]> git.sur5r.net Git - openocd/blob - src/target/target.c
- fix incorrectly registered function openocd_array2mem
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54
55 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57
58 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
78 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
79
80
81 /* targets */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 static int target_continous_poll = 1;
135
136 /* read a u32 from a buffer in target memory endianness */
137 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
138 {
139         if (target->endianness == TARGET_LITTLE_ENDIAN)
140                 return le_to_h_u32(buffer);
141         else
142                 return be_to_h_u32(buffer);
143 }
144
145 /* read a u16 from a buffer in target memory endianness */
146 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
147 {
148         if (target->endianness == TARGET_LITTLE_ENDIAN)
149                 return le_to_h_u16(buffer);
150         else
151                 return be_to_h_u16(buffer);
152 }
153
154 /* write a u32 to a buffer in target memory endianness */
155 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
156 {
157         if (target->endianness == TARGET_LITTLE_ENDIAN)
158                 h_u32_to_le(buffer, value);
159         else
160                 h_u32_to_be(buffer, value);
161 }
162
163 /* write a u16 to a buffer in target memory endianness */
164 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
165 {
166         if (target->endianness == TARGET_LITTLE_ENDIAN)
167                 h_u16_to_le(buffer, value);
168         else
169                 h_u16_to_be(buffer, value);
170 }
171
172 /* returns a pointer to the n-th configured target */
173 target_t* get_target_by_num(int num)
174 {
175         target_t *target = targets;
176         int i = 0;
177
178         while (target)
179         {
180                 if (num == i)
181                         return target;
182                 target = target->next;
183                 i++;
184         }
185
186         return NULL;
187 }
188
189 int get_num_by_target(target_t *query_target)
190 {
191         target_t *target = targets;
192         int i = 0;      
193         
194         while (target)
195         {
196                 if (target == query_target)
197                         return i;
198                 target = target->next;
199                 i++;
200         }
201         
202         return -1;
203 }
204
205 target_t* get_current_target(command_context_t *cmd_ctx)
206 {
207         target_t *target = get_target_by_num(cmd_ctx->current_target);
208         
209         if (target == NULL)
210         {
211                 LOG_ERROR("BUG: current_target out of bounds");
212                 exit(-1);
213         }
214         
215         return target;
216 }
217
218 /* Process target initialization, when target entered debug out of reset
219  * the handler is unregistered at the end of this function, so it's only called once
220  */
221 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
222 {
223         struct command_context_s *cmd_ctx = priv;
224         
225         if (event == TARGET_EVENT_HALTED)
226         {
227                 target_unregister_event_callback(target_init_handler, priv);
228                 target_invoke_script(cmd_ctx, target, "post_reset");
229                 jtag_execute_queue();
230         }
231         
232         return ERROR_OK;
233 }
234
235 int target_run_and_halt_handler(void *priv)
236 {
237         target_t *target = priv;
238         
239         target_halt(target);
240         
241         return ERROR_OK;
242 }
243
244 int target_poll(struct target_s *target)
245 {
246         /* We can't poll until after examine */
247         if (!target->type->examined)
248         {
249                 /* Fail silently lest we pollute the log */
250                 return ERROR_FAIL;
251         }
252         return target->type->poll(target);
253 }
254
255 int target_halt(struct target_s *target)
256 {
257         /* We can't poll until after examine */
258         if (!target->type->examined)
259         {
260                 LOG_ERROR("Target not examined yet");
261                 return ERROR_FAIL;
262         }
263         return target->type->halt(target);
264 }
265
266 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
267 {
268         int retval;
269         
270         /* We can't poll until after examine */
271         if (!target->type->examined)
272         {
273                 LOG_ERROR("Target not examined yet");
274                 return ERROR_FAIL;
275         }
276         
277         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
278          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
279          * the application.
280          */
281         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
282                 return retval;
283         
284         return retval;
285 }
286
287 int target_process_reset(struct command_context_s *cmd_ctx)
288 {
289         int retval = ERROR_OK;
290         target_t *target;
291         struct timeval timeout, now;
292
293         jtag->speed(jtag_speed);
294
295         target = targets;
296         while (target)
297         {
298                 target_invoke_script(cmd_ctx, target, "pre_reset");
299                 target = target->next;
300         }
301         
302         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
303                 return retval;
304         
305         /* First time this is executed after launching OpenOCD, it will read out 
306          * the type of CPU, etc. and init Embedded ICE registers in host
307          * memory. 
308          * 
309          * It will also set up ICE registers in the target.
310          * 
311          * However, if we assert TRST later, we need to set up the registers again. 
312          * 
313          * For the "reset halt/init" case we must only set up the registers here.
314          */
315         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
316                 return retval;
317         
318         /* prepare reset_halt where necessary */
319         target = targets;
320         while (target)
321         {
322                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
323                 {
324                         switch (target->reset_mode)
325                         {
326                                 case RESET_HALT:
327                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
328                                         target->reset_mode = RESET_RUN_AND_HALT;
329                                         break;
330                                 case RESET_INIT:
331                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
332                                         target->reset_mode = RESET_RUN_AND_INIT;
333                                         break;
334                                 default:
335                                         break;
336                         } 
337                 }
338                 target = target->next;
339         }
340         
341         target = targets;
342         while (target)
343         {
344                 /* we have no idea what state the target is in, so we
345                  * have to drop working areas
346                  */
347                 target_free_all_working_areas_restore(target, 0);
348                 target->type->assert_reset(target);
349                 target = target->next;
350         }
351         if ((retval = jtag_execute_queue()) != ERROR_OK)
352         {
353                 LOG_WARNING("JTAG communication failed asserting reset.");
354                 retval = ERROR_OK;
355         }
356         
357         /* request target halt if necessary, and schedule further action */
358         target = targets;
359         while (target)
360         {
361                 switch (target->reset_mode)
362                 {
363                         case RESET_RUN:
364                                 /* nothing to do if target just wants to be run */
365                                 break;
366                         case RESET_RUN_AND_HALT:
367                                 /* schedule halt */
368                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
369                                 break;
370                         case RESET_RUN_AND_INIT:
371                                 /* schedule halt */
372                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
373                                 target_register_event_callback(target_init_handler, cmd_ctx);
374                                 break;
375                         case RESET_HALT:
376                                 target_halt(target);
377                                 break;
378                         case RESET_INIT:
379                                 target_halt(target);
380                                 target_register_event_callback(target_init_handler, cmd_ctx);
381                                 break;
382                         default:
383                                 LOG_ERROR("BUG: unknown target->reset_mode");
384                 }
385                 target = target->next;
386         }
387         
388         if ((retval = jtag_execute_queue()) != ERROR_OK)
389         {
390                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
391                 retval = ERROR_OK;              
392         }
393         
394         target = targets;
395         while (target)
396         {
397                 target->type->deassert_reset(target);
398                 target = target->next;
399         }
400         
401         if ((retval = jtag_execute_queue()) != ERROR_OK)
402         {
403                 LOG_WARNING("JTAG communication failed while deasserting reset.");
404                 retval = ERROR_OK;
405         }
406
407         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
408         {
409                 /* If TRST was asserted we need to set up registers again */
410                 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
411                         return retval;
412         }               
413         
414         /* post reset scripts can be quite long, increase speed now. If post
415          * reset scripts needs a different speed, they can set the speed to
416          * whatever they need.
417          */
418         jtag->speed(jtag_speed_post_reset);
419         
420         LOG_DEBUG("Waiting for halted stated as approperiate");
421         
422         /* Wait for reset to complete, maximum 5 seconds. */    
423         gettimeofday(&timeout, NULL);
424         timeval_add_time(&timeout, 5, 0);
425         for(;;)
426         {
427                 gettimeofday(&now, NULL);
428                 
429                 target_call_timer_callbacks_now();
430                 
431                 target = targets;
432                 while (target)
433                 {
434                         LOG_DEBUG("Polling target");
435                         target_poll(target);
436                         if ((target->reset_mode == RESET_RUN_AND_INIT) || 
437                                         (target->reset_mode == RESET_RUN_AND_HALT) ||
438                                         (target->reset_mode == RESET_HALT) ||
439                                         (target->reset_mode == RESET_INIT))
440                         {
441                                 if (target->state != TARGET_HALTED)
442                                 {
443                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
444                                         {
445                                                 LOG_USER("Timed out waiting for halt after reset");
446                                                 goto done;
447                                         }
448                                         /* this will send alive messages on e.g. GDB remote protocol. */
449                                         usleep(500*1000); 
450                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
451                                         goto again;
452                                 }
453                         }
454                         target = target->next;
455                 }
456                 /* All targets we're waiting for are halted */
457                 break;
458                 
459                 again:;
460         }
461         done:
462         
463         
464         /* We want any events to be processed before the prompt */
465         target_call_timer_callbacks_now();
466
467         /* if we timed out we need to unregister these handlers */
468         target = targets;
469         while (target)
470         {
471                 target_unregister_timer_callback(target_run_and_halt_handler, target);
472                 target = target->next;
473         }
474         target_unregister_event_callback(target_init_handler, cmd_ctx);
475         
476         
477         return retval;
478 }
479
480 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
481 {
482         *physical = virtual;
483         return ERROR_OK;
484 }
485
486 static int default_mmu(struct target_s *target, int *enabled)
487 {
488         *enabled = 0;
489         return ERROR_OK;
490 }
491
492 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
493 {
494         target->type->examined = 1;
495         return ERROR_OK;
496 }
497
498
499 /* Targets that correctly implement init+examine, i.e.
500  * no communication with target during init:
501  * 
502  * XScale 
503  */
504 int target_examine(struct command_context_s *cmd_ctx)
505 {
506         int retval = ERROR_OK;
507         target_t *target = targets;
508         while (target)
509         {
510                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
511                         return retval;
512                 target = target->next;
513         }
514         return retval;
515 }
516
517 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
518 {
519         if (!target->type->examined)
520         {
521                 LOG_ERROR("Target not examined yet");
522                 return ERROR_FAIL;
523         }
524         return target->type->write_memory_imp(target, address, size, count, buffer);
525 }
526
527 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
528 {
529         if (!target->type->examined)
530         {
531                 LOG_ERROR("Target not examined yet");
532                 return ERROR_FAIL;
533         }
534         return target->type->read_memory_imp(target, address, size, count, buffer);
535 }
536
537 static int target_soft_reset_halt_imp(struct target_s *target)
538 {
539         if (!target->type->examined)
540         {
541                 LOG_ERROR("Target not examined yet");
542                 return ERROR_FAIL;
543         }
544         return target->type->soft_reset_halt_imp(target);
545 }
546
547 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
548 {
549         if (!target->type->examined)
550         {
551                 LOG_ERROR("Target not examined yet");
552                 return ERROR_FAIL;
553         }
554         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
555 }
556
557 int target_init(struct command_context_s *cmd_ctx)
558 {
559         target_t *target = targets;
560         
561         while (target)
562         {
563                 target->type->examined = 0;
564                 if (target->type->examine == NULL)
565                 {
566                         target->type->examine = default_examine;
567                 }
568                 
569                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
570                 {
571                         LOG_ERROR("target '%s' init failed", target->type->name);
572                         exit(-1);
573                 }
574                 
575                 /* Set up default functions if none are provided by target */
576                 if (target->type->virt2phys == NULL)
577                 {
578                         target->type->virt2phys = default_virt2phys;
579                 }
580                 target->type->virt2phys = default_virt2phys;
581                 /* a non-invasive way(in terms of patches) to add some code that
582                  * runs before the type->write/read_memory implementation
583                  */
584                 target->type->write_memory_imp = target->type->write_memory;
585                 target->type->write_memory = target_write_memory_imp;
586                 target->type->read_memory_imp = target->type->read_memory;
587                 target->type->read_memory = target_read_memory_imp;
588                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
589                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
590                 target->type->run_algorithm_imp = target->type->run_algorithm;
591                 target->type->run_algorithm = target_run_algorithm_imp;
592
593                 
594                 if (target->type->mmu == NULL)
595                 {
596                         target->type->mmu = default_mmu;
597                 }
598                 target = target->next;
599         }
600         
601         if (targets)
602         {
603                 target_register_user_commands(cmd_ctx);
604                 target_register_timer_callback(handle_target, 100, 1, NULL);
605         }
606                 
607         return ERROR_OK;
608 }
609
610 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
611 {
612         target_event_callback_t **callbacks_p = &target_event_callbacks;
613         
614         if (callback == NULL)
615         {
616                 return ERROR_INVALID_ARGUMENTS;
617         }
618         
619         if (*callbacks_p)
620         {
621                 while ((*callbacks_p)->next)
622                         callbacks_p = &((*callbacks_p)->next);
623                 callbacks_p = &((*callbacks_p)->next);
624         }
625         
626         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
627         (*callbacks_p)->callback = callback;
628         (*callbacks_p)->priv = priv;
629         (*callbacks_p)->next = NULL;
630         
631         return ERROR_OK;
632 }
633
634 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
635 {
636         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
637         struct timeval now;
638         
639         if (callback == NULL)
640         {
641                 return ERROR_INVALID_ARGUMENTS;
642         }
643         
644         if (*callbacks_p)
645         {
646                 while ((*callbacks_p)->next)
647                         callbacks_p = &((*callbacks_p)->next);
648                 callbacks_p = &((*callbacks_p)->next);
649         }
650         
651         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
652         (*callbacks_p)->callback = callback;
653         (*callbacks_p)->periodic = periodic;
654         (*callbacks_p)->time_ms = time_ms;
655         
656         gettimeofday(&now, NULL);
657         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
658         time_ms -= (time_ms % 1000);
659         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
660         if ((*callbacks_p)->when.tv_usec > 1000000)
661         {
662                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
663                 (*callbacks_p)->when.tv_sec += 1;
664         }
665         
666         (*callbacks_p)->priv = priv;
667         (*callbacks_p)->next = NULL;
668         
669         return ERROR_OK;
670 }
671
672 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
673 {
674         target_event_callback_t **p = &target_event_callbacks;
675         target_event_callback_t *c = target_event_callbacks;
676         
677         if (callback == NULL)
678         {
679                 return ERROR_INVALID_ARGUMENTS;
680         }
681                 
682         while (c)
683         {
684                 target_event_callback_t *next = c->next;
685                 if ((c->callback == callback) && (c->priv == priv))
686                 {
687                         *p = next;
688                         free(c);
689                         return ERROR_OK;
690                 }
691                 else
692                         p = &(c->next);
693                 c = next;
694         }
695         
696         return ERROR_OK;
697 }
698
699 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
700 {
701         target_timer_callback_t **p = &target_timer_callbacks;
702         target_timer_callback_t *c = target_timer_callbacks;
703         
704         if (callback == NULL)
705         {
706                 return ERROR_INVALID_ARGUMENTS;
707         }
708                 
709         while (c)
710         {
711                 target_timer_callback_t *next = c->next;
712                 if ((c->callback == callback) && (c->priv == priv))
713                 {
714                         *p = next;
715                         free(c);
716                         return ERROR_OK;
717                 }
718                 else
719                         p = &(c->next);
720                 c = next;
721         }
722         
723         return ERROR_OK;
724 }
725
726 int target_call_event_callbacks(target_t *target, enum target_event event)
727 {
728         target_event_callback_t *callback = target_event_callbacks;
729         target_event_callback_t *next_callback;
730         
731         LOG_DEBUG("target event %i", event);
732         
733         while (callback)
734         {
735                 next_callback = callback->next;
736                 callback->callback(target, event, callback->priv);
737                 callback = next_callback;
738         }
739         
740         return ERROR_OK;
741 }
742
743 static int target_call_timer_callbacks_check_time(int checktime)
744 {
745         target_timer_callback_t *callback = target_timer_callbacks;
746         target_timer_callback_t *next_callback;
747         struct timeval now;
748
749         keep_alive();
750         
751         gettimeofday(&now, NULL);
752         
753         while (callback)
754         {
755                 next_callback = callback->next;
756                 
757                 if ((!checktime&&callback->periodic)||
758                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
759                                                 || (now.tv_sec > callback->when.tv_sec)))
760                 {
761                         if(callback->callback != NULL)
762                         {
763                                 callback->callback(callback->priv);
764                                 if (callback->periodic)
765                                 {
766                                         int time_ms = callback->time_ms;
767                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
768                                         time_ms -= (time_ms % 1000);
769                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
770                                         if (callback->when.tv_usec > 1000000)
771                                         {
772                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
773                                                 callback->when.tv_sec += 1;
774                                         }
775                                 }
776                                 else
777                                         target_unregister_timer_callback(callback->callback, callback->priv);
778                         }
779                 }
780                         
781                 callback = next_callback;
782         }
783         
784         return ERROR_OK;
785 }
786
787 int target_call_timer_callbacks()
788 {
789         return target_call_timer_callbacks_check_time(1);
790 }
791
792 /* invoke periodic callbacks immediately */
793 int target_call_timer_callbacks_now()
794 {
795         return target_call_timer_callbacks(0);
796 }
797
798 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
799 {
800         working_area_t *c = target->working_areas;
801         working_area_t *new_wa = NULL;
802         
803         /* Reevaluate working area address based on MMU state*/
804         if (target->working_areas == NULL)
805         {
806                 int retval;
807                 int enabled;
808                 retval = target->type->mmu(target, &enabled);
809                 if (retval != ERROR_OK)
810                 {
811                         return retval;
812                 }
813                 if (enabled)
814                 {
815                         target->working_area = target->working_area_virt;
816                 }
817                 else
818                 {
819                         target->working_area = target->working_area_phys;
820                 }
821         }
822         
823         /* only allocate multiples of 4 byte */
824         if (size % 4)
825         {
826                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
827                 size = CEIL(size, 4);
828         }
829         
830         /* see if there's already a matching working area */
831         while (c)
832         {
833                 if ((c->free) && (c->size == size))
834                 {
835                         new_wa = c;
836                         break;
837                 }
838                 c = c->next;
839         }
840         
841         /* if not, allocate a new one */
842         if (!new_wa)
843         {
844                 working_area_t **p = &target->working_areas;
845                 u32 first_free = target->working_area;
846                 u32 free_size = target->working_area_size;
847                 
848                 LOG_DEBUG("allocating new working area");
849                 
850                 c = target->working_areas;
851                 while (c)
852                 {
853                         first_free += c->size;
854                         free_size -= c->size;
855                         p = &c->next;
856                         c = c->next;
857                 }
858                 
859                 if (free_size < size)
860                 {
861                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
862                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
863                 }
864                 
865                 new_wa = malloc(sizeof(working_area_t));
866                 new_wa->next = NULL;
867                 new_wa->size = size;
868                 new_wa->address = first_free;
869                 
870                 if (target->backup_working_area)
871                 {
872                         new_wa->backup = malloc(new_wa->size);
873                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
874                 }
875                 else
876                 {
877                         new_wa->backup = NULL;
878                 }
879                 
880                 /* put new entry in list */
881                 *p = new_wa;
882         }
883         
884         /* mark as used, and return the new (reused) area */
885         new_wa->free = 0;
886         *area = new_wa;
887         
888         /* user pointer */
889         new_wa->user = area;
890         
891         return ERROR_OK;
892 }
893
894 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
895 {
896         if (area->free)
897                 return ERROR_OK;
898         
899         if (restore&&target->backup_working_area)
900                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
901         
902         area->free = 1;
903         
904         /* mark user pointer invalid */
905         *area->user = NULL;
906         area->user = NULL;
907         
908         return ERROR_OK;
909 }
910
911 int target_free_working_area(struct target_s *target, working_area_t *area)
912 {
913         return target_free_working_area_restore(target, area, 1);
914 }
915
916 int target_free_all_working_areas_restore(struct target_s *target, int restore)
917 {
918         working_area_t *c = target->working_areas;
919
920         while (c)
921         {
922                 working_area_t *next = c->next;
923                 target_free_working_area_restore(target, c, restore);
924                 
925                 if (c->backup)
926                         free(c->backup);
927                 
928                 free(c);
929                 
930                 c = next;
931         }
932         
933         target->working_areas = NULL;
934         
935         return ERROR_OK;
936 }
937
938 int target_free_all_working_areas(struct target_s *target)
939 {
940         return target_free_all_working_areas_restore(target, 1); 
941 }
942
943 int target_register_commands(struct command_context_s *cmd_ctx)
944 {
945         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
946         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
947         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
948         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
949         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
950         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
951
952         /* script procedures */
953         register_jim(cmd_ctx, "openocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing");
954         register_jim(cmd_ctx, "openocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values");
955         return ERROR_OK;
956 }
957
958 int target_arch_state(struct target_s *target)
959 {
960         int retval;
961         if (target==NULL)
962         {
963                 LOG_USER("No target has been configured");
964                 return ERROR_OK;
965         }
966         
967         LOG_USER("target state: %s", target_state_strings[target->state]);
968         
969         if (target->state!=TARGET_HALTED)
970                 return ERROR_OK;
971         
972         retval=target->type->arch_state(target);
973         return retval;
974 }
975
976 /* Single aligned words are guaranteed to use 16 or 32 bit access 
977  * mode respectively, otherwise data is handled as quickly as 
978  * possible
979  */
980 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
981 {
982         int retval;
983         if (!target->type->examined)
984         {
985                 LOG_ERROR("Target not examined yet");
986                 return ERROR_FAIL;
987         }
988         
989         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
990         
991         if (((address % 2) == 0) && (size == 2))
992         {
993                 return target->type->write_memory(target, address, 2, 1, buffer);
994         }
995         
996         /* handle unaligned head bytes */
997         if (address % 4)
998         {
999                 int unaligned = 4 - (address % 4);
1000                 
1001                 if (unaligned > size)
1002                         unaligned = size;
1003
1004                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1005                         return retval;
1006                 
1007                 buffer += unaligned;
1008                 address += unaligned;
1009                 size -= unaligned;
1010         }
1011                 
1012         /* handle aligned words */
1013         if (size >= 4)
1014         {
1015                 int aligned = size - (size % 4);
1016         
1017                 /* use bulk writes above a certain limit. This may have to be changed */
1018                 if (aligned > 128)
1019                 {
1020                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1021                                 return retval;
1022                 }
1023                 else
1024                 {
1025                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1026                                 return retval;
1027                 }
1028                 
1029                 buffer += aligned;
1030                 address += aligned;
1031                 size -= aligned;
1032         }
1033         
1034         /* handle tail writes of less than 4 bytes */
1035         if (size > 0)
1036         {
1037                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1038                         return retval;
1039         }
1040         
1041         return ERROR_OK;
1042 }
1043
1044
1045 /* Single aligned words are guaranteed to use 16 or 32 bit access 
1046  * mode respectively, otherwise data is handled as quickly as 
1047  * possible
1048  */
1049 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1050 {
1051         int retval;
1052         if (!target->type->examined)
1053         {
1054                 LOG_ERROR("Target not examined yet");
1055                 return ERROR_FAIL;
1056         }
1057
1058         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1059         
1060         if (((address % 2) == 0) && (size == 2))
1061         {
1062                 return target->type->read_memory(target, address, 2, 1, buffer);
1063         }
1064         
1065         /* handle unaligned head bytes */
1066         if (address % 4)
1067         {
1068                 int unaligned = 4 - (address % 4);
1069                 
1070                 if (unaligned > size)
1071                         unaligned = size;
1072
1073                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1074                         return retval;
1075                 
1076                 buffer += unaligned;
1077                 address += unaligned;
1078                 size -= unaligned;
1079         }
1080                 
1081         /* handle aligned words */
1082         if (size >= 4)
1083         {
1084                 int aligned = size - (size % 4);
1085         
1086                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1087                         return retval;
1088                 
1089                 buffer += aligned;
1090                 address += aligned;
1091                 size -= aligned;
1092         }
1093         
1094         /* handle tail writes of less than 4 bytes */
1095         if (size > 0)
1096         {
1097                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1098                         return retval;
1099         }
1100         
1101         return ERROR_OK;
1102 }
1103
1104 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1105 {
1106         u8 *buffer;
1107         int retval;
1108         int i;
1109         u32 checksum = 0;
1110         if (!target->type->examined)
1111         {
1112                 LOG_ERROR("Target not examined yet");
1113                 return ERROR_FAIL;
1114         }
1115         
1116         if ((retval = target->type->checksum_memory(target, address,
1117                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1118         {
1119                 buffer = malloc(size);
1120                 if (buffer == NULL)
1121                 {
1122                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1123                         return ERROR_INVALID_ARGUMENTS;
1124                 }
1125                 retval = target_read_buffer(target, address, size, buffer);
1126                 if (retval != ERROR_OK)
1127                 {
1128                         free(buffer);
1129                         return retval;
1130                 }
1131
1132                 /* convert to target endianess */
1133                 for (i = 0; i < (size/sizeof(u32)); i++)
1134                 {
1135                         u32 target_data;
1136                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1137                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1138                 }
1139
1140                 retval = image_calculate_checksum( buffer, size, &checksum );
1141                 free(buffer);
1142         }
1143         
1144         *crc = checksum;
1145         
1146         return retval;
1147 }
1148
1149 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1150 {
1151         int retval;
1152         if (!target->type->examined)
1153         {
1154                 LOG_ERROR("Target not examined yet");
1155                 return ERROR_FAIL;
1156         }
1157         
1158         if (target->type->blank_check_memory == 0)
1159                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1160         
1161         retval = target->type->blank_check_memory(target, address, size, blank);
1162                         
1163         return retval;
1164 }
1165
1166 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1167 {
1168         u8 value_buf[4];
1169         if (!target->type->examined)
1170         {
1171                 LOG_ERROR("Target not examined yet");
1172                 return ERROR_FAIL;
1173         }
1174
1175         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1176         
1177         if (retval == ERROR_OK)
1178         {
1179                 *value = target_buffer_get_u32(target, value_buf);
1180                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1181         }
1182         else
1183         {
1184                 *value = 0x0;
1185                 LOG_DEBUG("address: 0x%8.8x failed", address);
1186         }
1187         
1188         return retval;
1189 }
1190
1191 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1192 {
1193         u8 value_buf[2];
1194         if (!target->type->examined)
1195         {
1196                 LOG_ERROR("Target not examined yet");
1197                 return ERROR_FAIL;
1198         }
1199
1200         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1201         
1202         if (retval == ERROR_OK)
1203         {
1204                 *value = target_buffer_get_u16(target, value_buf);
1205                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1206         }
1207         else
1208         {
1209                 *value = 0x0;
1210                 LOG_DEBUG("address: 0x%8.8x failed", address);
1211         }
1212         
1213         return retval;
1214 }
1215
1216 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1217 {
1218         int retval = target->type->read_memory(target, address, 1, 1, value);
1219         if (!target->type->examined)
1220         {
1221                 LOG_ERROR("Target not examined yet");
1222                 return ERROR_FAIL;
1223         }
1224
1225         if (retval == ERROR_OK)
1226         {
1227                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1228         }
1229         else
1230         {
1231                 *value = 0x0;
1232                 LOG_DEBUG("address: 0x%8.8x failed", address);
1233         }
1234         
1235         return retval;
1236 }
1237
1238 int target_write_u32(struct target_s *target, u32 address, u32 value)
1239 {
1240         int retval;
1241         u8 value_buf[4];
1242         if (!target->type->examined)
1243         {
1244                 LOG_ERROR("Target not examined yet");
1245                 return ERROR_FAIL;
1246         }
1247
1248         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1249
1250         target_buffer_set_u32(target, value_buf, value);        
1251         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1252         {
1253                 LOG_DEBUG("failed: %i", retval);
1254         }
1255         
1256         return retval;
1257 }
1258
1259 int target_write_u16(struct target_s *target, u32 address, u16 value)
1260 {
1261         int retval;
1262         u8 value_buf[2];
1263         if (!target->type->examined)
1264         {
1265                 LOG_ERROR("Target not examined yet");
1266                 return ERROR_FAIL;
1267         }
1268
1269         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1270
1271         target_buffer_set_u16(target, value_buf, value);        
1272         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1273         {
1274                 LOG_DEBUG("failed: %i", retval);
1275         }
1276         
1277         return retval;
1278 }
1279
1280 int target_write_u8(struct target_s *target, u32 address, u8 value)
1281 {
1282         int retval;
1283         if (!target->type->examined)
1284         {
1285                 LOG_ERROR("Target not examined yet");
1286                 return ERROR_FAIL;
1287         }
1288
1289         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1290
1291         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1292         {
1293                 LOG_DEBUG("failed: %i", retval);
1294         }
1295         
1296         return retval;
1297 }
1298
1299 int target_register_user_commands(struct command_context_s *cmd_ctx)
1300 {
1301         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1302         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1303         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1304         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1305         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1306         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1307         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1308         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1309
1310         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1311         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1312         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1313         
1314         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1315         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1316         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1317         
1318         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1319         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1320         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1321         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1322         
1323         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1324         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1325         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1326         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1327         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1328         
1329         target_request_register_commands(cmd_ctx);
1330         trace_register_commands(cmd_ctx);
1331         
1332         return ERROR_OK;
1333 }
1334
1335 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1336 {
1337         target_t *target = targets;
1338         int count = 0;
1339         
1340         if (argc == 1)
1341         {
1342                 int num = strtoul(args[0], NULL, 0);
1343                 
1344                 while (target)
1345                 {
1346                         count++;
1347                         target = target->next;
1348                 }
1349                 
1350                 if (num < count)
1351                         cmd_ctx->current_target = num;
1352                 else
1353                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1354                         
1355                 return ERROR_OK;
1356         }
1357                 
1358         while (target)
1359         {
1360                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1361                 target = target->next;
1362         }
1363         
1364         return ERROR_OK;
1365 }
1366
1367 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1368 {
1369         int i;
1370         int found = 0;
1371         
1372         if (argc < 3)
1373         {
1374                 return ERROR_COMMAND_SYNTAX_ERROR;
1375         }
1376         
1377         /* search for the specified target */
1378         if (args[0] && (args[0][0] != 0))
1379         {
1380                 for (i = 0; target_types[i]; i++)
1381                 {
1382                         if (strcmp(args[0], target_types[i]->name) == 0)
1383                         {
1384                                 target_t **last_target_p = &targets;
1385                                 
1386                                 /* register target specific commands */
1387                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1388                                 {
1389                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1390                                         exit(-1);
1391                                 }
1392
1393                                 if (*last_target_p)
1394                                 {
1395                                         while ((*last_target_p)->next)
1396                                                 last_target_p = &((*last_target_p)->next);
1397                                         last_target_p = &((*last_target_p)->next);
1398                                 }
1399
1400                                 *last_target_p = malloc(sizeof(target_t));
1401                                 
1402                                 /* allocate memory for each unique target type */
1403                                 (*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t));
1404                                 *((*last_target_p)->type) = *target_types[i]; 
1405                                 
1406                                 if (strcmp(args[1], "big") == 0)
1407                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1408                                 else if (strcmp(args[1], "little") == 0)
1409                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1410                                 else
1411                                 {
1412                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1413                                         return ERROR_COMMAND_SYNTAX_ERROR;
1414                                 }
1415                                 
1416                                 /* what to do on a target reset */
1417                                 (*last_target_p)->reset_mode = RESET_INIT; /* default */
1418                                 if (strcmp(args[2], "reset_halt") == 0)
1419                                         (*last_target_p)->reset_mode = RESET_HALT;
1420                                 else if (strcmp(args[2], "reset_run") == 0)
1421                                         (*last_target_p)->reset_mode = RESET_RUN;
1422                                 else if (strcmp(args[2], "reset_init") == 0)
1423                                         (*last_target_p)->reset_mode = RESET_INIT;
1424                                 else if (strcmp(args[2], "run_and_halt") == 0)
1425                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1426                                 else if (strcmp(args[2], "run_and_init") == 0)
1427                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1428                                 else
1429                                 {
1430                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1431                                         args--;
1432                                         argc++;
1433                                 }
1434                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1435                                 
1436                                 (*last_target_p)->working_area = 0x0;
1437                                 (*last_target_p)->working_area_size = 0x0;
1438                                 (*last_target_p)->working_areas = NULL;
1439                                 (*last_target_p)->backup_working_area = 0;
1440                                 
1441                                 (*last_target_p)->state = TARGET_UNKNOWN;
1442                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1443                                 (*last_target_p)->reg_cache = NULL;
1444                                 (*last_target_p)->breakpoints = NULL;
1445                                 (*last_target_p)->watchpoints = NULL;
1446                                 (*last_target_p)->next = NULL;
1447                                 (*last_target_p)->arch_info = NULL;
1448                                 
1449                                 /* initialize trace information */
1450                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1451                                 (*last_target_p)->trace_info->num_trace_points = 0;
1452                                 (*last_target_p)->trace_info->trace_points_size = 0;
1453                                 (*last_target_p)->trace_info->trace_points = NULL;
1454                                 (*last_target_p)->trace_info->trace_history_size = 0;
1455                                 (*last_target_p)->trace_info->trace_history = NULL;
1456                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1457                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1458                                 
1459                                 (*last_target_p)->dbgmsg = NULL;
1460                                 (*last_target_p)->dbg_msg_enabled = 0;
1461                                                                 
1462                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1463                                 
1464                                 found = 1;
1465                                 break;
1466                         }
1467                 }
1468         }
1469         
1470         /* no matching target found */
1471         if (!found)
1472         {
1473                 LOG_ERROR("target '%s' not found", args[0]);
1474                 return ERROR_COMMAND_SYNTAX_ERROR;
1475         }
1476
1477         return ERROR_OK;
1478 }
1479
1480 int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name)
1481 {
1482         return command_run_linef(cmd_ctx, " if {[catch {info body target_%s_%d} t]==0} {target_%s_%d}", 
1483         name, get_num_by_target(target),
1484         name, get_num_by_target(target));
1485 }
1486
1487 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1488 {
1489         target_t *target = NULL;
1490         
1491         if (argc < 2)
1492         {
1493                 return ERROR_COMMAND_SYNTAX_ERROR;
1494         }
1495         
1496         target = get_target_by_num(strtoul(args[0], NULL, 0));
1497         if (!target)
1498         {
1499                 return ERROR_COMMAND_SYNTAX_ERROR;
1500         }
1501         
1502         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1503         
1504         return ERROR_OK;
1505 }
1506
1507 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1508 {
1509         target_t *target = NULL;
1510         
1511         if ((argc < 4) || (argc > 5))
1512         {
1513                 return ERROR_COMMAND_SYNTAX_ERROR;
1514         }
1515         
1516         target = get_target_by_num(strtoul(args[0], NULL, 0));
1517         if (!target)
1518         {
1519                 return ERROR_COMMAND_SYNTAX_ERROR;
1520         }
1521         target_free_all_working_areas(target);
1522         
1523         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1524         if (argc == 5)
1525         {
1526                 target->working_area_virt = strtoul(args[4], NULL, 0);
1527         }
1528         target->working_area_size = strtoul(args[2], NULL, 0);
1529         
1530         if (strcmp(args[3], "backup") == 0)
1531         {
1532                 target->backup_working_area = 1;
1533         }
1534         else if (strcmp(args[3], "nobackup") == 0)
1535         {
1536                 target->backup_working_area = 0;
1537         }
1538         else
1539         {
1540                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1541                 return ERROR_COMMAND_SYNTAX_ERROR;
1542         }
1543         
1544         return ERROR_OK;
1545 }
1546
1547
1548 /* process target state changes */
1549 int handle_target(void *priv)
1550 {
1551         target_t *target = targets;
1552         
1553         while (target)
1554         {
1555                 if (target_continous_poll)
1556                 {
1557                         /* polling may fail silently until the target has been examined */
1558                         target_poll(target);
1559                 }
1560         
1561                 target = target->next;
1562         }
1563         
1564         return ERROR_OK;
1565 }
1566
1567 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1568 {
1569         target_t *target;
1570         reg_t *reg = NULL;
1571         int count = 0;
1572         char *value;
1573         
1574         LOG_DEBUG("-");
1575         
1576         target = get_current_target(cmd_ctx);
1577         
1578         /* list all available registers for the current target */
1579         if (argc == 0)
1580         {
1581                 reg_cache_t *cache = target->reg_cache;
1582                 
1583                 count = 0;
1584                 while(cache)
1585                 {
1586                         int i;
1587                         for (i = 0; i < cache->num_regs; i++)
1588                         {
1589                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1590                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1591                                 free(value);
1592                         }
1593                         cache = cache->next;
1594                 }
1595                 
1596                 return ERROR_OK;
1597         }
1598         
1599         /* access a single register by its ordinal number */
1600         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1601         {
1602                 int num = strtoul(args[0], NULL, 0);
1603                 reg_cache_t *cache = target->reg_cache;
1604                 
1605                 count = 0;
1606                 while(cache)
1607                 {
1608                         int i;
1609                         for (i = 0; i < cache->num_regs; i++)
1610                         {
1611                                 if (count++ == num)
1612                                 {
1613                                         reg = &cache->reg_list[i];
1614                                         break;
1615                                 }
1616                         }
1617                         if (reg)
1618                                 break;
1619                         cache = cache->next;
1620                 }
1621                 
1622                 if (!reg)
1623                 {
1624                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1625                         return ERROR_OK;
1626                 }
1627         } else /* access a single register by its name */
1628         {
1629                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1630                 
1631                 if (!reg)
1632                 {
1633                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1634                         return ERROR_OK;
1635                 }
1636         }
1637
1638         /* display a register */
1639         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1640         {
1641                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1642                         reg->valid = 0;
1643                 
1644                 if (reg->valid == 0)
1645                 {
1646                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1647                         if (arch_type == NULL)
1648                         {
1649                                 LOG_ERROR("BUG: encountered unregistered arch type");
1650                                 return ERROR_OK;
1651                         }
1652                         arch_type->get(reg);
1653                 }
1654                 value = buf_to_str(reg->value, reg->size, 16);
1655                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1656                 free(value);
1657                 return ERROR_OK;
1658         }
1659         
1660         /* set register value */
1661         if (argc == 2)
1662         {
1663                 u8 *buf = malloc(CEIL(reg->size, 8));
1664                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1665
1666                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1667                 if (arch_type == NULL)
1668                 {
1669                         LOG_ERROR("BUG: encountered unregistered arch type");
1670                         return ERROR_OK;
1671                 }
1672                 
1673                 arch_type->set(reg, buf);
1674                 
1675                 value = buf_to_str(reg->value, reg->size, 16);
1676                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1677                 free(value);
1678                 
1679                 free(buf);
1680                 
1681                 return ERROR_OK;
1682         }
1683         
1684         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1685         
1686         return ERROR_OK;
1687 }
1688
1689 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1690
1691 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1692 {
1693         target_t *target = get_current_target(cmd_ctx);
1694
1695         if (argc == 0)
1696         {
1697                 target_poll(target);
1698                 target_arch_state(target);
1699         }
1700         else
1701         {
1702                 if (strcmp(args[0], "on") == 0)
1703                 {
1704                         target_continous_poll = 1;
1705                 }
1706                 else if (strcmp(args[0], "off") == 0)
1707                 {
1708                         target_continous_poll = 0;
1709                 }
1710                 else
1711                 {
1712                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1713                 }
1714         }
1715         
1716         
1717         return ERROR_OK;
1718 }
1719
1720 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1721 {
1722         int ms = 5000;
1723         
1724         if (argc > 0)
1725         {
1726                 char *end;
1727
1728                 ms = strtoul(args[0], &end, 0) * 1000;
1729                 if (*end)
1730                 {
1731                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1732                         return ERROR_OK;
1733                 }
1734         }
1735
1736         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1737 }
1738
1739 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1740 {
1741         int retval;
1742         struct timeval timeout, now;
1743         int once=1;
1744         gettimeofday(&timeout, NULL);
1745         timeval_add_time(&timeout, 0, ms * 1000);
1746         
1747         target_t *target = get_current_target(cmd_ctx);
1748         for (;;)
1749         {
1750                 if ((retval=target_poll(target))!=ERROR_OK)
1751                         return retval;
1752                 target_call_timer_callbacks_now();
1753                 if (target->state == state)
1754                 {
1755                         break;
1756                 }
1757                 if (once)
1758                 {
1759                         once=0;
1760                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1761                 }
1762                 
1763                 gettimeofday(&now, NULL);
1764                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1765                 {
1766                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1767                         break;
1768                 }
1769         }
1770         
1771         return ERROR_OK;
1772 }
1773
1774 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1775 {
1776         int retval;
1777         target_t *target = get_current_target(cmd_ctx);
1778
1779         LOG_DEBUG("-");
1780
1781         if ((retval = target_halt(target)) != ERROR_OK)
1782         {
1783                 return retval;
1784         }
1785         
1786         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1787 }
1788
1789 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1790 {
1791         target_t *target = get_current_target(cmd_ctx);
1792         
1793         LOG_USER("requesting target halt and executing a soft reset");
1794         
1795         target->type->soft_reset_halt(target);
1796         
1797         return ERROR_OK;
1798 }
1799
1800 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1801 {
1802         target_t *target = get_current_target(cmd_ctx);
1803         enum target_reset_mode reset_mode = target->reset_mode;
1804         enum target_reset_mode save = target->reset_mode;
1805         
1806         LOG_DEBUG("-");
1807         
1808         if (argc >= 1)
1809         {
1810                 if (strcmp("run", args[0]) == 0)
1811                         reset_mode = RESET_RUN;
1812                 else if (strcmp("halt", args[0]) == 0)
1813                         reset_mode = RESET_HALT;
1814                 else if (strcmp("init", args[0]) == 0)
1815                         reset_mode = RESET_INIT;
1816                 else if (strcmp("run_and_halt", args[0]) == 0)
1817                 {
1818                         reset_mode = RESET_RUN_AND_HALT;
1819                         if (argc >= 2)
1820                         {
1821                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1822                         }
1823                 }
1824                 else if (strcmp("run_and_init", args[0]) == 0)
1825                 {
1826                         reset_mode = RESET_RUN_AND_INIT;
1827                         if (argc >= 2)
1828                         {
1829                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1830                         }
1831                 }
1832                 else
1833                 {
1834                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1835                         return ERROR_OK;
1836                 }
1837         }
1838         
1839         /* temporarily modify mode of current reset target */
1840         target->reset_mode = reset_mode;
1841
1842         /* reset *all* targets */
1843         target_process_reset(cmd_ctx);
1844         
1845         /* Restore default reset mode for this target */
1846     target->reset_mode = save;
1847         
1848         return ERROR_OK;
1849 }
1850
1851 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1852 {
1853         int retval;
1854         target_t *target = get_current_target(cmd_ctx);
1855         
1856         target_invoke_script(cmd_ctx, target, "pre_resume");
1857         
1858         if (argc == 0)
1859                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1860         else if (argc == 1)
1861                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1862         else
1863         {
1864                 return ERROR_COMMAND_SYNTAX_ERROR;
1865         }
1866         
1867         return retval;
1868 }
1869
1870 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1871 {
1872         target_t *target = get_current_target(cmd_ctx);
1873         
1874         LOG_DEBUG("-");
1875         
1876         if (argc == 0)
1877                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1878
1879         if (argc == 1)
1880                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1881         
1882         return ERROR_OK;
1883 }
1884
1885 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1886 {
1887         const int line_bytecnt = 32;
1888         int count = 1;
1889         int size = 4;
1890         u32 address = 0;
1891         int line_modulo;
1892         int i;
1893
1894         char output[128];
1895         int output_len;
1896
1897         int retval;
1898
1899         u8 *buffer;
1900         target_t *target = get_current_target(cmd_ctx);
1901
1902         if (argc < 1)
1903                 return ERROR_OK;
1904
1905         if (argc == 2)
1906                 count = strtoul(args[1], NULL, 0);
1907
1908         address = strtoul(args[0], NULL, 0);
1909         
1910
1911         switch (cmd[2])
1912         {
1913                 case 'w':
1914                         size = 4; line_modulo = line_bytecnt / 4;
1915                         break;
1916                 case 'h':
1917                         size = 2; line_modulo = line_bytecnt / 2;
1918                         break;
1919                 case 'b':
1920                         size = 1; line_modulo = line_bytecnt / 1;
1921                         break;
1922                 default:
1923                         return ERROR_OK;
1924         }
1925
1926         buffer = calloc(count, size);
1927         retval  = target->type->read_memory(target, address, size, count, buffer);
1928         if (retval == ERROR_OK)
1929         {
1930                 output_len = 0;
1931         
1932                 for (i = 0; i < count; i++)
1933                 {
1934                         if (i%line_modulo == 0)
1935                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1936                         
1937                         switch (size)
1938                         {
1939                                 case 4:
1940                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1941                                         break;
1942                                 case 2:
1943                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1944                                         break;
1945                                 case 1:
1946                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1947                                         break;
1948                         }
1949         
1950                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1951                         {
1952                                 command_print(cmd_ctx, output);
1953                                 output_len = 0;
1954                         }
1955                 }
1956         }
1957
1958         free(buffer);
1959         
1960         return retval;
1961 }
1962
1963 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1964 {
1965         u32 address = 0;
1966         u32 value = 0;
1967         int count = 1;
1968         int i;
1969         int wordsize;
1970         target_t *target = get_current_target(cmd_ctx);
1971         u8 value_buf[4];
1972
1973          if ((argc < 2) || (argc > 3))
1974                 return ERROR_COMMAND_SYNTAX_ERROR;
1975
1976         address = strtoul(args[0], NULL, 0);
1977         value = strtoul(args[1], NULL, 0);
1978         if (argc == 3)
1979                 count = strtoul(args[2], NULL, 0);
1980         
1981         switch (cmd[2])
1982         {
1983                 case 'w':
1984                         wordsize = 4;
1985                         target_buffer_set_u32(target, value_buf, value);
1986                         break;
1987                 case 'h':
1988                         wordsize = 2;
1989                         target_buffer_set_u16(target, value_buf, value);
1990                         break;
1991                 case 'b':
1992                         wordsize = 1;
1993                         value_buf[0] = value;
1994                         break;
1995                 default:
1996                         return ERROR_COMMAND_SYNTAX_ERROR;
1997         }
1998         for (i=0; i<count; i++)
1999         {
2000                 int retval;
2001                 switch (wordsize)
2002                 {
2003                         case 4:
2004                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
2005                                 break;
2006                         case 2:
2007                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
2008                                 break;
2009                         case 1:
2010                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
2011                         break;
2012                         default:
2013                         return ERROR_OK;
2014                 }
2015                 if (retval!=ERROR_OK)
2016                 {
2017                         return retval;
2018                 }
2019         }
2020
2021         return ERROR_OK;
2022
2023 }
2024
2025 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2026 {
2027         u8 *buffer;
2028         u32 buf_cnt;
2029         u32 image_size;
2030         int i;
2031         int retval;
2032
2033         image_t image;  
2034         
2035         duration_t duration;
2036         char *duration_text;
2037         
2038         target_t *target = get_current_target(cmd_ctx);
2039
2040         if (argc < 1)
2041         {
2042                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
2043                 return ERROR_OK;
2044         }
2045         
2046         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2047         if (argc >= 2)
2048         {
2049                 image.base_address_set = 1;
2050                 image.base_address = strtoul(args[1], NULL, 0);
2051         }
2052         else
2053         {
2054                 image.base_address_set = 0;
2055         }
2056         
2057         image.start_address_set = 0;
2058
2059         duration_start_measure(&duration);
2060         
2061         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2062         {
2063                 return ERROR_OK;
2064         }
2065         
2066         image_size = 0x0;
2067         retval = ERROR_OK;
2068         for (i = 0; i < image.num_sections; i++)
2069         {
2070                 buffer = malloc(image.sections[i].size);
2071                 if (buffer == NULL)
2072                 {
2073                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2074                         break;
2075                 }
2076                 
2077                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2078                 {
2079                         free(buffer);
2080                         break;
2081                 }
2082                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
2083                 {
2084                         free(buffer);
2085                         break;
2086                 }
2087                 image_size += buf_cnt;
2088                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
2089                 
2090                 free(buffer);
2091         }
2092
2093         duration_stop_measure(&duration, &duration_text);
2094         if (retval==ERROR_OK)
2095         {
2096                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2097         }
2098         free(duration_text);
2099         
2100         image_close(&image);
2101
2102         return retval;
2103
2104 }
2105
2106 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2107 {
2108         fileio_t fileio;
2109         
2110         u32 address;
2111         u32 size;
2112         u8 buffer[560];
2113         int retval=ERROR_OK;
2114         
2115         duration_t duration;
2116         char *duration_text;
2117         
2118         target_t *target = get_current_target(cmd_ctx);
2119
2120         if (argc != 3)
2121         {
2122                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2123                 return ERROR_OK;
2124         }
2125
2126         address = strtoul(args[1], NULL, 0);
2127         size = strtoul(args[2], NULL, 0);
2128
2129         if ((address & 3) || (size & 3))
2130         {
2131                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2132                 return ERROR_OK;
2133         }
2134         
2135         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2136         {
2137                 return ERROR_OK;
2138         }
2139         
2140         duration_start_measure(&duration);
2141         
2142         while (size > 0)
2143         {
2144                 u32 size_written;
2145                 u32 this_run_size = (size > 560) ? 560 : size;
2146                 
2147                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2148                 if (retval != ERROR_OK)
2149                 {
2150                         break;
2151                 }
2152                 
2153                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2154                 if (retval != ERROR_OK)
2155                 {
2156                         break;
2157                 }
2158                 
2159                 size -= this_run_size;
2160                 address += this_run_size;
2161         }
2162
2163         fileio_close(&fileio);
2164
2165         duration_stop_measure(&duration, &duration_text);
2166         if (retval==ERROR_OK)
2167         {
2168                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2169         }
2170         free(duration_text);
2171         
2172         return ERROR_OK;
2173 }
2174
2175 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2176 {
2177         u8 *buffer;
2178         u32 buf_cnt;
2179         u32 image_size;
2180         int i;
2181         int retval;
2182         u32 checksum = 0;
2183         u32 mem_checksum = 0;
2184
2185         image_t image;  
2186         
2187         duration_t duration;
2188         char *duration_text;
2189         
2190         target_t *target = get_current_target(cmd_ctx);
2191         
2192         if (argc < 1)
2193         {
2194                 return ERROR_COMMAND_SYNTAX_ERROR;
2195         }
2196         
2197         if (!target)
2198         {
2199                 LOG_ERROR("no target selected");
2200                 return ERROR_FAIL;
2201         }
2202         
2203         duration_start_measure(&duration);
2204         
2205         if (argc >= 2)
2206         {
2207                 image.base_address_set = 1;
2208                 image.base_address = strtoul(args[1], NULL, 0);
2209         }
2210         else
2211         {
2212                 image.base_address_set = 0;
2213                 image.base_address = 0x0;
2214         }
2215
2216         image.start_address_set = 0;
2217
2218         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2219         {
2220                 return retval;
2221         }
2222         
2223         image_size = 0x0;
2224         retval=ERROR_OK;
2225         for (i = 0; i < image.num_sections; i++)
2226         {
2227                 buffer = malloc(image.sections[i].size);
2228                 if (buffer == NULL)
2229                 {
2230                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2231                         break;
2232                 }
2233                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2234                 {
2235                         free(buffer);
2236                         break;
2237                 }
2238                 
2239                 /* calculate checksum of image */
2240                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2241                 
2242                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2243                 if( retval != ERROR_OK )
2244                 {
2245                         free(buffer);
2246                         break;
2247                 }
2248                 
2249                 if( checksum != mem_checksum )
2250                 {
2251                         /* failed crc checksum, fall back to a binary compare */
2252                         u8 *data;
2253                         
2254                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2255                         
2256                         data = (u8*)malloc(buf_cnt);
2257                         
2258                         /* Can we use 32bit word accesses? */
2259                         int size = 1;
2260                         int count = buf_cnt;
2261                         if ((count % 4) == 0)
2262                         {
2263                                 size *= 4;
2264                                 count /= 4;
2265                         }
2266                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2267                         if (retval == ERROR_OK)
2268                         {
2269                                 int t;
2270                                 for (t = 0; t < buf_cnt; t++)
2271                                 {
2272                                         if (data[t] != buffer[t])
2273                                         {
2274                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2275                                                 free(data);
2276                                                 free(buffer);
2277                                                 retval=ERROR_FAIL;
2278                                                 goto done;
2279                                         }
2280                                 }
2281                         }
2282                         
2283                         free(data);
2284                 }
2285                 
2286                 free(buffer);
2287                 image_size += buf_cnt;
2288         }
2289 done:   
2290         duration_stop_measure(&duration, &duration_text);
2291         if (retval==ERROR_OK)
2292         {
2293                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2294         }
2295         free(duration_text);
2296         
2297         image_close(&image);
2298         
2299         return retval;
2300 }
2301
2302 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2303 {
2304         int retval;
2305         target_t *target = get_current_target(cmd_ctx);
2306
2307         if (argc == 0)
2308         {
2309                 breakpoint_t *breakpoint = target->breakpoints;
2310
2311                 while (breakpoint)
2312                 {
2313                         if (breakpoint->type == BKPT_SOFT)
2314                         {
2315                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2316                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2317                                 free(buf);
2318                         }
2319                         else
2320                         {
2321                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2322                         }
2323                         breakpoint = breakpoint->next;
2324                 }
2325         }
2326         else if (argc >= 2)
2327         {
2328                 int hw = BKPT_SOFT;
2329                 u32 length = 0;
2330
2331                 length = strtoul(args[1], NULL, 0);
2332                 
2333                 if (argc >= 3)
2334                         if (strcmp(args[2], "hw") == 0)
2335                                 hw = BKPT_HARD;
2336
2337                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2338                 {
2339                         LOG_ERROR("Failure setting breakpoints");
2340                 }
2341                 else
2342                 {
2343                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2344                 }
2345         }
2346         else
2347         {
2348                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2349         }
2350
2351         return ERROR_OK;
2352 }
2353
2354 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2355 {
2356         target_t *target = get_current_target(cmd_ctx);
2357
2358         if (argc > 0)
2359                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2360
2361         return ERROR_OK;
2362 }
2363
2364 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2365 {
2366         target_t *target = get_current_target(cmd_ctx);
2367         int retval;
2368
2369         if (argc == 0)
2370         {
2371                 watchpoint_t *watchpoint = target->watchpoints;
2372
2373                 while (watchpoint)
2374                 {
2375                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2376                         watchpoint = watchpoint->next;
2377                 }
2378         } 
2379         else if (argc >= 2)
2380         {
2381                 enum watchpoint_rw type = WPT_ACCESS;
2382                 u32 data_value = 0x0;
2383                 u32 data_mask = 0xffffffff;
2384                 
2385                 if (argc >= 3)
2386                 {
2387                         switch(args[2][0])
2388                         {
2389                                 case 'r':
2390                                         type = WPT_READ;
2391                                         break;
2392                                 case 'w':
2393                                         type = WPT_WRITE;
2394                                         break;
2395                                 case 'a':
2396                                         type = WPT_ACCESS;
2397                                         break;
2398                                 default:
2399                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2400                                         return ERROR_OK;
2401                         }
2402                 }
2403                 if (argc >= 4)
2404                 {
2405                         data_value = strtoul(args[3], NULL, 0);
2406                 }
2407                 if (argc >= 5)
2408                 {
2409                         data_mask = strtoul(args[4], NULL, 0);
2410                 }
2411                 
2412                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2413                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2414                 {
2415                         LOG_ERROR("Failure setting breakpoints");
2416                 }
2417         }
2418         else
2419         {
2420                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2421         }
2422                 
2423         return ERROR_OK;
2424 }
2425
2426 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2427 {
2428         target_t *target = get_current_target(cmd_ctx);
2429
2430         if (argc > 0)
2431                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2432         
2433         return ERROR_OK;
2434 }
2435
2436 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2437 {
2438         int retval;
2439         target_t *target = get_current_target(cmd_ctx);
2440         u32 va;
2441         u32 pa;
2442
2443         if (argc != 1)
2444         {
2445                 return ERROR_COMMAND_SYNTAX_ERROR;
2446         }
2447         va = strtoul(args[0], NULL, 0);
2448
2449         retval = target->type->virt2phys(target, va, &pa);
2450         if (retval == ERROR_OK)
2451         {
2452                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2453         }
2454         else
2455         {
2456                 /* lower levels will have logged a detailed error which is 
2457                  * forwarded to telnet/GDB session.  
2458                  */
2459         }
2460         return retval;
2461 }
2462 static void writeLong(FILE *f, int l)
2463 {
2464         int i;
2465         for (i=0; i<4; i++)
2466         {
2467                 char c=(l>>(i*8))&0xff;
2468                 fwrite(&c, 1, 1, f); 
2469         }
2470         
2471 }
2472 static void writeString(FILE *f, char *s)
2473 {
2474         fwrite(s, 1, strlen(s), f); 
2475 }
2476
2477
2478
2479 // Dump a gmon.out histogram file.
2480 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2481 {
2482         int i;
2483         FILE *f=fopen(filename, "w");
2484         if (f==NULL)
2485                 return;
2486         fwrite("gmon", 1, 4, f);
2487         writeLong(f, 0x00000001); // Version
2488         writeLong(f, 0); // padding
2489         writeLong(f, 0); // padding
2490         writeLong(f, 0); // padding
2491                                 
2492         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2493
2494         // figure out bucket size
2495         u32 min=samples[0];
2496         u32 max=samples[0];
2497         for (i=0; i<sampleNum; i++)
2498         {
2499                 if (min>samples[i])
2500                 {
2501                         min=samples[i];
2502                 }
2503                 if (max<samples[i])
2504                 {
2505                         max=samples[i];
2506                 }
2507         }
2508
2509         int addressSpace=(max-min+1);
2510         
2511         static int const maxBuckets=256*1024; // maximum buckets.
2512         int length=addressSpace;
2513         if (length > maxBuckets)
2514         {
2515                 length=maxBuckets; 
2516         }
2517         int *buckets=malloc(sizeof(int)*length);
2518         if (buckets==NULL)
2519         {
2520                 fclose(f);
2521                 return;
2522         }
2523         memset(buckets, 0, sizeof(int)*length);
2524         for (i=0; i<sampleNum;i++)
2525         {
2526                 u32 address=samples[i];
2527                 long long a=address-min;
2528                 long long b=length-1;
2529                 long long c=addressSpace-1;
2530                 int index=(a*b)/c; // danger!!!! int32 overflows 
2531                 buckets[index]++;
2532         }
2533         
2534         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2535         writeLong(f, min);                                      // low_pc
2536         writeLong(f, max);              // high_pc
2537         writeLong(f, length);           // # of samples
2538         writeLong(f, 64000000);                         // 64MHz
2539         writeString(f, "seconds");
2540         for (i=0; i<(15-strlen("seconds")); i++)
2541         {
2542                 fwrite("", 1, 1, f);  // padding
2543         }
2544         writeString(f, "s");
2545                 
2546 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2547         
2548         char *data=malloc(2*length);
2549         if (data!=NULL)
2550         {
2551                 for (i=0; i<length;i++)
2552                 {
2553                         int val;
2554                         val=buckets[i];
2555                         if (val>65535)
2556                         {
2557                                 val=65535;
2558                         }
2559                         data[i*2]=val&0xff;
2560                         data[i*2+1]=(val>>8)&0xff;
2561                 }
2562                 free(buckets);
2563                 fwrite(data, 1, length*2, f);
2564                 free(data);
2565         } else
2566         {
2567                 free(buckets);
2568         }
2569
2570         fclose(f);
2571 }
2572
2573 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2574 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2575 {
2576         target_t *target = get_current_target(cmd_ctx);
2577         struct timeval timeout, now;
2578         
2579         gettimeofday(&timeout, NULL);
2580         if (argc!=2)
2581         {
2582                 return ERROR_COMMAND_SYNTAX_ERROR;
2583         }
2584         char *end;
2585         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2586         if (*end) 
2587         {
2588                 return ERROR_OK;
2589         }
2590         
2591         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2592
2593         static const int maxSample=10000;
2594         u32 *samples=malloc(sizeof(u32)*maxSample);
2595         if (samples==NULL)
2596                 return ERROR_OK;
2597         
2598         int numSamples=0;
2599         int retval=ERROR_OK;
2600         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2601         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2602         
2603         for (;;)
2604         {
2605                 target_poll(target);
2606                 if (target->state == TARGET_HALTED)
2607                 {
2608                         u32 t=*((u32 *)reg->value);
2609                         samples[numSamples++]=t;
2610                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2611                         target_poll(target);
2612                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2613                 } else if (target->state == TARGET_RUNNING)
2614                 {
2615                         // We want to quickly sample the PC.
2616                         target_halt(target);
2617                 } else
2618                 {
2619                         command_print(cmd_ctx, "Target not halted or running");
2620                         retval=ERROR_OK;
2621                         break;
2622                 }
2623                 if (retval!=ERROR_OK)
2624                 {
2625                         break;
2626                 }
2627                 
2628                 gettimeofday(&now, NULL);
2629                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2630                 {
2631                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2632                         target_poll(target);
2633                         if (target->state == TARGET_HALTED)
2634                         {
2635                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2636                         }
2637                         target_poll(target);
2638                         writeGmon(samples, numSamples, args[1]);
2639                         command_print(cmd_ctx, "Wrote %s", args[1]);
2640                         break;
2641                 }
2642         }
2643         free(samples);
2644         
2645         return ERROR_OK;
2646 }
2647
2648 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2649 {
2650         char *namebuf;
2651         Jim_Obj *nameObjPtr, *valObjPtr;
2652         int result;
2653
2654         namebuf = alloc_printf("%s(%d)", varname, idx);
2655         if (!namebuf)
2656                 return JIM_ERR;
2657         
2658         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2659         valObjPtr = Jim_NewIntObj(interp, val);
2660         if (!nameObjPtr || !valObjPtr)
2661         {
2662                 free(namebuf);
2663                 return JIM_ERR;
2664         }
2665
2666         Jim_IncrRefCount(nameObjPtr);
2667         Jim_IncrRefCount(valObjPtr);
2668         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2669         Jim_DecrRefCount(interp, nameObjPtr);
2670         Jim_DecrRefCount(interp, valObjPtr);
2671         free(namebuf);
2672         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2673         return result;
2674 }
2675
2676 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2677 {
2678         target_t *target;
2679         command_context_t *context;
2680         long l;
2681         u32 width;
2682         u32 len;
2683         u32 addr;
2684         u32 count;
2685         u32 v;
2686         const char *varname;
2687         u8 buffer[4096];
2688         int  i, n, e, retval;
2689
2690         /* argv[1] = name of array to receive the data
2691          * argv[2] = desired width
2692          * argv[3] = memory address 
2693          * argv[4] = count of times to read
2694          */
2695         if (argc != 5) {
2696                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2697                 return JIM_ERR;
2698         }
2699         varname = Jim_GetString(argv[1], &len);
2700         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2701
2702         e = Jim_GetLong(interp, argv[2], &l);
2703         width = l;
2704         if (e != JIM_OK) {
2705                 return e;
2706         }
2707         
2708         e = Jim_GetLong(interp, argv[3], &l);
2709         addr = l;
2710         if (e != JIM_OK) {
2711                 return e;
2712         }
2713         e = Jim_GetLong(interp, argv[4], &l);
2714         len = l;
2715         if (e != JIM_OK) {
2716                 return e;
2717         }
2718         switch (width) {
2719                 case 8:
2720                         width = 1;
2721                         break;
2722                 case 16:
2723                         width = 2;
2724                         break;
2725                 case 32:
2726                         width = 4;
2727                         break;
2728                 default:
2729                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2730                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2731                         return JIM_ERR;
2732         }
2733         if (len == 0) {
2734                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2735                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2736                 return JIM_ERR;
2737         }
2738         if ((addr + (len * width)) < addr) {
2739                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2740                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2741                 return JIM_ERR;
2742         }
2743         /* absurd transfer size? */
2744         if (len > 65536) {
2745                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2746                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2747                 return JIM_ERR;
2748         }               
2749                 
2750         if ((width == 1) ||
2751                 ((width == 2) && ((addr & 1) == 0)) ||
2752                 ((width == 4) && ((addr & 3) == 0))) {
2753                 /* all is well */
2754         } else {
2755                 char buf[100];
2756                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2757                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width); 
2758                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2759                 return JIM_ERR;
2760         }
2761
2762         context = Jim_GetAssocData(interp, "context");
2763         if (context == NULL)
2764         {
2765                 LOG_ERROR("mem2array: no command context");
2766                 return JIM_ERR;
2767         }
2768         target = get_current_target(context);
2769         if (target == NULL)
2770         {
2771                 LOG_ERROR("mem2array: no current target");
2772                 return JIM_ERR;
2773         }
2774         
2775         /* Transfer loop */
2776
2777         /* index counter */
2778         n = 0;
2779         /* assume ok */
2780         e = JIM_OK;
2781         while (len) {
2782                 /* Slurp... in buffer size chunks */
2783                 
2784                 count = len; /* in objects.. */
2785                 if (count > (sizeof(buffer)/width)) {
2786                         count = (sizeof(buffer)/width);
2787                 }
2788                 
2789                 retval = target->type->read_memory( target, addr, width, count, buffer );
2790                 if (retval != ERROR_OK) {
2791                         /* BOO !*/
2792                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2793                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2794                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2795                         e = JIM_ERR;
2796                         len = 0;
2797                 } else {
2798                         v = 0; /* shut up gcc */
2799                         for (i = 0 ;i < count ;i++, n++) {
2800                                 switch (width) {
2801                                         case 4:
2802                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2803                                                 break;
2804                                         case 2:
2805                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2806                                                 break;
2807                                         case 1:
2808                                                 v = buffer[i] & 0x0ff;
2809                                                 break;
2810                                 }
2811                                 new_int_array_element(interp, varname, n, v);
2812                         }
2813                         len -= count;
2814                 }
2815         }
2816         
2817         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2818
2819         return JIM_OK;
2820 }
2821
2822 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2823 {
2824         char *namebuf;
2825         Jim_Obj *nameObjPtr, *valObjPtr;
2826         int result;
2827         long l;
2828
2829         namebuf = alloc_printf("%s(%d)", varname, idx);
2830         if (!namebuf)
2831                 return JIM_ERR;
2832
2833         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2834         if (!nameObjPtr)
2835         {
2836                 free(namebuf);
2837                 return JIM_ERR;
2838         }
2839
2840         Jim_IncrRefCount(nameObjPtr);
2841         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2842         Jim_DecrRefCount(interp, nameObjPtr);
2843         free(namebuf);
2844         if (valObjPtr == NULL)
2845                 return JIM_ERR;
2846
2847         result = Jim_GetLong(interp, valObjPtr, &l);
2848         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2849         *val = l;
2850         return result;
2851 }
2852
2853 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2854 {
2855         target_t *target;
2856         command_context_t *context;
2857         long l;
2858         u32 width;
2859         u32 len;
2860         u32 addr;
2861         u32 count;
2862         u32 v;
2863         const char *varname;
2864         u8 buffer[4096];
2865         int i, n, e, retval;
2866
2867         /* argv[1] = name of array to get the data
2868          * argv[2] = desired width
2869          * argv[3] = memory address 
2870          * argv[4] = count to write
2871          */
2872         if (argc != 5) {
2873                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2874                 return JIM_ERR;
2875         }
2876         varname = Jim_GetString(argv[1], &len);
2877         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2878
2879         e = Jim_GetLong(interp, argv[2], &l);
2880         width = l;
2881         if (e != JIM_OK) {
2882                 return e;
2883         }
2884         
2885         e = Jim_GetLong(interp, argv[3], &l);
2886         addr = l;
2887         if (e != JIM_OK) {
2888                 return e;
2889         }
2890         e = Jim_GetLong(interp, argv[4], &l);
2891         len = l;
2892         if (e != JIM_OK) {
2893                 return e;
2894         }
2895         switch (width) {
2896                 case 8:
2897                         width = 1;
2898                         break;
2899                 case 16:
2900                         width = 2;
2901                         break;
2902                 case 32:
2903                         width = 4;
2904                         break;
2905                 default:
2906                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2907                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2908                         return JIM_ERR;
2909         }
2910         if (len == 0) {
2911                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2912                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
2913                 return JIM_ERR;
2914         }
2915         if ((addr + (len * width)) < addr) {
2916                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2917                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
2918                 return JIM_ERR;
2919         }
2920         /* absurd transfer size? */
2921         if (len > 65536) {
2922                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2923                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
2924                 return JIM_ERR;
2925         }               
2926                 
2927         if ((width == 1) ||
2928                 ((width == 2) && ((addr & 1) == 0)) ||
2929                 ((width == 4) && ((addr & 3) == 0))) {
2930                 /* all is well */
2931         } else {
2932                 char buf[100];
2933                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2934                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width); 
2935                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2936                 return JIM_ERR;
2937         }
2938
2939         context = Jim_GetAssocData(interp, "context");
2940         if (context == NULL)
2941         {
2942                 LOG_ERROR("array2mem: no command context");
2943                 return JIM_ERR;
2944         }
2945         target = get_current_target(context);
2946         if (target == NULL)
2947         {
2948                 LOG_ERROR("array2mem: no current target");
2949                 return JIM_ERR;
2950         }
2951         
2952         /* Transfer loop */
2953
2954         /* index counter */
2955         n = 0;
2956         /* assume ok */
2957         e = JIM_OK;
2958         while (len) {
2959                 /* Slurp... in buffer size chunks */
2960                 
2961                 count = len; /* in objects.. */
2962                 if (count > (sizeof(buffer)/width)) {
2963                         count = (sizeof(buffer)/width);
2964                 }
2965
2966                 v = 0; /* shut up gcc */
2967                 for (i = 0 ;i < count ;i++, n++) {
2968                         get_int_array_element(interp, varname, n, &v);
2969                         switch (width) {
2970                         case 4:
2971                                 target_buffer_set_u32(target, &buffer[i*width], v);
2972                                 break;
2973                         case 2:
2974                                 target_buffer_set_u16(target, &buffer[i*width], v);
2975                                 break;
2976                         case 1:
2977                                 buffer[i] = v & 0x0ff;
2978                                 break;
2979                         }
2980                 }
2981                 len -= count;
2982
2983                 retval = target->type->write_memory(target, addr, width, count, buffer);
2984                 if (retval != ERROR_OK) {
2985                         /* BOO !*/
2986                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2987                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2988                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2989                         e = JIM_ERR;
2990                         len = 0;
2991                 }
2992         }
2993         
2994         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2995
2996         return JIM_OK;
2997 }