         reg_list[EICE_DBG_CTRL].size = 3;
243                         reg_list[EICE_DBG_STAT].size = 5;
244                         break;
245                 case 2:
246                         /* ARM9TDMI */
247                         reg_list[EICE_DBG_CTRL].size = 4;
248                         reg_list[EICE_DBG_STAT].size = 5;
249                         arm7_9->has_single_step = 1;
250                         break;
251                 case 3:
252                         LOG_ERROR("EmbeddedICE v%d handling might be broken",
253                                         eice_version);
254                         reg_list[EICE_DBG_CTRL].size = 6;
255                         reg_list[EICE_DBG_STAT].size = 5;
256                         arm7_9->has_single_step = 1;
257                         arm7_9->has_monitor_mode = 1;
258                         break;
259                 case 4:
260                         /* ARM7TDMI r4 */
261                         reg_list[EICE_DBG_CTRL].size = 6;
262                         reg_list[EICE_DBG_STAT].size = 5;
263                         arm7_9->has_monitor_mode = 1;
264                         break;
265                 case 5:
266                         /* ARM9E-S rev 1 */
267                         reg_list[EICE_DBG_CTRL].size = 6;
268                         reg_list[EICE_DBG_STAT].size = 5;
269                         arm7_9->has_single_step = 1;
270                         arm7_9->has_monitor_mode = 1;
271                         break;
272                 case 6:
273                         /* ARM7EJ-S, ARM9E-S rev 2, ARM9EJ-S */
274                         reg_list[EICE_DBG_CTRL].size = 6;
275                         reg_list[EICE_DBG_STAT].size = 10;
276                         /* DBG_STAT has MOE bits */
277                         arm7_9->has_monitor_mode = 1;
278                         break;
279                 case 7:
280                         LOG_ERROR("EmbeddedICE v%d handling might be broken",
281                                         eice_version);
282                         reg_list[EICE_DBG_CTRL].size = 6;
283                         reg_list[EICE_DBG_STAT].size = 5;
284                         arm7_9->has_monitor_mode = 1;
285                         break;
286                 default:
287                         /*
288                          * The Feroceon implementation has the version number
289                          * in some unusual bits.  Let feroceon.c validate it
290                          * and do the appropriate setup itself.
291                          */
292                         if (strcmp(target_type_name(target), "feroceon") == 0 ||
293                             strcmp(target_type_name(target), "dragonite") == 0)
294                                 break;
295                         LOG_ERROR("unknown EmbeddedICE version "
296                                 "(comms ctrl: 0x%8.8" PRIx32 ")",
297                                 buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 0, 32));
298         }
299
300         /* On Feroceon and Dragonite the second unit is seemingly missing. */
301         LOG_INFO("%s: hardware has %d breakpoint/watchpoint unit%s",
302                         target_name(target), arm7_9->wp_available_max,
303                         (arm7_9->wp_available_max != 1) ? "s" : "");
304
305         return reg_cache;
306 }
307
308 /**
309  * Initialize EmbeddedICE module, if needed.
310  */
311 int embeddedice_setup(struct target *target)
312 {
313         int retval;
314         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
315
316         /* Explicitly disable monitor mode.  For now we only support halting
317          * debug ... we don't know how to talk with a resident debug monitor
318          * that manages break requests.  ARM's "Angel Debug Monitor" is one
319          * common example of such code.
320          */
321         if (arm7_9->has_monitor_mode)
322         {
323                 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
324
325                 embeddedice_read_reg(dbg_ctrl);
326                 if ((retval = jtag_execute_queue()) != ERROR_OK)
327                         return retval;
328                 buf_set_u32(dbg_ctrl->value, 4, 1, 0);
329                 embeddedice_set_reg_w_exec(dbg_ctrl, dbg_ctrl->value);
330         }
331         return jtag_execute_queue();
332 }
333
334 /**
335  * Queue a read for an EmbeddedICE register into the register cache,
336  * optionally checking the value read.
337  * Note that at this level, all registers are 32 bits wide.
338  */
339 int embeddedice_read_reg_w_check(struct reg *reg,
340                 uint8_t *check_value, uint8_t *check_mask)
341 {
342         struct embeddedice_reg *ice_reg = reg->arch_info;
343         uint8_t reg_addr = ice_reg->addr & 0x1f;
344         struct scan_field fields[3];
345         uint8_t field1_out[1];
346         uint8_t field2_out[1];
347         int retval;
348
349         retval = arm_jtag_scann(ice_reg->jtag_info, 0x2, TAP_IDLE);
350         if (retval != ERROR_OK)
351                 return retval;
352
353         retval = arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL, TAP_IDLE);
354         if (retval != ERROR_OK)
355                 return retval;
356
357         /* bits 31:0 -- data (ignored here) */
358         fields[0].num_bits = 32;
359         fields[0].out_value = reg->value;
360         fields[0].in_value = NULL;
361         fields[0].check_value = NULL;
362         fields[0].check_mask = NULL;
363
364         /* bits 36:32 -- register */
365         fields[1].num_bits = 5;
366         fields[1].out_value = field1_out;
367         field1_out[0] = reg_addr;
368         fields[1].in_value = NULL;
369         fields[1].check_value = NULL;
370         fields[1].check_mask = NULL;
371
372         /* bit 37 -- 0/read */
373         fields[2].num_bits = 1;
374         fields[2].out_value = field2_out;
375         field2_out[0] = 0;
376         fields[2].in_value = NULL;
377         fields[2].check_value = NULL;
378         fields[2].check_mask = NULL;
379
380         /* traverse Update-DR, setting address for the next read */
381         jtag_add_dr_scan(ice_reg->jtag_info->tap, 3, fields, TAP_IDLE);
382
383         /* bits 31:0 -- the data we're reading (and maybe checking) */
384         fields[0].in_value = reg->value;
385         fields[0].check_value = check_value;
386         fields[0].check_mask = check_mask;
387
388         /* when reading the DCC data register, leaving the address field set to
389          * EICE_COMMS_DATA would read the register twice
390          * reading the control register is safe
391          */
392         field1_out[0] = eice_regs[EICE_COMMS_CTRL].addr;
393
394         /* traverse Update-DR, reading but with no other side effects */
395         jtag_add_dr_scan_check(ice_reg->jtag_info->tap, 3, fields, TAP_IDLE);
396
397         return ERROR_OK;
398 }
399
400 /**
401  * Receive a block of size 32-bit words from the DCC.
402  * We assume the target is always going to be fast enough (relative to
403  * the JTAG clock) that the debugger won't need to poll the handshake
404  * bit.  The JTAG clock is usually at least six times slower than the
405  * functional clock, so the 50+ JTAG clocks needed to receive the word
406  * allow hundreds of instruction cycles (per word) in the target.
407  */
408 int embeddedice_receive(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
409 {
410         struct scan_field fields[3];
411         uint8_t field1_out[1];
412         uint8_t field2_out[1];
413         int retval;
414
415         retval = arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
416         if (retval != ERROR_OK)
417                 return retval;
418         retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
419         if (retval != ERROR_OK)
420                 return retval;
421
422         fields[0].num_bits = 32;
423         fields[0].out_value = NULL;
424         fields[0].in_value = NULL;
425
426         fields[1].num_bits = 5;
427         fields[1].out_value = field1_out;
428         field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
429         fields[1].in_value = NULL;
430
431         fields[2].num_bits = 1;
432         fields[2].out_value = field2_out;
433         field2_out[0] = 0;
434         fields[2].in_value = NULL;
435
436         jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
437
438         while (size > 0)
439         {
440                 /* when reading the last item, set the register address to the DCC control reg,
441                  * to avoid reading additional data from the DCC data reg
442                  */
443                 if (size == 1)
444                         field1_out[0] = eice_regs[EICE_COMMS_CTRL].addr;
445
446                 fields[0].in_value = (uint8_t *)data;
447                 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
448                 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)data);
449
450                 data++;
451                 size--;
452         }
453
454         return jtag_execute_queue();
455 }
456
457 /**
458  * Queue a read for an EmbeddedICE register into the register cache,
459  * not checking the value read.
460  */
461 int embeddedice_read_reg(struct reg *reg)
462 {
463         return embeddedice_read_reg_w_check(reg, NULL, NULL);
464 }
465
466 /**
467  * Queue a write for an EmbeddedICE register, updating the register cache.
468  * Uses embeddedice_write_reg().
469  */
470 void embeddedice_set_reg(struct reg *reg, uint32_t value)
471 {
472         embeddedice_write_reg(reg, value);
473
474         buf_set_u32(reg->value, 0, reg->size, value);
475         reg->valid = 1;
476         reg->dirty = 0;
477
478 }
479
480 /**
481  * Write an EmbeddedICE register, updating the register cache.
482  * Uses embeddedice_set_reg(); not queued.
483  */
484 static int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf)
485 {
486         int retval;
487
488         embeddedice_set_reg(reg, buf_get_u32(buf, 0, reg->size));
489         if ((retval = jtag_execute_queue()) != ERROR_OK)
490                 LOG_ERROR("register write failed");
491         return retval;
492 }
493
494 /**
495  * Queue a write for an EmbeddedICE register, bypassing the register cache.
496  */
497 void embeddedice_write_reg(struct reg *reg, uint32_t value)
498 {
499         struct embeddedice_reg *ice_reg = reg->arch_info;
500
501         LOG_DEBUG("%i: 0x%8.8" PRIx32 "", ice_reg->addr, value);
502
503         arm_jtag_scann(ice_reg->jtag_info, 0x2, TAP_IDLE);
504
505         arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL, TAP_IDLE);
506
507         uint8_t reg_addr = ice_reg->addr & 0x1f;
508         embeddedice_write_reg_inner(ice_reg->jtag_info->tap, reg_addr, value);
509 }
510
511 /**
512  * Queue a write for an EmbeddedICE register, using cached value.
513  * Uses embeddedice_write_reg().
514  */
515 void embeddedice_store_reg(struct reg *reg)
516 {
517         embeddedice_write_reg(reg, buf_get_u32(reg->value, 0, reg->size));
518 }
519
520 /**
521  * Send a block of size 32-bit words to the DCC.
522  * We assume the target is always going to be fast enough (relative to
523  * the JTAG clock) that the debugger won't need to poll the handshake
524  * bit.  The JTAG clock is usually at least six times slower than the
525  * functional clock, so the 50+ JTAG clocks needed to receive the word
526  * allow hundreds of instruction cycles (per word) in the target.
527  */
528 int embeddedice_send(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
529 {
530         struct scan_field fields[3];
531         uint8_t field0_out[4];
532         uint8_t field1_out[1];
533         uint8_t field2_out[1];
534         int retval;
535
536         retval = arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
537         if (retval != ERROR_OK)
538                 return retval;
539         retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
540         if (retval != ERROR_OK)
541                 return retval;
542
543         fields[0].num_bits = 32;
544         fields[0].out_value = field0_out;
545         fields[0].in_value = NULL;
546
547         fields[1].num_bits = 5;
548         fields[1].out_value = field1_out;
549         field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
550         fields[1].in_value = NULL;
551
552         fields[2].num_bits = 1;
553         fields[2].out_value = field2_out;
554         field2_out[0] = 1;
555
556         fields[2].in_value = NULL;
557
558         while (size > 0)
559         {
560                 buf_set_u32(field0_out, 0, 32, *data);
561                 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
562
563                 data++;
564                 size--;
565         }
566
567         /* call to jtag_execute_queue() intentionally omitted */
568         return ERROR_OK;
569 }
570
571 /**
572  * Poll DCC control register until read or write handshake completes.
573  */
574 int embeddedice_handshake(struct arm_jtag *jtag_info, int hsbit, uint32_t timeout)
575 {
576         struct scan_field fields[3];
577         uint8_t field0_in[4];
578         uint8_t field1_out[1];
579         uint8_t field2_out[1];
580         int retval;
581         uint32_t hsact;
582         struct timeval lap;
583         struct timeval now;
584
585         if (hsbit == EICE_COMM_CTRL_WBIT)
586                 hsact = 1;
587         else if (hsbit == EICE_COMM_CTRL_RBIT)
588                 hsact = 0;
589         else
590         {
591                 LOG_ERROR("Invalid arguments");
592                 return ERROR_INVALID_ARGUMENTS;
593         }
594
595         retval = arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
596         if (retval != ERROR_OK)
597                 return retval;
598         retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
599         if (retval != ERROR_OK)
600                 return retval;
601
602         fields[0].num_bits = 32;
603         fields[0].out_value = NULL;
604         fields[0].in_value = field0_in;
605
606         fields[1].num_bits = 5;
607         fields[1].out_value = field1_out;
608         field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
609         fields[1].in_value = NULL;
610
611         fields[2].num_bits = 1;
612         fields[2].out_value = field2_out;
613         field2_out[0] = 0;
614         fields[2].in_value = NULL;
615
616         jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
617         gettimeofday(&lap, NULL);
618         do {
619                 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
620                 if ((retval = jtag_execute_queue()) != ERROR_OK)
621                         return retval;
622
623                 if (buf_get_u32(field0_in, hsbit, 1) == hsact)
624                         return ERROR_OK;
625
626                 gettimeofday(&now, NULL);
627         } while ((uint32_t)((now.tv_sec - lap.tv_sec) * 1000
628                         + (now.tv_usec - lap.tv_usec) / 1000) <= timeout);
629
630         LOG_ERROR("embeddedice handshake timeout");
631         return ERROR_TARGET_TIMEOUT;
632 }
633
634 #ifndef HAVE_JTAG_MINIDRIVER_H
635 /**
636  * This is an inner loop of the open loop DCC write of data to target
637  */
638 void embeddedice_write_dcc(struct jtag_tap *tap,
639                 int reg_addr, const uint8_t *buffer, int little, int count)
640 {
641         int i;
642
643         for (i = 0; i < count; i++)
644         {
645                 embeddedice_write_reg_inner(tap, reg_addr,
646                                 fast_target_buffer_get_u32(buffer, little));
647                 buffer += 4;
648         }
649 }
650 #else
651 /* provided by minidriver */
652 #endif