]> git.sur5r.net Git - openocd/blob - src/target/target.c
C99 printf() -Werror fixes
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74
75 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
76 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77
78 /* targets */
79 extern target_type_t arm7tdmi_target;
80 extern target_type_t arm720t_target;
81 extern target_type_t arm9tdmi_target;
82 extern target_type_t arm920t_target;
83 extern target_type_t arm966e_target;
84 extern target_type_t arm926ejs_target;
85 extern target_type_t fa526_target;
86 extern target_type_t feroceon_target;
87 extern target_type_t xscale_target;
88 extern target_type_t cortexm3_target;
89 extern target_type_t cortexa8_target;
90 extern target_type_t arm11_target;
91 extern target_type_t mips_m4k_target;
92 extern target_type_t avr_target;
93
94 target_type_t *target_types[] =
95 {
96         &arm7tdmi_target,
97         &arm9tdmi_target,
98         &arm920t_target,
99         &arm720t_target,
100         &arm966e_target,
101         &arm926ejs_target,
102         &fa526_target,
103         &feroceon_target,
104         &xscale_target,
105         &cortexm3_target,
106         &cortexa8_target,
107         &arm11_target,
108         &mips_m4k_target,
109         &avr_target,
110         NULL,
111 };
112
113 target_t *all_targets = NULL;
114 target_event_callback_t *target_event_callbacks = NULL;
115 target_timer_callback_t *target_timer_callbacks = NULL;
116
117 const Jim_Nvp nvp_assert[] = {
118         { .name = "assert", NVP_ASSERT },
119         { .name = "deassert", NVP_DEASSERT },
120         { .name = "T", NVP_ASSERT },
121         { .name = "F", NVP_DEASSERT },
122         { .name = "t", NVP_ASSERT },
123         { .name = "f", NVP_DEASSERT },
124         { .name = NULL, .value = -1 }
125 };
126
127 const Jim_Nvp nvp_error_target[] = {
128         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
129         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
130         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
131         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
132         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
133         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
134         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
135         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
136         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
137         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
138         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
139         { .value = -1, .name = NULL }
140 };
141
142 const char *target_strerror_safe( int err )
143 {
144         const Jim_Nvp *n;
145
146         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
147         if( n->name == NULL ){
148                 return "unknown";
149         } else {
150                 return n->name;
151         }
152 }
153
154 static const Jim_Nvp nvp_target_event[] = {
155         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
156         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
157
158         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
159         { .value = TARGET_EVENT_HALTED, .name = "halted" },
160         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
161         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
162         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
163
164         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
165         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
166
167         /* historical name */
168
169         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
170
171         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
172         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
173         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
174         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
175         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
176         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
177         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
178         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
179         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
180         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
181
182         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
183         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
184
185         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
186         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
187
188         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
189         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
190
191         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
192         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
193
194         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
195         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
196
197         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
198         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
199         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
200
201         { .name = NULL, .value = -1 }
202 };
203
204 const Jim_Nvp nvp_target_state[] = {
205         { .name = "unknown", .value = TARGET_UNKNOWN },
206         { .name = "running", .value = TARGET_RUNNING },
207         { .name = "halted",  .value = TARGET_HALTED },
208         { .name = "reset",   .value = TARGET_RESET },
209         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
210         { .name = NULL, .value = -1 },
211 };
212
213 const Jim_Nvp nvp_target_debug_reason [] = {
214         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
215         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
216         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
217         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
218         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
219         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
220         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
221         { .name = NULL, .value = -1 },
222 };
223
224 const Jim_Nvp nvp_target_endian[] = {
225         { .name = "big",    .value = TARGET_BIG_ENDIAN },
226         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
227         { .name = "be",     .value = TARGET_BIG_ENDIAN },
228         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
229         { .name = NULL,     .value = -1 },
230 };
231
232 const Jim_Nvp nvp_reset_modes[] = {
233         { .name = "unknown", .value = RESET_UNKNOWN },
234         { .name = "run"    , .value = RESET_RUN },
235         { .name = "halt"   , .value = RESET_HALT },
236         { .name = "init"   , .value = RESET_INIT },
237         { .name = NULL     , .value = -1 },
238 };
239
240 static int max_target_number(void)
241 {
242         target_t *t;
243         int x;
244
245         x = -1;
246         t = all_targets;
247         while( t ){
248                 if( x < t->target_number ){
249                         x = (t->target_number)+1;
250                 }
251                 t = t->next;
252         }
253         return x;
254 }
255
256 /* determine the number of the new target */
257 static int new_target_number(void)
258 {
259         target_t *t;
260         int x;
261
262         /* number is 0 based */
263         x = -1;
264         t = all_targets;
265         while(t){
266                 if( x < t->target_number ){
267                         x = t->target_number;
268                 }
269                 t = t->next;
270         }
271         return x+1;
272 }
273
274 static int target_continuous_poll = 1;
275
276 /* read a uint32_t from a buffer in target memory endianness */
277 uint32_t target_buffer_get_u32(target_t *target, const uint8_t *buffer)
278 {
279         if (target->endianness == TARGET_LITTLE_ENDIAN)
280                 return le_to_h_u32(buffer);
281         else
282                 return be_to_h_u32(buffer);
283 }
284
285 /* read a uint16_t from a buffer in target memory endianness */
286 uint16_t target_buffer_get_u16(target_t *target, const uint8_t *buffer)
287 {
288         if (target->endianness == TARGET_LITTLE_ENDIAN)
289                 return le_to_h_u16(buffer);
290         else
291                 return be_to_h_u16(buffer);
292 }
293
294 /* read a uint8_t from a buffer in target memory endianness */
295 uint8_t target_buffer_get_u8(target_t *target, const uint8_t *buffer)
296 {
297         return *buffer & 0x0ff;
298 }
299
300 /* write a uint32_t to a buffer in target memory endianness */
301 void target_buffer_set_u32(target_t *target, uint8_t *buffer, uint32_t value)
302 {
303         if (target->endianness == TARGET_LITTLE_ENDIAN)
304                 h_u32_to_le(buffer, value);
305         else
306                 h_u32_to_be(buffer, value);
307 }
308
309 /* write a uint16_t to a buffer in target memory endianness */
310 void target_buffer_set_u16(target_t *target, uint8_t *buffer, uint16_t value)
311 {
312         if (target->endianness == TARGET_LITTLE_ENDIAN)
313                 h_u16_to_le(buffer, value);
314         else
315                 h_u16_to_be(buffer, value);
316 }
317
318 /* write a uint8_t to a buffer in target memory endianness */
319 void target_buffer_set_u8(target_t *target, uint8_t *buffer, uint8_t value)
320 {
321         *buffer = value;
322 }
323
324 /* return a pointer to a configured target; id is name or number */
325 target_t *get_target(const char *id)
326 {
327         target_t *target;
328
329         /* try as tcltarget name */
330         for (target = all_targets; target; target = target->next) {
331                 if (target->cmd_name == NULL)
332                         continue;
333                 if (strcmp(id, target->cmd_name) == 0)
334                         return target;
335         }
336
337         /* no match, try as number */
338         unsigned num;
339         if (parse_uint(id, &num) != ERROR_OK)
340                 return NULL;
341
342         for (target = all_targets; target; target = target->next) {
343                 if (target->target_number == (int)num)
344                         return target;
345         }
346
347         return NULL;
348 }
349
350 /* returns a pointer to the n-th configured target */
351 static target_t *get_target_by_num(int num)
352 {
353         target_t *target = all_targets;
354
355         while (target){
356                 if( target->target_number == num ){
357                         return target;
358                 }
359                 target = target->next;
360         }
361
362         return NULL;
363 }
364
365 int get_num_by_target(target_t *query_target)
366 {
367         return query_target->target_number;
368 }
369
370 target_t* get_current_target(command_context_t *cmd_ctx)
371 {
372         target_t *target = get_target_by_num(cmd_ctx->current_target);
373
374         if (target == NULL)
375         {
376                 LOG_ERROR("BUG: current_target out of bounds");
377                 exit(-1);
378         }
379
380         return target;
381 }
382
383 int target_poll(struct target_s *target)
384 {
385         /* We can't poll until after examine */
386         if (!target_was_examined(target))
387         {
388                 /* Fail silently lest we pollute the log */
389                 return ERROR_FAIL;
390         }
391         return target->type->poll(target);
392 }
393
394 int target_halt(struct target_s *target)
395 {
396         /* We can't poll until after examine */
397         if (!target_was_examined(target))
398         {
399                 LOG_ERROR("Target not examined yet");
400                 return ERROR_FAIL;
401         }
402         return target->type->halt(target);
403 }
404
405 int target_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
406 {
407         int retval;
408
409         /* We can't poll until after examine */
410         if (!target_was_examined(target))
411         {
412                 LOG_ERROR("Target not examined yet");
413                 return ERROR_FAIL;
414         }
415
416         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
417          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
418          * the application.
419          */
420         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
421                 return retval;
422
423         return retval;
424 }
425
426 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
427 {
428         char buf[100];
429         int retval;
430         Jim_Nvp *n;
431         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
432         if( n->name == NULL ){
433                 LOG_ERROR("invalid reset mode");
434                 return ERROR_FAIL;
435         }
436
437         /* disable polling during reset to make reset event scripts
438          * more predictable, i.e. dr/irscan & pathmove in events will
439          * not have JTAG operations injected into the middle of a sequence.
440          */
441         int save_poll = target_continuous_poll;
442         target_continuous_poll = 0;
443
444         sprintf( buf, "ocd_process_reset %s", n->name );
445         retval = Jim_Eval( interp, buf );
446
447         target_continuous_poll = save_poll;
448
449         if(retval != JIM_OK) {
450                 Jim_PrintErrorMessage(interp);
451                 return ERROR_FAIL;
452         }
453
454         /* We want any events to be processed before the prompt */
455         retval = target_call_timer_callbacks_now();
456
457         return retval;
458 }
459
460 static int default_virt2phys(struct target_s *target, uint32_t virtual, uint32_t *physical)
461 {
462         *physical = virtual;
463         return ERROR_OK;
464 }
465
466 static int default_mmu(struct target_s *target, int *enabled)
467 {
468         *enabled = 0;
469         return ERROR_OK;
470 }
471
472 static int default_examine(struct target_s *target)
473 {
474         target_set_examined(target);
475         return ERROR_OK;
476 }
477
478 int target_examine_one(struct target_s *target)
479 {
480         return target->type->examine(target);
481 }
482
483 static int jtag_enable_callback(enum jtag_event event, void *priv)
484 {
485         target_t *target = priv;
486
487         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
488                 return ERROR_OK;
489
490         jtag_unregister_event_callback(jtag_enable_callback, target);
491         return target_examine_one(target);
492 }
493
494
495 /* Targets that correctly implement init+examine, i.e.
496  * no communication with target during init:
497  *
498  * XScale
499  */
500 int target_examine(void)
501 {
502         int retval = ERROR_OK;
503         target_t *target;
504
505         for (target = all_targets; target; target = target->next)
506         {
507                 /* defer examination, but don't skip it */
508                 if (!target->tap->enabled) {
509                         jtag_register_event_callback(jtag_enable_callback,
510                                         target);
511                         continue;
512                 }
513                 if ((retval = target_examine_one(target)) != ERROR_OK)
514                         return retval;
515         }
516         return retval;
517 }
518 const char *target_get_name(struct target_s *target)
519 {
520         return target->type->name;
521 }
522
523 static int target_write_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
524 {
525         if (!target_was_examined(target))
526         {
527                 LOG_ERROR("Target not examined yet");
528                 return ERROR_FAIL;
529         }
530         return target->type->write_memory_imp(target, address, size, count, buffer);
531 }
532
533 static int target_read_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
534 {
535         if (!target_was_examined(target))
536         {
537                 LOG_ERROR("Target not examined yet");
538                 return ERROR_FAIL;
539         }
540         return target->type->read_memory_imp(target, address, size, count, buffer);
541 }
542
543 static int target_soft_reset_halt_imp(struct target_s *target)
544 {
545         if (!target_was_examined(target))
546         {
547                 LOG_ERROR("Target not examined yet");
548                 return ERROR_FAIL;
549         }
550         return target->type->soft_reset_halt_imp(target);
551 }
552
553 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
554 {
555         if (!target_was_examined(target))
556         {
557                 LOG_ERROR("Target not examined yet");
558                 return ERROR_FAIL;
559         }
560         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
561 }
562
563 int target_read_memory(struct target_s *target,
564                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
565 {
566         return target->type->read_memory(target, address, size, count, buffer);
567 }
568
569 int target_write_memory(struct target_s *target,
570                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
571 {
572         return target->type->write_memory(target, address, size, count, buffer);
573 }
574 int target_bulk_write_memory(struct target_s *target,
575                 uint32_t address, uint32_t count, uint8_t *buffer)
576 {
577         return target->type->bulk_write_memory(target, address, count, buffer);
578 }
579
580 int target_add_breakpoint(struct target_s *target,
581                 struct breakpoint_s *breakpoint)
582 {
583         return target->type->add_breakpoint(target, breakpoint);
584 }
585 int target_remove_breakpoint(struct target_s *target,
586                 struct breakpoint_s *breakpoint)
587 {
588         return target->type->remove_breakpoint(target, breakpoint);
589 }
590
591 int target_add_watchpoint(struct target_s *target,
592                 struct watchpoint_s *watchpoint)
593 {
594         return target->type->add_watchpoint(target, watchpoint);
595 }
596 int target_remove_watchpoint(struct target_s *target,
597                 struct watchpoint_s *watchpoint)
598 {
599         return target->type->remove_watchpoint(target, watchpoint);
600 }
601
602 int target_get_gdb_reg_list(struct target_s *target,
603                 struct reg_s **reg_list[], int *reg_list_size)
604 {
605         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
606 }
607 int target_step(struct target_s *target,
608                 int current, uint32_t address, int handle_breakpoints)
609 {
610         return target->type->step(target, current, address, handle_breakpoints);
611 }
612
613
614 int target_run_algorithm(struct target_s *target,
615                 int num_mem_params, mem_param_t *mem_params,
616                 int num_reg_params, reg_param_t *reg_param,
617                 uint32_t entry_point, uint32_t exit_point,
618                 int timeout_ms, void *arch_info)
619 {
620         return target->type->run_algorithm(target,
621                         num_mem_params, mem_params, num_reg_params, reg_param,
622                         entry_point, exit_point, timeout_ms, arch_info);
623 }
624
625 /// @returns @c true if the target has been examined.
626 bool target_was_examined(struct target_s *target)
627 {
628         return target->type->examined;
629 }
630 /// Sets the @c examined flag for the given target.
631 void target_set_examined(struct target_s *target)
632 {
633         target->type->examined = true;
634 }
635 // Reset the @c examined flag for the given target.
636 void target_reset_examined(struct target_s *target)
637 {
638         target->type->examined = false;
639 }
640
641
642 int target_init(struct command_context_s *cmd_ctx)
643 {
644         target_t *target = all_targets;
645         int retval;
646
647         while (target)
648         {
649                 target_reset_examined(target);
650                 if (target->type->examine == NULL)
651                 {
652                         target->type->examine = default_examine;
653                 }
654
655                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
656                 {
657                         LOG_ERROR("target '%s' init failed", target_get_name(target));
658                         return retval;
659                 }
660
661                 /* Set up default functions if none are provided by target */
662                 if (target->type->virt2phys == NULL)
663                 {
664                         target->type->virt2phys = default_virt2phys;
665                 }
666                 target->type->virt2phys = default_virt2phys;
667                 /* a non-invasive way(in terms of patches) to add some code that
668                  * runs before the type->write/read_memory implementation
669                  */
670                 target->type->write_memory_imp = target->type->write_memory;
671                 target->type->write_memory = target_write_memory_imp;
672                 target->type->read_memory_imp = target->type->read_memory;
673                 target->type->read_memory = target_read_memory_imp;
674                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
675                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
676                 target->type->run_algorithm_imp = target->type->run_algorithm;
677                 target->type->run_algorithm = target_run_algorithm_imp;
678
679                 if (target->type->mmu == NULL)
680                 {
681                         target->type->mmu = default_mmu;
682                 }
683                 target = target->next;
684         }
685
686         if (all_targets)
687         {
688                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
689                         return retval;
690                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
691                         return retval;
692         }
693
694         return ERROR_OK;
695 }
696
697 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
698 {
699         target_event_callback_t **callbacks_p = &target_event_callbacks;
700
701         if (callback == NULL)
702         {
703                 return ERROR_INVALID_ARGUMENTS;
704         }
705
706         if (*callbacks_p)
707         {
708                 while ((*callbacks_p)->next)
709                         callbacks_p = &((*callbacks_p)->next);
710                 callbacks_p = &((*callbacks_p)->next);
711         }
712
713         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
714         (*callbacks_p)->callback = callback;
715         (*callbacks_p)->priv = priv;
716         (*callbacks_p)->next = NULL;
717
718         return ERROR_OK;
719 }
720
721 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
722 {
723         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
724         struct timeval now;
725
726         if (callback == NULL)
727         {
728                 return ERROR_INVALID_ARGUMENTS;
729         }
730
731         if (*callbacks_p)
732         {
733                 while ((*callbacks_p)->next)
734                         callbacks_p = &((*callbacks_p)->next);
735                 callbacks_p = &((*callbacks_p)->next);
736         }
737
738         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
739         (*callbacks_p)->callback = callback;
740         (*callbacks_p)->periodic = periodic;
741         (*callbacks_p)->time_ms = time_ms;
742
743         gettimeofday(&now, NULL);
744         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
745         time_ms -= (time_ms % 1000);
746         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
747         if ((*callbacks_p)->when.tv_usec > 1000000)
748         {
749                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
750                 (*callbacks_p)->when.tv_sec += 1;
751         }
752
753         (*callbacks_p)->priv = priv;
754         (*callbacks_p)->next = NULL;
755
756         return ERROR_OK;
757 }
758
759 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
760 {
761         target_event_callback_t **p = &target_event_callbacks;
762         target_event_callback_t *c = target_event_callbacks;
763
764         if (callback == NULL)
765         {
766                 return ERROR_INVALID_ARGUMENTS;
767         }
768
769         while (c)
770         {
771                 target_event_callback_t *next = c->next;
772                 if ((c->callback == callback) && (c->priv == priv))
773                 {
774                         *p = next;
775                         free(c);
776                         return ERROR_OK;
777                 }
778                 else
779                         p = &(c->next);
780                 c = next;
781         }
782
783         return ERROR_OK;
784 }
785
786 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
787 {
788         target_timer_callback_t **p = &target_timer_callbacks;
789         target_timer_callback_t *c = target_timer_callbacks;
790
791         if (callback == NULL)
792         {
793                 return ERROR_INVALID_ARGUMENTS;
794         }
795
796         while (c)
797         {
798                 target_timer_callback_t *next = c->next;
799                 if ((c->callback == callback) && (c->priv == priv))
800                 {
801                         *p = next;
802                         free(c);
803                         return ERROR_OK;
804                 }
805                 else
806                         p = &(c->next);
807                 c = next;
808         }
809
810         return ERROR_OK;
811 }
812
813 int target_call_event_callbacks(target_t *target, enum target_event event)
814 {
815         target_event_callback_t *callback = target_event_callbacks;
816         target_event_callback_t *next_callback;
817
818         if (event == TARGET_EVENT_HALTED)
819         {
820                 /* execute early halted first */
821                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
822         }
823
824         LOG_DEBUG("target event %i (%s)",
825                           event,
826                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
827
828         target_handle_event( target, event );
829
830         while (callback)
831         {
832                 next_callback = callback->next;
833                 callback->callback(target, event, callback->priv);
834                 callback = next_callback;
835         }
836
837         return ERROR_OK;
838 }
839
840 static int target_timer_callback_periodic_restart(
841                 target_timer_callback_t *cb, struct timeval *now)
842 {
843         int time_ms = cb->time_ms;
844         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
845         time_ms -= (time_ms % 1000);
846         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
847         if (cb->when.tv_usec > 1000000)
848         {
849                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
850                 cb->when.tv_sec += 1;
851         }
852         return ERROR_OK;
853 }
854
855 static int target_call_timer_callback(target_timer_callback_t *cb,
856                 struct timeval *now)
857 {
858         cb->callback(cb->priv);
859
860         if (cb->periodic)
861                 return target_timer_callback_periodic_restart(cb, now);
862
863         return target_unregister_timer_callback(cb->callback, cb->priv);
864 }
865
866 static int target_call_timer_callbacks_check_time(int checktime)
867 {
868         keep_alive();
869
870         struct timeval now;
871         gettimeofday(&now, NULL);
872
873         target_timer_callback_t *callback = target_timer_callbacks;
874         while (callback)
875         {
876                 // cleaning up may unregister and free this callback
877                 target_timer_callback_t *next_callback = callback->next;
878
879                 bool call_it = callback->callback &&
880                         ((!checktime && callback->periodic) ||
881                           now.tv_sec > callback->when.tv_sec ||
882                          (now.tv_sec == callback->when.tv_sec &&
883                           now.tv_usec >= callback->when.tv_usec));
884
885                 if (call_it)
886                 {
887                         int retval = target_call_timer_callback(callback, &now);
888                         if (retval != ERROR_OK)
889                                 return retval;
890                 }
891
892                 callback = next_callback;
893         }
894
895         return ERROR_OK;
896 }
897
898 int target_call_timer_callbacks(void)
899 {
900         return target_call_timer_callbacks_check_time(1);
901 }
902
903 /* invoke periodic callbacks immediately */
904 int target_call_timer_callbacks_now(void)
905 {
906         return target_call_timer_callbacks_check_time(0);
907 }
908
909 int target_alloc_working_area(struct target_s *target, uint32_t size, working_area_t **area)
910 {
911         working_area_t *c = target->working_areas;
912         working_area_t *new_wa = NULL;
913
914         /* Reevaluate working area address based on MMU state*/
915         if (target->working_areas == NULL)
916         {
917                 int retval;
918                 int enabled;
919                 retval = target->type->mmu(target, &enabled);
920                 if (retval != ERROR_OK)
921                 {
922                         return retval;
923                 }
924                 if (enabled)
925                 {
926                         target->working_area = target->working_area_virt;
927                 }
928                 else
929                 {
930                         target->working_area = target->working_area_phys;
931                 }
932         }
933
934         /* only allocate multiples of 4 byte */
935         if (size % 4)
936         {
937                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
938                 size = CEIL(size, 4);
939         }
940
941         /* see if there's already a matching working area */
942         while (c)
943         {
944                 if ((c->free) && (c->size == size))
945                 {
946                         new_wa = c;
947                         break;
948                 }
949                 c = c->next;
950         }
951
952         /* if not, allocate a new one */
953         if (!new_wa)
954         {
955                 working_area_t **p = &target->working_areas;
956                 uint32_t first_free = target->working_area;
957                 uint32_t free_size = target->working_area_size;
958
959                 LOG_DEBUG("allocating new working area");
960
961                 c = target->working_areas;
962                 while (c)
963                 {
964                         first_free += c->size;
965                         free_size -= c->size;
966                         p = &c->next;
967                         c = c->next;
968                 }
969
970                 if (free_size < size)
971                 {
972                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
973                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
974                 }
975
976                 new_wa = malloc(sizeof(working_area_t));
977                 new_wa->next = NULL;
978                 new_wa->size = size;
979                 new_wa->address = first_free;
980
981                 if (target->backup_working_area)
982                 {
983                         int retval;
984                         new_wa->backup = malloc(new_wa->size);
985                         if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
986                         {
987                                 free(new_wa->backup);
988                                 free(new_wa);
989                                 return retval;
990                         }
991                 }
992                 else
993                 {
994                         new_wa->backup = NULL;
995                 }
996
997                 /* put new entry in list */
998                 *p = new_wa;
999         }
1000
1001         /* mark as used, and return the new (reused) area */
1002         new_wa->free = 0;
1003         *area = new_wa;
1004
1005         /* user pointer */
1006         new_wa->user = area;
1007
1008         return ERROR_OK;
1009 }
1010
1011 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
1012 {
1013         if (area->free)
1014                 return ERROR_OK;
1015
1016         if (restore&&target->backup_working_area)
1017         {
1018                 int retval;
1019                 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1020                         return retval;
1021         }
1022
1023         area->free = 1;
1024
1025         /* mark user pointer invalid */
1026         *area->user = NULL;
1027         area->user = NULL;
1028
1029         return ERROR_OK;
1030 }
1031
1032 int target_free_working_area(struct target_s *target, working_area_t *area)
1033 {
1034         return target_free_working_area_restore(target, area, 1);
1035 }
1036
1037 /* free resources and restore memory, if restoring memory fails,
1038  * free up resources anyway
1039  */
1040 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1041 {
1042         working_area_t *c = target->working_areas;
1043
1044         while (c)
1045         {
1046                 working_area_t *next = c->next;
1047                 target_free_working_area_restore(target, c, restore);
1048
1049                 if (c->backup)
1050                         free(c->backup);
1051
1052                 free(c);
1053
1054                 c = next;
1055         }
1056
1057         target->working_areas = NULL;
1058 }
1059
1060 void target_free_all_working_areas(struct target_s *target)
1061 {
1062         target_free_all_working_areas_restore(target, 1);
1063 }
1064
1065 int target_register_commands(struct command_context_s *cmd_ctx)
1066 {
1067
1068         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1069
1070
1071
1072
1073         register_jim(cmd_ctx, "target", jim_target, "configure target" );
1074
1075         return ERROR_OK;
1076 }
1077
1078 int target_arch_state(struct target_s *target)
1079 {
1080         int retval;
1081         if (target==NULL)
1082         {
1083                 LOG_USER("No target has been configured");
1084                 return ERROR_OK;
1085         }
1086
1087         LOG_USER("target state: %s",
1088                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1089
1090         if (target->state!=TARGET_HALTED)
1091                 return ERROR_OK;
1092
1093         retval=target->type->arch_state(target);
1094         return retval;
1095 }
1096
1097 /* Single aligned words are guaranteed to use 16 or 32 bit access
1098  * mode respectively, otherwise data is handled as quickly as
1099  * possible
1100  */
1101 int target_write_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
1102 {
1103         int retval;
1104         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1105
1106         if (!target_was_examined(target))
1107         {
1108                 LOG_ERROR("Target not examined yet");
1109                 return ERROR_FAIL;
1110         }
1111
1112         if (size == 0) {
1113                 return ERROR_OK;
1114         }
1115
1116         if ((address + size - 1) < address)
1117         {
1118                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1119                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1120                 return ERROR_FAIL;
1121         }
1122
1123         if (((address % 2) == 0) && (size == 2))
1124         {
1125                 return target_write_memory(target, address, 2, 1, buffer);
1126         }
1127
1128         /* handle unaligned head bytes */
1129         if (address % 4)
1130         {
1131                 uint32_t unaligned = 4 - (address % 4);
1132
1133                 if (unaligned > size)
1134                         unaligned = size;
1135
1136                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1137                         return retval;
1138
1139                 buffer += unaligned;
1140                 address += unaligned;
1141                 size -= unaligned;
1142         }
1143
1144         /* handle aligned words */
1145         if (size >= 4)
1146         {
1147                 int aligned = size - (size % 4);
1148
1149                 /* use bulk writes above a certain limit. This may have to be changed */
1150                 if (aligned > 128)
1151                 {
1152                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1153                                 return retval;
1154                 }
1155                 else
1156                 {
1157                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1158                                 return retval;
1159                 }
1160
1161                 buffer += aligned;
1162                 address += aligned;
1163                 size -= aligned;
1164         }
1165
1166         /* handle tail writes of less than 4 bytes */
1167         if (size > 0)
1168         {
1169                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1170                         return retval;
1171         }
1172
1173         return ERROR_OK;
1174 }
1175
1176 /* Single aligned words are guaranteed to use 16 or 32 bit access
1177  * mode respectively, otherwise data is handled as quickly as
1178  * possible
1179  */
1180 int target_read_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
1181 {
1182         int retval;
1183         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1184
1185         if (!target_was_examined(target))
1186         {
1187                 LOG_ERROR("Target not examined yet");
1188                 return ERROR_FAIL;
1189         }
1190
1191         if (size == 0) {
1192                 return ERROR_OK;
1193         }
1194
1195         if ((address + size - 1) < address)
1196         {
1197                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1198                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1199                 return ERROR_FAIL;
1200         }
1201
1202         if (((address % 2) == 0) && (size == 2))
1203         {
1204                 return target_read_memory(target, address, 2, 1, buffer);
1205         }
1206
1207         /* handle unaligned head bytes */
1208         if (address % 4)
1209         {
1210                 uint32_t unaligned = 4 - (address % 4);
1211
1212                 if (unaligned > size)
1213                         unaligned = size;
1214
1215                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1216                         return retval;
1217
1218                 buffer += unaligned;
1219                 address += unaligned;
1220                 size -= unaligned;
1221         }
1222
1223         /* handle aligned words */
1224         if (size >= 4)
1225         {
1226                 int aligned = size - (size % 4);
1227
1228                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1229                         return retval;
1230
1231                 buffer += aligned;
1232                 address += aligned;
1233                 size -= aligned;
1234         }
1235
1236         /* handle tail writes of less than 4 bytes */
1237         if (size > 0)
1238         {
1239                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1240                         return retval;
1241         }
1242
1243         return ERROR_OK;
1244 }
1245
1246 int target_checksum_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* crc)
1247 {
1248         uint8_t *buffer;
1249         int retval;
1250         uint32_t i;
1251         uint32_t checksum = 0;
1252         if (!target_was_examined(target))
1253         {
1254                 LOG_ERROR("Target not examined yet");
1255                 return ERROR_FAIL;
1256         }
1257
1258         if ((retval = target->type->checksum_memory(target, address,
1259                 size, &checksum)) != ERROR_OK)
1260         {
1261                 buffer = malloc(size);
1262                 if (buffer == NULL)
1263                 {
1264                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1265                         return ERROR_INVALID_ARGUMENTS;
1266                 }
1267                 retval = target_read_buffer(target, address, size, buffer);
1268                 if (retval != ERROR_OK)
1269                 {
1270                         free(buffer);
1271                         return retval;
1272                 }
1273
1274                 /* convert to target endianess */
1275                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1276                 {
1277                         uint32_t target_data;
1278                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1279                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1280                 }
1281
1282                 retval = image_calculate_checksum( buffer, size, &checksum );
1283                 free(buffer);
1284         }
1285
1286         *crc = checksum;
1287
1288         return retval;
1289 }
1290
1291 int target_blank_check_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* blank)
1292 {
1293         int retval;
1294         if (!target_was_examined(target))
1295         {
1296                 LOG_ERROR("Target not examined yet");
1297                 return ERROR_FAIL;
1298         }
1299
1300         if (target->type->blank_check_memory == 0)
1301                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1302
1303         retval = target->type->blank_check_memory(target, address, size, blank);
1304
1305         return retval;
1306 }
1307
1308 int target_read_u32(struct target_s *target, uint32_t address, uint32_t *value)
1309 {
1310         uint8_t value_buf[4];
1311         if (!target_was_examined(target))
1312         {
1313                 LOG_ERROR("Target not examined yet");
1314                 return ERROR_FAIL;
1315         }
1316
1317         int retval = target_read_memory(target, address, 4, 1, value_buf);
1318
1319         if (retval == ERROR_OK)
1320         {
1321                 *value = target_buffer_get_u32(target, value_buf);
1322                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1323         }
1324         else
1325         {
1326                 *value = 0x0;
1327                 LOG_DEBUG("address: 0x%8.8x failed", address);
1328         }
1329
1330         return retval;
1331 }
1332
1333 int target_read_u16(struct target_s *target, uint32_t address, uint16_t *value)
1334 {
1335         uint8_t value_buf[2];
1336         if (!target_was_examined(target))
1337         {
1338                 LOG_ERROR("Target not examined yet");
1339                 return ERROR_FAIL;
1340         }
1341
1342         int retval = target_read_memory(target, address, 2, 1, value_buf);
1343
1344         if (retval == ERROR_OK)
1345         {
1346                 *value = target_buffer_get_u16(target, value_buf);
1347                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1348         }
1349         else
1350         {
1351                 *value = 0x0;
1352                 LOG_DEBUG("address: 0x%8.8x failed", address);
1353         }
1354
1355         return retval;
1356 }
1357
1358 int target_read_u8(struct target_s *target, uint32_t address, uint8_t *value)
1359 {
1360         int retval = target_read_memory(target, address, 1, 1, value);
1361         if (!target_was_examined(target))
1362         {
1363                 LOG_ERROR("Target not examined yet");
1364                 return ERROR_FAIL;
1365         }
1366
1367         if (retval == ERROR_OK)
1368         {
1369                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1370         }
1371         else
1372         {
1373                 *value = 0x0;
1374                 LOG_DEBUG("address: 0x%8.8x failed", address);
1375         }
1376
1377         return retval;
1378 }
1379
1380 int target_write_u32(struct target_s *target, uint32_t address, uint32_t value)
1381 {
1382         int retval;
1383         uint8_t value_buf[4];
1384         if (!target_was_examined(target))
1385         {
1386                 LOG_ERROR("Target not examined yet");
1387                 return ERROR_FAIL;
1388         }
1389
1390         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1391
1392         target_buffer_set_u32(target, value_buf, value);
1393         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1394         {
1395                 LOG_DEBUG("failed: %i", retval);
1396         }
1397
1398         return retval;
1399 }
1400
1401 int target_write_u16(struct target_s *target, uint32_t address, uint16_t value)
1402 {
1403         int retval;
1404         uint8_t value_buf[2];
1405         if (!target_was_examined(target))
1406         {
1407                 LOG_ERROR("Target not examined yet");
1408                 return ERROR_FAIL;
1409         }
1410
1411         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1412
1413         target_buffer_set_u16(target, value_buf, value);
1414         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1415         {
1416                 LOG_DEBUG("failed: %i", retval);
1417         }
1418
1419         return retval;
1420 }
1421
1422 int target_write_u8(struct target_s *target, uint32_t address, uint8_t value)
1423 {
1424         int retval;
1425         if (!target_was_examined(target))
1426         {
1427                 LOG_ERROR("Target not examined yet");
1428                 return ERROR_FAIL;
1429         }
1430
1431         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1432
1433         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1434         {
1435                 LOG_DEBUG("failed: %i", retval);
1436         }
1437
1438         return retval;
1439 }
1440
1441 int target_register_user_commands(struct command_context_s *cmd_ctx)
1442 {
1443         int retval = ERROR_OK;
1444
1445
1446         /* script procedures */
1447         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1448         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1449         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1450
1451         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1452                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1453
1454         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1455                         "loads active fast load image to current target - mainly for profiling purposes");
1456
1457
1458         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1459         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1460         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1461         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1462         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1463         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1464         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1465         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1466         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1467
1468         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1469         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1470         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1471
1472         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1473         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1474         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1475
1476         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1477         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1478         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1479         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1480
1481         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1482         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1483         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1484         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1485
1486         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1487                 return retval;
1488         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1489                 return retval;
1490
1491         return retval;
1492 }
1493
1494 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1495 {
1496         target_t *target = all_targets;
1497
1498         if (argc == 1)
1499         {
1500                 target = get_target(args[0]);
1501                 if (target == NULL) {
1502                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1503                         goto DumpTargets;
1504                 }
1505                 if (!target->tap->enabled) {
1506                         command_print(cmd_ctx,"Target: TAP %s is disabled, "
1507                                         "can't be the current target\n",
1508                                         target->tap->dotted_name);
1509                         return ERROR_FAIL;
1510                 }
1511
1512                 cmd_ctx->current_target = target->target_number;
1513                 return ERROR_OK;
1514         }
1515 DumpTargets:
1516
1517         target = all_targets;
1518         command_print(cmd_ctx, "    TargetName         Type       Endian TapName            State       ");
1519         command_print(cmd_ctx, "--  ------------------ ---------- ------ ------------------ ------------");
1520         while (target)
1521         {
1522                 const char *state;
1523                 char marker = ' ';
1524
1525                 if (target->tap->enabled)
1526                         state = Jim_Nvp_value2name_simple(nvp_target_state,
1527                                         target->state)->name;
1528                 else
1529                         state = "tap-disabled";
1530
1531                 if (cmd_ctx->current_target == target->target_number)
1532                         marker = '*';
1533
1534                 /* keep columns lined up to match the headers above */
1535                 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1536                                           target->target_number,
1537                                           marker,
1538                                           target->cmd_name,
1539                                           target_get_name(target),
1540                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1541                                                                 target->endianness)->name,
1542                                           target->tap->dotted_name,
1543                                           state);
1544                 target = target->next;
1545         }
1546
1547         return ERROR_OK;
1548 }
1549
1550 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1551
1552 static int powerDropout;
1553 static int srstAsserted;
1554
1555 static int runPowerRestore;
1556 static int runPowerDropout;
1557 static int runSrstAsserted;
1558 static int runSrstDeasserted;
1559
1560 static int sense_handler(void)
1561 {
1562         static int prevSrstAsserted = 0;
1563         static int prevPowerdropout = 0;
1564
1565         int retval;
1566         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1567                 return retval;
1568
1569         int powerRestored;
1570         powerRestored = prevPowerdropout && !powerDropout;
1571         if (powerRestored)
1572         {
1573                 runPowerRestore = 1;
1574         }
1575
1576         long long current = timeval_ms();
1577         static long long lastPower = 0;
1578         int waitMore = lastPower + 2000 > current;
1579         if (powerDropout && !waitMore)
1580         {
1581                 runPowerDropout = 1;
1582                 lastPower = current;
1583         }
1584
1585         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1586                 return retval;
1587
1588         int srstDeasserted;
1589         srstDeasserted = prevSrstAsserted && !srstAsserted;
1590
1591         static long long lastSrst = 0;
1592         waitMore = lastSrst + 2000 > current;
1593         if (srstDeasserted && !waitMore)
1594         {
1595                 runSrstDeasserted = 1;
1596                 lastSrst = current;
1597         }
1598
1599         if (!prevSrstAsserted && srstAsserted)
1600         {
1601                 runSrstAsserted = 1;
1602         }
1603
1604         prevSrstAsserted = srstAsserted;
1605         prevPowerdropout = powerDropout;
1606
1607         if (srstDeasserted || powerRestored)
1608         {
1609                 /* Other than logging the event we can't do anything here.
1610                  * Issuing a reset is a particularly bad idea as we might
1611                  * be inside a reset already.
1612                  */
1613         }
1614
1615         return ERROR_OK;
1616 }
1617
1618 /* process target state changes */
1619 int handle_target(void *priv)
1620 {
1621         int retval = ERROR_OK;
1622
1623         /* we do not want to recurse here... */
1624         static int recursive = 0;
1625         if (! recursive)
1626         {
1627                 recursive = 1;
1628                 sense_handler();
1629                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1630                  * We need to avoid an infinite loop/recursion here and we do that by
1631                  * clearing the flags after running these events.
1632                  */
1633                 int did_something = 0;
1634                 if (runSrstAsserted)
1635                 {
1636                         Jim_Eval( interp, "srst_asserted");
1637                         did_something = 1;
1638                 }
1639                 if (runSrstDeasserted)
1640                 {
1641                         Jim_Eval( interp, "srst_deasserted");
1642                         did_something = 1;
1643                 }
1644                 if (runPowerDropout)
1645                 {
1646                         Jim_Eval( interp, "power_dropout");
1647                         did_something = 1;
1648                 }
1649                 if (runPowerRestore)
1650                 {
1651                         Jim_Eval( interp, "power_restore");
1652                         did_something = 1;
1653                 }
1654
1655                 if (did_something)
1656                 {
1657                         /* clear detect flags */
1658                         sense_handler();
1659                 }
1660
1661                 /* clear action flags */
1662
1663                 runSrstAsserted=0;
1664                 runSrstDeasserted=0;
1665                 runPowerRestore=0;
1666                 runPowerDropout=0;
1667
1668                 recursive = 0;
1669         }
1670
1671         /* Poll targets for state changes unless that's globally disabled.
1672          * Skip targets that are currently disabled.
1673          */
1674         for (target_t *target = all_targets;
1675                         target_continuous_poll && target;
1676                         target = target->next)
1677         {
1678                 if (!target->tap->enabled)
1679                         continue;
1680
1681                 /* only poll target if we've got power and srst isn't asserted */
1682                 if (!powerDropout && !srstAsserted)
1683                 {
1684                         /* polling may fail silently until the target has been examined */
1685                         if((retval = target_poll(target)) != ERROR_OK)
1686                                 return retval;
1687                 }
1688         }
1689
1690         return retval;
1691 }
1692
1693 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1694 {
1695         target_t *target;
1696         reg_t *reg = NULL;
1697         int count = 0;
1698         char *value;
1699
1700         LOG_DEBUG("-");
1701
1702         target = get_current_target(cmd_ctx);
1703
1704         /* list all available registers for the current target */
1705         if (argc == 0)
1706         {
1707                 reg_cache_t *cache = target->reg_cache;
1708
1709                 count = 0;
1710                 while(cache)
1711                 {
1712                         int i;
1713                         for (i = 0; i < cache->num_regs; i++)
1714                         {
1715                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1716                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1717                                 free(value);
1718                         }
1719                         cache = cache->next;
1720                 }
1721
1722                 return ERROR_OK;
1723         }
1724
1725         /* access a single register by its ordinal number */
1726         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1727         {
1728                 unsigned num;
1729                 int retval = parse_uint(args[0], &num);
1730                 if (ERROR_OK != retval)
1731                         return ERROR_COMMAND_SYNTAX_ERROR;
1732
1733                 reg_cache_t *cache = target->reg_cache;
1734                 count = 0;
1735                 while(cache)
1736                 {
1737                         int i;
1738                         for (i = 0; i < cache->num_regs; i++)
1739                         {
1740                                 if (count++ == (int)num)
1741                                 {
1742                                         reg = &cache->reg_list[i];
1743                                         break;
1744                                 }
1745                         }
1746                         if (reg)
1747                                 break;
1748                         cache = cache->next;
1749                 }
1750
1751                 if (!reg)
1752                 {
1753                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1754                         return ERROR_OK;
1755                 }
1756         } else /* access a single register by its name */
1757         {
1758                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1759
1760                 if (!reg)
1761                 {
1762                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1763                         return ERROR_OK;
1764                 }
1765         }
1766
1767         /* display a register */
1768         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1769         {
1770                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1771                         reg->valid = 0;
1772
1773                 if (reg->valid == 0)
1774                 {
1775                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1776                         arch_type->get(reg);
1777                 }
1778                 value = buf_to_str(reg->value, reg->size, 16);
1779                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1780                 free(value);
1781                 return ERROR_OK;
1782         }
1783
1784         /* set register value */
1785         if (argc == 2)
1786         {
1787                 uint8_t *buf = malloc(CEIL(reg->size, 8));
1788                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1789
1790                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1791                 arch_type->set(reg, buf);
1792
1793                 value = buf_to_str(reg->value, reg->size, 16);
1794                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1795                 free(value);
1796
1797                 free(buf);
1798
1799                 return ERROR_OK;
1800         }
1801
1802         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1803
1804         return ERROR_OK;
1805 }
1806
1807 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1808 {
1809         int retval = ERROR_OK;
1810         target_t *target = get_current_target(cmd_ctx);
1811
1812         if (argc == 0)
1813         {
1814                 command_print(cmd_ctx, "background polling: %s",
1815                                 target_continuous_poll ?  "on" : "off");
1816                 command_print(cmd_ctx, "TAP: %s (%s)",
1817                                 target->tap->dotted_name,
1818                                 target->tap->enabled ? "enabled" : "disabled");
1819                 if (!target->tap->enabled)
1820                         return ERROR_OK;
1821                 if ((retval = target_poll(target)) != ERROR_OK)
1822                         return retval;
1823                 if ((retval = target_arch_state(target)) != ERROR_OK)
1824                         return retval;
1825
1826         }
1827         else if (argc==1)
1828         {
1829                 if (strcmp(args[0], "on") == 0)
1830                 {
1831                         target_continuous_poll = 1;
1832                 }
1833                 else if (strcmp(args[0], "off") == 0)
1834                 {
1835                         target_continuous_poll = 0;
1836                 }
1837                 else
1838                 {
1839                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1840                 }
1841         } else
1842         {
1843                 return ERROR_COMMAND_SYNTAX_ERROR;
1844         }
1845
1846         return retval;
1847 }
1848
1849 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1850 {
1851         if (argc > 1)
1852                 return ERROR_COMMAND_SYNTAX_ERROR;
1853
1854         unsigned ms = 5000;
1855         if (1 == argc)
1856         {
1857                 int retval = parse_uint(args[0], &ms);
1858                 if (ERROR_OK != retval)
1859                 {
1860                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1861                         return ERROR_COMMAND_SYNTAX_ERROR;
1862                 }
1863                 // convert seconds (given) to milliseconds (needed)
1864                 ms *= 1000;
1865         }
1866
1867         target_t *target = get_current_target(cmd_ctx);
1868         return target_wait_state(target, TARGET_HALTED, ms);
1869 }
1870
1871 /* wait for target state to change. The trick here is to have a low
1872  * latency for short waits and not to suck up all the CPU time
1873  * on longer waits.
1874  *
1875  * After 500ms, keep_alive() is invoked
1876  */
1877 int target_wait_state(target_t *target, enum target_state state, int ms)
1878 {
1879         int retval;
1880         long long then=0, cur;
1881         int once=1;
1882
1883         for (;;)
1884         {
1885                 if ((retval=target_poll(target))!=ERROR_OK)
1886                         return retval;
1887                 if (target->state == state)
1888                 {
1889                         break;
1890                 }
1891                 cur = timeval_ms();
1892                 if (once)
1893                 {
1894                         once=0;
1895                         then = timeval_ms();
1896                         LOG_DEBUG("waiting for target %s...",
1897                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1898                 }
1899
1900                 if (cur-then>500)
1901                 {
1902                         keep_alive();
1903                 }
1904
1905                 if ((cur-then)>ms)
1906                 {
1907                         LOG_ERROR("timed out while waiting for target %s",
1908                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1909                         return ERROR_FAIL;
1910                 }
1911         }
1912
1913         return ERROR_OK;
1914 }
1915
1916 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1917 {
1918         LOG_DEBUG("-");
1919
1920         target_t *target = get_current_target(cmd_ctx);
1921         int retval = target_halt(target);
1922         if (ERROR_OK != retval)
1923                 return retval;
1924
1925         if (argc == 1)
1926         {
1927                 unsigned wait;
1928                 retval = parse_uint(args[0], &wait);
1929                 if (ERROR_OK != retval)
1930                         return ERROR_COMMAND_SYNTAX_ERROR;
1931                 if (!wait)
1932                         return ERROR_OK;
1933         }
1934
1935         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1936 }
1937
1938 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1939 {
1940         target_t *target = get_current_target(cmd_ctx);
1941
1942         LOG_USER("requesting target halt and executing a soft reset");
1943
1944         target->type->soft_reset_halt(target);
1945
1946         return ERROR_OK;
1947 }
1948
1949 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1950 {
1951         if (argc > 1)
1952                 return ERROR_COMMAND_SYNTAX_ERROR;
1953
1954         enum target_reset_mode reset_mode = RESET_RUN;
1955         if (argc == 1)
1956         {
1957                 const Jim_Nvp *n;
1958                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1959                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1960                         return ERROR_COMMAND_SYNTAX_ERROR;
1961                 }
1962                 reset_mode = n->value;
1963         }
1964
1965         /* reset *all* targets */
1966         return target_process_reset(cmd_ctx, reset_mode);
1967 }
1968
1969
1970 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1971 {
1972         if (argc > 1)
1973                 return ERROR_COMMAND_SYNTAX_ERROR;
1974
1975         target_t *target = get_current_target(cmd_ctx);
1976         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
1977
1978         /* with no args, resume from current pc, addr = 0,
1979          * with one arguments, addr = args[0],
1980          * handle breakpoints, not debugging */
1981         uint32_t addr = 0;
1982         if (argc == 1)
1983         {
1984                 int retval = parse_u32(args[0], &addr);
1985                 if (ERROR_OK != retval)
1986                         return retval;
1987         }
1988
1989         return target_resume(target, 0, addr, 1, 0);
1990 }
1991
1992 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1993 {
1994         if (argc > 1)
1995                 return ERROR_COMMAND_SYNTAX_ERROR;
1996
1997         LOG_DEBUG("-");
1998
1999         /* with no args, step from current pc, addr = 0,
2000          * with one argument addr = args[0],
2001          * handle breakpoints, debugging */
2002         uint32_t addr = 0;
2003         if (argc == 1)
2004         {
2005                 int retval = parse_u32(args[0], &addr);
2006                 if (ERROR_OK != retval)
2007                         return retval;
2008         }
2009
2010         target_t *target = get_current_target(cmd_ctx);
2011         return target->type->step(target, 0, addr, 1);
2012 }
2013
2014 static void handle_md_output(struct command_context_s *cmd_ctx,
2015                 struct target_s *target, uint32_t address, unsigned size,
2016                 unsigned count, const uint8_t *buffer)
2017 {
2018         const unsigned line_bytecnt = 32;
2019         unsigned line_modulo = line_bytecnt / size;
2020
2021         char output[line_bytecnt * 4 + 1];
2022         unsigned output_len = 0;
2023
2024         const char *value_fmt;
2025         switch (size) {
2026         case 4: value_fmt = "%8.8x "; break;
2027         case 2: value_fmt = "%4.2x "; break;
2028         case 1: value_fmt = "%2.2x "; break;
2029         default:
2030                 LOG_ERROR("invalid memory read size: %u", size);
2031                 exit(-1);
2032         }
2033
2034         for (unsigned i = 0; i < count; i++)
2035         {
2036                 if (i % line_modulo == 0)
2037                 {
2038                         output_len += snprintf(output + output_len,
2039                                         sizeof(output) - output_len,
2040                                         "0x%8.8x: ", address + (i*size));
2041                 }
2042
2043                 uint32_t value=0;
2044                 const uint8_t *value_ptr = buffer + i * size;
2045                 switch (size) {
2046                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2047                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2048                 case 1: value = *value_ptr;
2049                 }
2050                 output_len += snprintf(output + output_len,
2051                                 sizeof(output) - output_len,
2052                                 value_fmt, value);
2053
2054                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2055                 {
2056                         command_print(cmd_ctx, "%s", output);
2057                         output_len = 0;
2058                 }
2059         }
2060 }
2061
2062 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2063 {
2064         if (argc < 1)
2065                 return ERROR_COMMAND_SYNTAX_ERROR;
2066
2067         unsigned size = 0;
2068         switch (cmd[2]) {
2069         case 'w': size = 4; break;
2070         case 'h': size = 2; break;
2071         case 'b': size = 1; break;
2072         default: return ERROR_COMMAND_SYNTAX_ERROR;
2073         }
2074
2075         uint32_t address;
2076         int retval = parse_u32(args[0], &address);
2077         if (ERROR_OK != retval)
2078                 return retval;
2079
2080         unsigned count = 1;
2081         if (argc == 2)
2082         {
2083                 retval = parse_uint(args[1], &count);
2084                 if (ERROR_OK != retval)
2085                         return retval;
2086         }
2087
2088         uint8_t *buffer = calloc(count, size);
2089
2090         target_t *target = get_current_target(cmd_ctx);
2091         retval = target_read_memory(target,
2092                                 address, size, count, buffer);
2093         if (ERROR_OK == retval)
2094                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2095
2096         free(buffer);
2097
2098         return retval;
2099 }
2100
2101 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2102 {
2103          if ((argc < 2) || (argc > 3))
2104                 return ERROR_COMMAND_SYNTAX_ERROR;
2105
2106         uint32_t address;
2107         int retval = parse_u32(args[0], &address);
2108         if (ERROR_OK != retval)
2109                 return retval;
2110
2111         uint32_t value;
2112         retval = parse_u32(args[1], &value);
2113         if (ERROR_OK != retval)
2114                 return retval;
2115
2116         unsigned count = 1;
2117         if (argc == 3)
2118         {
2119                 retval = parse_uint(args[2], &count);
2120                 if (ERROR_OK != retval)
2121                         return retval;
2122         }
2123
2124         target_t *target = get_current_target(cmd_ctx);
2125         unsigned wordsize;
2126         uint8_t value_buf[4];
2127         switch (cmd[2])
2128         {
2129                 case 'w':
2130                         wordsize = 4;
2131                         target_buffer_set_u32(target, value_buf, value);
2132                         break;
2133                 case 'h':
2134                         wordsize = 2;
2135                         target_buffer_set_u16(target, value_buf, value);
2136                         break;
2137                 case 'b':
2138                         wordsize = 1;
2139                         value_buf[0] = value;
2140                         break;
2141                 default:
2142                         return ERROR_COMMAND_SYNTAX_ERROR;
2143         }
2144         for (unsigned i = 0; i < count; i++)
2145         {
2146                 retval = target_write_memory(target,
2147                                 address + i * wordsize, wordsize, 1, value_buf);
2148                 if (ERROR_OK != retval)
2149                         return retval;
2150                 keep_alive();
2151         }
2152
2153         return ERROR_OK;
2154
2155 }
2156
2157 static int parse_load_image_command_args(char **args, int argc,
2158                 image_t *image, uint32_t *min_address, uint32_t *max_address)
2159 {
2160         if (argc < 1 || argc > 5)
2161                 return ERROR_COMMAND_SYNTAX_ERROR;
2162
2163         /* a base address isn't always necessary,
2164          * default to 0x0 (i.e. don't relocate) */
2165         if (argc >= 2)
2166         {
2167                 uint32_t addr;
2168                 int retval = parse_u32(args[1], &addr);
2169                 if (ERROR_OK != retval)
2170                         return ERROR_COMMAND_SYNTAX_ERROR;
2171                 image->base_address = addr;
2172                 image->base_address_set = 1;
2173         }
2174         else
2175                 image->base_address_set = 0;
2176
2177         image->start_address_set = 0;
2178
2179         if (argc >= 4)
2180         {
2181                 int retval = parse_u32(args[3], min_address);
2182                 if (ERROR_OK != retval)
2183                         return ERROR_COMMAND_SYNTAX_ERROR;
2184         }
2185         if (argc == 5)
2186         {
2187                 int retval = parse_u32(args[4], max_address);
2188                 if (ERROR_OK != retval)
2189                         return ERROR_COMMAND_SYNTAX_ERROR;
2190                 // use size (given) to find max (required)
2191                 *max_address += *min_address;
2192         }
2193
2194         if (*min_address > *max_address)
2195                 return ERROR_COMMAND_SYNTAX_ERROR;
2196
2197         return ERROR_OK;
2198 }
2199
2200 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2201 {
2202         uint8_t *buffer;
2203         uint32_t buf_cnt;
2204         uint32_t image_size;
2205         uint32_t min_address = 0;
2206         uint32_t max_address = 0xffffffff;
2207         int i;
2208         int retvaltemp;
2209
2210         image_t image;
2211
2212         duration_t duration;
2213         char *duration_text;
2214         
2215         int retval = parse_load_image_command_args(args, argc,
2216                         &image, &min_address, &max_address);
2217         if (ERROR_OK != retval)
2218                 return retval;
2219
2220         target_t *target = get_current_target(cmd_ctx);
2221         duration_start_measure(&duration);
2222
2223         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2224         {
2225                 return ERROR_OK;
2226         }
2227
2228         image_size = 0x0;
2229         retval = ERROR_OK;
2230         for (i = 0; i < image.num_sections; i++)
2231         {
2232                 buffer = malloc(image.sections[i].size);
2233                 if (buffer == NULL)
2234                 {
2235                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2236                         break;
2237                 }
2238
2239                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2240                 {
2241                         free(buffer);
2242                         break;
2243                 }
2244
2245                 uint32_t offset=0;
2246                 uint32_t length=buf_cnt;
2247
2248                 /* DANGER!!! beware of unsigned comparision here!!! */
2249
2250                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2251                                 (image.sections[i].base_address<max_address))
2252                 {
2253                         if (image.sections[i].base_address<min_address)
2254                         {
2255                                 /* clip addresses below */
2256                                 offset+=min_address-image.sections[i].base_address;
2257                                 length-=offset;
2258                         }
2259
2260                         if (image.sections[i].base_address+buf_cnt>max_address)
2261                         {
2262                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2263                         }
2264
2265                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2266                         {
2267                                 free(buffer);
2268                                 break;
2269                         }
2270                         image_size += length;
2271                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2272                 }
2273
2274                 free(buffer);
2275         }
2276
2277         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2278         {
2279                 image_close(&image);
2280                 return retvaltemp;
2281         }
2282
2283         if (retval==ERROR_OK)
2284         {
2285                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2286         }
2287         free(duration_text);
2288
2289         image_close(&image);
2290
2291         return retval;
2292
2293 }
2294
2295 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2296 {
2297         fileio_t fileio;
2298
2299         uint8_t buffer[560];
2300         int retvaltemp;
2301
2302         duration_t duration;
2303         char *duration_text;
2304
2305         target_t *target = get_current_target(cmd_ctx);
2306
2307         if (argc != 3)
2308         {
2309                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2310                 return ERROR_OK;
2311         }
2312
2313         uint32_t address;
2314         int retval = parse_u32(args[1], &address);
2315         if (ERROR_OK != retval)
2316                 return retval;
2317
2318         uint32_t size;
2319         retval = parse_u32(args[2], &size);
2320         if (ERROR_OK != retval)
2321                 return retval;
2322
2323         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2324         {
2325                 return ERROR_OK;
2326         }
2327
2328         duration_start_measure(&duration);
2329
2330         while (size > 0)
2331         {
2332                 uint32_t size_written;
2333                 uint32_t this_run_size = (size > 560) ? 560 : size;
2334
2335                 retval = target_read_buffer(target, address, this_run_size, buffer);
2336                 if (retval != ERROR_OK)
2337                 {
2338                         break;
2339                 }
2340
2341                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2342                 if (retval != ERROR_OK)
2343                 {
2344                         break;
2345                 }
2346
2347                 size -= this_run_size;
2348                 address += this_run_size;
2349         }
2350
2351         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2352                 return retvaltemp;
2353
2354         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2355                 return retvaltemp;
2356
2357         if (retval==ERROR_OK)
2358         {
2359                 command_print(cmd_ctx, "dumped %lld byte in %s",
2360                                 fileio.size, duration_text);
2361                 free(duration_text);
2362         }
2363
2364         return retval;
2365 }
2366
2367 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2368 {
2369         uint8_t *buffer;
2370         uint32_t buf_cnt;
2371         uint32_t image_size;
2372         int i;
2373         int retval, retvaltemp;
2374         uint32_t checksum = 0;
2375         uint32_t mem_checksum = 0;
2376
2377         image_t image;
2378
2379         duration_t duration;
2380         char *duration_text;
2381
2382         target_t *target = get_current_target(cmd_ctx);
2383
2384         if (argc < 1)
2385         {
2386                 return ERROR_COMMAND_SYNTAX_ERROR;
2387         }
2388
2389         if (!target)
2390         {
2391                 LOG_ERROR("no target selected");
2392                 return ERROR_FAIL;
2393         }
2394
2395         duration_start_measure(&duration);
2396
2397         if (argc >= 2)
2398         {
2399                 uint32_t addr;
2400                 retval = parse_u32(args[1], &addr);
2401                 if (ERROR_OK != retval)
2402                         return ERROR_COMMAND_SYNTAX_ERROR;
2403                 image.base_address = addr;
2404                 image.base_address_set = 1;
2405         }
2406         else
2407         {
2408                 image.base_address_set = 0;
2409                 image.base_address = 0x0;
2410         }
2411
2412         image.start_address_set = 0;
2413
2414         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2415         {
2416                 return retval;
2417         }
2418
2419         image_size = 0x0;
2420         retval=ERROR_OK;
2421         for (i = 0; i < image.num_sections; i++)
2422         {
2423                 buffer = malloc(image.sections[i].size);
2424                 if (buffer == NULL)
2425                 {
2426                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2427                         break;
2428                 }
2429                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2430                 {
2431                         free(buffer);
2432                         break;
2433                 }
2434
2435                 if (verify)
2436                 {
2437                         /* calculate checksum of image */
2438                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2439
2440                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2441                         if( retval != ERROR_OK )
2442                         {
2443                                 free(buffer);
2444                                 break;
2445                         }
2446
2447                         if( checksum != mem_checksum )
2448                         {
2449                                 /* failed crc checksum, fall back to a binary compare */
2450                                 uint8_t *data;
2451
2452                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2453
2454                                 data = (uint8_t*)malloc(buf_cnt);
2455
2456                                 /* Can we use 32bit word accesses? */
2457                                 int size = 1;
2458                                 int count = buf_cnt;
2459                                 if ((count % 4) == 0)
2460                                 {
2461                                         size *= 4;
2462                                         count /= 4;
2463                                 }
2464                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2465                                 if (retval == ERROR_OK)
2466                                 {
2467                                         uint32_t t;
2468                                         for (t = 0; t < buf_cnt; t++)
2469                                         {
2470                                                 if (data[t] != buffer[t])
2471                                                 {
2472                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2473                                                         free(data);
2474                                                         free(buffer);
2475                                                         retval=ERROR_FAIL;
2476                                                         goto done;
2477                                                 }
2478                                                 if ((t%16384)==0)
2479                                                 {
2480                                                         keep_alive();
2481                                                 }
2482                                         }
2483                                 }
2484
2485                                 free(data);
2486                         }
2487                 } else
2488                 {
2489                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2490                 }
2491
2492                 free(buffer);
2493                 image_size += buf_cnt;
2494         }
2495 done:
2496
2497         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2498         {
2499                 image_close(&image);
2500                 return retvaltemp;
2501         }
2502
2503         if (retval==ERROR_OK)
2504         {
2505                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2506         }
2507         free(duration_text);
2508
2509         image_close(&image);
2510
2511         return retval;
2512 }
2513
2514 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2515 {
2516         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2517 }
2518
2519 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2520 {
2521         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2522 }
2523
2524 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2525 {
2526         target_t *target = get_current_target(cmd_ctx);
2527         breakpoint_t *breakpoint = target->breakpoints;
2528         while (breakpoint)
2529         {
2530                 if (breakpoint->type == BKPT_SOFT)
2531                 {
2532                         char* buf = buf_to_str(breakpoint->orig_instr,
2533                                         breakpoint->length, 16);
2534                         command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s",
2535                                         breakpoint->address, breakpoint->length,
2536                                         breakpoint->set, buf);
2537                         free(buf);
2538                 }
2539                 else
2540                 {
2541                         command_print(cmd_ctx, "0x%8.8x, 0x%x, %i",
2542                                         breakpoint->address, breakpoint->length, breakpoint->set);
2543                 }
2544
2545                 breakpoint = breakpoint->next;
2546         }
2547         return ERROR_OK;
2548 }
2549
2550 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2551                 uint32_t addr, uint32_t length, int hw)
2552 {
2553         target_t *target = get_current_target(cmd_ctx);
2554         int retval = breakpoint_add(target, addr, length, hw);
2555         if (ERROR_OK == retval)
2556                 command_print(cmd_ctx, "breakpoint set at 0x%8.8x", addr);
2557         else
2558                 LOG_ERROR("Failure setting breakpoint");
2559         return retval;
2560 }
2561
2562 static int handle_bp_command(struct command_context_s *cmd_ctx,
2563                 char *cmd, char **args, int argc)
2564 {
2565         if (argc == 0)
2566                 return handle_bp_command_list(cmd_ctx);
2567
2568         if (argc < 2 || argc > 3)
2569         {
2570                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2571                 return ERROR_COMMAND_SYNTAX_ERROR;
2572         }
2573
2574         uint32_t addr;
2575         int retval = parse_u32(args[0], &addr);
2576         if (ERROR_OK != retval)
2577                 return retval;
2578
2579         uint32_t length;
2580         retval = parse_u32(args[1], &length);
2581         if (ERROR_OK != retval)
2582                 return retval;
2583
2584         int hw = BKPT_SOFT;
2585         if (argc == 3)
2586         {
2587                 if (strcmp(args[2], "hw") == 0)
2588                         hw = BKPT_HARD;
2589                 else
2590                         return ERROR_COMMAND_SYNTAX_ERROR;
2591         }
2592
2593         return handle_bp_command_set(cmd_ctx, addr, length, hw);
2594 }
2595
2596 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2597 {
2598         if (argc != 1)
2599                 return ERROR_COMMAND_SYNTAX_ERROR;
2600
2601         uint32_t addr;
2602         int retval = parse_u32(args[0], &addr);
2603         if (ERROR_OK != retval)
2604                 return retval;
2605
2606         target_t *target = get_current_target(cmd_ctx);
2607         breakpoint_remove(target, addr);
2608
2609         return ERROR_OK;
2610 }
2611
2612 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2613 {
2614         target_t *target = get_current_target(cmd_ctx);
2615
2616         if (argc == 0)
2617         {
2618                 watchpoint_t *watchpoint = target->watchpoints;
2619
2620                 while (watchpoint)
2621                 {
2622                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2623                         watchpoint = watchpoint->next;
2624                 }
2625                 return ERROR_OK;
2626         }
2627
2628         enum watchpoint_rw type = WPT_ACCESS;
2629         uint32_t addr = 0;
2630         uint32_t length = 0;
2631         uint32_t data_value = 0x0;
2632         uint32_t data_mask = 0xffffffff;
2633         int retval;
2634
2635         switch (argc)
2636         {
2637         case 5:
2638                 retval = parse_u32(args[4], &data_mask);
2639                 if (ERROR_OK != retval)
2640                         return retval;
2641                 // fall through
2642         case 4:
2643                 retval = parse_u32(args[3], &data_value);
2644                 if (ERROR_OK != retval)
2645                         return retval;
2646                 // fall through
2647         case 3:
2648                 switch(args[2][0])
2649                 {
2650                 case 'r':
2651                         type = WPT_READ;
2652                         break;
2653                 case 'w':
2654                         type = WPT_WRITE;
2655                         break;
2656                 case 'a':
2657                         type = WPT_ACCESS;
2658                         break;
2659                 default:
2660                         LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]);
2661                         return ERROR_COMMAND_SYNTAX_ERROR;
2662                 }
2663                 // fall through
2664         case 2:
2665                 retval = parse_u32(args[1], &length);
2666                 if (ERROR_OK != retval)
2667                         return retval;
2668                 retval = parse_u32(args[0], &addr);
2669                 if (ERROR_OK != retval)
2670                         return retval;
2671                 break;
2672
2673         default:
2674                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2675                 return ERROR_COMMAND_SYNTAX_ERROR;
2676         }
2677
2678         retval = watchpoint_add(target, addr, length, type,
2679                         data_value, data_mask);
2680         if (ERROR_OK != retval)
2681                 LOG_ERROR("Failure setting watchpoints");
2682
2683         return retval;
2684 }
2685
2686 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2687 {
2688         if (argc != 1)
2689                 return ERROR_COMMAND_SYNTAX_ERROR;
2690
2691         uint32_t addr;
2692         int retval = parse_u32(args[0], &addr);
2693         if (ERROR_OK != retval)
2694                 return retval;
2695
2696         target_t *target = get_current_target(cmd_ctx);
2697         watchpoint_remove(target, addr);
2698
2699         return ERROR_OK;
2700 }
2701
2702
2703 /**
2704  * Translate a virtual address to a physical address.
2705  *
2706  * The low-level target implementation must have logged a detailed error
2707  * which is forwarded to telnet/GDB session.
2708  */
2709 static int handle_virt2phys_command(command_context_t *cmd_ctx,
2710                 char *cmd, char **args, int argc)
2711 {
2712         if (argc != 1)
2713                 return ERROR_COMMAND_SYNTAX_ERROR;
2714
2715         uint32_t va;
2716         int retval = parse_u32(args[0], &va);
2717         if (ERROR_OK != retval)
2718                 return retval;
2719         uint32_t pa;
2720
2721         target_t *target = get_current_target(cmd_ctx);
2722         retval = target->type->virt2phys(target, va, &pa);
2723         if (retval == ERROR_OK)
2724                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2725
2726         return retval;
2727 }
2728
2729 static void writeData(FILE *f, const void *data, size_t len)
2730 {
2731         size_t written = fwrite(data, 1, len, f);
2732         if (written != len)
2733                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2734 }
2735
2736 static void writeLong(FILE *f, int l)
2737 {
2738         int i;
2739         for (i=0; i<4; i++)
2740         {
2741                 char c=(l>>(i*8))&0xff;
2742                 writeData(f, &c, 1);
2743         }
2744
2745 }
2746
2747 static void writeString(FILE *f, char *s)
2748 {
2749         writeData(f, s, strlen(s));
2750 }
2751
2752 /* Dump a gmon.out histogram file. */
2753 static void writeGmon(uint32_t *samples, uint32_t sampleNum, char *filename)
2754 {
2755         uint32_t i;
2756         FILE *f=fopen(filename, "w");
2757         if (f==NULL)
2758                 return;
2759         writeString(f, "gmon");
2760         writeLong(f, 0x00000001); /* Version */
2761         writeLong(f, 0); /* padding */
2762         writeLong(f, 0); /* padding */
2763         writeLong(f, 0); /* padding */
2764
2765         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
2766         writeData(f, &zero, 1);
2767
2768         /* figure out bucket size */
2769         uint32_t min=samples[0];
2770         uint32_t max=samples[0];
2771         for (i=0; i<sampleNum; i++)
2772         {
2773                 if (min>samples[i])
2774                 {
2775                         min=samples[i];
2776                 }
2777                 if (max<samples[i])
2778                 {
2779                         max=samples[i];
2780                 }
2781         }
2782
2783         int addressSpace=(max-min+1);
2784
2785         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2786         uint32_t length = addressSpace;
2787         if (length > maxBuckets)
2788         {
2789                 length=maxBuckets;
2790         }
2791         int *buckets=malloc(sizeof(int)*length);
2792         if (buckets==NULL)
2793         {
2794                 fclose(f);
2795                 return;
2796         }
2797         memset(buckets, 0, sizeof(int)*length);
2798         for (i=0; i<sampleNum;i++)
2799         {
2800                 uint32_t address=samples[i];
2801                 long long a=address-min;
2802                 long long b=length-1;
2803                 long long c=addressSpace-1;
2804                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2805                 buckets[index]++;
2806         }
2807
2808         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2809         writeLong(f, min);                      /* low_pc */
2810         writeLong(f, max);                      /* high_pc */
2811         writeLong(f, length);           /* # of samples */
2812         writeLong(f, 64000000);         /* 64MHz */
2813         writeString(f, "seconds");
2814         for (i=0; i<(15-strlen("seconds")); i++)
2815                 writeData(f, &zero, 1);
2816         writeString(f, "s");
2817
2818         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2819
2820         char *data=malloc(2*length);
2821         if (data!=NULL)
2822         {
2823                 for (i=0; i<length;i++)
2824                 {
2825                         int val;
2826                         val=buckets[i];
2827                         if (val>65535)
2828                         {
2829                                 val=65535;
2830                         }
2831                         data[i*2]=val&0xff;
2832                         data[i*2+1]=(val>>8)&0xff;
2833                 }
2834                 free(buckets);
2835                 writeData(f, data, length * 2);
2836                 free(data);
2837         } else
2838         {
2839                 free(buckets);
2840         }
2841
2842         fclose(f);
2843 }
2844
2845 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2846 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2847 {
2848         target_t *target = get_current_target(cmd_ctx);
2849         struct timeval timeout, now;
2850
2851         gettimeofday(&timeout, NULL);
2852         if (argc!=2)
2853         {
2854                 return ERROR_COMMAND_SYNTAX_ERROR;
2855         }
2856         unsigned offset;
2857         int retval = parse_uint(args[0], &offset);
2858         if (ERROR_OK != retval)
2859                 return retval;
2860
2861         timeval_add_time(&timeout, offset, 0);
2862
2863         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2864
2865         static const int maxSample=10000;
2866         uint32_t *samples=malloc(sizeof(uint32_t)*maxSample);
2867         if (samples==NULL)
2868                 return ERROR_OK;
2869
2870         int numSamples=0;
2871         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2872         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2873
2874         for (;;)
2875         {
2876                 target_poll(target);
2877                 if (target->state == TARGET_HALTED)
2878                 {
2879                         uint32_t t=*((uint32_t *)reg->value);
2880                         samples[numSamples++]=t;
2881                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2882                         target_poll(target);
2883                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2884                 } else if (target->state == TARGET_RUNNING)
2885                 {
2886                         /* We want to quickly sample the PC. */
2887                         if((retval = target_halt(target)) != ERROR_OK)
2888                         {
2889                                 free(samples);
2890                                 return retval;
2891                         }
2892                 } else
2893                 {
2894                         command_print(cmd_ctx, "Target not halted or running");
2895                         retval=ERROR_OK;
2896                         break;
2897                 }
2898                 if (retval!=ERROR_OK)
2899                 {
2900                         break;
2901                 }
2902
2903                 gettimeofday(&now, NULL);
2904                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2905                 {
2906                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2907                         if((retval = target_poll(target)) != ERROR_OK)
2908                         {
2909                                 free(samples);
2910                                 return retval;
2911                         }
2912                         if (target->state == TARGET_HALTED)
2913                         {
2914                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2915                         }
2916                         if((retval = target_poll(target)) != ERROR_OK)
2917                         {
2918                                 free(samples);
2919                                 return retval;
2920                         }
2921                         writeGmon(samples, numSamples, args[1]);
2922                         command_print(cmd_ctx, "Wrote %s", args[1]);
2923                         break;
2924                 }
2925         }
2926         free(samples);
2927
2928         return ERROR_OK;
2929 }
2930
2931 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
2932 {
2933         char *namebuf;
2934         Jim_Obj *nameObjPtr, *valObjPtr;
2935         int result;
2936
2937         namebuf = alloc_printf("%s(%d)", varname, idx);
2938         if (!namebuf)
2939                 return JIM_ERR;
2940
2941         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2942         valObjPtr = Jim_NewIntObj(interp, val);
2943         if (!nameObjPtr || !valObjPtr)
2944         {
2945                 free(namebuf);
2946                 return JIM_ERR;
2947         }
2948
2949         Jim_IncrRefCount(nameObjPtr);
2950         Jim_IncrRefCount(valObjPtr);
2951         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2952         Jim_DecrRefCount(interp, nameObjPtr);
2953         Jim_DecrRefCount(interp, valObjPtr);
2954         free(namebuf);
2955         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2956         return result;
2957 }
2958
2959 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2960 {
2961         command_context_t *context;
2962         target_t *target;
2963
2964         context = Jim_GetAssocData(interp, "context");
2965         if (context == NULL)
2966         {
2967                 LOG_ERROR("mem2array: no command context");
2968                 return JIM_ERR;
2969         }
2970         target = get_current_target(context);
2971         if (target == NULL)
2972         {
2973                 LOG_ERROR("mem2array: no current target");
2974                 return JIM_ERR;
2975         }
2976
2977         return  target_mem2array(interp, target, argc-1, argv+1);
2978 }
2979
2980 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2981 {
2982         long l;
2983         uint32_t width;
2984         int len;
2985         uint32_t addr;
2986         uint32_t count;
2987         uint32_t v;
2988         const char *varname;
2989         uint8_t buffer[4096];
2990         int  n, e, retval;
2991         uint32_t i;
2992
2993         /* argv[1] = name of array to receive the data
2994          * argv[2] = desired width
2995          * argv[3] = memory address
2996          * argv[4] = count of times to read
2997          */
2998         if (argc != 4) {
2999                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3000                 return JIM_ERR;
3001         }
3002         varname = Jim_GetString(argv[0], &len);
3003         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3004
3005         e = Jim_GetLong(interp, argv[1], &l);
3006         width = l;
3007         if (e != JIM_OK) {
3008                 return e;
3009         }
3010
3011         e = Jim_GetLong(interp, argv[2], &l);
3012         addr = l;
3013         if (e != JIM_OK) {
3014                 return e;
3015         }
3016         e = Jim_GetLong(interp, argv[3], &l);
3017         len = l;
3018         if (e != JIM_OK) {
3019                 return e;
3020         }
3021         switch (width) {
3022                 case 8:
3023                         width = 1;
3024                         break;
3025                 case 16:
3026                         width = 2;
3027                         break;
3028                 case 32:
3029                         width = 4;
3030                         break;
3031                 default:
3032                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3033                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3034                         return JIM_ERR;
3035         }
3036         if (len == 0) {
3037                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3038                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3039                 return JIM_ERR;
3040         }
3041         if ((addr + (len * width)) < addr) {
3042                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3043                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3044                 return JIM_ERR;
3045         }
3046         /* absurd transfer size? */
3047         if (len > 65536) {
3048                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3049                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3050                 return JIM_ERR;
3051         }
3052
3053         if ((width == 1) ||
3054                 ((width == 2) && ((addr & 1) == 0)) ||
3055                 ((width == 4) && ((addr & 3) == 0))) {
3056                 /* all is well */
3057         } else {
3058                 char buf[100];
3059                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3060                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
3061                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3062                 return JIM_ERR;
3063         }
3064
3065         /* Transfer loop */
3066
3067         /* index counter */
3068         n = 0;
3069         /* assume ok */
3070         e = JIM_OK;
3071         while (len) {
3072                 /* Slurp... in buffer size chunks */
3073
3074                 count = len; /* in objects.. */
3075                 if (count > (sizeof(buffer)/width)) {
3076                         count = (sizeof(buffer)/width);
3077                 }
3078
3079                 retval = target_read_memory( target, addr, width, count, buffer );
3080                 if (retval != ERROR_OK) {
3081                         /* BOO !*/
3082                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3083                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3084                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3085                         e = JIM_ERR;
3086                         len = 0;
3087                 } else {
3088                         v = 0; /* shut up gcc */
3089                         for (i = 0 ;i < count ;i++, n++) {
3090                                 switch (width) {
3091                                         case 4:
3092                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3093                                                 break;
3094                                         case 2:
3095                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3096                                                 break;
3097                                         case 1:
3098                                                 v = buffer[i] & 0x0ff;
3099                                                 break;
3100                                 }
3101                                 new_int_array_element(interp, varname, n, v);
3102                         }
3103                         len -= count;
3104                 }
3105         }
3106
3107         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3108
3109         return JIM_OK;
3110 }
3111
3112 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3113 {
3114         char *namebuf;
3115         Jim_Obj *nameObjPtr, *valObjPtr;
3116         int result;
3117         long l;
3118
3119         namebuf = alloc_printf("%s(%d)", varname, idx);
3120         if (!namebuf)
3121                 return JIM_ERR;
3122
3123         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3124         if (!nameObjPtr)
3125         {
3126                 free(namebuf);
3127                 return JIM_ERR;
3128         }
3129
3130         Jim_IncrRefCount(nameObjPtr);
3131         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3132         Jim_DecrRefCount(interp, nameObjPtr);
3133         free(namebuf);
3134         if (valObjPtr == NULL)
3135                 return JIM_ERR;
3136
3137         result = Jim_GetLong(interp, valObjPtr, &l);
3138         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3139         *val = l;
3140         return result;
3141 }
3142
3143 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3144 {
3145         command_context_t *context;
3146         target_t *target;
3147
3148         context = Jim_GetAssocData(interp, "context");
3149         if (context == NULL){
3150                 LOG_ERROR("array2mem: no command context");
3151                 return JIM_ERR;
3152         }
3153         target = get_current_target(context);
3154         if (target == NULL){
3155                 LOG_ERROR("array2mem: no current target");
3156                 return JIM_ERR;
3157         }
3158
3159         return target_array2mem( interp,target, argc-1, argv+1 );
3160 }
3161
3162 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3163 {
3164         long l;
3165         uint32_t width;
3166         int len;
3167         uint32_t addr;
3168         uint32_t count;
3169         uint32_t v;
3170         const char *varname;
3171         uint8_t buffer[4096];
3172         int  n, e, retval;
3173         uint32_t i;
3174
3175         /* argv[1] = name of array to get the data
3176          * argv[2] = desired width
3177          * argv[3] = memory address
3178          * argv[4] = count to write
3179          */
3180         if (argc != 4) {
3181                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3182                 return JIM_ERR;
3183         }
3184         varname = Jim_GetString(argv[0], &len);
3185         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3186
3187         e = Jim_GetLong(interp, argv[1], &l);
3188         width = l;
3189         if (e != JIM_OK) {
3190                 return e;
3191         }
3192
3193         e = Jim_GetLong(interp, argv[2], &l);
3194         addr = l;
3195         if (e != JIM_OK) {
3196                 return e;
3197         }
3198         e = Jim_GetLong(interp, argv[3], &l);
3199         len = l;
3200         if (e != JIM_OK) {
3201                 return e;
3202         }
3203         switch (width) {
3204                 case 8:
3205                         width = 1;
3206                         break;
3207                 case 16:
3208                         width = 2;
3209                         break;
3210                 case 32:
3211                         width = 4;
3212                         break;
3213                 default:
3214                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3215                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3216                         return JIM_ERR;
3217         }
3218         if (len == 0) {
3219                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3220                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3221                 return JIM_ERR;
3222         }
3223         if ((addr + (len * width)) < addr) {
3224                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3225                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3226                 return JIM_ERR;
3227         }
3228         /* absurd transfer size? */
3229         if (len > 65536) {
3230                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3231                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3232                 return JIM_ERR;
3233         }
3234
3235         if ((width == 1) ||
3236                 ((width == 2) && ((addr & 1) == 0)) ||
3237                 ((width == 4) && ((addr & 3) == 0))) {
3238                 /* all is well */
3239         } else {
3240                 char buf[100];
3241                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3242                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3243                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3244                 return JIM_ERR;
3245         }
3246
3247         /* Transfer loop */
3248
3249         /* index counter */
3250         n = 0;
3251         /* assume ok */
3252         e = JIM_OK;
3253         while (len) {
3254                 /* Slurp... in buffer size chunks */
3255
3256                 count = len; /* in objects.. */
3257                 if (count > (sizeof(buffer)/width)) {
3258                         count = (sizeof(buffer)/width);
3259                 }
3260
3261                 v = 0; /* shut up gcc */
3262                 for (i = 0 ;i < count ;i++, n++) {
3263                         get_int_array_element(interp, varname, n, &v);
3264                         switch (width) {
3265                         case 4:
3266                                 target_buffer_set_u32(target, &buffer[i*width], v);
3267                                 break;
3268                         case 2:
3269                                 target_buffer_set_u16(target, &buffer[i*width], v);
3270                                 break;
3271                         case 1:
3272                                 buffer[i] = v & 0x0ff;
3273                                 break;
3274                         }
3275                 }
3276                 len -= count;
3277
3278                 retval = target_write_memory(target, addr, width, count, buffer);
3279                 if (retval != ERROR_OK) {
3280                         /* BOO !*/
3281                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3282                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3283                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3284                         e = JIM_ERR;
3285                         len = 0;
3286                 }
3287         }
3288
3289         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3290
3291         return JIM_OK;
3292 }
3293
3294 void target_all_handle_event( enum target_event e )
3295 {
3296         target_t *target;
3297
3298         LOG_DEBUG( "**all*targets: event: %d, %s",
3299                         e,
3300                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3301
3302         target = all_targets;
3303         while (target){
3304                 target_handle_event( target, e );
3305                 target = target->next;
3306         }
3307 }
3308
3309 void target_handle_event( target_t *target, enum target_event e )
3310 {
3311         target_event_action_t *teap;
3312         int done;
3313
3314         teap = target->event_action;
3315
3316         done = 0;
3317         while( teap ){
3318                 if( teap->event == e ){
3319                         done = 1;
3320                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3321                                            target->target_number,
3322                                            target->cmd_name,
3323                                            target_get_name(target),
3324                                            e,
3325                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3326                                            Jim_GetString( teap->body, NULL ) );
3327                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3328                         {
3329                                 Jim_PrintErrorMessage(interp);
3330                         }
3331                 }
3332                 teap = teap->next;
3333         }
3334         if( !done ){
3335                 LOG_DEBUG( "event: %d %s - no action",
3336                                    e,
3337                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3338         }
3339 }
3340
3341 enum target_cfg_param {
3342         TCFG_TYPE,
3343         TCFG_EVENT,
3344         TCFG_WORK_AREA_VIRT,
3345         TCFG_WORK_AREA_PHYS,
3346         TCFG_WORK_AREA_SIZE,
3347         TCFG_WORK_AREA_BACKUP,
3348         TCFG_ENDIAN,
3349         TCFG_VARIANT,
3350         TCFG_CHAIN_POSITION,
3351 };
3352
3353 static Jim_Nvp nvp_config_opts[] = {
3354         { .name = "-type",             .value = TCFG_TYPE },
3355         { .name = "-event",            .value = TCFG_EVENT },
3356         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3357         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3358         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3359         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3360         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3361         { .name = "-variant",          .value = TCFG_VARIANT },
3362         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3363
3364         { .name = NULL, .value = -1 }
3365 };
3366
3367 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3368 {
3369         Jim_Nvp *n;
3370         Jim_Obj *o;
3371         jim_wide w;
3372         char *cp;
3373         int e;
3374
3375         /* parse config or cget options ... */
3376         while( goi->argc > 0 ){
3377                 Jim_SetEmptyResult( goi->interp );
3378                 /* Jim_GetOpt_Debug( goi ); */
3379
3380                 if( target->type->target_jim_configure ){
3381                         /* target defines a configure function */
3382                         /* target gets first dibs on parameters */
3383                         e = (*(target->type->target_jim_configure))( target, goi );
3384                         if( e == JIM_OK ){
3385                                 /* more? */
3386                                 continue;
3387                         }
3388                         if( e == JIM_ERR ){
3389                                 /* An error */
3390                                 return e;
3391                         }
3392                         /* otherwise we 'continue' below */
3393                 }
3394                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3395                 if( e != JIM_OK ){
3396                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3397                         return e;
3398                 }
3399                 switch( n->value ){
3400                 case TCFG_TYPE:
3401                         /* not setable */
3402                         if( goi->isconfigure ){
3403                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3404                                 return JIM_ERR;
3405                         } else {
3406                         no_params:
3407                                 if( goi->argc != 0 ){
3408                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3409                                         return JIM_ERR;
3410                                 }
3411                         }
3412                         Jim_SetResultString( goi->interp, target_get_name(target), -1 );
3413                         /* loop for more */
3414                         break;
3415                 case TCFG_EVENT:
3416                         if( goi->argc == 0 ){
3417                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3418                                 return JIM_ERR;
3419                         }
3420
3421                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3422                         if( e != JIM_OK ){
3423                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3424                                 return e;
3425                         }
3426
3427                         if( goi->isconfigure ){
3428                                 if( goi->argc != 1 ){
3429                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3430                                         return JIM_ERR;
3431                                 }
3432                         } else {
3433                                 if( goi->argc != 0 ){
3434                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3435                                         return JIM_ERR;
3436                                 }
3437                         }
3438
3439                         {
3440                                 target_event_action_t *teap;
3441
3442                                 teap = target->event_action;
3443                                 /* replace existing? */
3444                                 while( teap ){
3445                                         if( teap->event == (enum target_event)n->value ){
3446                                                 break;
3447                                         }
3448                                         teap = teap->next;
3449                                 }
3450
3451                                 if( goi->isconfigure ){
3452                                         if( teap == NULL ){
3453                                                 /* create new */
3454                                                 teap = calloc( 1, sizeof(*teap) );
3455                                         }
3456                                         teap->event = n->value;
3457                                         Jim_GetOpt_Obj( goi, &o );
3458                                         if( teap->body ){
3459                                                 Jim_DecrRefCount( interp, teap->body );
3460                                         }
3461                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3462                                         /*
3463                                          * FIXME:
3464                                          *     Tcl/TK - "tk events" have a nice feature.
3465                                          *     See the "BIND" command.
3466                                          *    We should support that here.
3467                                          *     You can specify %X and %Y in the event code.
3468                                          *     The idea is: %T - target name.
3469                                          *     The idea is: %N - target number
3470                                          *     The idea is: %E - event name.
3471                                          */
3472                                         Jim_IncrRefCount( teap->body );
3473
3474                                         /* add to head of event list */
3475                                         teap->next = target->event_action;
3476                                         target->event_action = teap;
3477                                         Jim_SetEmptyResult(goi->interp);
3478                                 } else {
3479                                         /* get */
3480                                         if( teap == NULL ){
3481                                                 Jim_SetEmptyResult( goi->interp );
3482                                         } else {
3483                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3484                                         }
3485                                 }
3486                         }
3487                         /* loop for more */
3488                         break;
3489
3490                 case TCFG_WORK_AREA_VIRT:
3491                         if( goi->isconfigure ){
3492                                 target_free_all_working_areas(target);
3493                                 e = Jim_GetOpt_Wide( goi, &w );
3494                                 if( e != JIM_OK ){
3495                                         return e;
3496                                 }
3497                                 target->working_area_virt = w;
3498                         } else {
3499                                 if( goi->argc != 0 ){
3500                                         goto no_params;
3501                                 }
3502                         }
3503                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3504                         /* loop for more */
3505                         break;
3506
3507                 case TCFG_WORK_AREA_PHYS:
3508                         if( goi->isconfigure ){
3509                                 target_free_all_working_areas(target);
3510                                 e = Jim_GetOpt_Wide( goi, &w );
3511                                 if( e != JIM_OK ){
3512                                         return e;
3513                                 }
3514                                 target->working_area_phys = w;
3515                         } else {
3516                                 if( goi->argc != 0 ){
3517                                         goto no_params;
3518                                 }
3519                         }
3520                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3521                         /* loop for more */
3522                         break;
3523
3524                 case TCFG_WORK_AREA_SIZE:
3525                         if( goi->isconfigure ){
3526                                 target_free_all_working_areas(target);
3527                                 e = Jim_GetOpt_Wide( goi, &w );
3528                                 if( e != JIM_OK ){
3529                                         return e;
3530                                 }
3531                                 target->working_area_size = w;
3532                         } else {
3533                                 if( goi->argc != 0 ){
3534                                         goto no_params;
3535                                 }
3536                         }
3537                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3538                         /* loop for more */
3539                         break;
3540
3541                 case TCFG_WORK_AREA_BACKUP:
3542                         if( goi->isconfigure ){
3543                                 target_free_all_working_areas(target);
3544                                 e = Jim_GetOpt_Wide( goi, &w );
3545                                 if( e != JIM_OK ){
3546                                         return e;
3547                                 }
3548                                 /* make this exactly 1 or 0 */
3549                                 target->backup_working_area = (!!w);
3550                         } else {
3551                                 if( goi->argc != 0 ){
3552                                         goto no_params;
3553                                 }
3554                         }
3555                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3556                         /* loop for more e*/
3557                         break;
3558
3559                 case TCFG_ENDIAN:
3560                         if( goi->isconfigure ){
3561                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3562                                 if( e != JIM_OK ){
3563                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3564                                         return e;
3565                                 }
3566                                 target->endianness = n->value;
3567                         } else {
3568                                 if( goi->argc != 0 ){
3569                                         goto no_params;
3570                                 }
3571                         }
3572                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3573                         if( n->name == NULL ){
3574                                 target->endianness = TARGET_LITTLE_ENDIAN;
3575                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3576                         }
3577                         Jim_SetResultString( goi->interp, n->name, -1 );
3578                         /* loop for more */
3579                         break;
3580
3581                 case TCFG_VARIANT:
3582                         if( goi->isconfigure ){
3583                                 if( goi->argc < 1 ){
3584                                         Jim_SetResult_sprintf( goi->interp,
3585                                                                                    "%s ?STRING?",
3586                                                                                    n->name );
3587                                         return JIM_ERR;
3588                                 }
3589                                 if( target->variant ){
3590                                         free((void *)(target->variant));
3591                                 }
3592                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3593                                 target->variant = strdup(cp);
3594                         } else {
3595                                 if( goi->argc != 0 ){
3596                                         goto no_params;
3597                                 }
3598                         }
3599                         Jim_SetResultString( goi->interp, target->variant,-1 );
3600                         /* loop for more */
3601                         break;
3602                 case TCFG_CHAIN_POSITION:
3603                         if( goi->isconfigure ){
3604                                 Jim_Obj *o;
3605                                 jtag_tap_t *tap;
3606                                 target_free_all_working_areas(target);
3607                                 e = Jim_GetOpt_Obj( goi, &o );
3608                                 if( e != JIM_OK ){
3609                                         return e;
3610                                 }
3611                                 tap = jtag_tap_by_jim_obj( goi->interp, o );
3612                                 if( tap == NULL ){
3613                                         return JIM_ERR;
3614                                 }
3615                                 /* make this exactly 1 or 0 */
3616                                 target->tap = tap;
3617                         } else {
3618                                 if( goi->argc != 0 ){
3619                                         goto no_params;
3620                                 }
3621                         }
3622                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3623                         /* loop for more e*/
3624                         break;
3625                 }
3626         } /* while( goi->argc ) */
3627
3628
3629                 /* done - we return */
3630         return JIM_OK;
3631 }
3632
3633 /** this is the 'tcl' handler for the target specific command */
3634 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3635 {
3636         Jim_GetOptInfo goi;
3637         jim_wide a,b,c;
3638         int x,y,z;
3639         uint8_t  target_buf[32];
3640         Jim_Nvp *n;
3641         target_t *target;
3642         struct command_context_s *cmd_ctx;
3643         int e;
3644
3645         enum {
3646                 TS_CMD_CONFIGURE,
3647                 TS_CMD_CGET,
3648
3649                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3650                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3651                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3652                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3653                 TS_CMD_EXAMINE,
3654                 TS_CMD_POLL,
3655                 TS_CMD_RESET,
3656                 TS_CMD_HALT,
3657                 TS_CMD_WAITSTATE,
3658                 TS_CMD_EVENTLIST,
3659                 TS_CMD_CURSTATE,
3660                 TS_CMD_INVOKE_EVENT,
3661         };
3662
3663         static const Jim_Nvp target_options[] = {
3664                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3665                 { .name = "cget", .value = TS_CMD_CGET },
3666                 { .name = "mww", .value = TS_CMD_MWW },
3667                 { .name = "mwh", .value = TS_CMD_MWH },
3668                 { .name = "mwb", .value = TS_CMD_MWB },
3669                 { .name = "mdw", .value = TS_CMD_MDW },
3670                 { .name = "mdh", .value = TS_CMD_MDH },
3671                 { .name = "mdb", .value = TS_CMD_MDB },
3672                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3673                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3674                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3675                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3676
3677                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3678                 { .name = "arp_poll", .value = TS_CMD_POLL },
3679                 { .name = "arp_reset", .value = TS_CMD_RESET },
3680                 { .name = "arp_halt", .value = TS_CMD_HALT },
3681                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3682                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3683
3684                 { .name = NULL, .value = -1 },
3685         };
3686
3687         /* go past the "command" */
3688         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3689
3690         target = Jim_CmdPrivData( goi.interp );
3691         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3692
3693         /* commands here are in an NVP table */
3694         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3695         if( e != JIM_OK ){
3696                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3697                 return e;
3698         }
3699         /* Assume blank result */
3700         Jim_SetEmptyResult( goi.interp );
3701
3702         switch( n->value ){
3703         case TS_CMD_CONFIGURE:
3704                 if( goi.argc < 2 ){
3705                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3706                         return JIM_ERR;
3707                 }
3708                 goi.isconfigure = 1;
3709                 return target_configure( &goi, target );
3710         case TS_CMD_CGET:
3711                 // some things take params
3712                 if( goi.argc < 1 ){
3713                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3714                         return JIM_ERR;
3715                 }
3716                 goi.isconfigure = 0;
3717                 return target_configure( &goi, target );
3718                 break;
3719         case TS_CMD_MWW:
3720         case TS_CMD_MWH:
3721         case TS_CMD_MWB:
3722                 /* argv[0] = cmd
3723                  * argv[1] = address
3724                  * argv[2] = data
3725                  * argv[3] = optional count.
3726                  */
3727
3728                 if( (goi.argc == 2) || (goi.argc == 3) ){
3729                         /* all is well */
3730                 } else {
3731                 mwx_error:
3732                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3733                         return JIM_ERR;
3734                 }
3735
3736                 e = Jim_GetOpt_Wide( &goi, &a );
3737                 if( e != JIM_OK ){
3738                         goto mwx_error;
3739                 }
3740
3741                 e = Jim_GetOpt_Wide( &goi, &b );
3742                 if( e != JIM_OK ){
3743                         goto mwx_error;
3744                 }
3745                 if (goi.argc == 3) {
3746                         e = Jim_GetOpt_Wide( &goi, &c );
3747                         if( e != JIM_OK ){
3748                                 goto mwx_error;
3749                         }
3750                 } else {
3751                         c = 1;
3752                 }
3753
3754                 switch( n->value ){
3755                 case TS_CMD_MWW:
3756                         target_buffer_set_u32( target, target_buf, b );
3757                         b = 4;
3758                         break;
3759                 case TS_CMD_MWH:
3760                         target_buffer_set_u16( target, target_buf, b );
3761                         b = 2;
3762                         break;
3763                 case TS_CMD_MWB:
3764                         target_buffer_set_u8( target, target_buf, b );
3765                         b = 1;
3766                         break;
3767                 }
3768                 for( x = 0 ; x < c ; x++ ){
3769                         e = target_write_memory( target, a, b, 1, target_buf );
3770                         if( e != ERROR_OK ){
3771                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3772                                 return JIM_ERR;
3773                         }
3774                         /* b = width */
3775                         a = a + b;
3776                 }
3777                 return JIM_OK;
3778                 break;
3779
3780                 /* display */
3781         case TS_CMD_MDW:
3782         case TS_CMD_MDH:
3783         case TS_CMD_MDB:
3784                 /* argv[0] = command
3785                  * argv[1] = address
3786                  * argv[2] = optional count
3787                  */
3788                 if( (goi.argc == 2) || (goi.argc == 3) ){
3789                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3790                         return JIM_ERR;
3791                 }
3792                 e = Jim_GetOpt_Wide( &goi, &a );
3793                 if( e != JIM_OK ){
3794                         return JIM_ERR;
3795                 }
3796                 if( goi.argc ){
3797                         e = Jim_GetOpt_Wide( &goi, &c );
3798                         if( e != JIM_OK ){
3799                                 return JIM_ERR;
3800                         }
3801                 } else {
3802                         c = 1;
3803                 }
3804                 b = 1; /* shut up gcc */
3805                 switch( n->value ){
3806                 case TS_CMD_MDW:
3807                         b =  4;
3808                         break;
3809                 case TS_CMD_MDH:
3810                         b = 2;
3811                         break;
3812                 case TS_CMD_MDB:
3813                         b = 1;
3814                         break;
3815                 }
3816
3817                 /* convert to "bytes" */
3818                 c = c * b;
3819                 /* count is now in 'BYTES' */
3820                 while( c > 0 ){
3821                         y = c;
3822                         if( y > 16 ){
3823                                 y = 16;
3824                         }
3825                         e = target_read_memory( target, a, b, y / b, target_buf );
3826                         if( e != ERROR_OK ){
3827                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3828                                 return JIM_ERR;
3829                         }
3830
3831                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3832                         switch( b ){
3833                         case 4:
3834                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3835                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3836                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3837                                 }
3838                                 for( ; (x < 16) ; x += 4 ){
3839                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3840                                 }
3841                                 break;
3842                         case 2:
3843                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3844                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3845                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3846                                 }
3847                                 for( ; (x < 16) ; x += 2 ){
3848                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3849                                 }
3850                                 break;
3851                         case 1:
3852                         default:
3853                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3854                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3855                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3856                                 }
3857                                 for( ; (x < 16) ; x += 1 ){
3858                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3859                                 }
3860                                 break;
3861                         }
3862                         /* ascii-ify the bytes */
3863                         for( x = 0 ; x < y ; x++ ){
3864                                 if( (target_buf[x] >= 0x20) &&
3865                                         (target_buf[x] <= 0x7e) ){
3866                                         /* good */
3867                                 } else {
3868                                         /* smack it */
3869                                         target_buf[x] = '.';
3870                                 }
3871                         }
3872                         /* space pad  */
3873                         while( x < 16 ){
3874                                 target_buf[x] = ' ';
3875                                 x++;
3876                         }
3877                         /* terminate */
3878                         target_buf[16] = 0;
3879                         /* print - with a newline */
3880                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3881                         /* NEXT... */
3882                         c -= 16;
3883                         a += 16;
3884                 }
3885                 return JIM_OK;
3886         case TS_CMD_MEM2ARRAY:
3887                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3888                 break;
3889         case TS_CMD_ARRAY2MEM:
3890                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3891                 break;
3892         case TS_CMD_EXAMINE:
3893                 if( goi.argc ){
3894                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3895                         return JIM_ERR;
3896                 }
3897                 if (!target->tap->enabled)
3898                         goto err_tap_disabled;
3899                 e = target->type->examine( target );
3900                 if( e != ERROR_OK ){
3901                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3902                         return JIM_ERR;
3903                 }
3904                 return JIM_OK;
3905         case TS_CMD_POLL:
3906                 if( goi.argc ){
3907                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3908                         return JIM_ERR;
3909                 }
3910                 if (!target->tap->enabled)
3911                         goto err_tap_disabled;
3912                 if( !(target_was_examined(target)) ){
3913                         e = ERROR_TARGET_NOT_EXAMINED;
3914                 } else {
3915                         e = target->type->poll( target );
3916                 }
3917                 if( e != ERROR_OK ){
3918                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3919                         return JIM_ERR;
3920                 } else {
3921                         return JIM_OK;
3922                 }
3923                 break;
3924         case TS_CMD_RESET:
3925                 if( goi.argc != 2 ){
3926                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3927                         return JIM_ERR;
3928                 }
3929                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3930                 if( e != JIM_OK ){
3931                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3932                         return e;
3933                 }
3934                 /* the halt or not param */
3935                 e = Jim_GetOpt_Wide( &goi, &a);
3936                 if( e != JIM_OK ){
3937                         return e;
3938                 }
3939                 if (!target->tap->enabled)
3940                         goto err_tap_disabled;
3941                 /* determine if we should halt or not. */
3942                 target->reset_halt = !!a;
3943                 /* When this happens - all workareas are invalid. */
3944                 target_free_all_working_areas_restore(target, 0);
3945
3946                 /* do the assert */
3947                 if( n->value == NVP_ASSERT ){
3948                         target->type->assert_reset( target );
3949                 } else {
3950                         target->type->deassert_reset( target );
3951                 }
3952                 return JIM_OK;
3953         case TS_CMD_HALT:
3954                 if( goi.argc ){
3955                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3956                         return JIM_ERR;
3957                 }
3958                 if (!target->tap->enabled)
3959                         goto err_tap_disabled;
3960                 target->type->halt( target );
3961                 return JIM_OK;
3962         case TS_CMD_WAITSTATE:
3963                 /* params:  <name>  statename timeoutmsecs */
3964                 if( goi.argc != 2 ){
3965                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3966                         return JIM_ERR;
3967                 }
3968                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3969                 if( e != JIM_OK ){
3970                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3971                         return e;
3972                 }
3973                 e = Jim_GetOpt_Wide( &goi, &a );
3974                 if( e != JIM_OK ){
3975                         return e;
3976                 }
3977                 if (!target->tap->enabled)
3978                         goto err_tap_disabled;
3979                 e = target_wait_state( target, n->value, a );
3980                 if( e != ERROR_OK ){
3981                         Jim_SetResult_sprintf( goi.interp,
3982                                                                    "target: %s wait %s fails (%d) %s",
3983                                                                    target->cmd_name,
3984                                                                    n->name,
3985                                                                    e, target_strerror_safe(e) );
3986                         return JIM_ERR;
3987                 } else {
3988                         return JIM_OK;
3989                 }
3990         case TS_CMD_EVENTLIST:
3991                 /* List for human, Events defined for this target.
3992                  * scripts/programs should use 'name cget -event NAME'
3993                  */
3994                 {
3995                         target_event_action_t *teap;
3996                         teap = target->event_action;
3997                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3998                                                    target->target_number,
3999                                                    target->cmd_name );
4000                         command_print( cmd_ctx, "%-25s | Body", "Event");
4001                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
4002                         while( teap ){
4003                                 command_print( cmd_ctx,
4004                                                            "%-25s | %s",
4005                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
4006                                                            Jim_GetString( teap->body, NULL ) );
4007                                 teap = teap->next;
4008                         }
4009                         command_print( cmd_ctx, "***END***");
4010                         return JIM_OK;
4011                 }
4012         case TS_CMD_CURSTATE:
4013                 if( goi.argc != 0 ){
4014                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
4015                         return JIM_ERR;
4016                 }
4017                 Jim_SetResultString( goi.interp,
4018                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
4019                 return JIM_OK;
4020         case TS_CMD_INVOKE_EVENT:
4021                 if( goi.argc != 1 ){
4022                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
4023                         return JIM_ERR;
4024                 }
4025                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
4026                 if( e != JIM_OK ){
4027                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
4028                         return e;
4029                 }
4030                 target_handle_event( target, n->value );
4031                 return JIM_OK;
4032         }
4033         return JIM_ERR;
4034
4035 err_tap_disabled:
4036         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4037         return JIM_ERR;
4038 }
4039
4040 static int target_create( Jim_GetOptInfo *goi )
4041 {
4042         Jim_Obj *new_cmd;
4043         Jim_Cmd *cmd;
4044         const char *cp;
4045         char *cp2;
4046         int e;
4047         int x;
4048         target_t *target;
4049         struct command_context_s *cmd_ctx;
4050
4051         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4052         if( goi->argc < 3 ){
4053                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4054                 return JIM_ERR;
4055         }
4056
4057         /* COMMAND */
4058         Jim_GetOpt_Obj( goi, &new_cmd );
4059         /* does this command exist? */
4060         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
4061         if( cmd ){
4062                 cp = Jim_GetString( new_cmd, NULL );
4063                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4064                 return JIM_ERR;
4065         }
4066
4067         /* TYPE */
4068         e = Jim_GetOpt_String( goi, &cp2, NULL );
4069         cp = cp2;
4070         /* now does target type exist */
4071         for( x = 0 ; target_types[x] ; x++ ){
4072                 if( 0 == strcmp( cp, target_types[x]->name ) ){
4073                         /* found */
4074                         break;
4075                 }
4076         }
4077         if( target_types[x] == NULL ){
4078                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
4079                 for( x = 0 ; target_types[x] ; x++ ){
4080                         if( target_types[x+1] ){
4081                                 Jim_AppendStrings( goi->interp,
4082                                                                    Jim_GetResult(goi->interp),
4083                                                                    target_types[x]->name,
4084                                                                    ", ", NULL);
4085                         } else {
4086                                 Jim_AppendStrings( goi->interp,
4087                                                                    Jim_GetResult(goi->interp),
4088                                                                    " or ",
4089                                                                    target_types[x]->name,NULL );
4090                         }
4091                 }
4092                 return JIM_ERR;
4093         }
4094
4095         /* Create it */
4096         target = calloc(1,sizeof(target_t));
4097         /* set target number */
4098         target->target_number = new_target_number();
4099
4100         /* allocate memory for each unique target type */
4101         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
4102
4103         memcpy( target->type, target_types[x], sizeof(target_type_t));
4104
4105         /* will be set by "-endian" */
4106         target->endianness = TARGET_ENDIAN_UNKNOWN;
4107
4108         target->working_area        = 0x0;
4109         target->working_area_size   = 0x0;
4110         target->working_areas       = NULL;
4111         target->backup_working_area = 0;
4112
4113         target->state               = TARGET_UNKNOWN;
4114         target->debug_reason        = DBG_REASON_UNDEFINED;
4115         target->reg_cache           = NULL;
4116         target->breakpoints         = NULL;
4117         target->watchpoints         = NULL;
4118         target->next                = NULL;
4119         target->arch_info           = NULL;
4120
4121         target->display             = 1;
4122
4123         /* initialize trace information */
4124         target->trace_info = malloc(sizeof(trace_t));
4125         target->trace_info->num_trace_points         = 0;
4126         target->trace_info->trace_points_size        = 0;
4127         target->trace_info->trace_points             = NULL;
4128         target->trace_info->trace_history_size       = 0;
4129         target->trace_info->trace_history            = NULL;
4130         target->trace_info->trace_history_pos        = 0;
4131         target->trace_info->trace_history_overflowed = 0;
4132
4133         target->dbgmsg          = NULL;
4134         target->dbg_msg_enabled = 0;
4135
4136         target->endianness = TARGET_ENDIAN_UNKNOWN;
4137
4138         /* Do the rest as "configure" options */
4139         goi->isconfigure = 1;
4140         e = target_configure( goi, target);
4141
4142         if (target->tap == NULL)
4143         {
4144                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
4145                 e=JIM_ERR;
4146         }
4147
4148         if( e != JIM_OK ){
4149                 free( target->type );
4150                 free( target );
4151                 return e;
4152         }
4153
4154         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
4155                 /* default endian to little if not specified */
4156                 target->endianness = TARGET_LITTLE_ENDIAN;
4157         }
4158
4159         /* incase variant is not set */
4160         if (!target->variant)
4161                 target->variant = strdup("");
4162
4163         /* create the target specific commands */
4164         if( target->type->register_commands ){
4165                 (*(target->type->register_commands))( cmd_ctx );
4166         }
4167         if( target->type->target_create ){
4168                 (*(target->type->target_create))( target, goi->interp );
4169         }
4170
4171         /* append to end of list */
4172         {
4173                 target_t **tpp;
4174                 tpp = &(all_targets);
4175                 while( *tpp ){
4176                         tpp = &( (*tpp)->next );
4177                 }
4178                 *tpp = target;
4179         }
4180
4181         cp = Jim_GetString( new_cmd, NULL );
4182         target->cmd_name = strdup(cp);
4183
4184         /* now - create the new target name command */
4185         e = Jim_CreateCommand( goi->interp,
4186                                                    /* name */
4187                                                    cp,
4188                                                    tcl_target_func, /* C function */
4189                                                    target, /* private data */
4190                                                    NULL ); /* no del proc */
4191
4192         return e;
4193 }
4194
4195 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
4196 {
4197         int x,r,e;
4198         jim_wide w;
4199         struct command_context_s *cmd_ctx;
4200         target_t *target;
4201         Jim_GetOptInfo goi;
4202         enum tcmd {
4203                 /* TG = target generic */
4204                 TG_CMD_CREATE,
4205                 TG_CMD_TYPES,
4206                 TG_CMD_NAMES,
4207                 TG_CMD_CURRENT,
4208                 TG_CMD_NUMBER,
4209                 TG_CMD_COUNT,
4210         };
4211         const char *target_cmds[] = {
4212                 "create", "types", "names", "current", "number",
4213                 "count",
4214                 NULL /* terminate */
4215         };
4216
4217         LOG_DEBUG("Target command params:");
4218         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4219
4220         cmd_ctx = Jim_GetAssocData( interp, "context" );
4221
4222         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4223
4224         if( goi.argc == 0 ){
4225                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4226                 return JIM_ERR;
4227         }
4228
4229         /* Jim_GetOpt_Debug( &goi ); */
4230         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
4231         if( r != JIM_OK ){
4232                 return r;
4233         }
4234
4235         switch(x){
4236         default:
4237                 Jim_Panic(goi.interp,"Why am I here?");
4238                 return JIM_ERR;
4239         case TG_CMD_CURRENT:
4240                 if( goi.argc != 0 ){
4241                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4242                         return JIM_ERR;
4243                 }
4244                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4245                 return JIM_OK;
4246         case TG_CMD_TYPES:
4247                 if( goi.argc != 0 ){
4248                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4249                         return JIM_ERR;
4250                 }
4251                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4252                 for( x = 0 ; target_types[x] ; x++ ){
4253                         Jim_ListAppendElement( goi.interp,
4254                                                                    Jim_GetResult(goi.interp),
4255                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4256                 }
4257                 return JIM_OK;
4258         case TG_CMD_NAMES:
4259                 if( goi.argc != 0 ){
4260                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4261                         return JIM_ERR;
4262                 }
4263                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4264                 target = all_targets;
4265                 while( target ){
4266                         Jim_ListAppendElement( goi.interp,
4267                                                                    Jim_GetResult(goi.interp),
4268                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4269                         target = target->next;
4270                 }
4271                 return JIM_OK;
4272         case TG_CMD_CREATE:
4273                 if( goi.argc < 3 ){
4274                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4275                         return JIM_ERR;
4276                 }
4277                 return target_create( &goi );
4278                 break;
4279         case TG_CMD_NUMBER:
4280                 if( goi.argc != 1 ){
4281                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4282                         return JIM_ERR;
4283                 }
4284                 e = Jim_GetOpt_Wide( &goi, &w );
4285                 if( e != JIM_OK ){
4286                         return JIM_ERR;
4287                 }
4288                 {
4289                         target_t *t;
4290                         t = get_target_by_num(w);
4291                         if( t == NULL ){
4292                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4293                                 return JIM_ERR;
4294                         }
4295                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4296                         return JIM_OK;
4297                 }
4298         case TG_CMD_COUNT:
4299                 if( goi.argc != 0 ){
4300                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4301                         return JIM_ERR;
4302                 }
4303                 Jim_SetResult( goi.interp,
4304                                            Jim_NewIntObj( goi.interp, max_target_number()));
4305                 return JIM_OK;
4306         }
4307
4308         return JIM_ERR;
4309 }
4310
4311
4312 struct FastLoad
4313 {
4314         uint32_t address;
4315         uint8_t *data;
4316         int length;
4317
4318 };
4319
4320 static int fastload_num;
4321 static struct FastLoad *fastload;
4322
4323 static void free_fastload(void)
4324 {
4325         if (fastload!=NULL)
4326         {
4327                 int i;
4328                 for (i=0; i<fastload_num; i++)
4329                 {
4330                         if (fastload[i].data)
4331                                 free(fastload[i].data);
4332                 }
4333                 free(fastload);
4334                 fastload=NULL;
4335         }
4336 }
4337
4338
4339
4340
4341 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4342 {
4343         uint8_t *buffer;
4344         uint32_t buf_cnt;
4345         uint32_t image_size;
4346         uint32_t min_address=0;
4347         uint32_t max_address=0xffffffff;
4348         int i;
4349
4350         image_t image;
4351
4352         duration_t duration;
4353         char *duration_text;
4354
4355         int retval = parse_load_image_command_args(args, argc,
4356                         &image, &min_address, &max_address);
4357         if (ERROR_OK != retval)
4358                 return retval;
4359
4360         duration_start_measure(&duration);
4361
4362         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4363         {
4364                 return ERROR_OK;
4365         }
4366
4367         image_size = 0x0;
4368         retval = ERROR_OK;
4369         fastload_num=image.num_sections;
4370         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4371         if (fastload==NULL)
4372         {
4373                 image_close(&image);
4374                 return ERROR_FAIL;
4375         }
4376         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4377         for (i = 0; i < image.num_sections; i++)
4378         {
4379                 buffer = malloc(image.sections[i].size);
4380                 if (buffer == NULL)
4381                 {
4382                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4383                         break;
4384                 }
4385
4386                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4387                 {
4388                         free(buffer);
4389                         break;
4390                 }
4391
4392                 uint32_t offset=0;
4393                 uint32_t length=buf_cnt;
4394
4395
4396                 /* DANGER!!! beware of unsigned comparision here!!! */
4397
4398                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4399                                 (image.sections[i].base_address<max_address))
4400                 {
4401                         if (image.sections[i].base_address<min_address)
4402                         {
4403                                 /* clip addresses below */
4404                                 offset+=min_address-image.sections[i].base_address;
4405                                 length-=offset;
4406                         }
4407
4408                         if (image.sections[i].base_address+buf_cnt>max_address)
4409                         {
4410                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4411                         }
4412
4413                         fastload[i].address=image.sections[i].base_address+offset;
4414                         fastload[i].data=malloc(length);
4415                         if (fastload[i].data==NULL)
4416                         {
4417                                 free(buffer);
4418                                 break;
4419                         }
4420                         memcpy(fastload[i].data, buffer+offset, length);
4421                         fastload[i].length=length;
4422
4423                         image_size += length;
4424                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4425                 }
4426
4427                 free(buffer);
4428         }
4429
4430         duration_stop_measure(&duration, &duration_text);
4431         if (retval==ERROR_OK)
4432         {
4433                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4434                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4435         }
4436         free(duration_text);
4437
4438         image_close(&image);
4439
4440         if (retval!=ERROR_OK)
4441         {
4442                 free_fastload();
4443         }
4444
4445         return retval;
4446 }
4447
4448 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4449 {
4450         if (argc>0)
4451                 return ERROR_COMMAND_SYNTAX_ERROR;
4452         if (fastload==NULL)
4453         {
4454                 LOG_ERROR("No image in memory");
4455                 return ERROR_FAIL;
4456         }
4457         int i;
4458         int ms=timeval_ms();
4459         int size=0;
4460         int retval=ERROR_OK;
4461         for (i=0; i<fastload_num;i++)
4462         {
4463                 target_t *target = get_current_target(cmd_ctx);
4464                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4465                 if (retval==ERROR_OK)
4466                 {
4467                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4468                 }
4469                 size+=fastload[i].length;
4470         }
4471         int after=timeval_ms();
4472         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4473         return retval;
4474 }