]> git.sur5r.net Git - openocd/blob - src/target/lakemont.c
arm_adi_v5: dap_queue_ap_* DAP->AP parameter
[openocd] / src / target / lakemont.c
1 /*
2  * Copyright(c) 2013 Intel Corporation.
3  *
4  * Adrian Burns (adrian.burns@intel.com)
5  * Thomas Faust (thomas.faust@intel.com)
6  * Ivan De Cesaris (ivan.de.cesaris@intel.com)
7  * Julien Carreno (julien.carreno@intel.com)
8  * Jeffrey Maxwell (jeffrey.r.maxwell@intel.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
23  *
24  * Contact Information:
25  * Intel Corporation
26  */
27
28 /*
29  * @file
30  * This implements the probemode operations for Lakemont 1 (LMT1).
31  */
32
33 #ifdef HAVE_CONFIG_H
34 #include "config.h"
35 #endif
36
37 #include <helper/log.h>
38
39 #include "target.h"
40 #include "target_type.h"
41 #include "lakemont.h"
42 #include "register.h"
43 #include "breakpoints.h"
44 #include "x86_32_common.h"
45
46 static int irscan(struct target *t, uint8_t *out,
47                         uint8_t *in, uint8_t ir_len);
48 static int drscan(struct target *t, uint8_t *out, uint8_t *in, uint8_t len);
49 static int save_context(struct target *target);
50 static int restore_context(struct target *target);
51 static uint32_t get_tapstatus(struct target *t);
52 static int enter_probemode(struct target *t);
53 static int exit_probemode(struct target *t);
54 static int halt_prep(struct target *t);
55 static int do_halt(struct target *t);
56 static int do_resume(struct target *t);
57 static int read_all_core_hw_regs(struct target *t);
58 static int write_all_core_hw_regs(struct target *t);
59 static int read_hw_reg(struct target *t,
60                         int reg, uint32_t *regval, uint8_t cache);
61 static int write_hw_reg(struct target *t,
62                         int reg, uint32_t regval, uint8_t cache);
63 static struct reg_cache *lakemont_build_reg_cache
64                         (struct target *target);
65 static int submit_reg_pir(struct target *t, int num);
66 static int submit_instruction_pir(struct target *t, int num);
67 static int submit_pir(struct target *t, uint64_t op);
68 static int lakemont_get_core_reg(struct reg *reg);
69 static int lakemont_set_core_reg(struct reg *reg, uint8_t *buf);
70
71 static struct scan_blk scan;
72
73 /* registers and opcodes for register access, pm_idx is used to identify the
74  * registers that are modified for lakemont probemode specific operations
75  */
76 static const struct {
77         uint8_t id;
78         const char *name;
79         uint64_t op;
80         uint8_t pm_idx;
81         unsigned bits;
82         enum reg_type type;
83         const char *group;
84         const char *feature;
85 } regs[] = {
86         /* general purpose registers */
87         { EAX, "eax", 0x000000D01D660000, 0, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
88         { ECX, "ecx", 0x000000501D660000, 1, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
89         { EDX, "edx", 0x000000901D660000, 2, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
90         { EBX, "ebx", 0x000000101D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
91         { ESP, "esp", 0x000000E01D660000, NOT_PMREG, 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.i386.core" },
92         { EBP, "ebp", 0x000000601D660000, NOT_PMREG, 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.i386.core" },
93         { ESI, "esi", 0x000000A01D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
94         { EDI, "edi", 0x000000201D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
95
96         /* instruction pointer & flags */
97         { EIP, "eip", 0x000000C01D660000, 3, 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.i386.core" },
98         { EFLAGS, "eflags", 0x000000401D660000, 4, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
99
100         /* segment registers */
101         { CS, "cs", 0x000000281D660000, 5, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
102         { SS, "ss", 0x000000C81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
103         { DS, "ds", 0x000000481D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
104         { ES, "es", 0x000000A81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
105         { FS, "fs", 0x000000881D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
106         { GS, "gs", 0x000000081D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
107
108         /* floating point unit registers - not accessible via JTAG - here to satisfy GDB */
109         { ST0, "st0", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
110         { ST1, "st1", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
111         { ST2, "st2", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
112         { ST3, "st3", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
113         { ST4, "st4", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
114         { ST5, "st5", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
115         { ST6, "st6", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
116         { ST7, "st7", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
117         { FCTRL, "fctrl", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
118         { FSTAT, "fstat", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
119         { FTAG, "ftag", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
120         { FISEG, "fiseg", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
121         { FIOFF, "fioff", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
122         { FOSEG, "foseg", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
123         { FOOFF, "fooff", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
124         { FOP, "fop", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
125
126         /* control registers */
127         { CR0, "cr0", 0x000000001D660000, 6, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
128         { CR2, "cr2", 0x000000BC1D660000, 7, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
129         { CR3, "cr3", 0x000000801D660000, 8, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
130         { CR4, "cr4", 0x0000002C1D660000, 9, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
131
132         /* debug registers */
133         { DR0, "dr0", 0x0000007C1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
134         { DR1, "dr1", 0x000000FC1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
135         { DR2, "dr2", 0x000000021D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
136         { DR3, "dr3", 0x000000821D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
137         { DR6, "dr6", 0x000000301D660000, 10, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
138         { DR7, "dr7", 0x000000B01D660000, 11, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
139
140         /* descriptor tables */
141         { IDTB, "idtbase", 0x000000581D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
142         { IDTL, "idtlimit", 0x000000D81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
143         { IDTAR, "idtar", 0x000000981D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
144         { GDTB, "gdtbase", 0x000000B81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
145         { GDTL, "gdtlimit", 0x000000781D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
146         { GDTAR, "gdtar", 0x000000381D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
147         { TR, "tr", 0x000000701D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
148         { LDTR, "ldtr", 0x000000F01D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
149         { LDTB, "ldbase", 0x000000041D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
150         { LDTL, "ldlimit", 0x000000841D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
151         { LDTAR, "ldtar", 0x000000F81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
152
153         /* segment registers */
154         { CSB, "csbase", 0x000000F41D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
155         { CSL, "cslimit", 0x0000000C1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
156         { CSAR, "csar", 0x000000741D660000, 12, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
157         { DSB, "dsbase", 0x000000941D660000, 13, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
158         { DSL, "dslimit", 0x000000541D660000, 14, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
159         { DSAR, "dsar", 0x000000141D660000, 15, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
160         { ESB, "esbase", 0x0000004C1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
161         { ESL, "eslimit", 0x000000CC1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
162         { ESAR, "esar", 0x0000008C1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
163         { FSB, "fsbase", 0x000000641D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
164         { FSL, "fslimit", 0x000000E41D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
165         { FSAR, "fsar", 0x000000A41D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
166         { GSB, "gsbase", 0x000000C41D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
167         { GSL, "gslimit", 0x000000241D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
168         { GSAR, "gsar", 0x000000441D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
169         { SSB, "ssbase", 0x000000341D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
170         { SSL, "sslimit", 0x000000B41D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
171         { SSAR, "ssar", 0x000000D41D660000, 16, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
172         { TSSB, "tssbase", 0x000000E81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
173         { TSSL, "tsslimit", 0x000000181D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
174         { TSSAR, "tssar", 0x000000681D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
175         /* probemode control register */
176         { PMCR, "pmcr", 0x000000421D660000, 17, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
177 };
178
179 static const struct {
180         uint8_t id;
181         const char *name;
182         uint64_t op;
183 } instructions[] = {
184         /* memory read/write */
185         { MEMRDB32, "MEMRDB32", 0x0909090909090851 },
186         { MEMRDB16, "MEMRDB16", 0x09090909090851E6 },
187         { MEMRDH32, "MEMRDH32", 0x090909090908D166 },
188         { MEMRDH16, "MEMRDH16", 0x090909090908D1E6 },
189         { MEMRDW32, "MEMRDW32", 0x09090909090908D1 },
190         { MEMRDW16, "MEMRDW16", 0x0909090908D1E666 },
191         { MEMWRB32, "MEMWRB32", 0x0909090909090811 },
192         { MEMWRB16, "MEMWRB16", 0x09090909090811E6 },
193         { MEMWRH32, "MEMWRH32", 0x0909090909089166 },
194         { MEMWRH16, "MEMWRH16", 0x09090909090891E6 },
195         { MEMWRW32, "MEMWRW32", 0x0909090909090891 },
196         { MEMWRW16, "MEMWRW16", 0x090909090891E666 },
197         /* IO read/write */
198         { IORDB32, "IORDB32", 0x0909090909090937 },
199         { IORDB16, "IORDB16", 0x09090909090937E6 },
200         { IORDH32, "IORDH32", 0x090909090909B766 },
201         { IORDH16, "IORDH16", 0x090909090909B7E6 },
202         { IORDW32, "IORDW32", 0x09090909090909B7 },
203         { IORDW16, "IORDW16", 0x0909090909B7E666 },
204         { IOWRB32, "IOWRB32", 0x0909090909090977 },
205         { IOWRB16, "IOWRB16", 0x09090909090977E6 },
206         { IOWRH32, "IOWRH32", 0x090909090909F766 },
207         { IOWRH16, "IOWRH16", 0x090909090909F7E6 },
208         { IOWRW32, "IOWRW32", 0x09090909090909F7 },
209         { IOWRW16, "IOWRW16", 0x0909090909F7E666 },
210         /* lakemont1 core shadow ram access opcodes */
211         { SRAMACCESS, "SRAMACCESS", 0x0000000E9D660000 },
212         { SRAM2PDR, "SRAM2PDR", 0x4CF0000000000000 },
213         { PDR2SRAM, "PDR2SRAM", 0x0CF0000000000000 },
214         { WBINVD, "WBINVD", 0x09090909090990F0 },
215 };
216
217 bool check_not_halted(const struct target *t)
218 {
219         bool halted = t->state == TARGET_HALTED;
220         if (!halted)
221                 LOG_ERROR("target running, halt it first");
222         return !halted;
223 }
224
225 static int irscan(struct target *t, uint8_t *out,
226                         uint8_t *in, uint8_t ir_len)
227 {
228         int retval = ERROR_OK;
229         struct x86_32_common *x86_32 = target_to_x86_32(t);
230         if (NULL == t->tap) {
231                 retval = ERROR_FAIL;
232                 LOG_ERROR("%s invalid target tap", __func__);
233                 return retval;
234         }
235         if (ir_len != t->tap->ir_length) {
236                 retval = ERROR_FAIL;
237                 if (t->tap->enabled)
238                         LOG_ERROR("%s tap enabled but tap irlen=%d",
239                                         __func__, t->tap->ir_length);
240                 else
241                         LOG_ERROR("%s tap not enabled and irlen=%d",
242                                         __func__, t->tap->ir_length);
243                 return retval;
244         }
245         struct scan_field *fields = &scan.field;
246         fields->num_bits = ir_len;
247         fields->out_value = out;
248         fields->in_value = in;
249         jtag_add_ir_scan(x86_32->curr_tap, fields, TAP_IDLE);
250         if (x86_32->flush) {
251                 retval = jtag_execute_queue();
252                 if (retval != ERROR_OK)
253                         LOG_ERROR("%s failed to execute queue", __func__);
254         }
255         return retval;
256 }
257
258 static int drscan(struct target *t, uint8_t *out, uint8_t *in, uint8_t len)
259 {
260         int retval = ERROR_OK;
261         uint64_t data = 0;
262         struct x86_32_common *x86_32 = target_to_x86_32(t);
263         if (NULL == t->tap) {
264                 retval = ERROR_FAIL;
265                 LOG_ERROR("%s invalid target tap", __func__);
266                 return retval;
267         }
268         if (len > MAX_SCAN_SIZE || 0 == len) {
269                 retval = ERROR_FAIL;
270                 LOG_ERROR("%s data len is %d bits, max is %d bits",
271                                 __func__, len, MAX_SCAN_SIZE);
272                 return retval;
273         }
274         struct scan_field *fields = &scan.field;
275         fields->out_value = out;
276         fields->in_value = in;
277         fields->num_bits = len;
278         jtag_add_dr_scan(x86_32->curr_tap, 1, fields, TAP_IDLE);
279         if (x86_32->flush) {
280                 retval = jtag_execute_queue();
281                 if (retval != ERROR_OK) {
282                         LOG_ERROR("%s drscan failed to execute queue", __func__);
283                         return retval;
284                 }
285         }
286         if (in != NULL) {
287                 if (len >= 8) {
288                         for (int n = (len / 8) - 1 ; n >= 0; n--)
289                                 data = (data << 8) + *(in+n);
290                 } else
291                         LOG_DEBUG("dr in 0x%02" PRIx8, *in);
292         } else {
293                 LOG_ERROR("%s no drscan data", __func__);
294                 retval = ERROR_FAIL;
295         }
296         return retval;
297 }
298
299 static int save_context(struct target *t)
300 {
301         int err;
302         /* read core registers from lakemont sram */
303         err = read_all_core_hw_regs(t);
304         if (err != ERROR_OK) {
305                 LOG_ERROR("%s error reading regs", __func__);
306                 return err;
307         }
308         return ERROR_OK;
309 }
310
311 static int restore_context(struct target *t)
312 {
313         int err = ERROR_OK;
314         uint32_t i;
315         struct x86_32_common *x86_32 = target_to_x86_32(t);
316
317         /* write core regs into the core PM SRAM from the reg_cache */
318         err = write_all_core_hw_regs(t);
319         if (err != ERROR_OK) {
320                 LOG_ERROR("%s error writing regs", __func__);
321                 return err;
322         }
323
324         for (i = 0; i < (x86_32->cache->num_regs); i++) {
325                 x86_32->cache->reg_list[i].dirty = 0;
326                 x86_32->cache->reg_list[i].valid = 0;
327         }
328         return err;
329 }
330
331 /*
332  * we keep reg_cache in sync with hardware at halt/resume time, we avoid
333  * writing to real hardware here bacause pm_regs reflects the hardware
334  * while we are halted then reg_cache syncs with hw on resume
335  * TODO - in order for "reg eip force" to work it assume get/set reads
336  * and writes from hardware, may be other reasons also because generally
337  * other openocd targets read/write from hardware in get/set - watch this!
338  */
339 static int lakemont_get_core_reg(struct reg *reg)
340 {
341         int retval = ERROR_OK;
342         struct lakemont_core_reg *lakemont_reg = reg->arch_info;
343         struct target *t = lakemont_reg->target;
344         if (check_not_halted(t))
345                 return ERROR_TARGET_NOT_HALTED;
346         LOG_DEBUG("reg=%s, value=0x%08" PRIx32, reg->name,
347                         buf_get_u32(reg->value, 0, 32));
348         return retval;
349 }
350
351 static int lakemont_set_core_reg(struct reg *reg, uint8_t *buf)
352 {
353         struct lakemont_core_reg *lakemont_reg = reg->arch_info;
354         struct target *t = lakemont_reg->target;
355         uint32_t value = buf_get_u32(buf, 0, 32);
356         LOG_DEBUG("reg=%s, newval=0x%08" PRIx32, reg->name, value);
357         if (check_not_halted(t))
358                 return ERROR_TARGET_NOT_HALTED;
359         buf_set_u32(reg->value, 0, 32, value);
360         reg->dirty = 1;
361         reg->valid = 1;
362         return ERROR_OK;
363 }
364
365 static const struct reg_arch_type lakemont_reg_type = {
366         /* these get called if reg_cache doesnt have a "valid" value
367          * of an individual reg eg "reg eip" but not for "reg" block
368          */
369         .get = lakemont_get_core_reg,
370         .set = lakemont_set_core_reg,
371 };
372
373 struct reg_cache *lakemont_build_reg_cache(struct target *t)
374 {
375         struct x86_32_common *x86_32 = target_to_x86_32(t);
376         int num_regs = ARRAY_SIZE(regs);
377         struct reg_cache **cache_p = register_get_last_cache_p(&t->reg_cache);
378         struct reg_cache *cache = malloc(sizeof(struct reg_cache));
379         struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
380         struct lakemont_core_reg *arch_info = malloc(sizeof(struct lakemont_core_reg) * num_regs);
381         struct reg_feature *feature;
382         int i;
383
384         if (cache == NULL || reg_list == NULL || arch_info == NULL) {
385                 free(cache);
386                 free(reg_list);
387                 free(arch_info);
388                 LOG_ERROR("%s out of memory", __func__);
389                 return NULL;
390         }
391
392         /* Build the process context cache */
393         cache->name = "lakemont registers";
394         cache->next = NULL;
395         cache->reg_list = reg_list;
396         cache->num_regs = num_regs;
397         (*cache_p) = cache;
398         x86_32->cache = cache;
399
400         for (i = 0; i < num_regs; i++) {
401                 arch_info[i].target = t;
402                 arch_info[i].x86_32_common = x86_32;
403                 arch_info[i].op = regs[i].op;
404                 arch_info[i].pm_idx = regs[i].pm_idx;
405                 reg_list[i].name = regs[i].name;
406                 reg_list[i].size = 32;
407                 reg_list[i].value = calloc(1, 4);
408                 reg_list[i].dirty = 0;
409                 reg_list[i].valid = 0;
410                 reg_list[i].type = &lakemont_reg_type;
411                 reg_list[i].arch_info = &arch_info[i];
412
413                 reg_list[i].group = regs[i].group;
414                 reg_list[i].number = i;
415                 reg_list[i].exist = true;
416                 reg_list[i].caller_save = true; /* gdb defaults to true */
417
418                 feature = calloc(1, sizeof(struct reg_feature));
419                 if (feature) {
420                         feature->name = regs[i].feature;
421                         reg_list[i].feature = feature;
422                 } else
423                         LOG_ERROR("%s unable to allocate feature list", __func__);
424
425                 reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
426                 if (reg_list[i].reg_data_type)
427                         reg_list[i].reg_data_type->type = regs[i].type;
428                 else
429                         LOG_ERROR("%s unable to allocate reg type list", __func__);
430         }
431         return cache;
432 }
433
434 static uint32_t get_tapstatus(struct target *t)
435 {
436         scan.out[0] = TAPSTATUS;
437         if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
438                 return 0;
439         if (drscan(t, NULL, scan.out, TS_SIZE) != ERROR_OK)
440                 return 0;
441         return buf_get_u32(scan.out, 0, 32);
442 }
443
444 static int enter_probemode(struct target *t)
445 {
446         uint32_t tapstatus = 0;
447         tapstatus = get_tapstatus(t);
448         LOG_DEBUG("TS before PM enter = 0x%08" PRIx32, tapstatus);
449         if (tapstatus & TS_PM_BIT) {
450                 LOG_DEBUG("core already in probemode");
451                 return ERROR_OK;
452         }
453         scan.out[0] = PROBEMODE;
454         if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
455                 return ERROR_FAIL;
456         scan.out[0] = 1;
457         if (drscan(t, scan.out, scan.in, 1) != ERROR_OK)
458                 return ERROR_FAIL;
459         tapstatus = get_tapstatus(t);
460         LOG_DEBUG("TS after PM enter = 0x%08" PRIx32, tapstatus);
461         if ((tapstatus & TS_PM_BIT) && (!(tapstatus & TS_EN_PM_BIT)))
462                 return ERROR_OK;
463         else {
464                 LOG_ERROR("%s PM enter error, tapstatus = 0x%08" PRIx32
465                                 , __func__, tapstatus);
466                 return ERROR_FAIL;
467         }
468 }
469
470 static int exit_probemode(struct target *t)
471 {
472         uint32_t tapstatus = get_tapstatus(t);
473         LOG_DEBUG("TS before PM exit = 0x%08" PRIx32, tapstatus);
474
475         if (!(tapstatus & TS_PM_BIT)) {
476                 LOG_USER("core not in PM");
477                 return ERROR_OK;
478         }
479         scan.out[0] = PROBEMODE;
480         if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
481                 return ERROR_FAIL;
482         scan.out[0] = 0;
483         if (drscan(t, scan.out, scan.in, 1) != ERROR_OK)
484                 return ERROR_FAIL;
485         return ERROR_OK;
486 }
487
488 /* do whats needed to properly enter probemode for debug on lakemont */
489 static int halt_prep(struct target *t)
490 {
491         struct x86_32_common *x86_32 = target_to_x86_32(t);
492         if (write_hw_reg(t, DSB, PM_DSB, 0) != ERROR_OK)
493                 return ERROR_FAIL;
494         LOG_DEBUG("write %s 0x%08" PRIx32, regs[DSB].name, PM_DSB);
495         if (write_hw_reg(t, DSL, PM_DSL, 0) != ERROR_OK)
496                 return ERROR_FAIL;
497         LOG_DEBUG("write %s 0x%08" PRIx32, regs[DSL].name, PM_DSL);
498         if (write_hw_reg(t, DSAR, PM_DSAR, 0) != ERROR_OK)
499                 return ERROR_FAIL;
500         LOG_DEBUG("write DSAR 0x%08" PRIx32, PM_DSAR);
501         if (write_hw_reg(t, DR7, PM_DR7, 0) != ERROR_OK)
502                 return ERROR_FAIL;
503         LOG_DEBUG("write DR7 0x%08" PRIx32, PM_DR7);
504
505         uint32_t eflags = buf_get_u32(x86_32->cache->reg_list[EFLAGS].value, 0, 32);
506         uint32_t csar = buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32);
507         uint32_t ssar = buf_get_u32(x86_32->cache->reg_list[SSAR].value, 0, 32);
508         uint32_t cr0 = buf_get_u32(x86_32->cache->reg_list[CR0].value, 0, 32);
509
510         /* clear VM86 and IF bits if they are set */
511         LOG_DEBUG("EFLAGS = 0x%08" PRIx32 ", VM86 = %d, IF = %d", eflags,
512                         eflags & EFLAGS_VM86 ? 1 : 0,
513                         eflags & EFLAGS_IF ? 1 : 0);
514         if (eflags & EFLAGS_VM86
515                 || eflags & EFLAGS_IF) {
516                 x86_32->pm_regs[I(EFLAGS)] = eflags & ~(EFLAGS_VM86 | EFLAGS_IF);
517                 if (write_hw_reg(t, EFLAGS, x86_32->pm_regs[I(EFLAGS)], 0) != ERROR_OK)
518                         return ERROR_FAIL;
519                 LOG_DEBUG("EFLAGS now = 0x%08" PRIx32 ", VM86 = %d, IF = %d",
520                                 x86_32->pm_regs[I(EFLAGS)],
521                                 x86_32->pm_regs[I(EFLAGS)] & EFLAGS_VM86 ? 1 : 0,
522                                 x86_32->pm_regs[I(EFLAGS)] & EFLAGS_IF ? 1 : 0);
523         }
524
525         /* set CPL to 0 for memory access */
526         if (csar & CSAR_DPL) {
527                 x86_32->pm_regs[I(CSAR)] = csar & ~CSAR_DPL;
528                 if (write_hw_reg(t, CSAR, x86_32->pm_regs[I(CSAR)], 0) != ERROR_OK)
529                         return ERROR_FAIL;
530                 LOG_DEBUG("write CSAR_CPL to 0 0x%08" PRIx32, x86_32->pm_regs[I(CSAR)]);
531         }
532         if (ssar & SSAR_DPL) {
533                 x86_32->pm_regs[I(SSAR)] = ssar & ~CSAR_DPL;
534                 if (write_hw_reg(t, SSAR, x86_32->pm_regs[I(SSAR)], 0) != ERROR_OK)
535                         return ERROR_FAIL;
536                 LOG_DEBUG("write SSAR_CPL to 0 0x%08" PRIx32, x86_32->pm_regs[I(SSAR)]);
537         }
538
539         /* if cache's are enabled, disable and flush */
540         if (!(cr0 & CR0_CD)) {
541                 LOG_DEBUG("caching enabled CR0 = 0x%08" PRIx32, cr0);
542                 if (cr0 & CR0_PG) {
543                         x86_32->pm_regs[I(CR0)] = cr0 & ~CR0_PG;
544                         if (write_hw_reg(t, CR0, x86_32->pm_regs[I(CR0)], 0) != ERROR_OK)
545                                 return ERROR_FAIL;
546                         LOG_DEBUG("cleared paging CR0_PG = 0x%08" PRIx32, x86_32->pm_regs[I(CR0)]);
547                         /* submit wbinvd to flush cache */
548                         if (submit_reg_pir(t, WBINVD) != ERROR_OK)
549                                 return ERROR_FAIL;
550                         x86_32->pm_regs[I(CR0)] =
551                                 x86_32->pm_regs[I(CR0)] | (CR0_CD | CR0_NW | CR0_PG);
552                         if (write_hw_reg(t, CR0, x86_32->pm_regs[I(CR0)], 0) != ERROR_OK)
553                                 return ERROR_FAIL;
554                         LOG_DEBUG("set CD, NW and PG, CR0 = 0x%08" PRIx32, x86_32->pm_regs[I(CR0)]);
555                 }
556         }
557         return ERROR_OK;
558 }
559
560 static int do_halt(struct target *t)
561 {
562         /* needs proper handling later if doing a halt errors out */
563         t->state = TARGET_DEBUG_RUNNING;
564         if (enter_probemode(t) != ERROR_OK)
565                 return ERROR_FAIL;
566         if (save_context(t) != ERROR_OK)
567                 return ERROR_FAIL;
568         if (halt_prep(t) != ERROR_OK)
569                 return ERROR_FAIL;
570         t->state = TARGET_HALTED;
571
572         return target_call_event_callbacks(t, TARGET_EVENT_HALTED);
573 }
574
575 static int do_resume(struct target *t)
576 {
577         /* needs proper handling later */
578         t->state = TARGET_DEBUG_RUNNING;
579         if (restore_context(t) != ERROR_OK)
580                 return ERROR_FAIL;
581         if (exit_probemode(t) != ERROR_OK)
582                 return ERROR_FAIL;
583         t->state = TARGET_RUNNING;
584
585         t->debug_reason = DBG_REASON_NOTHALTED;
586         LOG_USER("target running");
587
588         return target_call_event_callbacks(t, TARGET_EVENT_RESUMED);
589 }
590
591 static int read_all_core_hw_regs(struct target *t)
592 {
593         int err;
594         uint32_t regval;
595         unsigned i;
596         struct x86_32_common *x86_32 = target_to_x86_32(t);
597         for (i = 0; i < (x86_32->cache->num_regs); i++) {
598                 if (NOT_AVAIL_REG == regs[i].pm_idx)
599                         continue;
600                 err = read_hw_reg(t, regs[i].id, &regval, 1);
601                 if (err != ERROR_OK) {
602                         LOG_ERROR("%s error saving reg %s",
603                                         __func__, x86_32->cache->reg_list[i].name);
604                         return err;
605                 }
606         }
607         LOG_DEBUG("read_all_core_hw_regs read %u registers ok", i);
608         return ERROR_OK;
609 }
610
611 static int write_all_core_hw_regs(struct target *t)
612 {
613         int err;
614         unsigned i;
615         struct x86_32_common *x86_32 = target_to_x86_32(t);
616         for (i = 0; i < (x86_32->cache->num_regs); i++) {
617                 if (NOT_AVAIL_REG == regs[i].pm_idx)
618                         continue;
619                 err = write_hw_reg(t, i, 0, 1);
620                 if (err != ERROR_OK) {
621                         LOG_ERROR("%s error restoring reg %s",
622                                         __func__, x86_32->cache->reg_list[i].name);
623                         return err;
624                 }
625         }
626         LOG_DEBUG("write_all_core_hw_regs wrote %u registers ok", i);
627         return ERROR_OK;
628 }
629
630 /* read reg from lakemont core shadow ram, update reg cache if needed */
631 static int read_hw_reg(struct target *t, int reg, uint32_t *regval, uint8_t cache)
632 {
633         struct x86_32_common *x86_32 = target_to_x86_32(t);
634         struct lakemont_core_reg *arch_info;
635         arch_info = x86_32->cache->reg_list[reg].arch_info;
636         x86_32->flush = 0; /* dont flush scans till we have a batch */
637         if (submit_reg_pir(t, reg) != ERROR_OK)
638                 return ERROR_FAIL;
639         if (submit_instruction_pir(t, SRAMACCESS) != ERROR_OK)
640                 return ERROR_FAIL;
641         if (submit_instruction_pir(t, SRAM2PDR) != ERROR_OK)
642                 return ERROR_FAIL;
643         x86_32->flush = 1;
644         scan.out[0] = RDWRPDR;
645         if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
646                 return ERROR_FAIL;
647         if (drscan(t, NULL, scan.out, PDR_SIZE) != ERROR_OK)
648                 return ERROR_FAIL;
649
650         jtag_add_sleep(DELAY_SUBMITPIR);
651         *regval = buf_get_u32(scan.out, 0, 32);
652         if (cache) {
653                 buf_set_u32(x86_32->cache->reg_list[reg].value, 0, 32, *regval);
654                 x86_32->cache->reg_list[reg].valid = 1;
655                 x86_32->cache->reg_list[reg].dirty = 0;
656         }
657         LOG_DEBUG("reg=%s, op=0x%016" PRIx64 ", val=0x%08" PRIx32,
658                         x86_32->cache->reg_list[reg].name,
659                         arch_info->op,
660                         *regval);
661         return ERROR_OK;
662 }
663
664 /* write lakemont core shadow ram reg, update reg cache if needed */
665 static int write_hw_reg(struct target *t, int reg, uint32_t regval, uint8_t cache)
666 {
667         struct x86_32_common *x86_32 = target_to_x86_32(t);
668         struct lakemont_core_reg *arch_info;
669         arch_info = x86_32->cache->reg_list[reg].arch_info;
670
671         uint8_t reg_buf[4];
672         if (cache)
673                 regval = buf_get_u32(x86_32->cache->reg_list[reg].value, 0, 32);
674         buf_set_u32(reg_buf, 0, 32, regval);
675         LOG_DEBUG("reg=%s, op=0x%016" PRIx64 ", val=0x%08" PRIx32,
676                         x86_32->cache->reg_list[reg].name,
677                         arch_info->op,
678                         regval);
679
680         scan.out[0] = RDWRPDR;
681         x86_32->flush = 0; /* dont flush scans till we have a batch */
682         if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
683                 return ERROR_FAIL;
684         if (drscan(t, reg_buf, scan.out, PDR_SIZE) != ERROR_OK)
685                 return ERROR_FAIL;
686         if (submit_reg_pir(t, reg) != ERROR_OK)
687                 return ERROR_FAIL;
688         if (submit_instruction_pir(t, SRAMACCESS) != ERROR_OK)
689                 return ERROR_FAIL;
690         x86_32->flush = 1;
691         if (submit_instruction_pir(t, PDR2SRAM) != ERROR_OK)
692                 return ERROR_FAIL;
693
694         /* we are writing from the cache so ensure we reset flags */
695         if (cache) {
696                 x86_32->cache->reg_list[reg].dirty = 0;
697                 x86_32->cache->reg_list[reg].valid = 0;
698         }
699         return ERROR_OK;
700 }
701
702 static bool is_paging_enabled(struct target *t)
703 {
704         struct x86_32_common *x86_32 = target_to_x86_32(t);
705         if (x86_32->pm_regs[I(CR0)] & CR0_PG)
706                 return true;
707         else
708                 return false;
709 }
710
711 static uint8_t get_num_user_regs(struct target *t)
712 {
713         struct x86_32_common *x86_32 = target_to_x86_32(t);
714         return x86_32->cache->num_regs;
715 }
716 /* value of the CR0.PG (paging enabled) bit influences memory reads/writes */
717 static int disable_paging(struct target *t)
718 {
719         struct x86_32_common *x86_32 = target_to_x86_32(t);
720         x86_32->pm_regs[I(CR0)] = x86_32->pm_regs[I(CR0)] & ~CR0_PG;
721         int err = x86_32->write_hw_reg(t, CR0, x86_32->pm_regs[I(CR0)], 0);
722         if (err != ERROR_OK) {
723                 LOG_ERROR("%s error disabling paging", __func__);
724                 return err;
725         }
726         return err;
727 }
728
729 static int enable_paging(struct target *t)
730 {
731         struct x86_32_common *x86_32 = target_to_x86_32(t);
732         x86_32->pm_regs[I(CR0)] = (x86_32->pm_regs[I(CR0)] | CR0_PG);
733         int err = x86_32->write_hw_reg(t, CR0, x86_32->pm_regs[I(CR0)], 0);
734         if (err != ERROR_OK) {
735                 LOG_ERROR("%s error enabling paging", __func__);
736                 return err;
737         }
738         return err;
739 }
740
741 static bool sw_bpts_supported(struct target *t)
742 {
743         uint32_t tapstatus = get_tapstatus(t);
744         if (tapstatus & TS_SBP_BIT)
745                 return true;
746         else
747                 return false;
748 }
749
750 static int transaction_status(struct target *t)
751 {
752         uint32_t tapstatus = get_tapstatus(t);
753         if ((TS_EN_PM_BIT | TS_PRDY_BIT) & tapstatus) {
754                 LOG_ERROR("%s transaction error tapstatus = 0x%08" PRIx32
755                                 , __func__, tapstatus);
756                 return ERROR_FAIL;
757         } else {
758                 return ERROR_OK;
759         }
760 }
761
762 static int submit_instruction(struct target *t, int num)
763 {
764         int err = submit_instruction_pir(t, num);
765         if (err != ERROR_OK) {
766                 LOG_ERROR("%s error submitting pir", __func__);
767                 return err;
768         }
769         return err;
770 }
771
772 static int submit_reg_pir(struct target *t, int num)
773 {
774         LOG_DEBUG("reg %s op=0x%016" PRIx64, regs[num].name, regs[num].op);
775         int err = submit_pir(t, regs[num].op);
776         if (err != ERROR_OK) {
777                 LOG_ERROR("%s error submitting pir", __func__);
778                 return err;
779         }
780         return err;
781 }
782
783 static int submit_instruction_pir(struct target *t, int num)
784 {
785         LOG_DEBUG("%s op=0x%016" PRIx64, instructions[num].name,
786                         instructions[num].op);
787         int err = submit_pir(t, instructions[num].op);
788         if (err != ERROR_OK) {
789                 LOG_ERROR("%s error submitting pir", __func__);
790                 return err;
791         }
792         return err;
793 }
794
795 /*
796  * PIR (Probe Mode Instruction Register), SUBMITPIR is an "IR only" TAP
797  * command; there is no corresponding data register
798  */
799 static int submit_pir(struct target *t, uint64_t op)
800 {
801         struct x86_32_common *x86_32 = target_to_x86_32(t);
802
803         uint8_t op_buf[8];
804         buf_set_u64(op_buf, 0, 64, op);
805         int flush = x86_32->flush;
806         x86_32->flush = 0;
807         scan.out[0] = WRPIR;
808         if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
809                 return ERROR_FAIL;
810         if (drscan(t, op_buf, scan.out, PIR_SIZE) != ERROR_OK)
811                 return ERROR_FAIL;
812         scan.out[0] = SUBMITPIR;
813         x86_32->flush = flush;
814         if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
815                 return ERROR_FAIL;
816         jtag_add_sleep(DELAY_SUBMITPIR);
817         return ERROR_OK;
818 }
819
820 int lakemont_init_target(struct command_context *cmd_ctx, struct target *t)
821 {
822         lakemont_build_reg_cache(t);
823         t->state = TARGET_RUNNING;
824         t->debug_reason = DBG_REASON_NOTHALTED;
825         return ERROR_OK;
826 }
827
828 int lakemont_init_arch_info(struct target *t, struct x86_32_common *x86_32)
829 {
830         x86_32->submit_instruction = submit_instruction;
831         x86_32->transaction_status = transaction_status;
832         x86_32->read_hw_reg = read_hw_reg;
833         x86_32->write_hw_reg = write_hw_reg;
834         x86_32->sw_bpts_supported = sw_bpts_supported;
835         x86_32->get_num_user_regs = get_num_user_regs;
836         x86_32->is_paging_enabled = is_paging_enabled;
837         x86_32->disable_paging = disable_paging;
838         x86_32->enable_paging = enable_paging;
839         return ERROR_OK;
840 }
841
842 int lakemont_poll(struct target *t)
843 {
844         /* LMT1 PMCR register currently allows code breakpoints, data breakpoints,
845          * single stepping and shutdowns to be redirected to PM but does not allow
846          * redirecting into PM as a result of SMM enter and SMM exit
847          */
848         uint32_t ts = get_tapstatus(t);
849
850         if (ts == 0xFFFFFFFF && t->state != TARGET_DEBUG_RUNNING) {
851                 /* something is wrong here */
852                 LOG_ERROR("tapstatus invalid - scan_chain serialization or locked JTAG access issues");
853                 /* TODO: Give a hint that unlocking is wrong or maybe a
854                  * 'jtag arp_init' helps
855                  */
856                 t->state = TARGET_DEBUG_RUNNING;
857                 return ERROR_OK;
858         }
859
860         if (t->state == TARGET_HALTED && (!(ts & TS_PM_BIT))) {
861                 LOG_INFO("target running for unknown reason");
862                 t->state = TARGET_RUNNING;
863         }
864
865         if (t->state == TARGET_RUNNING &&
866                 t->state != TARGET_DEBUG_RUNNING) {
867
868                 if ((ts & TS_PM_BIT) && (ts & TS_PMCR_BIT)) {
869
870                         LOG_DEBUG("redirect to PM, tapstatus=0x%08" PRIx32, get_tapstatus(t));
871
872                         t->state = TARGET_DEBUG_RUNNING;
873                         if (save_context(t) != ERROR_OK)
874                                 return ERROR_FAIL;
875                         if (halt_prep(t) != ERROR_OK)
876                                 return ERROR_FAIL;
877                         t->state = TARGET_HALTED;
878                         t->debug_reason = DBG_REASON_UNDEFINED;
879
880                         struct x86_32_common *x86_32 = target_to_x86_32(t);
881                         uint32_t eip = buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32);
882                         uint32_t dr6 = buf_get_u32(x86_32->cache->reg_list[DR6].value, 0, 32);
883                         uint32_t hwbreakpoint = (uint32_t)-1;
884
885                         if (dr6 & DR6_BRKDETECT_0)
886                                 hwbreakpoint = 0;
887                         if (dr6 & DR6_BRKDETECT_1)
888                                 hwbreakpoint = 1;
889                         if (dr6 & DR6_BRKDETECT_2)
890                                 hwbreakpoint = 2;
891                         if (dr6 & DR6_BRKDETECT_3)
892                                 hwbreakpoint = 3;
893
894                         if (hwbreakpoint != (uint32_t)-1) {
895                                 uint32_t dr7 = buf_get_u32(x86_32->cache->reg_list[DR7].value, 0, 32);
896                                 uint32_t type = dr7 & (0x03 << (DR7_RW_SHIFT + hwbreakpoint*DR7_RW_LEN_SIZE));
897                                 if (type == DR7_BP_EXECUTE) {
898                                         LOG_USER("hit hardware breakpoint (hwreg=%" PRIu32 ") at 0x%08" PRIx32, hwbreakpoint, eip);
899                                 } else {
900                                         uint32_t address = 0;
901                                         switch (hwbreakpoint) {
902                                         default:
903                                         case 0:
904                                                 address = buf_get_u32(x86_32->cache->reg_list[DR0].value, 0, 32);
905                                         break;
906                                         case 1:
907                                                 address = buf_get_u32(x86_32->cache->reg_list[DR1].value, 0, 32);
908                                         break;
909                                         case 2:
910                                                 address = buf_get_u32(x86_32->cache->reg_list[DR2].value, 0, 32);
911                                         break;
912                                         case 3:
913                                                 address = buf_get_u32(x86_32->cache->reg_list[DR3].value, 0, 32);
914                                         break;
915                                         }
916                                         LOG_USER("hit '%s' watchpoint for 0x%08" PRIx32 " (hwreg=%" PRIu32 ") at 0x%08" PRIx32,
917                                                                 type == DR7_BP_WRITE ? "write" : "access", address,
918                                                                 hwbreakpoint, eip);
919                                 }
920                                 t->debug_reason = DBG_REASON_BREAKPOINT;
921                         } else {
922                                 /* Check if the target hit a software breakpoint.
923                                  * ! Watch out: EIP is currently pointing after the breakpoint opcode
924                                  */
925                                 struct breakpoint *bp = NULL;
926                                 bp = breakpoint_find(t, eip-1);
927                                 if (bp != NULL) {
928                                         t->debug_reason = DBG_REASON_BREAKPOINT;
929                                         if (bp->type == BKPT_SOFT) {
930                                                 /* The EIP is now pointing the the next byte after the
931                                                  * breakpoint instruction. This needs to be corrected.
932                                                  */
933                                                 buf_set_u32(x86_32->cache->reg_list[EIP].value, 0, 32, eip-1);
934                                                 x86_32->cache->reg_list[EIP].dirty = 1;
935                                                 x86_32->cache->reg_list[EIP].valid = 1;
936                                                 LOG_USER("hit software breakpoint at 0x%08" PRIx32, eip-1);
937                                         } else {
938                                                 /* it's not a hardware breakpoint (checked already in DR6 state)
939                                                  * and it's also not a software breakpoint ...
940                                                  */
941                                                 LOG_USER("hit unknown breakpoint at 0x%08" PRIx32, eip);
942                                         }
943                                 } else {
944
945                                         /* There is also the case that we hit an breakpoint instruction,
946                                          * which was not set by us. This needs to be handled be the
947                                          * application that introduced the breakpoint.
948                                          */
949
950                                         LOG_USER("unknown break reason at 0x%08" PRIx32, eip);
951                                 }
952                         }
953
954                         return target_call_event_callbacks(t, TARGET_EVENT_HALTED);
955                 }
956         }
957         return ERROR_OK;
958 }
959
960 int lakemont_arch_state(struct target *t)
961 {
962         struct x86_32_common *x86_32 = target_to_x86_32(t);
963
964         LOG_USER("target halted due to %s at 0x%08" PRIx32 " in %s mode",
965                         debug_reason_name(t),
966                         buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32),
967                         (buf_get_u32(x86_32->cache->reg_list[CR0].value, 0, 32) & CR0_PE) ? "protected" : "real");
968
969         return ERROR_OK;
970 }
971
972 int lakemont_halt(struct target *t)
973 {
974         if (t->state == TARGET_RUNNING) {
975                 t->debug_reason = DBG_REASON_DBGRQ;
976                 if (do_halt(t) != ERROR_OK)
977                         return ERROR_FAIL;
978                 return ERROR_OK;
979         } else {
980                 LOG_ERROR("%s target not running", __func__);
981                 return ERROR_FAIL;
982         }
983 }
984
985 int lakemont_resume(struct target *t, int current, uint32_t address,
986                         int handle_breakpoints, int debug_execution)
987 {
988         struct breakpoint *bp = NULL;
989         struct x86_32_common *x86_32 = target_to_x86_32(t);
990
991         if (check_not_halted(t))
992                 return ERROR_TARGET_NOT_HALTED;
993         /* TODO lakemont_enable_breakpoints(t); */
994         if (t->state == TARGET_HALTED) {
995
996                 /* running away for a software breakpoint needs some special handling */
997                 uint32_t eip = buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32);
998                 bp = breakpoint_find(t, eip);
999                 if (bp != NULL /*&& bp->type == BKPT_SOFT*/) {
1000                         /* the step will step over the breakpoint */
1001                         if (lakemont_step(t, 0, 0, 1) != ERROR_OK) {
1002                                 LOG_ERROR("%s stepping over a software breakpoint at 0x%08" PRIx32 " "
1003                                                 "failed to resume the target", __func__, eip);
1004                                 return ERROR_FAIL;
1005                         }
1006                 }
1007
1008                 /* if breakpoints are enabled, we need to redirect these into probe mode */
1009                 struct breakpoint *activeswbp = t->breakpoints;
1010                 while (activeswbp != NULL && activeswbp->set == 0)
1011                         activeswbp = activeswbp->next;
1012                 struct watchpoint *activehwbp = t->watchpoints;
1013                 while (activehwbp != NULL && activehwbp->set == 0)
1014                         activehwbp = activehwbp->next;
1015                 if (activeswbp != NULL || activehwbp != NULL)
1016                         buf_set_u32(x86_32->cache->reg_list[PMCR].value, 0, 32, 1);
1017                 if (do_resume(t) != ERROR_OK)
1018                         return ERROR_FAIL;
1019         } else {
1020                 LOG_USER("target not halted");
1021                 return ERROR_FAIL;
1022         }
1023         return ERROR_OK;
1024 }
1025
1026 int lakemont_step(struct target *t, int current,
1027                         uint32_t address, int handle_breakpoints)
1028 {
1029         struct x86_32_common *x86_32 = target_to_x86_32(t);
1030         uint32_t eflags = buf_get_u32(x86_32->cache->reg_list[EFLAGS].value, 0, 32);
1031         uint32_t eip = buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32);
1032         uint32_t pmcr = buf_get_u32(x86_32->cache->reg_list[PMCR].value, 0, 32);
1033         struct breakpoint *bp = NULL;
1034         int retval = ERROR_OK;
1035         uint32_t tapstatus = 0;
1036
1037         if (check_not_halted(t))
1038                 return ERROR_TARGET_NOT_HALTED;
1039         bp = breakpoint_find(t, eip);
1040         if (retval == ERROR_OK && bp != NULL/*&& bp->type == BKPT_SOFT*/) {
1041                 /* TODO: This should only be done for software breakpoints.
1042                  * Stepping from hardware breakpoints should be possible with the resume flag
1043                  * Needs testing.
1044                  */
1045                 retval = x86_32_common_remove_breakpoint(t, bp);
1046         }
1047
1048         /* Set EFLAGS[TF] and PMCR[IR], exit pm and wait for PRDY# */
1049         LOG_DEBUG("modifying PMCR = 0x%08" PRIx32 " and EFLAGS = 0x%08" PRIx32, pmcr, eflags);
1050         eflags = eflags | (EFLAGS_TF | EFLAGS_RF);
1051         buf_set_u32(x86_32->cache->reg_list[EFLAGS].value, 0, 32, eflags);
1052         buf_set_u32(x86_32->cache->reg_list[PMCR].value, 0, 32, 1);
1053         LOG_DEBUG("EFLAGS [TF] [RF] bits set=0x%08" PRIx32 ", PMCR=0x%08" PRIx32 ", EIP=0x%08" PRIx32,
1054                         eflags, pmcr, eip);
1055
1056         tapstatus = get_tapstatus(t);
1057
1058         t->debug_reason = DBG_REASON_SINGLESTEP;
1059         t->state = TARGET_DEBUG_RUNNING;
1060         if (restore_context(t) != ERROR_OK)
1061                 return ERROR_FAIL;
1062         if (exit_probemode(t) != ERROR_OK)
1063                 return ERROR_FAIL;
1064
1065         target_call_event_callbacks(t, TARGET_EVENT_RESUMED);
1066
1067         tapstatus = get_tapstatus(t);
1068         if (tapstatus & (TS_PM_BIT | TS_EN_PM_BIT | TS_PRDY_BIT | TS_PMCR_BIT)) {
1069                 /* target has stopped */
1070                 if (save_context(t) != ERROR_OK)
1071                         return ERROR_FAIL;
1072                 if (halt_prep(t) != ERROR_OK)
1073                         return ERROR_FAIL;
1074                 t->state = TARGET_HALTED;
1075
1076                 LOG_USER("step done from EIP 0x%08" PRIx32 " to 0x%08" PRIx32, eip,
1077                                 buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32));
1078                 target_call_event_callbacks(t, TARGET_EVENT_HALTED);
1079         } else {
1080                 /* target didn't stop
1081                  * I hope the poll() will catch it, but the deleted breakpoint is gone
1082                  */
1083                 LOG_ERROR("%s target didn't stop after executing a single step", __func__);
1084                 t->state = TARGET_RUNNING;
1085                 return ERROR_FAIL;
1086         }
1087
1088         /* try to re-apply the breakpoint, even of step failed
1089          * TODO: When a bp was set, we should try to stop the target - fix the return above
1090          */
1091         if (bp != NULL/*&& bp->type == BKPT_SOFT*/) {
1092                 /* TODO: This should only be done for software breakpoints.
1093                  * Stepping from hardware breakpoints should be possible with the resume flag
1094                  * Needs testing.
1095                  */
1096                 retval = x86_32_common_add_breakpoint(t, bp);
1097         }
1098
1099         return retval;
1100 }
1101
1102 /* TODO - implement resetbreak fully through CLTAP registers */
1103 int lakemont_reset_assert(struct target *t)
1104 {
1105         LOG_DEBUG("-");
1106         return ERROR_OK;
1107 }
1108
1109 int lakemont_reset_deassert(struct target *t)
1110 {
1111         LOG_DEBUG("-");
1112         return ERROR_OK;
1113 }