]> git.sur5r.net Git - openocd/blob - src/target/nds32.c
target/arm_dpm: uniform names of exported functions
[openocd] / src / target / nds32.c
1 /***************************************************************************
2  *   Copyright (C) 2013 Andes Technology                                   *
3  *   Hsiangkai Wang <hkwang@andestech.com>                                 *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
17  ***************************************************************************/
18
19 #ifdef HAVE_CONFIG_H
20 #include "config.h"
21 #endif
22
23 #include <helper/log.h>
24 #include <helper/binarybuffer.h>
25 #include "nds32.h"
26 #include "nds32_aice.h"
27 #include "nds32_tlb.h"
28 #include "nds32_disassembler.h"
29
30 const int NDS32_BREAK_16 = 0x00EA;      /* 0xEA00 */
31 const int NDS32_BREAK_32 = 0x0A000064;  /* 0x6400000A */
32
33 struct nds32_edm_operation nds32_edm_ops[NDS32_EDM_OPERATION_MAX_NUM];
34 uint32_t nds32_edm_ops_num;
35
36 const char *nds32_debug_type_name[11] = {
37         "SOFTWARE BREAK",
38         "SOFTWARE BREAK_16",
39         "HARDWARE BREAKPOINT",
40         "DATA ADDR WATCHPOINT PRECISE",
41         "DATA VALUE WATCHPOINT PRECISE",
42         "DATA VALUE WATCHPOINT IMPRECISE",
43         "DEBUG INTERRUPT",
44         "HARDWARE SINGLE STEP",
45         "DATA ADDR WATCHPOINT NEXT PRECISE",
46         "DATA VALUE WATCHPOINT NEXT PRECISE",
47         "LOAD STORE GLOBAL STOP",
48 };
49
50 static const int NDS32_LM_SIZE_TABLE[16] = {
51         4 * 1024,
52         8 * 1024,
53         16 * 1024,
54         32 * 1024,
55         64 * 1024,
56         128 * 1024,
57         256 * 1024,
58         512 * 1024,
59         1024 * 1024,
60         1 * 1024,
61         2 * 1024,
62 };
63
64 static const int NDS32_LINE_SIZE_TABLE[6] = {
65         0,
66         8,
67         16,
68         32,
69         64,
70         128,
71 };
72
73 static int nds32_get_core_reg(struct reg *reg)
74 {
75         int retval;
76         struct nds32_reg *reg_arch_info = reg->arch_info;
77         struct target *target = reg_arch_info->target;
78         struct nds32 *nds32 = target_to_nds32(target);
79         struct aice_port_s *aice = target_to_aice(target);
80
81         if (target->state != TARGET_HALTED) {
82                 LOG_ERROR("Target not halted");
83                 return ERROR_TARGET_NOT_HALTED;
84         }
85
86         if (reg->valid) {
87                 uint32_t val = buf_get_u32(reg_arch_info->value, 0, 32);
88                 LOG_DEBUG("reading register(cached) %" PRIi32 "(%s), value: 0x%8.8" PRIx32,
89                                 reg_arch_info->num, reg->name, val);
90                 return ERROR_OK;
91         }
92
93         int mapped_regnum = nds32->register_map(nds32, reg_arch_info->num);
94
95         if (reg_arch_info->enable == false) {
96                 buf_set_u32(reg_arch_info->value, 0, 32, NDS32_REGISTER_DISABLE);
97                 retval = ERROR_FAIL;
98         } else {
99                 uint32_t val = 0;
100                 if ((nds32->fpu_enable == false)
101                                 && (NDS32_REG_TYPE_FPU == nds32_reg_type(mapped_regnum))) {
102                         retval = ERROR_OK;
103                 } else if ((nds32->audio_enable == false)
104                                 && (NDS32_REG_TYPE_AUMR == nds32_reg_type(mapped_regnum))) {
105                         retval = ERROR_OK;
106                 } else {
107                         retval = aice_read_register(aice, mapped_regnum, &val);
108                 }
109                 buf_set_u32(reg_arch_info->value, 0, 32, val);
110
111                 LOG_DEBUG("reading register %" PRIi32 "(%s), value: 0x%8.8" PRIx32,
112                                 reg_arch_info->num, reg->name, val);
113         }
114
115         if (retval == ERROR_OK) {
116                 reg->valid = true;
117                 reg->dirty = false;
118         }
119
120         return retval;
121 }
122
123 static int nds32_get_core_reg_64(struct reg *reg)
124 {
125         int retval;
126         struct nds32_reg *reg_arch_info = reg->arch_info;
127         struct target *target = reg_arch_info->target;
128         struct nds32 *nds32 = target_to_nds32(target);
129         struct aice_port_s *aice = target_to_aice(target);
130
131         if (target->state != TARGET_HALTED) {
132                 LOG_ERROR("Target not halted");
133                 return ERROR_TARGET_NOT_HALTED;
134         }
135
136         if (reg->valid)
137                 return ERROR_OK;
138
139         if (reg_arch_info->enable == false) {
140                 buf_set_u64(reg_arch_info->value, 0, 64, NDS32_REGISTER_DISABLE);
141                 retval = ERROR_FAIL;
142         } else {
143                 uint64_t val = 0;
144                 if ((nds32->fpu_enable == false)
145                                 && ((FD0 <= reg_arch_info->num) && (reg_arch_info->num <= FD31))) {
146                         retval = ERROR_OK;
147                 } else {
148                         retval = aice_read_reg_64(aice, reg_arch_info->num, &val);
149                 }
150                 buf_set_u64(reg_arch_info->value, 0, 64, val);
151         }
152
153         if (retval == ERROR_OK) {
154                 reg->valid = true;
155                 reg->dirty = false;
156         }
157
158         return retval;
159 }
160
161 static int nds32_update_psw(struct nds32 *nds32)
162 {
163         uint32_t value_ir0;
164         struct aice_port_s *aice = target_to_aice(nds32->target);
165
166         nds32_get_mapped_reg(nds32, IR0, &value_ir0);
167
168         /* Save data memory endian */
169         if ((value_ir0 >> 5) & 0x1) {
170                 nds32->data_endian = TARGET_BIG_ENDIAN;
171                 aice_set_data_endian(aice, AICE_BIG_ENDIAN);
172         } else {
173                 nds32->data_endian = TARGET_LITTLE_ENDIAN;
174                 aice_set_data_endian(aice, AICE_LITTLE_ENDIAN);
175         }
176
177         /* Save translation status */
178         nds32->memory.address_translation = ((value_ir0 >> 7) & 0x1) ? true : false;
179
180         return ERROR_OK;
181 }
182
183 static int nds32_update_mmu_info(struct nds32 *nds32)
184 {
185         uint32_t value;
186
187         /* Update MMU control status */
188         nds32_get_mapped_reg(nds32, MR0, &value);
189         nds32->mmu_config.default_min_page_size = value & 0x1;
190         nds32->mmu_config.multiple_page_size_in_use = (value >> 10) & 0x1;
191
192         return ERROR_OK;
193 }
194
195 static int nds32_update_cache_info(struct nds32 *nds32)
196 {
197         uint32_t value;
198
199         if (ERROR_OK == nds32_get_mapped_reg(nds32, MR8, &value)) {
200                 if (value & 0x1)
201                         nds32->memory.icache.enable = true;
202                 else
203                         nds32->memory.icache.enable = false;
204
205                 if (value & 0x2)
206                         nds32->memory.dcache.enable = true;
207                 else
208                         nds32->memory.dcache.enable = false;
209         } else {
210                 nds32->memory.icache.enable = false;
211                 nds32->memory.dcache.enable = false;
212         }
213
214         return ERROR_OK;
215 }
216
217 static int nds32_update_lm_info(struct nds32 *nds32)
218 {
219         struct nds32_memory *memory = &(nds32->memory);
220         uint32_t value_mr6;
221         uint32_t value_mr7;
222
223         nds32_get_mapped_reg(nds32, MR6, &value_mr6);
224         if (value_mr6 & 0x1)
225                 memory->ilm_enable = true;
226         else
227                 memory->ilm_enable = false;
228
229         if (memory->ilm_align_ver == 0) { /* 1MB aligned */
230                 memory->ilm_start = value_mr6 & 0xFFF00000;
231                 memory->ilm_end = memory->ilm_start + memory->ilm_size;
232         } else if (memory->ilm_align_ver == 1) { /* aligned to local memory size */
233                 memory->ilm_start = value_mr6 & 0xFFFFFC00;
234                 memory->ilm_end = memory->ilm_start + memory->ilm_size;
235         } else {
236                 memory->ilm_start = -1;
237                 memory->ilm_end = -1;
238         }
239
240         nds32_get_mapped_reg(nds32, MR7, &value_mr7);
241         if (value_mr7 & 0x1)
242                 memory->dlm_enable = true;
243         else
244                 memory->dlm_enable = false;
245
246         if (memory->dlm_align_ver == 0) { /* 1MB aligned */
247                 memory->dlm_start = value_mr7 & 0xFFF00000;
248                 memory->dlm_end = memory->dlm_start + memory->dlm_size;
249         } else if (memory->dlm_align_ver == 1) { /* aligned to local memory size */
250                 memory->dlm_start = value_mr7 & 0xFFFFFC00;
251                 memory->dlm_end = memory->dlm_start + memory->dlm_size;
252         } else {
253                 memory->dlm_start = -1;
254                 memory->dlm_end = -1;
255         }
256
257         return ERROR_OK;
258 }
259
260 /**
261  * If fpu/audio is disabled, to access fpu/audio registers will cause
262  * exceptions. So, we need to check if fpu/audio is enabled or not as
263  * target is halted. If fpu/audio is disabled, as users access fpu/audio
264  * registers, OpenOCD will return fake value 0 instead of accessing
265  * registers through DIM.
266  */
267 static int nds32_check_extension(struct nds32 *nds32)
268 {
269         uint32_t value;
270
271         nds32_get_mapped_reg(nds32, FUCPR, &value);
272         if (value == NDS32_REGISTER_DISABLE) {
273                 nds32->fpu_enable = false;
274                 nds32->audio_enable = false;
275                 return ERROR_OK;
276         }
277
278         if (value & 0x1)
279                 nds32->fpu_enable = true;
280         else
281                 nds32->fpu_enable = false;
282
283         if (value & 0x80000000)
284                 nds32->audio_enable = true;
285         else
286                 nds32->audio_enable = false;
287
288         return ERROR_OK;
289 }
290
291 static int nds32_set_core_reg(struct reg *reg, uint8_t *buf)
292 {
293         struct nds32_reg *reg_arch_info = reg->arch_info;
294         struct target *target = reg_arch_info->target;
295         struct nds32 *nds32 = target_to_nds32(target);
296         struct aice_port_s *aice = target_to_aice(target);
297         uint32_t value = buf_get_u32(buf, 0, 32);
298
299         if (target->state != TARGET_HALTED) {
300                 LOG_ERROR("Target not halted");
301                 return ERROR_TARGET_NOT_HALTED;
302         }
303
304         int mapped_regnum = nds32->register_map(nds32, reg_arch_info->num);
305
306         /* ignore values that will generate exception */
307         if (nds32_reg_exception(mapped_regnum, value))
308                 return ERROR_OK;
309
310         LOG_DEBUG("writing register %" PRIi32 "(%s) with value 0x%8.8" PRIx32,
311                         reg_arch_info->num, reg->name, value);
312
313         if ((nds32->fpu_enable == false) &&
314                 (NDS32_REG_TYPE_FPU == nds32_reg_type(mapped_regnum))) {
315
316                 buf_set_u32(reg->value, 0, 32, 0);
317         } else if ((nds32->audio_enable == false) &&
318                 (NDS32_REG_TYPE_AUMR == nds32_reg_type(mapped_regnum))) {
319
320                 buf_set_u32(reg->value, 0, 32, 0);
321         } else {
322                 buf_set_u32(reg->value, 0, 32, value);
323                 uint32_t val = buf_get_u32(reg_arch_info->value, 0, 32);
324                 aice_write_register(aice, mapped_regnum, val);
325
326                 /* After set value to registers, read the value from target
327                  * to avoid W1C inconsistency. */
328                 aice_read_register(aice, mapped_regnum, &val);
329                 buf_set_u32(reg_arch_info->value, 0, 32, val);
330         }
331
332         reg->valid = true;
333         reg->dirty = false;
334
335         /* update registers to take effect right now */
336         if (IR0 == mapped_regnum) {
337                 nds32_update_psw(nds32);
338         } else if (MR0 == mapped_regnum) {
339                 nds32_update_mmu_info(nds32);
340         } else if ((MR6 == mapped_regnum) || (MR7 == mapped_regnum)) {
341                 /* update lm information */
342                 nds32_update_lm_info(nds32);
343         } else if (MR8 == mapped_regnum) {
344                 nds32_update_cache_info(nds32);
345         } else if (FUCPR == mapped_regnum) {
346                 /* update audio/fpu setting */
347                 nds32_check_extension(nds32);
348         }
349
350         return ERROR_OK;
351 }
352
353 static int nds32_set_core_reg_64(struct reg *reg, uint8_t *buf)
354 {
355         struct nds32_reg *reg_arch_info = reg->arch_info;
356         struct target *target = reg_arch_info->target;
357         struct nds32 *nds32 = target_to_nds32(target);
358         uint32_t low_part = buf_get_u32(buf, 0, 32);
359         uint32_t high_part = buf_get_u32(buf, 32, 32);
360
361         if (target->state != TARGET_HALTED) {
362                 LOG_ERROR("Target not halted");
363                 return ERROR_TARGET_NOT_HALTED;
364         }
365
366         if ((nds32->fpu_enable == false) &&
367                 ((FD0 <= reg_arch_info->num) && (reg_arch_info->num <= FD31))) {
368
369                 buf_set_u32(reg->value, 0, 32, 0);
370                 buf_set_u32(reg->value, 32, 32, 0);
371
372                 reg->valid = true;
373                 reg->dirty = false;
374         } else {
375                 buf_set_u32(reg->value, 0, 32, low_part);
376                 buf_set_u32(reg->value, 32, 32, high_part);
377
378                 reg->valid = true;
379                 reg->dirty = true;
380         }
381
382         return ERROR_OK;
383 }
384
385 static const struct reg_arch_type nds32_reg_access_type = {
386         .get = nds32_get_core_reg,
387         .set = nds32_set_core_reg,
388 };
389
390 static const struct reg_arch_type nds32_reg_access_type_64 = {
391         .get = nds32_get_core_reg_64,
392         .set = nds32_set_core_reg_64,
393 };
394
395 static struct reg_cache *nds32_build_reg_cache(struct target *target,
396                 struct nds32 *nds32)
397 {
398         struct reg_cache *cache = calloc(sizeof(struct reg_cache), 1);
399         struct reg *reg_list = calloc(TOTAL_REG_NUM, sizeof(struct reg));
400         struct nds32_reg *reg_arch_info = calloc(TOTAL_REG_NUM, sizeof(struct nds32_reg));
401         int i;
402
403         if (!cache || !reg_list || !reg_arch_info) {
404                 free(cache);
405                 free(reg_list);
406                 free(reg_arch_info);
407                 return NULL;
408         }
409
410         cache->name = "Andes registers";
411         cache->next = NULL;
412         cache->reg_list = reg_list;
413         cache->num_regs = 0;
414
415         for (i = 0; i < TOTAL_REG_NUM; i++) {
416                 reg_arch_info[i].num = i;
417                 reg_arch_info[i].target = target;
418                 reg_arch_info[i].nds32 = nds32;
419                 reg_arch_info[i].enable = false;
420
421                 reg_list[i].name = nds32_reg_simple_name(i);
422                 reg_list[i].number = reg_arch_info[i].num;
423                 reg_list[i].size = nds32_reg_size(i);
424                 reg_list[i].arch_info = &reg_arch_info[i];
425
426                 reg_list[i].reg_data_type = calloc(sizeof(struct reg_data_type), 1);
427
428                 if (FD0 <= reg_arch_info[i].num && reg_arch_info[i].num <= FD31) {
429                         reg_list[i].value = reg_arch_info[i].value;
430                         reg_list[i].type = &nds32_reg_access_type_64;
431
432                         reg_list[i].reg_data_type->type = REG_TYPE_IEEE_DOUBLE;
433                         reg_list[i].reg_data_type->id = "ieee_double";
434                         reg_list[i].group = "float";
435                 } else {
436                         reg_list[i].value = reg_arch_info[i].value;
437                         reg_list[i].type = &nds32_reg_access_type;
438                         reg_list[i].group = "general";
439
440                         if ((FS0 <= reg_arch_info[i].num) && (reg_arch_info[i].num <= FS31)) {
441                                 reg_list[i].reg_data_type->type = REG_TYPE_IEEE_SINGLE;
442                                 reg_list[i].reg_data_type->id = "ieee_single";
443                                 reg_list[i].group = "float";
444                         } else if ((reg_arch_info[i].num == FPCSR) ||
445                                    (reg_arch_info[i].num == FPCFG)) {
446                                 reg_list[i].group = "float";
447                         } else if ((reg_arch_info[i].num == R28) ||
448                                    (reg_arch_info[i].num == R29) ||
449                                    (reg_arch_info[i].num == R31)) {
450                                 reg_list[i].reg_data_type->type = REG_TYPE_DATA_PTR;
451                                 reg_list[i].reg_data_type->id = "data_ptr";
452                         } else if ((reg_arch_info[i].num == R30) ||
453                                    (reg_arch_info[i].num == PC)) {
454                                 reg_list[i].reg_data_type->type = REG_TYPE_CODE_PTR;
455                                 reg_list[i].reg_data_type->id = "code_ptr";
456                         } else {
457                                 reg_list[i].reg_data_type->type = REG_TYPE_UINT32;
458                                 reg_list[i].reg_data_type->id = "uint32";
459                         }
460                 }
461
462                 if (R16 <= reg_arch_info[i].num && reg_arch_info[i].num <= R25)
463                         reg_list[i].caller_save = true;
464                 else
465                         reg_list[i].caller_save = false;
466
467                 reg_list[i].feature = malloc(sizeof(struct reg_feature));
468
469                 if (R0 <= reg_arch_info[i].num && reg_arch_info[i].num <= IFC_LP)
470                         reg_list[i].feature->name = "org.gnu.gdb.nds32.core";
471                 else if (CR0 <= reg_arch_info[i].num && reg_arch_info[i].num <= SECUR0)
472                         reg_list[i].feature->name = "org.gnu.gdb.nds32.system";
473                 else if (D0L24 <= reg_arch_info[i].num && reg_arch_info[i].num <= CBE3)
474                         reg_list[i].feature->name = "org.gnu.gdb.nds32.audio";
475                 else if (FPCSR <= reg_arch_info[i].num && reg_arch_info[i].num <= FD31)
476                         reg_list[i].feature->name = "org.gnu.gdb.nds32.fpu";
477
478                 cache->num_regs++;
479         }
480
481         nds32->core_cache = cache;
482
483         return cache;
484 }
485
486 static int nds32_reg_cache_init(struct target *target, struct nds32 *nds32)
487 {
488         struct reg_cache *cache;
489
490         cache = nds32_build_reg_cache(target, nds32);
491         if (!cache)
492                 return ERROR_FAIL;
493
494         *register_get_last_cache_p(&target->reg_cache) = cache;
495
496         return ERROR_OK;
497 }
498
499 static struct reg *nds32_reg_current(struct nds32 *nds32, unsigned regnum)
500 {
501         struct reg *r;
502
503         r = nds32->core_cache->reg_list + regnum;
504
505         return r;
506 }
507
508 int nds32_full_context(struct nds32 *nds32)
509 {
510         uint32_t value, value_ir0;
511
512         /* save $pc & $psw */
513         nds32_get_mapped_reg(nds32, PC, &value);
514         nds32_get_mapped_reg(nds32, IR0, &value_ir0);
515
516         nds32_update_psw(nds32);
517         nds32_update_mmu_info(nds32);
518         nds32_update_cache_info(nds32);
519         nds32_update_lm_info(nds32);
520
521         nds32_check_extension(nds32);
522
523         return ERROR_OK;
524 }
525
526 /* get register value internally */
527 int nds32_get_mapped_reg(struct nds32 *nds32, unsigned regnum, uint32_t *value)
528 {
529         struct reg_cache *reg_cache = nds32->core_cache;
530         struct reg *r;
531
532         if (regnum > reg_cache->num_regs)
533                 return ERROR_FAIL;
534
535         r = nds32_reg_current(nds32, regnum);
536
537         if (ERROR_OK != r->type->get(r))
538                 return ERROR_FAIL;
539
540         *value = buf_get_u32(r->value, 0, 32);
541
542         return ERROR_OK;
543 }
544
545 /** set register internally */
546 int nds32_set_mapped_reg(struct nds32 *nds32, unsigned regnum, uint32_t value)
547 {
548         struct reg_cache *reg_cache = nds32->core_cache;
549         struct reg *r;
550         uint8_t set_value[4];
551
552         if (regnum > reg_cache->num_regs)
553                 return ERROR_FAIL;
554
555         r = nds32_reg_current(nds32, regnum);
556
557         buf_set_u32(set_value, 0, 32, value);
558
559         return r->type->set(r, set_value);
560 }
561
562 /** get general register list */
563 static int nds32_get_general_reg_list(struct nds32 *nds32,
564                 struct reg **reg_list[], int *reg_list_size)
565 {
566         struct reg *reg_current;
567         int i;
568         int current_idx;
569
570         /** freed in gdb_server.c */
571         *reg_list = malloc(sizeof(struct reg *) * (IFC_LP - R0 + 1));
572         current_idx = 0;
573
574         for (i = R0; i < IFC_LP + 1; i++) {
575                 reg_current = nds32_reg_current(nds32, i);
576                 if (((struct nds32_reg *)reg_current->arch_info)->enable) {
577                         (*reg_list)[current_idx] = reg_current;
578                         current_idx++;
579                 }
580         }
581         *reg_list_size = current_idx;
582
583         return ERROR_OK;
584 }
585
586 /** get all register list */
587 static int nds32_get_all_reg_list(struct nds32 *nds32,
588                 struct reg **reg_list[], int *reg_list_size)
589 {
590         struct reg_cache *reg_cache = nds32->core_cache;
591         struct reg *reg_current;
592         unsigned int i;
593
594         *reg_list_size = reg_cache->num_regs;
595
596         /** freed in gdb_server.c */
597         *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
598
599         for (i = 0; i < reg_cache->num_regs; i++) {
600                 reg_current = nds32_reg_current(nds32, i);
601                 reg_current->exist = ((struct nds32_reg *)
602                                 reg_current->arch_info)->enable;
603                 (*reg_list)[i] = reg_current;
604         }
605
606         return ERROR_OK;
607 }
608
609 /** get all register list */
610 int nds32_get_gdb_reg_list(struct target *target,
611                 struct reg **reg_list[], int *reg_list_size,
612                 enum target_register_class reg_class)
613 {
614         struct nds32 *nds32 = target_to_nds32(target);
615
616         switch (reg_class) {
617                 case REG_CLASS_ALL:
618                         return nds32_get_all_reg_list(nds32, reg_list, reg_list_size);
619                 case REG_CLASS_GENERAL:
620                         return nds32_get_general_reg_list(nds32, reg_list, reg_list_size);
621                 default:
622                         return ERROR_FAIL;
623         }
624
625         return ERROR_FAIL;
626 }
627
628 static int nds32_select_memory_mode(struct target *target, uint32_t address,
629                 uint32_t length, uint32_t *end_address)
630 {
631         struct nds32 *nds32 = target_to_nds32(target);
632         struct aice_port_s *aice = target_to_aice(target);
633         struct nds32_memory *memory = &(nds32->memory);
634         struct nds32_edm *edm = &(nds32->edm);
635         uint32_t dlm_start, dlm_end;
636         uint32_t ilm_start, ilm_end;
637         uint32_t address_end = address + length;
638
639         /* init end_address */
640         *end_address = address_end;
641
642         if (NDS_MEMORY_ACC_CPU == memory->access_channel)
643                 return ERROR_OK;
644
645         if (edm->access_control == false) {
646                 LOG_DEBUG("EDM does not support ACC_CTL");
647                 return ERROR_OK;
648         }
649
650         if (edm->direct_access_local_memory == false) {
651                 LOG_DEBUG("EDM does not support DALM");
652                 aice_memory_mode(aice, NDS_MEMORY_SELECT_MEM);
653                 return ERROR_OK;
654         }
655
656         if (NDS_MEMORY_SELECT_AUTO != memory->mode) {
657                 LOG_DEBUG("Memory mode is not AUTO");
658                 return ERROR_OK;
659         }
660
661         /* set default mode */
662         aice_memory_mode(aice, NDS_MEMORY_SELECT_MEM);
663
664         if ((memory->ilm_base != 0) && (memory->ilm_enable == true)) {
665                 ilm_start = memory->ilm_start;
666                 ilm_end = memory->ilm_end;
667
668                 /* case 1, address < ilm_start */
669                 if (address < ilm_start) {
670                         if (ilm_start < address_end) {
671                                 /* update end_address to split non-ILM from ILM */
672                                 *end_address = ilm_start;
673                         }
674                         /* MEM mode */
675                         aice_memory_mode(aice, NDS_MEMORY_SELECT_MEM);
676                 } else if ((ilm_start <= address) && (address < ilm_end)) {
677                         /* case 2, ilm_start <= address < ilm_end */
678                         if (ilm_end < address_end) {
679                                 /* update end_address to split non-ILM from ILM */
680                                 *end_address = ilm_end;
681                         }
682                         /* ILM mode */
683                         aice_memory_mode(aice, NDS_MEMORY_SELECT_ILM);
684                 } else { /* case 3, ilm_end <= address */
685                         /* MEM mode */
686                         aice_memory_mode(aice, NDS_MEMORY_SELECT_MEM);
687                 }
688
689                 return ERROR_OK;
690         } else {
691                 LOG_DEBUG("ILM is not enabled");
692         }
693
694         if ((memory->dlm_base != 0) && (memory->dlm_enable == true)) {
695                 dlm_start = memory->dlm_start;
696                 dlm_end = memory->dlm_end;
697
698                 /* case 1, address < dlm_start */
699                 if (address < dlm_start) {
700                         if (dlm_start < address_end) {
701                                 /* update end_address to split non-DLM from DLM */
702                                 *end_address = dlm_start;
703                         }
704                         /* MEM mode */
705                         aice_memory_mode(aice, NDS_MEMORY_SELECT_MEM);
706                 } else if ((dlm_start <= address) && (address < dlm_end)) {
707                         /* case 2, dlm_start <= address < dlm_end */
708                         if (dlm_end < address_end) {
709                                 /* update end_address to split non-DLM from DLM */
710                                 *end_address = dlm_end;
711                         }
712                         /* DLM mode */
713                         aice_memory_mode(aice, NDS_MEMORY_SELECT_DLM);
714                 } else { /* case 3, dlm_end <= address */
715                         /* MEM mode */
716                         aice_memory_mode(aice, NDS_MEMORY_SELECT_MEM);
717                 }
718
719                 return ERROR_OK;
720         } else {
721                 LOG_DEBUG("DLM is not enabled");
722         }
723
724         return ERROR_OK;
725 }
726
727 int nds32_read_buffer(struct target *target, uint32_t address,
728                 uint32_t size, uint8_t *buffer)
729 {
730         struct nds32 *nds32 = target_to_nds32(target);
731         struct nds32_memory *memory = &(nds32->memory);
732
733         if ((NDS_MEMORY_ACC_CPU == memory->access_channel) &&
734                         (target->state != TARGET_HALTED)) {
735                 LOG_WARNING("target was not halted");
736                 return ERROR_TARGET_NOT_HALTED;
737         }
738
739         LOG_DEBUG("READ BUFFER: ADDR %08" PRIx32 "  SIZE %08" PRIx32,
740                         address,
741                         size);
742
743         int retval = ERROR_OK;
744         struct aice_port_s *aice = target_to_aice(target);
745         uint32_t end_address;
746
747         if (((address % 2) == 0) && (size == 2)) {
748                 nds32_select_memory_mode(target, address, 2, &end_address);
749                 return aice_read_mem_unit(aice, address, 2, 1, buffer);
750         }
751
752         /* handle unaligned head bytes */
753         if (address % 4) {
754                 uint32_t unaligned = 4 - (address % 4);
755
756                 if (unaligned > size)
757                         unaligned = size;
758
759                 nds32_select_memory_mode(target, address, unaligned, &end_address);
760                 retval = aice_read_mem_unit(aice, address, 1, unaligned, buffer);
761                 if (retval != ERROR_OK)
762                         return retval;
763
764                 buffer += unaligned;
765                 address += unaligned;
766                 size -= unaligned;
767         }
768
769         /* handle aligned words */
770         if (size >= 4) {
771                 int aligned = size - (size % 4);
772                 int read_len;
773
774                 do {
775                         nds32_select_memory_mode(target, address, aligned, &end_address);
776
777                         read_len = end_address - address;
778
779                         if (read_len > 8)
780                                 retval = aice_read_mem_bulk(aice, address, read_len, buffer);
781                         else
782                                 retval = aice_read_mem_unit(aice, address, 4, read_len / 4, buffer);
783
784                         if (retval != ERROR_OK)
785                                 return retval;
786
787                         buffer += read_len;
788                         address += read_len;
789                         size -= read_len;
790                         aligned -= read_len;
791
792                 } while (aligned != 0);
793         }
794
795         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
796         if (size >= 2) {
797                 int aligned = size - (size % 2);
798                 nds32_select_memory_mode(target, address, aligned, &end_address);
799                 retval = aice_read_mem_unit(aice, address, 2, aligned / 2, buffer);
800                 if (retval != ERROR_OK)
801                         return retval;
802
803                 buffer += aligned;
804                 address += aligned;
805                 size -= aligned;
806         }
807         /* handle tail writes of less than 4 bytes */
808         if (size > 0) {
809                 nds32_select_memory_mode(target, address, size, &end_address);
810                 retval = aice_read_mem_unit(aice, address, 1, size, buffer);
811                 if (retval != ERROR_OK)
812                         return retval;
813         }
814
815         return ERROR_OK;
816 }
817
818 int nds32_read_memory(struct target *target, uint32_t address,
819                 uint32_t size, uint32_t count, uint8_t *buffer)
820 {
821         struct aice_port_s *aice = target_to_aice(target);
822
823         return aice_read_mem_unit(aice, address, size, count, buffer);
824 }
825
826 int nds32_read_phys_memory(struct target *target, target_addr_t address,
827                 uint32_t size, uint32_t count, uint8_t *buffer)
828 {
829         struct aice_port_s *aice = target_to_aice(target);
830         struct nds32 *nds32 = target_to_nds32(target);
831         struct nds32_memory *memory = &(nds32->memory);
832         enum nds_memory_access orig_channel;
833         int result;
834
835         /* switch to BUS access mode to skip MMU */
836         orig_channel = memory->access_channel;
837         memory->access_channel = NDS_MEMORY_ACC_BUS;
838         aice_memory_access(aice, memory->access_channel);
839
840         /* The input address is physical address.  No need to do address translation. */
841         result = aice_read_mem_unit(aice, address, size, count, buffer);
842
843         /* restore to origin access mode */
844         memory->access_channel = orig_channel;
845         aice_memory_access(aice, memory->access_channel);
846
847         return result;
848 }
849
850 int nds32_write_buffer(struct target *target, uint32_t address,
851                 uint32_t size, const uint8_t *buffer)
852 {
853         struct nds32 *nds32 = target_to_nds32(target);
854         struct nds32_memory *memory = &(nds32->memory);
855
856         if ((NDS_MEMORY_ACC_CPU == memory->access_channel) &&
857                         (target->state != TARGET_HALTED)) {
858                 LOG_WARNING("target was not halted");
859                 return ERROR_TARGET_NOT_HALTED;
860         }
861
862         LOG_DEBUG("WRITE BUFFER: ADDR %08" PRIx32 "  SIZE %08" PRIx32,
863                         address,
864                         size);
865
866         struct aice_port_s *aice = target_to_aice(target);
867         int retval = ERROR_OK;
868         uint32_t end_address;
869
870         if (((address % 2) == 0) && (size == 2)) {
871                 nds32_select_memory_mode(target, address, 2, &end_address);
872                 return aice_write_mem_unit(aice, address, 2, 1, buffer);
873         }
874
875         /* handle unaligned head bytes */
876         if (address % 4) {
877                 uint32_t unaligned = 4 - (address % 4);
878
879                 if (unaligned > size)
880                         unaligned = size;
881
882                 nds32_select_memory_mode(target, address, unaligned, &end_address);
883                 retval = aice_write_mem_unit(aice, address, 1, unaligned, buffer);
884                 if (retval != ERROR_OK)
885                         return retval;
886
887                 buffer += unaligned;
888                 address += unaligned;
889                 size -= unaligned;
890         }
891
892         /* handle aligned words */
893         if (size >= 4) {
894                 int aligned = size - (size % 4);
895                 int write_len;
896
897                 do {
898                         nds32_select_memory_mode(target, address, aligned, &end_address);
899
900                         write_len = end_address - address;
901                         if (write_len > 8)
902                                 retval = aice_write_mem_bulk(aice, address, write_len, buffer);
903                         else
904                                 retval = aice_write_mem_unit(aice, address, 4, write_len / 4, buffer);
905                         if (retval != ERROR_OK)
906                                 return retval;
907
908                         buffer += write_len;
909                         address += write_len;
910                         size -= write_len;
911                         aligned -= write_len;
912
913                 } while (aligned != 0);
914         }
915
916         /* handle tail writes of less than 4 bytes */
917         if (size > 0) {
918                 nds32_select_memory_mode(target, address, size, &end_address);
919                 retval = aice_write_mem_unit(aice, address, 1, size, buffer);
920                 if (retval != ERROR_OK)
921                         return retval;
922         }
923
924         return retval;
925 }
926
927 int nds32_write_memory(struct target *target, uint32_t address,
928                 uint32_t size, uint32_t count, const uint8_t *buffer)
929 {
930         struct aice_port_s *aice = target_to_aice(target);
931
932         return aice_write_mem_unit(aice, address, size, count, buffer);
933 }
934
935 int nds32_write_phys_memory(struct target *target, target_addr_t address,
936                 uint32_t size, uint32_t count, const uint8_t *buffer)
937 {
938         struct aice_port_s *aice = target_to_aice(target);
939         struct nds32 *nds32 = target_to_nds32(target);
940         struct nds32_memory *memory = &(nds32->memory);
941         enum nds_memory_access orig_channel;
942         int result;
943
944         /* switch to BUS access mode to skip MMU */
945         orig_channel = memory->access_channel;
946         memory->access_channel = NDS_MEMORY_ACC_BUS;
947         aice_memory_access(aice, memory->access_channel);
948
949         /* The input address is physical address.  No need to do address translation. */
950         result = aice_write_mem_unit(aice, address, size, count, buffer);
951
952         /* restore to origin access mode */
953         memory->access_channel = orig_channel;
954         aice_memory_access(aice, memory->access_channel);
955
956         return result;
957 }
958
959 int nds32_mmu(struct target *target, int *enabled)
960 {
961         if (target->state != TARGET_HALTED) {
962                 LOG_ERROR("%s: target not halted", __func__);
963                 return ERROR_TARGET_INVALID;
964         }
965
966         struct nds32 *nds32 = target_to_nds32(target);
967         struct nds32_memory *memory = &(nds32->memory);
968         struct nds32_mmu_config *mmu_config = &(nds32->mmu_config);
969
970         if ((mmu_config->memory_protection == 2) && (memory->address_translation == true))
971                 *enabled = 1;
972         else
973                 *enabled = 0;
974
975         return ERROR_OK;
976 }
977
978 int nds32_arch_state(struct target *target)
979 {
980         struct nds32 *nds32 = target_to_nds32(target);
981
982         if (nds32->common_magic != NDS32_COMMON_MAGIC) {
983                 LOG_ERROR("BUG: called for a non-Andes target");
984                 return ERROR_FAIL;
985         }
986
987         uint32_t value_pc, value_psw;
988
989         nds32_get_mapped_reg(nds32, PC, &value_pc);
990         nds32_get_mapped_reg(nds32, IR0, &value_psw);
991
992         LOG_USER("target halted due to %s\n"
993                         "psw: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s",
994                         debug_reason_name(target),
995                         value_psw,
996                         value_pc,
997                         nds32->virtual_hosting ? ", virtual hosting" : "");
998
999         /* save pc value to pseudo register pc */
1000         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1001         buf_set_u32(reg->value, 0, 32, value_pc);
1002
1003         return ERROR_OK;
1004 }
1005
1006 static void nds32_init_must_have_registers(struct nds32 *nds32)
1007 {
1008         struct reg_cache *reg_cache = nds32->core_cache;
1009
1010         /** MUST have general registers */
1011         ((struct nds32_reg *)reg_cache->reg_list[R0].arch_info)->enable = true;
1012         ((struct nds32_reg *)reg_cache->reg_list[R1].arch_info)->enable = true;
1013         ((struct nds32_reg *)reg_cache->reg_list[R2].arch_info)->enable = true;
1014         ((struct nds32_reg *)reg_cache->reg_list[R3].arch_info)->enable = true;
1015         ((struct nds32_reg *)reg_cache->reg_list[R4].arch_info)->enable = true;
1016         ((struct nds32_reg *)reg_cache->reg_list[R5].arch_info)->enable = true;
1017         ((struct nds32_reg *)reg_cache->reg_list[R6].arch_info)->enable = true;
1018         ((struct nds32_reg *)reg_cache->reg_list[R7].arch_info)->enable = true;
1019         ((struct nds32_reg *)reg_cache->reg_list[R8].arch_info)->enable = true;
1020         ((struct nds32_reg *)reg_cache->reg_list[R9].arch_info)->enable = true;
1021         ((struct nds32_reg *)reg_cache->reg_list[R10].arch_info)->enable = true;
1022         ((struct nds32_reg *)reg_cache->reg_list[R15].arch_info)->enable = true;
1023         ((struct nds32_reg *)reg_cache->reg_list[R28].arch_info)->enable = true;
1024         ((struct nds32_reg *)reg_cache->reg_list[R29].arch_info)->enable = true;
1025         ((struct nds32_reg *)reg_cache->reg_list[R30].arch_info)->enable = true;
1026         ((struct nds32_reg *)reg_cache->reg_list[R31].arch_info)->enable = true;
1027         ((struct nds32_reg *)reg_cache->reg_list[PC].arch_info)->enable = true;
1028
1029         /** MUST have configuration system registers */
1030         ((struct nds32_reg *)reg_cache->reg_list[CR0].arch_info)->enable = true;
1031         ((struct nds32_reg *)reg_cache->reg_list[CR1].arch_info)->enable = true;
1032         ((struct nds32_reg *)reg_cache->reg_list[CR2].arch_info)->enable = true;
1033         ((struct nds32_reg *)reg_cache->reg_list[CR3].arch_info)->enable = true;
1034         ((struct nds32_reg *)reg_cache->reg_list[CR4].arch_info)->enable = true;
1035
1036         /** MUST have interrupt system registers */
1037         ((struct nds32_reg *)reg_cache->reg_list[IR0].arch_info)->enable = true;
1038         ((struct nds32_reg *)reg_cache->reg_list[IR1].arch_info)->enable = true;
1039         ((struct nds32_reg *)reg_cache->reg_list[IR3].arch_info)->enable = true;
1040         ((struct nds32_reg *)reg_cache->reg_list[IR4].arch_info)->enable = true;
1041         ((struct nds32_reg *)reg_cache->reg_list[IR6].arch_info)->enable = true;
1042         ((struct nds32_reg *)reg_cache->reg_list[IR9].arch_info)->enable = true;
1043         ((struct nds32_reg *)reg_cache->reg_list[IR11].arch_info)->enable = true;
1044         ((struct nds32_reg *)reg_cache->reg_list[IR14].arch_info)->enable = true;
1045         ((struct nds32_reg *)reg_cache->reg_list[IR15].arch_info)->enable = true;
1046
1047         /** MUST have MMU system registers */
1048         ((struct nds32_reg *)reg_cache->reg_list[MR0].arch_info)->enable = true;
1049
1050         /** MUST have EDM system registers */
1051         ((struct nds32_reg *)reg_cache->reg_list[DR40].arch_info)->enable = true;
1052         ((struct nds32_reg *)reg_cache->reg_list[DR42].arch_info)->enable = true;
1053 }
1054
1055 static int nds32_init_memory_config(struct nds32 *nds32)
1056 {
1057         uint32_t value_cr1; /* ICM_CFG */
1058         uint32_t value_cr2; /* DCM_CFG */
1059         struct nds32_memory *memory = &(nds32->memory);
1060
1061         /* read $cr1 to init instruction memory information */
1062         nds32_get_mapped_reg(nds32, CR1, &value_cr1);
1063         memory->icache.set = value_cr1 & 0x7;
1064         memory->icache.way = (value_cr1 >> 3) & 0x7;
1065         memory->icache.line_size = (value_cr1 >> 6) & 0x7;
1066         memory->icache.lock_support = (value_cr1 >> 9) & 0x1;
1067
1068         memory->ilm_base = (value_cr1 >> 10) & 0x7;
1069         memory->ilm_align_ver = (value_cr1 >> 13) & 0x3;
1070
1071         /* read $cr2 to init data memory information */
1072         nds32_get_mapped_reg(nds32, CR2, &value_cr2);
1073         memory->dcache.set = value_cr2 & 0x7;
1074         memory->dcache.way = (value_cr2 >> 3) & 0x7;
1075         memory->dcache.line_size = (value_cr2 >> 6) & 0x7;
1076         memory->dcache.lock_support = (value_cr2 >> 9) & 0x1;
1077
1078         memory->dlm_base = (value_cr2 >> 10) & 0x7;
1079         memory->dlm_align_ver = (value_cr2 >> 13) & 0x3;
1080
1081         return ERROR_OK;
1082 }
1083
1084 static void nds32_init_config(struct nds32 *nds32)
1085 {
1086         uint32_t value_cr0;
1087         uint32_t value_cr3;
1088         uint32_t value_cr4;
1089         struct nds32_cpu_version *cpu_version = &(nds32->cpu_version);
1090         struct nds32_mmu_config *mmu_config = &(nds32->mmu_config);
1091         struct nds32_misc_config *misc_config = &(nds32->misc_config);
1092
1093         nds32_get_mapped_reg(nds32, CR0, &value_cr0);
1094         nds32_get_mapped_reg(nds32, CR3, &value_cr3);
1095         nds32_get_mapped_reg(nds32, CR4, &value_cr4);
1096
1097         /* config cpu version */
1098         cpu_version->performance_extension = value_cr0 & 0x1;
1099         cpu_version->_16bit_extension = (value_cr0 >> 1) & 0x1;
1100         cpu_version->performance_extension_2 = (value_cr0 >> 2) & 0x1;
1101         cpu_version->cop_fpu_extension = (value_cr0 >> 3) & 0x1;
1102         cpu_version->string_extension = (value_cr0 >> 4) & 0x1;
1103         cpu_version->revision = (value_cr0 >> 16) & 0xFF;
1104         cpu_version->cpu_id_family = (value_cr0 >> 24) & 0xF;
1105         cpu_version->cpu_id_version = (value_cr0 >> 28) & 0xF;
1106
1107         /* config MMU */
1108         mmu_config->memory_protection = value_cr3 & 0x3;
1109         mmu_config->memory_protection_version = (value_cr3 >> 2) & 0x1F;
1110         mmu_config->fully_associative_tlb = (value_cr3 >> 7) & 0x1;
1111         if (mmu_config->fully_associative_tlb) {
1112                 mmu_config->tlb_size = (value_cr3 >> 8) & 0x7F;
1113         } else {
1114                 mmu_config->tlb_ways = (value_cr3 >> 8) & 0x7;
1115                 mmu_config->tlb_sets = (value_cr3 >> 11) & 0x7;
1116         }
1117         mmu_config->_8k_page_support = (value_cr3 >> 15) & 0x1;
1118         mmu_config->extra_page_size_support = (value_cr3 >> 16) & 0xFF;
1119         mmu_config->tlb_lock = (value_cr3 >> 24) & 0x1;
1120         mmu_config->hardware_page_table_walker = (value_cr3 >> 25) & 0x1;
1121         mmu_config->default_endian = (value_cr3 >> 26) & 0x1;
1122         mmu_config->partition_num = (value_cr3 >> 27) & 0x1;
1123         mmu_config->invisible_tlb = (value_cr3 >> 28) & 0x1;
1124         mmu_config->vlpt = (value_cr3 >> 29) & 0x1;
1125         mmu_config->ntme = (value_cr3 >> 30) & 0x1;
1126         mmu_config->drde = (value_cr3 >> 31) & 0x1;
1127
1128         /* config misc */
1129         misc_config->edm = value_cr4 & 0x1;
1130         misc_config->local_memory_dma = (value_cr4 >> 1) & 0x1;
1131         misc_config->performance_monitor = (value_cr4 >> 2) & 0x1;
1132         misc_config->high_speed_memory_port = (value_cr4 >> 3) & 0x1;
1133         misc_config->debug_tracer = (value_cr4 >> 4) & 0x1;
1134         misc_config->div_instruction = (value_cr4 >> 5) & 0x1;
1135         misc_config->mac_instruction = (value_cr4 >> 6) & 0x1;
1136         misc_config->audio_isa = (value_cr4 >> 7) & 0x3;
1137         misc_config->L2_cache = (value_cr4 >> 9) & 0x1;
1138         misc_config->reduce_register = (value_cr4 >> 10) & 0x1;
1139         misc_config->addr_24 = (value_cr4 >> 11) & 0x1;
1140         misc_config->interruption_level = (value_cr4 >> 12) & 0x1;
1141         misc_config->baseline_instruction = (value_cr4 >> 13) & 0x7;
1142         misc_config->no_dx_register = (value_cr4 >> 16) & 0x1;
1143         misc_config->implement_dependant_register = (value_cr4 >> 17) & 0x1;
1144         misc_config->implement_dependant_sr_encoding = (value_cr4 >> 18) & 0x1;
1145         misc_config->ifc = (value_cr4 >> 19) & 0x1;
1146         misc_config->mcu = (value_cr4 >> 20) & 0x1;
1147         misc_config->shadow = (value_cr4 >> 21) & 0x7;
1148         misc_config->ex9 = (value_cr4 >> 24) & 0x1;
1149
1150         nds32_init_memory_config(nds32);
1151 }
1152
1153 static int nds32_init_option_registers(struct nds32 *nds32)
1154 {
1155         struct reg_cache *reg_cache = nds32->core_cache;
1156         struct nds32_cpu_version *cpu_version = &(nds32->cpu_version);
1157         struct nds32_mmu_config *mmu_config = &(nds32->mmu_config);
1158         struct nds32_misc_config *misc_config = &(nds32->misc_config);
1159         struct nds32_memory *memory_config = &(nds32->memory);
1160
1161         bool no_cr5;
1162         bool mr10_exist;
1163         bool no_racr0;
1164
1165         if (((cpu_version->cpu_id_family == 0xC) || (cpu_version->cpu_id_family == 0xD)) &&
1166                         ((cpu_version->revision & 0xFC) == 0)) {
1167                 no_cr5 = true;
1168                 mr10_exist = true;
1169                 no_racr0 = true;
1170         } else {
1171                 no_cr5 = false;
1172                 mr10_exist = false;
1173                 no_racr0 = false;
1174         }
1175
1176         if (misc_config->reduce_register == false) {
1177                 ((struct nds32_reg *)reg_cache->reg_list[R11].arch_info)->enable = true;
1178                 ((struct nds32_reg *)reg_cache->reg_list[R12].arch_info)->enable = true;
1179                 ((struct nds32_reg *)reg_cache->reg_list[R13].arch_info)->enable = true;
1180                 ((struct nds32_reg *)reg_cache->reg_list[R14].arch_info)->enable = true;
1181                 ((struct nds32_reg *)reg_cache->reg_list[R16].arch_info)->enable = true;
1182                 ((struct nds32_reg *)reg_cache->reg_list[R17].arch_info)->enable = true;
1183                 ((struct nds32_reg *)reg_cache->reg_list[R18].arch_info)->enable = true;
1184                 ((struct nds32_reg *)reg_cache->reg_list[R19].arch_info)->enable = true;
1185                 ((struct nds32_reg *)reg_cache->reg_list[R20].arch_info)->enable = true;
1186                 ((struct nds32_reg *)reg_cache->reg_list[R21].arch_info)->enable = true;
1187                 ((struct nds32_reg *)reg_cache->reg_list[R22].arch_info)->enable = true;
1188                 ((struct nds32_reg *)reg_cache->reg_list[R23].arch_info)->enable = true;
1189                 ((struct nds32_reg *)reg_cache->reg_list[R24].arch_info)->enable = true;
1190                 ((struct nds32_reg *)reg_cache->reg_list[R25].arch_info)->enable = true;
1191                 ((struct nds32_reg *)reg_cache->reg_list[R26].arch_info)->enable = true;
1192                 ((struct nds32_reg *)reg_cache->reg_list[R27].arch_info)->enable = true;
1193         }
1194
1195         if (misc_config->no_dx_register == false) {
1196                 ((struct nds32_reg *)reg_cache->reg_list[D0LO].arch_info)->enable = true;
1197                 ((struct nds32_reg *)reg_cache->reg_list[D0HI].arch_info)->enable = true;
1198                 ((struct nds32_reg *)reg_cache->reg_list[D1LO].arch_info)->enable = true;
1199                 ((struct nds32_reg *)reg_cache->reg_list[D1HI].arch_info)->enable = true;
1200         }
1201
1202         if (misc_config->ex9)
1203                 ((struct nds32_reg *)reg_cache->reg_list[ITB].arch_info)->enable = true;
1204
1205         if (no_cr5 == false)
1206                 ((struct nds32_reg *)reg_cache->reg_list[CR5].arch_info)->enable = true;
1207
1208         if (cpu_version->cop_fpu_extension) {
1209                 ((struct nds32_reg *)reg_cache->reg_list[CR6].arch_info)->enable = true;
1210                 ((struct nds32_reg *)reg_cache->reg_list[FPCSR].arch_info)->enable = true;
1211                 ((struct nds32_reg *)reg_cache->reg_list[FPCFG].arch_info)->enable = true;
1212         }
1213
1214         if (mmu_config->memory_protection == 1) {
1215                 /* Secure MPU has no IPC, IPSW, P_ITYPE */
1216                 ((struct nds32_reg *)reg_cache->reg_list[IR1].arch_info)->enable = false;
1217                 ((struct nds32_reg *)reg_cache->reg_list[IR9].arch_info)->enable = false;
1218         }
1219
1220         if (nds32->privilege_level != 0)
1221                 ((struct nds32_reg *)reg_cache->reg_list[IR3].arch_info)->enable = false;
1222
1223         if (misc_config->mcu == true)
1224                 ((struct nds32_reg *)reg_cache->reg_list[IR4].arch_info)->enable = false;
1225
1226         if (misc_config->interruption_level == false) {
1227                 ((struct nds32_reg *)reg_cache->reg_list[IR2].arch_info)->enable = true;
1228                 ((struct nds32_reg *)reg_cache->reg_list[IR5].arch_info)->enable = true;
1229                 ((struct nds32_reg *)reg_cache->reg_list[IR10].arch_info)->enable = true;
1230                 ((struct nds32_reg *)reg_cache->reg_list[IR12].arch_info)->enable = true;
1231                 ((struct nds32_reg *)reg_cache->reg_list[IR13].arch_info)->enable = true;
1232
1233                 /* Secure MPU has no IPC, IPSW, P_ITYPE */
1234                 if (mmu_config->memory_protection != 1)
1235                         ((struct nds32_reg *)reg_cache->reg_list[IR7].arch_info)->enable = true;
1236         }
1237
1238         if ((cpu_version->cpu_id_family == 0x9) ||
1239                         (cpu_version->cpu_id_family == 0xA) ||
1240                         (cpu_version->cpu_id_family == 0xC) ||
1241                         (cpu_version->cpu_id_family == 0xD))
1242                 ((struct nds32_reg *)reg_cache->reg_list[IR8].arch_info)->enable = true;
1243
1244         if (misc_config->shadow == 1) {
1245                 ((struct nds32_reg *)reg_cache->reg_list[IR16].arch_info)->enable = true;
1246                 ((struct nds32_reg *)reg_cache->reg_list[IR17].arch_info)->enable = true;
1247         }
1248
1249         if (misc_config->ifc)
1250                 ((struct nds32_reg *)reg_cache->reg_list[IFC_LP].arch_info)->enable = true;
1251
1252         if (nds32->privilege_level != 0)
1253                 ((struct nds32_reg *)reg_cache->reg_list[MR0].arch_info)->enable = false;
1254
1255         if (mmu_config->memory_protection == 1) {
1256                 if (mmu_config->memory_protection_version == 24)
1257                         ((struct nds32_reg *)reg_cache->reg_list[MR4].arch_info)->enable = true;
1258
1259                 if (nds32->privilege_level == 0) {
1260                         if ((mmu_config->memory_protection_version == 16) ||
1261                                 (mmu_config->memory_protection_version == 24)) {
1262                                 ((struct nds32_reg *)reg_cache->reg_list[MR11].arch_info)->enable = true;
1263                                 ((struct nds32_reg *)reg_cache->reg_list[SECUR0].arch_info)->enable = true;
1264                                 ((struct nds32_reg *)reg_cache->reg_list[IR20].arch_info)->enable = true;
1265                                 ((struct nds32_reg *)reg_cache->reg_list[IR22].arch_info)->enable = true;
1266                                 ((struct nds32_reg *)reg_cache->reg_list[IR24].arch_info)->enable = true;
1267                                 ((struct nds32_reg *)reg_cache->reg_list[IR30].arch_info)->enable = true;
1268
1269                                 if (misc_config->shadow == 1) {
1270                                         ((struct nds32_reg *)reg_cache->reg_list[IR21].arch_info)->enable = true;
1271                                         ((struct nds32_reg *)reg_cache->reg_list[IR23].arch_info)->enable = true;
1272                                         ((struct nds32_reg *)reg_cache->reg_list[IR25].arch_info)->enable = true;
1273                                 }
1274                         }
1275                 }
1276         } else if (mmu_config->memory_protection == 2) {
1277                 ((struct nds32_reg *)reg_cache->reg_list[MR1].arch_info)->enable = true;
1278                 ((struct nds32_reg *)reg_cache->reg_list[MR4].arch_info)->enable = true;
1279
1280                 if ((cpu_version->cpu_id_family != 0xA) && (cpu_version->cpu_id_family != 0xC) &&
1281                                 (cpu_version->cpu_id_family != 0xD))
1282                         ((struct nds32_reg *)reg_cache->reg_list[MR5].arch_info)->enable = true;
1283         }
1284
1285         if (mmu_config->memory_protection > 0) {
1286                 ((struct nds32_reg *)reg_cache->reg_list[MR2].arch_info)->enable = true;
1287                 ((struct nds32_reg *)reg_cache->reg_list[MR3].arch_info)->enable = true;
1288         }
1289
1290         if (memory_config->ilm_base != 0)
1291                 if (nds32->privilege_level == 0)
1292                         ((struct nds32_reg *)reg_cache->reg_list[MR6].arch_info)->enable = true;
1293
1294         if (memory_config->dlm_base != 0)
1295                 if (nds32->privilege_level == 0)
1296                         ((struct nds32_reg *)reg_cache->reg_list[MR7].arch_info)->enable = true;
1297
1298         if ((memory_config->icache.line_size != 0) && (memory_config->dcache.line_size != 0))
1299                 ((struct nds32_reg *)reg_cache->reg_list[MR8].arch_info)->enable = true;
1300
1301         if (misc_config->high_speed_memory_port)
1302                 ((struct nds32_reg *)reg_cache->reg_list[MR9].arch_info)->enable = true;
1303
1304         if (mr10_exist)
1305                 ((struct nds32_reg *)reg_cache->reg_list[MR10].arch_info)->enable = true;
1306
1307         if (misc_config->edm) {
1308                 int dr_reg_n = nds32->edm.breakpoint_num * 5;
1309
1310                 for (int i = 0 ; i < dr_reg_n ; i++)
1311                         ((struct nds32_reg *)reg_cache->reg_list[DR0 + i].arch_info)->enable = true;
1312
1313                 ((struct nds32_reg *)reg_cache->reg_list[DR41].arch_info)->enable = true;
1314                 ((struct nds32_reg *)reg_cache->reg_list[DR43].arch_info)->enable = true;
1315                 ((struct nds32_reg *)reg_cache->reg_list[DR44].arch_info)->enable = true;
1316                 ((struct nds32_reg *)reg_cache->reg_list[DR45].arch_info)->enable = true;
1317         }
1318
1319         if (misc_config->debug_tracer) {
1320                 ((struct nds32_reg *)reg_cache->reg_list[DR46].arch_info)->enable = true;
1321                 ((struct nds32_reg *)reg_cache->reg_list[DR47].arch_info)->enable = true;
1322         }
1323
1324         if (misc_config->performance_monitor) {
1325                 ((struct nds32_reg *)reg_cache->reg_list[PFR0].arch_info)->enable = true;
1326                 ((struct nds32_reg *)reg_cache->reg_list[PFR1].arch_info)->enable = true;
1327                 ((struct nds32_reg *)reg_cache->reg_list[PFR2].arch_info)->enable = true;
1328                 ((struct nds32_reg *)reg_cache->reg_list[PFR3].arch_info)->enable = true;
1329         }
1330
1331         if (misc_config->local_memory_dma) {
1332                 ((struct nds32_reg *)reg_cache->reg_list[DMAR0].arch_info)->enable = true;
1333                 ((struct nds32_reg *)reg_cache->reg_list[DMAR1].arch_info)->enable = true;
1334                 ((struct nds32_reg *)reg_cache->reg_list[DMAR2].arch_info)->enable = true;
1335                 ((struct nds32_reg *)reg_cache->reg_list[DMAR3].arch_info)->enable = true;
1336                 ((struct nds32_reg *)reg_cache->reg_list[DMAR4].arch_info)->enable = true;
1337                 ((struct nds32_reg *)reg_cache->reg_list[DMAR5].arch_info)->enable = true;
1338                 ((struct nds32_reg *)reg_cache->reg_list[DMAR6].arch_info)->enable = true;
1339                 ((struct nds32_reg *)reg_cache->reg_list[DMAR7].arch_info)->enable = true;
1340                 ((struct nds32_reg *)reg_cache->reg_list[DMAR8].arch_info)->enable = true;
1341                 ((struct nds32_reg *)reg_cache->reg_list[DMAR9].arch_info)->enable = true;
1342                 ((struct nds32_reg *)reg_cache->reg_list[DMAR10].arch_info)->enable = true;
1343         }
1344
1345         if ((misc_config->local_memory_dma || misc_config->performance_monitor) &&
1346                         (no_racr0 == false))
1347                 ((struct nds32_reg *)reg_cache->reg_list[RACR].arch_info)->enable = true;
1348
1349         if (cpu_version->cop_fpu_extension || (misc_config->audio_isa != 0))
1350                 ((struct nds32_reg *)reg_cache->reg_list[FUCPR].arch_info)->enable = true;
1351
1352         if (misc_config->audio_isa != 0) {
1353                 if (misc_config->audio_isa > 1) {
1354                         ((struct nds32_reg *)reg_cache->reg_list[D0L24].arch_info)->enable = true;
1355                         ((struct nds32_reg *)reg_cache->reg_list[D1L24].arch_info)->enable = true;
1356                 }
1357
1358                 ((struct nds32_reg *)reg_cache->reg_list[I0].arch_info)->enable = true;
1359                 ((struct nds32_reg *)reg_cache->reg_list[I1].arch_info)->enable = true;
1360                 ((struct nds32_reg *)reg_cache->reg_list[I2].arch_info)->enable = true;
1361                 ((struct nds32_reg *)reg_cache->reg_list[I3].arch_info)->enable = true;
1362                 ((struct nds32_reg *)reg_cache->reg_list[I4].arch_info)->enable = true;
1363                 ((struct nds32_reg *)reg_cache->reg_list[I5].arch_info)->enable = true;
1364                 ((struct nds32_reg *)reg_cache->reg_list[I6].arch_info)->enable = true;
1365                 ((struct nds32_reg *)reg_cache->reg_list[I7].arch_info)->enable = true;
1366                 ((struct nds32_reg *)reg_cache->reg_list[M1].arch_info)->enable = true;
1367                 ((struct nds32_reg *)reg_cache->reg_list[M2].arch_info)->enable = true;
1368                 ((struct nds32_reg *)reg_cache->reg_list[M3].arch_info)->enable = true;
1369                 ((struct nds32_reg *)reg_cache->reg_list[M5].arch_info)->enable = true;
1370                 ((struct nds32_reg *)reg_cache->reg_list[M6].arch_info)->enable = true;
1371                 ((struct nds32_reg *)reg_cache->reg_list[M7].arch_info)->enable = true;
1372                 ((struct nds32_reg *)reg_cache->reg_list[MOD].arch_info)->enable = true;
1373                 ((struct nds32_reg *)reg_cache->reg_list[LBE].arch_info)->enable = true;
1374                 ((struct nds32_reg *)reg_cache->reg_list[LE].arch_info)->enable = true;
1375                 ((struct nds32_reg *)reg_cache->reg_list[LC].arch_info)->enable = true;
1376                 ((struct nds32_reg *)reg_cache->reg_list[ADM_VBASE].arch_info)->enable = true;
1377                 ((struct nds32_reg *)reg_cache->reg_list[SHFT_CTL0].arch_info)->enable = true;
1378                 ((struct nds32_reg *)reg_cache->reg_list[SHFT_CTL1].arch_info)->enable = true;
1379
1380                 uint32_t value_mod;
1381                 uint32_t fucpr_backup;
1382                 /* enable fpu and get configuration */
1383                 nds32_get_mapped_reg(nds32, FUCPR, &fucpr_backup);
1384                 if ((fucpr_backup & 0x80000000) == 0)
1385                         nds32_set_mapped_reg(nds32, FUCPR, fucpr_backup | 0x80000000);
1386                 nds32_get_mapped_reg(nds32, MOD, &value_mod);
1387                 /* restore origin fucpr value */
1388                 if ((fucpr_backup & 0x80000000) == 0)
1389                         nds32_set_mapped_reg(nds32, FUCPR, fucpr_backup);
1390
1391                 if ((value_mod >> 6) & 0x1) {
1392                         ((struct nds32_reg *)reg_cache->reg_list[CB_CTL].arch_info)->enable = true;
1393                         ((struct nds32_reg *)reg_cache->reg_list[CBB0].arch_info)->enable = true;
1394                         ((struct nds32_reg *)reg_cache->reg_list[CBB1].arch_info)->enable = true;
1395                         ((struct nds32_reg *)reg_cache->reg_list[CBB2].arch_info)->enable = true;
1396                         ((struct nds32_reg *)reg_cache->reg_list[CBB3].arch_info)->enable = true;
1397                         ((struct nds32_reg *)reg_cache->reg_list[CBE0].arch_info)->enable = true;
1398                         ((struct nds32_reg *)reg_cache->reg_list[CBE1].arch_info)->enable = true;
1399                         ((struct nds32_reg *)reg_cache->reg_list[CBE2].arch_info)->enable = true;
1400                         ((struct nds32_reg *)reg_cache->reg_list[CBE3].arch_info)->enable = true;
1401                 }
1402         }
1403
1404         if ((cpu_version->cpu_id_family == 0x9) ||
1405                         (cpu_version->cpu_id_family == 0xA) ||
1406                         (cpu_version->cpu_id_family == 0xC)) {
1407
1408                 ((struct nds32_reg *)reg_cache->reg_list[IDR0].arch_info)->enable = true;
1409                 ((struct nds32_reg *)reg_cache->reg_list[IDR1].arch_info)->enable = true;
1410
1411                 if ((cpu_version->cpu_id_family == 0xC) && (cpu_version->revision == 0x0C))
1412                         ((struct nds32_reg *)reg_cache->reg_list[IDR0].arch_info)->enable = false;
1413         }
1414
1415         uint32_t ir3_value;
1416         uint32_t ivb_prog_pri_lvl;
1417         uint32_t ivb_ivic_ver;
1418
1419         nds32_get_mapped_reg(nds32, IR3, &ir3_value);
1420         ivb_prog_pri_lvl = ir3_value & 0x1;
1421         ivb_ivic_ver = (ir3_value >> 11) & 0x3;
1422
1423         if ((ivb_prog_pri_lvl == 1) || (ivb_ivic_ver >= 1)) {
1424                 ((struct nds32_reg *)reg_cache->reg_list[IR18].arch_info)->enable = true;
1425                 ((struct nds32_reg *)reg_cache->reg_list[IR19].arch_info)->enable = true;
1426         }
1427
1428         if (ivb_ivic_ver >= 1) {
1429                 ((struct nds32_reg *)reg_cache->reg_list[IR26].arch_info)->enable = true;
1430                 ((struct nds32_reg *)reg_cache->reg_list[IR27].arch_info)->enable = true;
1431                 ((struct nds32_reg *)reg_cache->reg_list[IR28].arch_info)->enable = true;
1432                 ((struct nds32_reg *)reg_cache->reg_list[IR29].arch_info)->enable = true;
1433         }
1434
1435         return ERROR_OK;
1436 }
1437
1438 int nds32_init_register_table(struct nds32 *nds32)
1439 {
1440         nds32_init_must_have_registers(nds32);
1441
1442         return ERROR_OK;
1443 }
1444
1445 int nds32_add_software_breakpoint(struct target *target,
1446                 struct breakpoint *breakpoint)
1447 {
1448         uint32_t data;
1449         uint32_t check_data;
1450         uint32_t break_insn;
1451
1452         /* check the breakpoint size */
1453         target->type->read_buffer(target, breakpoint->address, 4, (uint8_t *)&data);
1454
1455         /* backup origin instruction
1456          * instruction is big-endian */
1457         if (*(char *)&data & 0x80) { /* 16-bits instruction */
1458                 breakpoint->length = 2;
1459                 break_insn = NDS32_BREAK_16;
1460         } else { /* 32-bits instruction */
1461                 breakpoint->length = 4;
1462                 break_insn = NDS32_BREAK_32;
1463         }
1464
1465         if (breakpoint->orig_instr != NULL)
1466                 free(breakpoint->orig_instr);
1467
1468         breakpoint->orig_instr = malloc(breakpoint->length);
1469         memcpy(breakpoint->orig_instr, &data, breakpoint->length);
1470
1471         /* self-modified code */
1472         target->type->write_buffer(target, breakpoint->address, breakpoint->length, (const uint8_t *)&break_insn);
1473         /* write_back & invalidate dcache & invalidate icache */
1474         nds32_cache_sync(target, breakpoint->address, breakpoint->length);
1475
1476         /* read back to check */
1477         target->type->read_buffer(target, breakpoint->address, breakpoint->length, (uint8_t *)&check_data);
1478         if (memcmp(&check_data, &break_insn, breakpoint->length) == 0)
1479                 return ERROR_OK;
1480
1481         return ERROR_FAIL;
1482 }
1483
1484 int nds32_remove_software_breakpoint(struct target *target,
1485                 struct breakpoint *breakpoint)
1486 {
1487         uint32_t check_data;
1488         uint32_t break_insn;
1489
1490         if (breakpoint->length == 2)
1491                 break_insn = NDS32_BREAK_16;
1492         else if (breakpoint->length == 4)
1493                 break_insn = NDS32_BREAK_32;
1494         else
1495                 return ERROR_FAIL;
1496
1497         target->type->read_buffer(target, breakpoint->address, breakpoint->length,
1498                         (uint8_t *)&check_data);
1499
1500         /* break instruction is modified */
1501         if (memcmp(&check_data, &break_insn, breakpoint->length) != 0)
1502                 return ERROR_FAIL;
1503
1504         /* self-modified code */
1505         target->type->write_buffer(target, breakpoint->address, breakpoint->length,
1506                         breakpoint->orig_instr);
1507
1508         /* write_back & invalidate dcache & invalidate icache */
1509         nds32_cache_sync(target, breakpoint->address, breakpoint->length);
1510
1511         return ERROR_OK;
1512 }
1513
1514 /**
1515  * Restore the processor context on an Andes target.  The full processor
1516  * context is analyzed to see if any of the registers are dirty on this end, but
1517  * have a valid new value.  If this is the case, the processor is changed to the
1518  * appropriate mode and the new register values are written out to the
1519  * processor.  If there happens to be a dirty register with an invalid value, an
1520  * error will be logged.
1521  *
1522  * @param target Pointer to the Andes target to have its context restored
1523  * @return Error status if the target is not halted.
1524  */
1525 int nds32_restore_context(struct target *target)
1526 {
1527         struct nds32 *nds32 = target_to_nds32(target);
1528         struct aice_port_s *aice = target_to_aice(target);
1529         struct reg_cache *reg_cache = nds32->core_cache;
1530         struct reg *reg;
1531         struct nds32_reg *reg_arch_info;
1532         unsigned int i;
1533
1534         LOG_DEBUG("-");
1535
1536         if (target->state != TARGET_HALTED) {
1537                 LOG_WARNING("target not halted");
1538                 return ERROR_TARGET_NOT_HALTED;
1539         }
1540
1541         /* check if there are dirty registers */
1542         for (i = 0; i < reg_cache->num_regs; i++) {
1543                 reg = &(reg_cache->reg_list[i]);
1544                 if (reg->dirty == true) {
1545                         if (reg->valid == true) {
1546
1547                                 LOG_DEBUG("examining dirty reg: %s", reg->name);
1548                                 LOG_DEBUG("writing register %d with value 0x%8.8" PRIx32,
1549                                                 i, buf_get_u32(reg->value, 0, 32));
1550
1551                                 reg_arch_info = reg->arch_info;
1552                                 if (FD0 <= reg_arch_info->num && reg_arch_info->num <= FD31) {
1553                                         uint64_t val = buf_get_u64(reg_arch_info->value, 0, 64);
1554                                         aice_write_reg_64(aice, reg_arch_info->num, val);
1555                                 } else {
1556                                         uint32_t val = buf_get_u32(reg_arch_info->value, 0, 32);
1557                                         aice_write_register(aice, reg_arch_info->num, val);
1558                                 }
1559
1560                                 reg->valid = true;
1561                                 reg->dirty = false;
1562                         }
1563                 }
1564         }
1565
1566         return ERROR_OK;
1567 }
1568
1569 int nds32_edm_config(struct nds32 *nds32)
1570 {
1571         struct target *target = nds32->target;
1572         struct aice_port_s *aice = target_to_aice(target);
1573         uint32_t edm_cfg;
1574         uint32_t edm_ctl;
1575
1576         aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CFG, &edm_cfg);
1577
1578         nds32->edm.version = (edm_cfg >> 16) & 0xFFFF;
1579         LOG_INFO("EDM version 0x%04x", nds32->edm.version);
1580
1581         nds32->edm.breakpoint_num = (edm_cfg & 0x7) + 1;
1582
1583         if ((nds32->edm.version & 0x1000) || (0x60 <= nds32->edm.version))
1584                 nds32->edm.access_control = true;
1585         else
1586                 nds32->edm.access_control = false;
1587
1588         if ((edm_cfg >> 4) & 0x1)
1589                 nds32->edm.direct_access_local_memory = true;
1590         else
1591                 nds32->edm.direct_access_local_memory = false;
1592
1593         if (nds32->edm.version <= 0x20)
1594                 nds32->edm.direct_access_local_memory = false;
1595
1596         aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CTL, &edm_ctl);
1597         if (edm_ctl & (0x1 << 29))
1598                 nds32->edm.support_max_stop = true;
1599         else
1600                 nds32->edm.support_max_stop = false;
1601
1602         /* set passcode for secure MCU */
1603         nds32_login(nds32);
1604
1605         return ERROR_OK;
1606 }
1607
1608 int nds32_config(struct nds32 *nds32)
1609 {
1610         nds32_init_config(nds32);
1611
1612         /* init optional system registers according to config registers */
1613         nds32_init_option_registers(nds32);
1614
1615         /* get max interrupt level */
1616         if (nds32->misc_config.interruption_level)
1617                 nds32->max_interrupt_level = 2;
1618         else
1619                 nds32->max_interrupt_level = 3;
1620
1621         /* get ILM/DLM size from MR6/MR7 */
1622         uint32_t value_mr6, value_mr7;
1623         uint32_t size_index;
1624         nds32_get_mapped_reg(nds32, MR6, &value_mr6);
1625         size_index = (value_mr6 >> 1) & 0xF;
1626         nds32->memory.ilm_size = NDS32_LM_SIZE_TABLE[size_index];
1627
1628         nds32_get_mapped_reg(nds32, MR7, &value_mr7);
1629         size_index = (value_mr7 >> 1) & 0xF;
1630         nds32->memory.dlm_size = NDS32_LM_SIZE_TABLE[size_index];
1631
1632         return ERROR_OK;
1633 }
1634
1635 int nds32_init_arch_info(struct target *target, struct nds32 *nds32)
1636 {
1637         target->arch_info = nds32;
1638         nds32->target = target;
1639
1640         nds32->common_magic = NDS32_COMMON_MAGIC;
1641         nds32->init_arch_info_after_halted = false;
1642         nds32->auto_convert_hw_bp = true;
1643         nds32->global_stop = false;
1644         nds32->soft_reset_halt = false;
1645         nds32->edm_passcode = NULL;
1646         nds32->privilege_level = 0;
1647         nds32->boot_time = 1500;
1648         nds32->reset_halt_as_examine = false;
1649         nds32->keep_target_edm_ctl = false;
1650         nds32->word_access_mem = false;
1651         nds32->virtual_hosting = true;
1652         nds32->hit_syscall = false;
1653         nds32->active_syscall_id = NDS32_SYSCALL_UNDEFINED;
1654         nds32->virtual_hosting_errno = 0;
1655         nds32->virtual_hosting_ctrl_c = false;
1656         nds32->attached = false;
1657
1658         nds32->syscall_break.asid = 0;
1659         nds32->syscall_break.length = 4;
1660         nds32->syscall_break.set = 0;
1661         nds32->syscall_break.orig_instr = NULL;
1662         nds32->syscall_break.next = NULL;
1663         nds32->syscall_break.unique_id = 0x515CAll + target->target_number;
1664         nds32->syscall_break.linked_BRP = 0;
1665
1666         nds32_reg_init();
1667
1668         if (ERROR_FAIL == nds32_reg_cache_init(target, nds32))
1669                 return ERROR_FAIL;
1670
1671         if (ERROR_OK != nds32_init_register_table(nds32))
1672                 return ERROR_FAIL;
1673
1674         return ERROR_OK;
1675 }
1676
1677 int nds32_virtual_to_physical(struct target *target, target_addr_t address, target_addr_t *physical)
1678 {
1679         struct nds32 *nds32 = target_to_nds32(target);
1680
1681         if (nds32->memory.address_translation == false) {
1682                 *physical = address;
1683                 return ERROR_OK;
1684         }
1685
1686         if (ERROR_OK == nds32_probe_tlb(nds32, address, physical))
1687                 return ERROR_OK;
1688
1689         if (ERROR_OK == nds32_walk_page_table(nds32, address, physical))
1690                 return ERROR_OK;
1691
1692         return ERROR_FAIL;
1693 }
1694
1695 int nds32_cache_sync(struct target *target, target_addr_t address, uint32_t length)
1696 {
1697         struct aice_port_s *aice = target_to_aice(target);
1698         struct nds32 *nds32 = target_to_nds32(target);
1699         struct nds32_cache *dcache = &(nds32->memory.dcache);
1700         struct nds32_cache *icache = &(nds32->memory.icache);
1701         uint32_t dcache_line_size = NDS32_LINE_SIZE_TABLE[dcache->line_size];
1702         uint32_t icache_line_size = NDS32_LINE_SIZE_TABLE[icache->line_size];
1703         uint32_t cur_address;
1704         int result;
1705         uint32_t start_line, end_line;
1706         uint32_t cur_line;
1707
1708         if ((dcache->line_size != 0) && (dcache->enable == true)) {
1709                 /* address / dcache_line_size */
1710                 start_line = address >> (dcache->line_size + 2);
1711                 /* (address + length - 1) / dcache_line_size */
1712                 end_line = (address + length - 1) >> (dcache->line_size + 2);
1713
1714                 for (cur_address = address, cur_line = start_line ;
1715                                 cur_line <= end_line ;
1716                                 cur_address += dcache_line_size, cur_line++) {
1717                         /* D$ write back */
1718                         result = aice_cache_ctl(aice, AICE_CACHE_CTL_L1D_VA_WB, cur_address);
1719                         if (result != ERROR_OK)
1720                                 return result;
1721
1722                         /* D$ invalidate */
1723                         result = aice_cache_ctl(aice, AICE_CACHE_CTL_L1D_VA_INVAL, cur_address);
1724                         if (result != ERROR_OK)
1725                                 return result;
1726                 }
1727         }
1728
1729         if ((icache->line_size != 0) && (icache->enable == true)) {
1730                 /*  address / icache_line_size */
1731                 start_line = address >> (icache->line_size + 2);
1732                 /* (address + length - 1) / icache_line_size */
1733                 end_line = (address + length - 1) >> (icache->line_size + 2);
1734
1735                 for (cur_address = address, cur_line = start_line ;
1736                                 cur_line <= end_line ;
1737                                 cur_address += icache_line_size, cur_line++) {
1738                         /* Because PSW.IT is turned off under debug exception, address MUST
1739                          * be physical address.  L1I_VA_INVALIDATE uses PSW.IT to decide
1740                          * address translation or not. */
1741                         target_addr_t physical_addr;
1742                         if (ERROR_FAIL == target->type->virt2phys(target, cur_address,
1743                                                 &physical_addr))
1744                                 return ERROR_FAIL;
1745
1746                         /* I$ invalidate */
1747                         result = aice_cache_ctl(aice, AICE_CACHE_CTL_L1I_VA_INVAL, physical_addr);
1748                         if (result != ERROR_OK)
1749                                 return result;
1750                 }
1751         }
1752
1753         return ERROR_OK;
1754 }
1755
1756 uint32_t nds32_nextpc(struct nds32 *nds32, int current, uint32_t address)
1757 {
1758         if (!current)
1759                 nds32_set_mapped_reg(nds32, PC, address);
1760         else
1761                 nds32_get_mapped_reg(nds32, PC, &address);
1762
1763         return address;
1764 }
1765
1766 int nds32_step(struct target *target, int current,
1767                 target_addr_t address, int handle_breakpoints)
1768 {
1769         LOG_DEBUG("target->state: %s",
1770                         target_state_name(target));
1771
1772         if (target->state != TARGET_HALTED) {
1773                 LOG_WARNING("target was not halted");
1774                 return ERROR_TARGET_NOT_HALTED;
1775         }
1776
1777         struct nds32 *nds32 = target_to_nds32(target);
1778
1779         address = nds32_nextpc(nds32, current, address);
1780
1781         LOG_DEBUG("STEP PC %08" TARGET_PRIxADDR "%s", address, !current ? "!" : "");
1782
1783         /** set DSSIM */
1784         uint32_t ir14_value;
1785         nds32_get_mapped_reg(nds32, IR14, &ir14_value);
1786         if (nds32->step_isr_enable)
1787                 ir14_value |= (0x1 << 31);
1788         else
1789                 ir14_value &= ~(0x1 << 31);
1790         nds32_set_mapped_reg(nds32, IR14, ir14_value);
1791
1792         /* check hit_syscall before leave_debug_state() because
1793          * leave_debug_state() may clear hit_syscall flag */
1794         bool no_step = false;
1795         if (nds32->hit_syscall)
1796                 /* step after hit_syscall should be ignored because
1797                  * leave_debug_state will step implicitly to skip the
1798                  * syscall */
1799                 no_step = true;
1800
1801         /********* TODO: maybe create another function to handle this part */
1802         CHECK_RETVAL(nds32->leave_debug_state(nds32, true));
1803         CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_RESUMED));
1804
1805         if (no_step == false) {
1806                 struct aice_port_s *aice = target_to_aice(target);
1807                 if (ERROR_OK != aice_step(aice))
1808                         return ERROR_FAIL;
1809         }
1810
1811         /* save state */
1812         CHECK_RETVAL(nds32->enter_debug_state(nds32, true));
1813         /********* TODO: maybe create another function to handle this part */
1814
1815         /* restore DSSIM */
1816         if (nds32->step_isr_enable) {
1817                 nds32_get_mapped_reg(nds32, IR14, &ir14_value);
1818                 ir14_value &= ~(0x1 << 31);
1819                 nds32_set_mapped_reg(nds32, IR14, ir14_value);
1820         }
1821
1822         CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_HALTED));
1823
1824         return ERROR_OK;
1825 }
1826
1827 static int nds32_step_without_watchpoint(struct nds32 *nds32)
1828 {
1829         struct target *target = nds32->target;
1830
1831         if (target->state != TARGET_HALTED) {
1832                 LOG_WARNING("target was not halted");
1833                 return ERROR_TARGET_NOT_HALTED;
1834         }
1835
1836         /** set DSSIM */
1837         uint32_t ir14_value;
1838         nds32_get_mapped_reg(nds32, IR14, &ir14_value);
1839         if (nds32->step_isr_enable)
1840                 ir14_value |= (0x1 << 31);
1841         else
1842                 ir14_value &= ~(0x1 << 31);
1843         nds32_set_mapped_reg(nds32, IR14, ir14_value);
1844
1845         /********* TODO: maybe create another function to handle this part */
1846         CHECK_RETVAL(nds32->leave_debug_state(nds32, false));
1847
1848         struct aice_port_s *aice = target_to_aice(target);
1849
1850         if (ERROR_OK != aice_step(aice))
1851                 return ERROR_FAIL;
1852
1853         /* save state */
1854         CHECK_RETVAL(nds32->enter_debug_state(nds32, false));
1855         /********* TODO: maybe create another function to handle this part */
1856
1857         /* restore DSSIM */
1858         if (nds32->step_isr_enable) {
1859                 nds32_get_mapped_reg(nds32, IR14, &ir14_value);
1860                 ir14_value &= ~(0x1 << 31);
1861                 nds32_set_mapped_reg(nds32, IR14, ir14_value);
1862         }
1863
1864         return ERROR_OK;
1865 }
1866
1867 int nds32_target_state(struct nds32 *nds32, enum target_state *state)
1868 {
1869         struct aice_port_s *aice = target_to_aice(nds32->target);
1870         enum aice_target_state_s nds32_state;
1871
1872         if (aice_state(aice, &nds32_state) != ERROR_OK)
1873                 return ERROR_FAIL;
1874
1875         switch (nds32_state) {
1876                 case AICE_DISCONNECT:
1877                         LOG_INFO("USB is disconnected");
1878                         return ERROR_FAIL;
1879                 case AICE_TARGET_DETACH:
1880                         LOG_INFO("Target is disconnected");
1881                         return ERROR_FAIL;
1882                 case AICE_TARGET_UNKNOWN:
1883                         *state = TARGET_UNKNOWN;
1884                         break;
1885                 case AICE_TARGET_RUNNING:
1886                         *state = TARGET_RUNNING;
1887                         break;
1888                 case AICE_TARGET_HALTED:
1889                         *state = TARGET_HALTED;
1890                         break;
1891                 case AICE_TARGET_RESET:
1892                         *state = TARGET_RESET;
1893                         break;
1894                 case AICE_TARGET_DEBUG_RUNNING:
1895                         *state = TARGET_DEBUG_RUNNING;
1896                         break;
1897                 default:
1898                         return ERROR_FAIL;
1899         }
1900
1901         return ERROR_OK;
1902 }
1903
1904 int nds32_examine_debug_reason(struct nds32 *nds32)
1905 {
1906         uint32_t reason;
1907         struct target *target = nds32->target;
1908
1909         if (nds32->hit_syscall == true) {
1910                 LOG_DEBUG("Hit syscall breakpoint");
1911                 target->debug_reason = DBG_REASON_BREAKPOINT;
1912                 return ERROR_OK;
1913         }
1914
1915         nds32->get_debug_reason(nds32, &reason);
1916
1917         LOG_DEBUG("nds32 examines debug reason: %s", nds32_debug_type_name[reason]);
1918
1919         /* Examine debug reason */
1920         switch (reason) {
1921                 case NDS32_DEBUG_BREAK:
1922                 case NDS32_DEBUG_BREAK_16:
1923                 case NDS32_DEBUG_INST_BREAK:
1924                         {
1925                                 uint32_t value_pc;
1926                                 uint32_t opcode;
1927                                 struct nds32_instruction instruction;
1928
1929                                 nds32_get_mapped_reg(nds32, PC, &value_pc);
1930
1931                                 if (ERROR_OK != nds32_read_opcode(nds32, value_pc, &opcode))
1932                                         return ERROR_FAIL;
1933                                 if (ERROR_OK != nds32_evaluate_opcode(nds32, opcode, value_pc,
1934                                                         &instruction))
1935                                         return ERROR_FAIL;
1936
1937                                 /* hit 'break 0x7FFF' */
1938                                 if ((instruction.info.opc_6 == 0x32) &&
1939                                         (instruction.info.sub_opc == 0xA) &&
1940                                         (instruction.info.imm == 0x7FFF)) {
1941                                         target->debug_reason = DBG_REASON_EXIT;
1942                                 } else
1943                                         target->debug_reason = DBG_REASON_BREAKPOINT;
1944                         }
1945                         break;
1946                 case NDS32_DEBUG_DATA_ADDR_WATCHPOINT_PRECISE:
1947                 case NDS32_DEBUG_DATA_VALUE_WATCHPOINT_PRECISE:
1948                 case NDS32_DEBUG_LOAD_STORE_GLOBAL_STOP: /* GLOBAL_STOP is precise exception */
1949                         {
1950                                 int result;
1951
1952                                 result = nds32->get_watched_address(nds32,
1953                                                 &(nds32->watched_address), reason);
1954                                 /* do single step(without watchpoints) to skip the "watched" instruction */
1955                                 nds32_step_without_watchpoint(nds32);
1956
1957                                 /* before single_step, save exception address */
1958                                 if (ERROR_OK != result)
1959                                         return ERROR_FAIL;
1960
1961                                 target->debug_reason = DBG_REASON_WATCHPOINT;
1962                         }
1963                         break;
1964                 case NDS32_DEBUG_DEBUG_INTERRUPT:
1965                         target->debug_reason = DBG_REASON_DBGRQ;
1966                         break;
1967                 case NDS32_DEBUG_HARDWARE_SINGLE_STEP:
1968                         target->debug_reason = DBG_REASON_SINGLESTEP;
1969                         break;
1970                 case NDS32_DEBUG_DATA_VALUE_WATCHPOINT_IMPRECISE:
1971                 case NDS32_DEBUG_DATA_ADDR_WATCHPOINT_NEXT_PRECISE:
1972                 case NDS32_DEBUG_DATA_VALUE_WATCHPOINT_NEXT_PRECISE:
1973                         if (ERROR_OK != nds32->get_watched_address(nds32,
1974                                                 &(nds32->watched_address), reason))
1975                                 return ERROR_FAIL;
1976
1977                         target->debug_reason = DBG_REASON_WATCHPOINT;
1978                         break;
1979                 default:
1980                         target->debug_reason = DBG_REASON_UNDEFINED;
1981                         break;
1982         }
1983
1984         return ERROR_OK;
1985 }
1986
1987 int nds32_login(struct nds32 *nds32)
1988 {
1989         struct target *target = nds32->target;
1990         struct aice_port_s *aice = target_to_aice(target);
1991         uint32_t passcode_length;
1992         char command_sequence[129];
1993         char command_str[33];
1994         char code_str[9];
1995         uint32_t copy_length;
1996         uint32_t code;
1997         uint32_t i;
1998
1999         LOG_DEBUG("nds32_login");
2000
2001         if (nds32->edm_passcode != NULL) {
2002                 /* convert EDM passcode to command sequences */
2003                 passcode_length = strlen(nds32->edm_passcode);
2004                 command_sequence[0] = '\0';
2005                 for (i = 0; i < passcode_length; i += 8) {
2006                         if (passcode_length - i < 8)
2007                                 copy_length = passcode_length - i;
2008                         else
2009                                 copy_length = 8;
2010
2011                         strncpy(code_str, nds32->edm_passcode + i, copy_length);
2012                         code_str[copy_length] = '\0';
2013                         code = strtoul(code_str, NULL, 16);
2014
2015                         sprintf(command_str, "write_misc gen_port0 0x%" PRIx32 ";", code);
2016                         strcat(command_sequence, command_str);
2017                 }
2018
2019                 if (ERROR_OK != aice_program_edm(aice, command_sequence))
2020                         return ERROR_FAIL;
2021
2022                 /* get current privilege level */
2023                 uint32_t value_edmsw;
2024                 aice_read_debug_reg(aice, NDS_EDM_SR_EDMSW, &value_edmsw);
2025                 nds32->privilege_level = (value_edmsw >> 16) & 0x3;
2026                 LOG_INFO("Current privilege level: %d", nds32->privilege_level);
2027         }
2028
2029         if (nds32_edm_ops_num > 0) {
2030                 const char *reg_name;
2031                 for (i = 0 ; i < nds32_edm_ops_num ; i++) {
2032                         code = nds32_edm_ops[i].value;
2033                         if (nds32_edm_ops[i].reg_no == 6)
2034                                 reg_name = "gen_port0";
2035                         else if (nds32_edm_ops[i].reg_no == 7)
2036                                 reg_name = "gen_port1";
2037                         else
2038                                 return ERROR_FAIL;
2039
2040                         sprintf(command_str, "write_misc %s 0x%" PRIx32 ";", reg_name, code);
2041                         if (ERROR_OK != aice_program_edm(aice, command_str))
2042                                 return ERROR_FAIL;
2043                 }
2044         }
2045
2046         return ERROR_OK;
2047 }
2048
2049 int nds32_halt(struct target *target)
2050 {
2051         struct nds32 *nds32 = target_to_nds32(target);
2052         struct aice_port_s *aice = target_to_aice(target);
2053         enum target_state state;
2054
2055         LOG_DEBUG("target->state: %s",
2056                         target_state_name(target));
2057
2058         if (target->state == TARGET_HALTED) {
2059                 LOG_DEBUG("target was already halted");
2060                 return ERROR_OK;
2061         }
2062
2063         if (nds32_target_state(nds32, &state) != ERROR_OK)
2064                 return ERROR_FAIL;
2065
2066         if (TARGET_HALTED != state)
2067                 /* TODO: if state == TARGET_HALTED, check ETYPE is DBGI or not */
2068                 if (ERROR_OK != aice_halt(aice))
2069                         return ERROR_FAIL;
2070
2071         CHECK_RETVAL(nds32->enter_debug_state(nds32, true));
2072
2073         CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_HALTED));
2074
2075         return ERROR_OK;
2076 }
2077
2078 /* poll current target status */
2079 int nds32_poll(struct target *target)
2080 {
2081         struct nds32 *nds32 = target_to_nds32(target);
2082         enum target_state state;
2083
2084         if (nds32_target_state(nds32, &state) != ERROR_OK)
2085                 return ERROR_FAIL;
2086
2087         if (state == TARGET_HALTED) {
2088                 if (target->state != TARGET_HALTED) {
2089                         /* if false_hit, continue free_run */
2090                         if (ERROR_OK != nds32->enter_debug_state(nds32, true)) {
2091                                 struct aice_port_s *aice = target_to_aice(target);
2092                                 aice_run(aice);
2093                                 return ERROR_OK;
2094                         }
2095
2096                         LOG_DEBUG("Change target state to TARGET_HALTED.");
2097
2098                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
2099                 }
2100         } else if (state == TARGET_RESET) {
2101                 if (target->state == TARGET_HALTED) {
2102                         /* similar to assert srst */
2103                         register_cache_invalidate(nds32->core_cache);
2104                         target->state = TARGET_RESET;
2105
2106                         /* TODO: deassert srst */
2107                 } else if (target->state == TARGET_RUNNING) {
2108                         /* reset as running */
2109                         LOG_WARNING("<-- TARGET WARNING! The debug target has been reset. -->");
2110                 }
2111         } else {
2112                 if (target->state != TARGET_RUNNING && target->state != TARGET_DEBUG_RUNNING) {
2113                         LOG_DEBUG("Change target state to TARGET_RUNNING.");
2114                         target->state = TARGET_RUNNING;
2115                         target->debug_reason = DBG_REASON_NOTHALTED;
2116                 }
2117         }
2118
2119         return ERROR_OK;
2120 }
2121
2122 int nds32_resume(struct target *target, int current,
2123                 target_addr_t address, int handle_breakpoints, int debug_execution)
2124 {
2125         LOG_DEBUG("current %d address %08" TARGET_PRIxADDR
2126                         " handle_breakpoints %d"
2127                         " debug_execution %d",
2128                         current, address, handle_breakpoints, debug_execution);
2129
2130         struct nds32 *nds32 = target_to_nds32(target);
2131
2132         if (target->state != TARGET_HALTED) {
2133                 LOG_ERROR("Target not halted");
2134                 return ERROR_TARGET_NOT_HALTED;
2135         }
2136
2137         address = nds32_nextpc(nds32, current, address);
2138
2139         LOG_DEBUG("RESUME PC %08" TARGET_PRIxADDR "%s", address, !current ? "!" : "");
2140
2141         if (!debug_execution)
2142                 target_free_all_working_areas(target);
2143
2144         /* Disable HSS to avoid users misuse HSS */
2145         if (nds32_reach_max_interrupt_level(nds32) == false) {
2146                 uint32_t value_ir0;
2147                 nds32_get_mapped_reg(nds32, IR0, &value_ir0);
2148                 value_ir0 &= ~(0x1 << 11);
2149                 nds32_set_mapped_reg(nds32, IR0, value_ir0);
2150         }
2151
2152         CHECK_RETVAL(nds32->leave_debug_state(nds32, true));
2153         CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_RESUMED));
2154
2155         if (nds32->virtual_hosting_ctrl_c == false) {
2156                 struct aice_port_s *aice = target_to_aice(target);
2157                 aice_run(aice);
2158         } else
2159                 nds32->virtual_hosting_ctrl_c = false;
2160
2161         target->debug_reason = DBG_REASON_NOTHALTED;
2162         if (!debug_execution)
2163                 target->state = TARGET_RUNNING;
2164         else
2165                 target->state = TARGET_DEBUG_RUNNING;
2166
2167         LOG_DEBUG("target->state: %s",
2168                         target_state_name(target));
2169
2170         return ERROR_OK;
2171 }
2172
2173 static int nds32_soft_reset_halt(struct target *target)
2174 {
2175         /* TODO: test it */
2176         struct nds32 *nds32 = target_to_nds32(target);
2177         struct aice_port_s *aice = target_to_aice(target);
2178
2179         aice_assert_srst(aice, AICE_SRST);
2180
2181         /* halt core and set pc to 0x0 */
2182         int retval = target_halt(target);
2183         if (retval != ERROR_OK)
2184                 return retval;
2185
2186         /* start fetching from IVB */
2187         uint32_t value_ir3;
2188         nds32_get_mapped_reg(nds32, IR3, &value_ir3);
2189         nds32_set_mapped_reg(nds32, PC, value_ir3 & 0xFFFF0000);
2190
2191         return ERROR_OK;
2192 }
2193
2194 int nds32_assert_reset(struct target *target)
2195 {
2196         struct nds32 *nds32 = target_to_nds32(target);
2197         struct aice_port_s *aice = target_to_aice(target);
2198         struct nds32_cpu_version *cpu_version = &(nds32->cpu_version);
2199
2200         /* TODO: apply hw reset signal in not examined state */
2201         if (!(target_was_examined(target))) {
2202                 LOG_WARNING("Reset is not asserted because the target is not examined.");
2203                 LOG_WARNING("Use a reset button or power cycle the target.");
2204                 return ERROR_TARGET_NOT_EXAMINED;
2205         }
2206
2207         if (target->reset_halt) {
2208                 if ((nds32->soft_reset_halt)
2209                         || (nds32->edm.version < 0x51)
2210                         || ((nds32->edm.version == 0x51)
2211                                 && (cpu_version->revision == 0x1C)
2212                                 && (cpu_version->cpu_id_family == 0xC)
2213                                 && (cpu_version->cpu_id_version == 0x0)))
2214                         nds32_soft_reset_halt(target);
2215                 else
2216                         aice_assert_srst(aice, AICE_RESET_HOLD);
2217         } else {
2218                 aice_assert_srst(aice, AICE_SRST);
2219                 alive_sleep(nds32->boot_time);
2220         }
2221
2222         /* set passcode for secure MCU after core reset */
2223         nds32_login(nds32);
2224
2225         /* registers are now invalid */
2226         register_cache_invalidate(nds32->core_cache);
2227
2228         target->state = TARGET_RESET;
2229
2230         return ERROR_OK;
2231 }
2232
2233 static int nds32_gdb_attach(struct nds32 *nds32)
2234 {
2235         LOG_DEBUG("nds32_gdb_attach, target coreid: %" PRId32, nds32->target->coreid);
2236
2237         if (nds32->attached == false) {
2238
2239                 if (nds32->keep_target_edm_ctl) {
2240                         /* backup target EDM_CTL */
2241                         struct aice_port_s *aice = target_to_aice(nds32->target);
2242                         aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CTL, &nds32->backup_edm_ctl);
2243                 }
2244
2245                 target_halt(nds32->target);
2246
2247                 nds32->attached = true;
2248         }
2249
2250         return ERROR_OK;
2251 }
2252
2253 static int nds32_gdb_detach(struct nds32 *nds32)
2254 {
2255         LOG_DEBUG("nds32_gdb_detach");
2256         bool backup_virtual_hosting_setting;
2257
2258         if (nds32->attached) {
2259
2260                 backup_virtual_hosting_setting = nds32->virtual_hosting;
2261                 /* turn off virtual hosting before resume as gdb-detach */
2262                 nds32->virtual_hosting = false;
2263                 target_resume(nds32->target, 1, 0, 0, 0);
2264                 nds32->virtual_hosting = backup_virtual_hosting_setting;
2265
2266                 if (nds32->keep_target_edm_ctl) {
2267                         /* restore target EDM_CTL */
2268                         struct aice_port_s *aice = target_to_aice(nds32->target);
2269                         aice_write_debug_reg(aice, NDS_EDM_SR_EDM_CTL, nds32->backup_edm_ctl);
2270                 }
2271
2272                 nds32->attached = false;
2273         }
2274
2275         return ERROR_OK;
2276 }
2277
2278 static int nds32_callback_event_handler(struct target *target,
2279                 enum target_event event, void *priv)
2280 {
2281         int retval = ERROR_OK;
2282         int target_number = *(int *)priv;
2283
2284         if (target_number != target->target_number)
2285                 return ERROR_OK;
2286
2287         struct nds32 *nds32 = target_to_nds32(target);
2288
2289         switch (event) {
2290                 case TARGET_EVENT_GDB_ATTACH:
2291                         retval = nds32_gdb_attach(nds32);
2292                         break;
2293                 case TARGET_EVENT_GDB_DETACH:
2294                         retval = nds32_gdb_detach(nds32);
2295                         break;
2296                 default:
2297                         break;
2298         }
2299
2300         return retval;
2301 }
2302
2303 int nds32_init(struct nds32 *nds32)
2304 {
2305         /* Initialize anything we can set up without talking to the target */
2306         nds32->memory.access_channel = NDS_MEMORY_ACC_CPU;
2307
2308         /* register event callback */
2309         target_register_event_callback(nds32_callback_event_handler,
2310                         &(nds32->target->target_number));
2311
2312         return ERROR_OK;
2313 }
2314
2315 int nds32_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
2316 {
2317         /* fill syscall parameters to file-I/O info */
2318         if (NULL == fileio_info) {
2319                 LOG_ERROR("Target has not initial file-I/O data structure");
2320                 return ERROR_FAIL;
2321         }
2322
2323         struct nds32 *nds32 = target_to_nds32(target);
2324         uint32_t value_ir6;
2325         uint32_t syscall_id;
2326
2327         if (nds32->hit_syscall == false)
2328                 return ERROR_FAIL;
2329
2330         nds32_get_mapped_reg(nds32, IR6, &value_ir6);
2331         syscall_id = (value_ir6 >> 16) & 0x7FFF;
2332         nds32->active_syscall_id = syscall_id;
2333
2334         LOG_DEBUG("hit syscall ID: 0x%" PRIx32, syscall_id);
2335
2336         /* free previous identifier storage */
2337         if (NULL != fileio_info->identifier) {
2338                 free(fileio_info->identifier);
2339                 fileio_info->identifier = NULL;
2340         }
2341
2342         uint32_t reg_r0, reg_r1, reg_r2;
2343         nds32_get_mapped_reg(nds32, R0, &reg_r0);
2344         nds32_get_mapped_reg(nds32, R1, &reg_r1);
2345         nds32_get_mapped_reg(nds32, R2, &reg_r2);
2346
2347         switch (syscall_id) {
2348                 case NDS32_SYSCALL_EXIT:
2349                         fileio_info->identifier = malloc(5);
2350                         sprintf(fileio_info->identifier, "exit");
2351                         fileio_info->param_1 = reg_r0;
2352                         break;
2353                 case NDS32_SYSCALL_OPEN:
2354                         {
2355                                 uint8_t filename[256];
2356                                 fileio_info->identifier = malloc(5);
2357                                 sprintf(fileio_info->identifier, "open");
2358                                 fileio_info->param_1 = reg_r0;
2359                                 /* reserve fileio_info->param_2 for length of path */
2360                                 fileio_info->param_3 = reg_r1;
2361                                 fileio_info->param_4 = reg_r2;
2362
2363                                 target->type->read_buffer(target, reg_r0, 256, filename);
2364                                 fileio_info->param_2 = strlen((char *)filename) + 1;
2365                         }
2366                         break;
2367                 case NDS32_SYSCALL_CLOSE:
2368                         fileio_info->identifier = malloc(6);
2369                         sprintf(fileio_info->identifier, "close");
2370                         fileio_info->param_1 = reg_r0;
2371                         break;
2372                 case NDS32_SYSCALL_READ:
2373                         fileio_info->identifier = malloc(5);
2374                         sprintf(fileio_info->identifier, "read");
2375                         fileio_info->param_1 = reg_r0;
2376                         fileio_info->param_2 = reg_r1;
2377                         fileio_info->param_3 = reg_r2;
2378                         break;
2379                 case NDS32_SYSCALL_WRITE:
2380                         fileio_info->identifier = malloc(6);
2381                         sprintf(fileio_info->identifier, "write");
2382                         fileio_info->param_1 = reg_r0;
2383                         fileio_info->param_2 = reg_r1;
2384                         fileio_info->param_3 = reg_r2;
2385                         break;
2386                 case NDS32_SYSCALL_LSEEK:
2387                         fileio_info->identifier = malloc(6);
2388                         sprintf(fileio_info->identifier, "lseek");
2389                         fileio_info->param_1 = reg_r0;
2390                         fileio_info->param_2 = reg_r1;
2391                         fileio_info->param_3 = reg_r2;
2392                         break;
2393                 case NDS32_SYSCALL_UNLINK:
2394                         {
2395                                 uint8_t filename[256];
2396                                 fileio_info->identifier = malloc(7);
2397                                 sprintf(fileio_info->identifier, "unlink");
2398                                 fileio_info->param_1 = reg_r0;
2399                                 /* reserve fileio_info->param_2 for length of path */
2400
2401                                 target->type->read_buffer(target, reg_r0, 256, filename);
2402                                 fileio_info->param_2 = strlen((char *)filename) + 1;
2403                         }
2404                         break;
2405                 case NDS32_SYSCALL_RENAME:
2406                         {
2407                                 uint8_t filename[256];
2408                                 fileio_info->identifier = malloc(7);
2409                                 sprintf(fileio_info->identifier, "rename");
2410                                 fileio_info->param_1 = reg_r0;
2411                                 /* reserve fileio_info->param_2 for length of old path */
2412                                 fileio_info->param_3 = reg_r1;
2413                                 /* reserve fileio_info->param_4 for length of new path */
2414
2415                                 target->type->read_buffer(target, reg_r0, 256, filename);
2416                                 fileio_info->param_2 = strlen((char *)filename) + 1;
2417
2418                                 target->type->read_buffer(target, reg_r1, 256, filename);
2419                                 fileio_info->param_4 = strlen((char *)filename) + 1;
2420                         }
2421                         break;
2422                 case NDS32_SYSCALL_FSTAT:
2423                         fileio_info->identifier = malloc(6);
2424                         sprintf(fileio_info->identifier, "fstat");
2425                         fileio_info->param_1 = reg_r0;
2426                         fileio_info->param_2 = reg_r1;
2427                         break;
2428                 case NDS32_SYSCALL_STAT:
2429                         {
2430                                 uint8_t filename[256];
2431                                 fileio_info->identifier = malloc(5);
2432                                 sprintf(fileio_info->identifier, "stat");
2433                                 fileio_info->param_1 = reg_r0;
2434                                 /* reserve fileio_info->param_2 for length of old path */
2435                                 fileio_info->param_3 = reg_r1;
2436
2437                                 target->type->read_buffer(target, reg_r0, 256, filename);
2438                                 fileio_info->param_2 = strlen((char *)filename) + 1;
2439                         }
2440                         break;
2441                 case NDS32_SYSCALL_GETTIMEOFDAY:
2442                         fileio_info->identifier = malloc(13);
2443                         sprintf(fileio_info->identifier, "gettimeofday");
2444                         fileio_info->param_1 = reg_r0;
2445                         fileio_info->param_2 = reg_r1;
2446                         break;
2447                 case NDS32_SYSCALL_ISATTY:
2448                         fileio_info->identifier = malloc(7);
2449                         sprintf(fileio_info->identifier, "isatty");
2450                         fileio_info->param_1 = reg_r0;
2451                         break;
2452                 case NDS32_SYSCALL_SYSTEM:
2453                         {
2454                                 uint8_t command[256];
2455                                 fileio_info->identifier = malloc(7);
2456                                 sprintf(fileio_info->identifier, "system");
2457                                 fileio_info->param_1 = reg_r0;
2458                                 /* reserve fileio_info->param_2 for length of old path */
2459
2460                                 target->type->read_buffer(target, reg_r0, 256, command);
2461                                 fileio_info->param_2 = strlen((char *)command) + 1;
2462                         }
2463                         break;
2464                 case NDS32_SYSCALL_ERRNO:
2465                         fileio_info->identifier = malloc(6);
2466                         sprintf(fileio_info->identifier, "errno");
2467                         nds32_set_mapped_reg(nds32, R0, nds32->virtual_hosting_errno);
2468                         break;
2469                 default:
2470                         fileio_info->identifier = malloc(8);
2471                         sprintf(fileio_info->identifier, "unknown");
2472                         break;
2473         }
2474
2475         return ERROR_OK;
2476 }
2477
2478 int nds32_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
2479 {
2480         LOG_DEBUG("syscall return code: 0x%x, errno: 0x%x , ctrl_c: %s",
2481                         retcode, fileio_errno, ctrl_c ? "true" : "false");
2482
2483         struct nds32 *nds32 = target_to_nds32(target);
2484
2485         nds32_set_mapped_reg(nds32, R0, (uint32_t)retcode);
2486
2487         nds32->virtual_hosting_errno = fileio_errno;
2488         nds32->virtual_hosting_ctrl_c = ctrl_c;
2489         nds32->active_syscall_id = NDS32_SYSCALL_UNDEFINED;
2490
2491         return ERROR_OK;
2492 }
2493
2494 int nds32_profiling(struct target *target, uint32_t *samples,
2495                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2496 {
2497         /* sample $PC every 10 milliseconds */
2498         uint32_t iteration = seconds * 100;
2499         struct aice_port_s *aice = target_to_aice(target);
2500         struct nds32 *nds32 = target_to_nds32(target);
2501
2502         if (max_num_samples < iteration)
2503                 iteration = max_num_samples;
2504
2505         int pc_regnum = nds32->register_map(nds32, PC);
2506         aice_profiling(aice, 10, iteration, pc_regnum, samples, num_samples);
2507
2508         register_cache_invalidate(nds32->core_cache);
2509
2510         return ERROR_OK;
2511 }
2512
2513 int nds32_gdb_fileio_write_memory(struct nds32 *nds32, uint32_t address,
2514                 uint32_t size, const uint8_t *buffer)
2515 {
2516         if ((NDS32_SYSCALL_FSTAT == nds32->active_syscall_id) ||
2517                         (NDS32_SYSCALL_STAT == nds32->active_syscall_id)) {
2518                 /* If doing GDB file-I/O, target should convert 'struct stat'
2519                  * from gdb-format to target-format */
2520                 uint8_t stat_buffer[NDS32_STRUCT_STAT_SIZE];
2521                 /* st_dev 2 */
2522                 stat_buffer[0] = buffer[3];
2523                 stat_buffer[1] = buffer[2];
2524                 /* st_ino 2 */
2525                 stat_buffer[2] = buffer[7];
2526                 stat_buffer[3] = buffer[6];
2527                 /* st_mode 4 */
2528                 stat_buffer[4] = buffer[11];
2529                 stat_buffer[5] = buffer[10];
2530                 stat_buffer[6] = buffer[9];
2531                 stat_buffer[7] = buffer[8];
2532                 /* st_nlink 2 */
2533                 stat_buffer[8] = buffer[15];
2534                 stat_buffer[9] = buffer[16];
2535                 /* st_uid 2 */
2536                 stat_buffer[10] = buffer[19];
2537                 stat_buffer[11] = buffer[18];
2538                 /* st_gid 2 */
2539                 stat_buffer[12] = buffer[23];
2540                 stat_buffer[13] = buffer[22];
2541                 /* st_rdev 2 */
2542                 stat_buffer[14] = buffer[27];
2543                 stat_buffer[15] = buffer[26];
2544                 /* st_size 4 */
2545                 stat_buffer[16] = buffer[35];
2546                 stat_buffer[17] = buffer[34];
2547                 stat_buffer[18] = buffer[33];
2548                 stat_buffer[19] = buffer[32];
2549                 /* st_atime 4 */
2550                 stat_buffer[20] = buffer[55];
2551                 stat_buffer[21] = buffer[54];
2552                 stat_buffer[22] = buffer[53];
2553                 stat_buffer[23] = buffer[52];
2554                 /* st_spare1 4 */
2555                 stat_buffer[24] = 0;
2556                 stat_buffer[25] = 0;
2557                 stat_buffer[26] = 0;
2558                 stat_buffer[27] = 0;
2559                 /* st_mtime 4 */
2560                 stat_buffer[28] = buffer[59];
2561                 stat_buffer[29] = buffer[58];
2562                 stat_buffer[30] = buffer[57];
2563                 stat_buffer[31] = buffer[56];
2564                 /* st_spare2 4 */
2565                 stat_buffer[32] = 0;
2566                 stat_buffer[33] = 0;
2567                 stat_buffer[34] = 0;
2568                 stat_buffer[35] = 0;
2569                 /* st_ctime 4 */
2570                 stat_buffer[36] = buffer[63];
2571                 stat_buffer[37] = buffer[62];
2572                 stat_buffer[38] = buffer[61];
2573                 stat_buffer[39] = buffer[60];
2574                 /* st_spare3 4 */
2575                 stat_buffer[40] = 0;
2576                 stat_buffer[41] = 0;
2577                 stat_buffer[42] = 0;
2578                 stat_buffer[43] = 0;
2579                 /* st_blksize 4 */
2580                 stat_buffer[44] = buffer[43];
2581                 stat_buffer[45] = buffer[42];
2582                 stat_buffer[46] = buffer[41];
2583                 stat_buffer[47] = buffer[40];
2584                 /* st_blocks 4 */
2585                 stat_buffer[48] = buffer[51];
2586                 stat_buffer[49] = buffer[50];
2587                 stat_buffer[50] = buffer[49];
2588                 stat_buffer[51] = buffer[48];
2589                 /* st_spare4 8 */
2590                 stat_buffer[52] = 0;
2591                 stat_buffer[53] = 0;
2592                 stat_buffer[54] = 0;
2593                 stat_buffer[55] = 0;
2594                 stat_buffer[56] = 0;
2595                 stat_buffer[57] = 0;
2596                 stat_buffer[58] = 0;
2597                 stat_buffer[59] = 0;
2598
2599                 return nds32_write_buffer(nds32->target, address, NDS32_STRUCT_STAT_SIZE, stat_buffer);
2600         } else if (NDS32_SYSCALL_GETTIMEOFDAY == nds32->active_syscall_id) {
2601                 /* If doing GDB file-I/O, target should convert 'struct timeval'
2602                  * from gdb-format to target-format */
2603                 uint8_t timeval_buffer[NDS32_STRUCT_TIMEVAL_SIZE];
2604                 timeval_buffer[0] = buffer[3];
2605                 timeval_buffer[1] = buffer[2];
2606                 timeval_buffer[2] = buffer[1];
2607                 timeval_buffer[3] = buffer[0];
2608                 timeval_buffer[4] = buffer[11];
2609                 timeval_buffer[5] = buffer[10];
2610                 timeval_buffer[6] = buffer[9];
2611                 timeval_buffer[7] = buffer[8];
2612
2613                 return nds32_write_buffer(nds32->target, address, NDS32_STRUCT_TIMEVAL_SIZE, timeval_buffer);
2614         }
2615
2616         return nds32_write_buffer(nds32->target, address, size, buffer);
2617 }
2618
2619 int nds32_reset_halt(struct nds32 *nds32)
2620 {
2621         LOG_INFO("reset halt as init");
2622
2623         struct aice_port_s *aice = target_to_aice(nds32->target);
2624         aice_assert_srst(aice, AICE_RESET_HOLD);
2625
2626         return ERROR_OK;
2627 }