]> git.sur5r.net Git - openocd/blob - src/target/target.c
Add target_run_algorithm wrapper:
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_request.h"
38 #include "time_support.h"
39 #include "register.h"
40 #include "trace.h"
41 #include "image.h"
42 #include "jtag.h"
43
44 #include <inttypes.h>
45
46
47 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48
49 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71
72 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
75
76 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
78
79 /* targets */
80 extern target_type_t arm7tdmi_target;
81 extern target_type_t arm720t_target;
82 extern target_type_t arm9tdmi_target;
83 extern target_type_t arm920t_target;
84 extern target_type_t arm966e_target;
85 extern target_type_t arm926ejs_target;
86 extern target_type_t feroceon_target;
87 extern target_type_t xscale_target;
88 extern target_type_t cortexm3_target;
89 extern target_type_t cortexa8_target;
90 extern target_type_t arm11_target;
91 extern target_type_t mips_m4k_target;
92 extern target_type_t avr_target;
93
94 target_type_t *target_types[] =
95 {
96         &arm7tdmi_target,
97         &arm9tdmi_target,
98         &arm920t_target,
99         &arm720t_target,
100         &arm966e_target,
101         &arm926ejs_target,
102         &feroceon_target,
103         &xscale_target,
104         &cortexm3_target,
105         &cortexa8_target,
106         &arm11_target,
107         &mips_m4k_target,
108         &avr_target,
109         NULL,
110 };
111
112 target_t *all_targets = NULL;
113 target_event_callback_t *target_event_callbacks = NULL;
114 target_timer_callback_t *target_timer_callbacks = NULL;
115
116 const Jim_Nvp nvp_assert[] = {
117         { .name = "assert", NVP_ASSERT },
118         { .name = "deassert", NVP_DEASSERT },
119         { .name = "T", NVP_ASSERT },
120         { .name = "F", NVP_DEASSERT },
121         { .name = "t", NVP_ASSERT },
122         { .name = "f", NVP_DEASSERT },
123         { .name = NULL, .value = -1 }
124 };
125
126 const Jim_Nvp nvp_error_target[] = {
127         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
128         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
129         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
130         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
131         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
132         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
133         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
134         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
135         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
136         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
137         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
138         { .value = -1, .name = NULL }
139 };
140
141 const char *target_strerror_safe( int err )
142 {
143         const Jim_Nvp *n;
144
145         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
146         if( n->name == NULL ){
147                 return "unknown";
148         } else {
149                 return n->name;
150         }
151 }
152
153 static const Jim_Nvp nvp_target_event[] = {
154         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
155         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
156
157         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
158         { .value = TARGET_EVENT_HALTED, .name = "halted" },
159         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
160         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
161         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
162
163         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
164         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
165
166         /* historical name */
167
168         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
169
170         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
171         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
172         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
173         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
174         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
175         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
176         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
177         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
178         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
179         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
180
181         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
182         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
183
184         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
185         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
186
187         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
188         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
189
190         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
191         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
192
193         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
194         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
195
196         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
197         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
198         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
199
200         { .name = NULL, .value = -1 }
201 };
202
203 const Jim_Nvp nvp_target_state[] = {
204         { .name = "unknown", .value = TARGET_UNKNOWN },
205         { .name = "running", .value = TARGET_RUNNING },
206         { .name = "halted",  .value = TARGET_HALTED },
207         { .name = "reset",   .value = TARGET_RESET },
208         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
209         { .name = NULL, .value = -1 },
210 };
211
212 const Jim_Nvp nvp_target_debug_reason [] = {
213         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
214         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
215         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
216         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
217         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
218         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
219         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
220         { .name = NULL, .value = -1 },
221 };
222
223 const Jim_Nvp nvp_target_endian[] = {
224         { .name = "big",    .value = TARGET_BIG_ENDIAN },
225         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
226         { .name = "be",     .value = TARGET_BIG_ENDIAN },
227         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
228         { .name = NULL,     .value = -1 },
229 };
230
231 const Jim_Nvp nvp_reset_modes[] = {
232         { .name = "unknown", .value = RESET_UNKNOWN },
233         { .name = "run"    , .value = RESET_RUN },
234         { .name = "halt"   , .value = RESET_HALT },
235         { .name = "init"   , .value = RESET_INIT },
236         { .name = NULL     , .value = -1 },
237 };
238
239 static int max_target_number(void)
240 {
241         target_t *t;
242         int x;
243
244         x = -1;
245         t = all_targets;
246         while( t ){
247                 if( x < t->target_number ){
248                         x = (t->target_number)+1;
249                 }
250                 t = t->next;
251         }
252         return x;
253 }
254
255 /* determine the number of the new target */
256 static int new_target_number(void)
257 {
258         target_t *t;
259         int x;
260
261         /* number is 0 based */
262         x = -1;
263         t = all_targets;
264         while(t){
265                 if( x < t->target_number ){
266                         x = t->target_number;
267                 }
268                 t = t->next;
269         }
270         return x+1;
271 }
272
273 static int target_continous_poll = 1;
274
275 /* read a u32 from a buffer in target memory endianness */
276 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
277 {
278         if (target->endianness == TARGET_LITTLE_ENDIAN)
279                 return le_to_h_u32(buffer);
280         else
281                 return be_to_h_u32(buffer);
282 }
283
284 /* read a u16 from a buffer in target memory endianness */
285 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
286 {
287         if (target->endianness == TARGET_LITTLE_ENDIAN)
288                 return le_to_h_u16(buffer);
289         else
290                 return be_to_h_u16(buffer);
291 }
292
293 /* read a u8 from a buffer in target memory endianness */
294 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
295 {
296         return *buffer & 0x0ff;
297 }
298
299 /* write a u32 to a buffer in target memory endianness */
300 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
301 {
302         if (target->endianness == TARGET_LITTLE_ENDIAN)
303                 h_u32_to_le(buffer, value);
304         else
305                 h_u32_to_be(buffer, value);
306 }
307
308 /* write a u16 to a buffer in target memory endianness */
309 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
310 {
311         if (target->endianness == TARGET_LITTLE_ENDIAN)
312                 h_u16_to_le(buffer, value);
313         else
314                 h_u16_to_be(buffer, value);
315 }
316
317 /* write a u8 to a buffer in target memory endianness */
318 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
319 {
320         *buffer = value;
321 }
322
323 /* return a pointer to a configured target; id is name or number */
324 target_t *get_target(const char *id)
325 {
326         target_t *target;
327         char *endptr;
328         int num;
329
330         /* try as tcltarget name */
331         for (target = all_targets; target; target = target->next) {
332                 if (target->cmd_name == NULL)
333                         continue;
334                 if (strcmp(id, target->cmd_name) == 0)
335                         return target;
336         }
337
338         /* no match, try as number */
339         num = strtoul(id, &endptr, 0);
340         if (*endptr != 0)
341                 return NULL;
342
343         for (target = all_targets; target; target = target->next) {
344                 if (target->target_number == num)
345                         return target;
346         }
347
348         return NULL;
349 }
350
351 /* returns a pointer to the n-th configured target */
352 static target_t *get_target_by_num(int num)
353 {
354         target_t *target = all_targets;
355
356         while (target){
357                 if( target->target_number == num ){
358                         return target;
359                 }
360                 target = target->next;
361         }
362
363         return NULL;
364 }
365
366 int get_num_by_target(target_t *query_target)
367 {
368         return query_target->target_number;
369 }
370
371 target_t* get_current_target(command_context_t *cmd_ctx)
372 {
373         target_t *target = get_target_by_num(cmd_ctx->current_target);
374
375         if (target == NULL)
376         {
377                 LOG_ERROR("BUG: current_target out of bounds");
378                 exit(-1);
379         }
380
381         return target;
382 }
383
384 int target_poll(struct target_s *target)
385 {
386         /* We can't poll until after examine */
387         if (!target->type->examined)
388         {
389                 /* Fail silently lest we pollute the log */
390                 return ERROR_FAIL;
391         }
392         return target->type->poll(target);
393 }
394
395 int target_halt(struct target_s *target)
396 {
397         /* We can't poll until after examine */
398         if (!target->type->examined)
399         {
400                 LOG_ERROR("Target not examined yet");
401                 return ERROR_FAIL;
402         }
403         return target->type->halt(target);
404 }
405
406 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
407 {
408         int retval;
409
410         /* We can't poll until after examine */
411         if (!target->type->examined)
412         {
413                 LOG_ERROR("Target not examined yet");
414                 return ERROR_FAIL;
415         }
416
417         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
418          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
419          * the application.
420          */
421         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
422                 return retval;
423
424         return retval;
425 }
426
427 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
428 {
429         char buf[100];
430         int retval;
431         Jim_Nvp *n;
432         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
433         if( n->name == NULL ){
434                 LOG_ERROR("invalid reset mode");
435                 return ERROR_FAIL;
436         }
437
438         sprintf( buf, "ocd_process_reset %s", n->name );
439         retval = Jim_Eval( interp, buf );
440
441         if(retval != JIM_OK) {
442                 Jim_PrintErrorMessage(interp);
443                 return ERROR_FAIL;
444         }
445
446         /* We want any events to be processed before the prompt */
447         retval = target_call_timer_callbacks_now();
448
449         return retval;
450 }
451
452 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
453 {
454         *physical = virtual;
455         return ERROR_OK;
456 }
457
458 static int default_mmu(struct target_s *target, int *enabled)
459 {
460         *enabled = 0;
461         return ERROR_OK;
462 }
463
464 static int default_examine(struct target_s *target)
465 {
466         target->type->examined = 1;
467         return ERROR_OK;
468 }
469
470 /* Targets that correctly implement init+examine, i.e.
471  * no communication with target during init:
472  *
473  * XScale
474  */
475 int target_examine(void)
476 {
477         int retval = ERROR_OK;
478         target_t *target = all_targets;
479         while (target)
480         {
481                 if ((retval = target->type->examine(target))!=ERROR_OK)
482                         return retval;
483                 target = target->next;
484         }
485         return retval;
486 }
487
488 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
489 {
490         if (!target->type->examined)
491         {
492                 LOG_ERROR("Target not examined yet");
493                 return ERROR_FAIL;
494         }
495         return target->type->write_memory_imp(target, address, size, count, buffer);
496 }
497
498 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
499 {
500         if (!target->type->examined)
501         {
502                 LOG_ERROR("Target not examined yet");
503                 return ERROR_FAIL;
504         }
505         return target->type->read_memory_imp(target, address, size, count, buffer);
506 }
507
508 static int target_soft_reset_halt_imp(struct target_s *target)
509 {
510         if (!target->type->examined)
511         {
512                 LOG_ERROR("Target not examined yet");
513                 return ERROR_FAIL;
514         }
515         return target->type->soft_reset_halt_imp(target);
516 }
517
518 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
519 {
520         if (!target->type->examined)
521         {
522                 LOG_ERROR("Target not examined yet");
523                 return ERROR_FAIL;
524         }
525         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
526 }
527
528 int target_read_memory(struct target_s *target,
529                 u32 address, u32 size, u32 count, u8 *buffer)
530 {
531         return target->type->read_memory(target, address, size, count, buffer);
532 }
533
534 int target_write_memory(struct target_s *target,
535                 u32 address, u32 size, u32 count, u8 *buffer)
536 {
537         return target->type->write_memory(target, address, size, count, buffer);
538 }
539
540 int target_run_algorithm(struct target_s *target,
541                 int num_mem_params, mem_param_t *mem_params,
542                 int num_reg_params, reg_param_t *reg_param,
543                 u32 entry_point, u32 exit_point,
544                 int timeout_ms, void *arch_info)
545 {
546         return target->type->run_algorithm(target,
547                         num_mem_params, mem_params, num_reg_params, reg_param,
548                         entry_point, exit_point, timeout_ms, arch_info);
549 }
550
551
552 int target_init(struct command_context_s *cmd_ctx)
553 {
554         target_t *target = all_targets;
555         int retval;
556
557         while (target)
558         {
559                 target->type->examined = 0;
560                 if (target->type->examine == NULL)
561                 {
562                         target->type->examine = default_examine;
563                 }
564
565                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
566                 {
567                         LOG_ERROR("target '%s' init failed", target->type->name);
568                         return retval;
569                 }
570
571                 /* Set up default functions if none are provided by target */
572                 if (target->type->virt2phys == NULL)
573                 {
574                         target->type->virt2phys = default_virt2phys;
575                 }
576                 target->type->virt2phys = default_virt2phys;
577                 /* a non-invasive way(in terms of patches) to add some code that
578                  * runs before the type->write/read_memory implementation
579                  */
580                 target->type->write_memory_imp = target->type->write_memory;
581                 target->type->write_memory = target_write_memory_imp;
582                 target->type->read_memory_imp = target->type->read_memory;
583                 target->type->read_memory = target_read_memory_imp;
584                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
585                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
586                 target->type->run_algorithm_imp = target->type->run_algorithm;
587                 target->type->run_algorithm = target_run_algorithm_imp;
588
589                 if (target->type->mmu == NULL)
590                 {
591                         target->type->mmu = default_mmu;
592                 }
593                 target = target->next;
594         }
595
596         if (all_targets)
597         {
598                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
599                         return retval;
600                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
601                         return retval;
602         }
603
604         return ERROR_OK;
605 }
606
607 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
608 {
609         target_event_callback_t **callbacks_p = &target_event_callbacks;
610
611         if (callback == NULL)
612         {
613                 return ERROR_INVALID_ARGUMENTS;
614         }
615
616         if (*callbacks_p)
617         {
618                 while ((*callbacks_p)->next)
619                         callbacks_p = &((*callbacks_p)->next);
620                 callbacks_p = &((*callbacks_p)->next);
621         }
622
623         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
624         (*callbacks_p)->callback = callback;
625         (*callbacks_p)->priv = priv;
626         (*callbacks_p)->next = NULL;
627
628         return ERROR_OK;
629 }
630
631 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
632 {
633         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
634         struct timeval now;
635
636         if (callback == NULL)
637         {
638                 return ERROR_INVALID_ARGUMENTS;
639         }
640
641         if (*callbacks_p)
642         {
643                 while ((*callbacks_p)->next)
644                         callbacks_p = &((*callbacks_p)->next);
645                 callbacks_p = &((*callbacks_p)->next);
646         }
647
648         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
649         (*callbacks_p)->callback = callback;
650         (*callbacks_p)->periodic = periodic;
651         (*callbacks_p)->time_ms = time_ms;
652
653         gettimeofday(&now, NULL);
654         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
655         time_ms -= (time_ms % 1000);
656         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
657         if ((*callbacks_p)->when.tv_usec > 1000000)
658         {
659                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
660                 (*callbacks_p)->when.tv_sec += 1;
661         }
662
663         (*callbacks_p)->priv = priv;
664         (*callbacks_p)->next = NULL;
665
666         return ERROR_OK;
667 }
668
669 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
670 {
671         target_event_callback_t **p = &target_event_callbacks;
672         target_event_callback_t *c = target_event_callbacks;
673
674         if (callback == NULL)
675         {
676                 return ERROR_INVALID_ARGUMENTS;
677         }
678
679         while (c)
680         {
681                 target_event_callback_t *next = c->next;
682                 if ((c->callback == callback) && (c->priv == priv))
683                 {
684                         *p = next;
685                         free(c);
686                         return ERROR_OK;
687                 }
688                 else
689                         p = &(c->next);
690                 c = next;
691         }
692
693         return ERROR_OK;
694 }
695
696 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
697 {
698         target_timer_callback_t **p = &target_timer_callbacks;
699         target_timer_callback_t *c = target_timer_callbacks;
700
701         if (callback == NULL)
702         {
703                 return ERROR_INVALID_ARGUMENTS;
704         }
705
706         while (c)
707         {
708                 target_timer_callback_t *next = c->next;
709                 if ((c->callback == callback) && (c->priv == priv))
710                 {
711                         *p = next;
712                         free(c);
713                         return ERROR_OK;
714                 }
715                 else
716                         p = &(c->next);
717                 c = next;
718         }
719
720         return ERROR_OK;
721 }
722
723 int target_call_event_callbacks(target_t *target, enum target_event event)
724 {
725         target_event_callback_t *callback = target_event_callbacks;
726         target_event_callback_t *next_callback;
727
728         if (event == TARGET_EVENT_HALTED)
729         {
730                 /* execute early halted first */
731                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
732         }
733
734         LOG_DEBUG("target event %i (%s)",
735                           event,
736                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
737
738         target_handle_event( target, event );
739
740         while (callback)
741         {
742                 next_callback = callback->next;
743                 callback->callback(target, event, callback->priv);
744                 callback = next_callback;
745         }
746
747         return ERROR_OK;
748 }
749
750 static int target_call_timer_callbacks_check_time(int checktime)
751 {
752         target_timer_callback_t *callback = target_timer_callbacks;
753         target_timer_callback_t *next_callback;
754         struct timeval now;
755
756         keep_alive();
757
758         gettimeofday(&now, NULL);
759
760         while (callback)
761         {
762                 next_callback = callback->next;
763
764                 if ((!checktime&&callback->periodic)||
765                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
766                                                 || (now.tv_sec > callback->when.tv_sec)))
767                 {
768                         if(callback->callback != NULL)
769                         {
770                                 callback->callback(callback->priv);
771                                 if (callback->periodic)
772                                 {
773                                         int time_ms = callback->time_ms;
774                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
775                                         time_ms -= (time_ms % 1000);
776                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
777                                         if (callback->when.tv_usec > 1000000)
778                                         {
779                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
780                                                 callback->when.tv_sec += 1;
781                                         }
782                                 }
783                                 else
784                                 {
785                                         int retval;
786                                         if((retval = target_unregister_timer_callback(callback->callback, callback->priv)) != ERROR_OK)
787                                                 return retval;
788                                 }
789                         }
790                 }
791
792                 callback = next_callback;
793         }
794
795         return ERROR_OK;
796 }
797
798 int target_call_timer_callbacks(void)
799 {
800         return target_call_timer_callbacks_check_time(1);
801 }
802
803 /* invoke periodic callbacks immediately */
804 int target_call_timer_callbacks_now(void)
805 {
806         return target_call_timer_callbacks_check_time(0);
807 }
808
809 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
810 {
811         working_area_t *c = target->working_areas;
812         working_area_t *new_wa = NULL;
813
814         /* Reevaluate working area address based on MMU state*/
815         if (target->working_areas == NULL)
816         {
817                 int retval;
818                 int enabled;
819                 retval = target->type->mmu(target, &enabled);
820                 if (retval != ERROR_OK)
821                 {
822                         return retval;
823                 }
824                 if (enabled)
825                 {
826                         target->working_area = target->working_area_virt;
827                 }
828                 else
829                 {
830                         target->working_area = target->working_area_phys;
831                 }
832         }
833
834         /* only allocate multiples of 4 byte */
835         if (size % 4)
836         {
837                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
838                 size = CEIL(size, 4);
839         }
840
841         /* see if there's already a matching working area */
842         while (c)
843         {
844                 if ((c->free) && (c->size == size))
845                 {
846                         new_wa = c;
847                         break;
848                 }
849                 c = c->next;
850         }
851
852         /* if not, allocate a new one */
853         if (!new_wa)
854         {
855                 working_area_t **p = &target->working_areas;
856                 u32 first_free = target->working_area;
857                 u32 free_size = target->working_area_size;
858
859                 LOG_DEBUG("allocating new working area");
860
861                 c = target->working_areas;
862                 while (c)
863                 {
864                         first_free += c->size;
865                         free_size -= c->size;
866                         p = &c->next;
867                         c = c->next;
868                 }
869
870                 if (free_size < size)
871                 {
872                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
873                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
874                 }
875
876                 new_wa = malloc(sizeof(working_area_t));
877                 new_wa->next = NULL;
878                 new_wa->size = size;
879                 new_wa->address = first_free;
880
881                 if (target->backup_working_area)
882                 {
883                         int retval;
884                         new_wa->backup = malloc(new_wa->size);
885                         if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
886                         {
887                                 free(new_wa->backup);
888                                 free(new_wa);
889                                 return retval;
890                         }
891                 }
892                 else
893                 {
894                         new_wa->backup = NULL;
895                 }
896
897                 /* put new entry in list */
898                 *p = new_wa;
899         }
900
901         /* mark as used, and return the new (reused) area */
902         new_wa->free = 0;
903         *area = new_wa;
904
905         /* user pointer */
906         new_wa->user = area;
907
908         return ERROR_OK;
909 }
910
911 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
912 {
913         if (area->free)
914                 return ERROR_OK;
915
916         if (restore&&target->backup_working_area)
917         {
918                 int retval;
919                 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
920                         return retval;
921         }
922
923         area->free = 1;
924
925         /* mark user pointer invalid */
926         *area->user = NULL;
927         area->user = NULL;
928
929         return ERROR_OK;
930 }
931
932 int target_free_working_area(struct target_s *target, working_area_t *area)
933 {
934         return target_free_working_area_restore(target, area, 1);
935 }
936
937 /* free resources and restore memory, if restoring memory fails,
938  * free up resources anyway
939  */
940 void target_free_all_working_areas_restore(struct target_s *target, int restore)
941 {
942         working_area_t *c = target->working_areas;
943
944         while (c)
945         {
946                 working_area_t *next = c->next;
947                 target_free_working_area_restore(target, c, restore);
948
949                 if (c->backup)
950                         free(c->backup);
951
952                 free(c);
953
954                 c = next;
955         }
956
957         target->working_areas = NULL;
958 }
959
960 void target_free_all_working_areas(struct target_s *target)
961 {
962         target_free_all_working_areas_restore(target, 1);
963 }
964
965 int target_register_commands(struct command_context_s *cmd_ctx)
966 {
967
968         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
969
970
971
972
973         register_jim(cmd_ctx, "target", jim_target, "configure target" );
974
975         return ERROR_OK;
976 }
977
978 int target_arch_state(struct target_s *target)
979 {
980         int retval;
981         if (target==NULL)
982         {
983                 LOG_USER("No target has been configured");
984                 return ERROR_OK;
985         }
986
987         LOG_USER("target state: %s",
988                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
989
990         if (target->state!=TARGET_HALTED)
991                 return ERROR_OK;
992
993         retval=target->type->arch_state(target);
994         return retval;
995 }
996
997 /* Single aligned words are guaranteed to use 16 or 32 bit access
998  * mode respectively, otherwise data is handled as quickly as
999  * possible
1000  */
1001 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1002 {
1003         int retval;
1004         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1005
1006         if (!target->type->examined)
1007         {
1008                 LOG_ERROR("Target not examined yet");
1009                 return ERROR_FAIL;
1010         }
1011
1012         if (size == 0) {
1013                 return ERROR_OK;
1014         }
1015
1016         if ((address + size - 1) < address)
1017         {
1018                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1019                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1020                 return ERROR_FAIL;
1021         }
1022
1023         if (((address % 2) == 0) && (size == 2))
1024         {
1025                 return target_write_memory(target, address, 2, 1, buffer);
1026         }
1027
1028         /* handle unaligned head bytes */
1029         if (address % 4)
1030         {
1031                 u32 unaligned = 4 - (address % 4);
1032
1033                 if (unaligned > size)
1034                         unaligned = size;
1035
1036                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1037                         return retval;
1038
1039                 buffer += unaligned;
1040                 address += unaligned;
1041                 size -= unaligned;
1042         }
1043
1044         /* handle aligned words */
1045         if (size >= 4)
1046         {
1047                 int aligned = size - (size % 4);
1048
1049                 /* use bulk writes above a certain limit. This may have to be changed */
1050                 if (aligned > 128)
1051                 {
1052                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1053                                 return retval;
1054                 }
1055                 else
1056                 {
1057                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1058                                 return retval;
1059                 }
1060
1061                 buffer += aligned;
1062                 address += aligned;
1063                 size -= aligned;
1064         }
1065
1066         /* handle tail writes of less than 4 bytes */
1067         if (size > 0)
1068         {
1069                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1070                         return retval;
1071         }
1072
1073         return ERROR_OK;
1074 }
1075
1076 /* Single aligned words are guaranteed to use 16 or 32 bit access
1077  * mode respectively, otherwise data is handled as quickly as
1078  * possible
1079  */
1080 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1081 {
1082         int retval;
1083         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1084
1085         if (!target->type->examined)
1086         {
1087                 LOG_ERROR("Target not examined yet");
1088                 return ERROR_FAIL;
1089         }
1090
1091         if (size == 0) {
1092                 return ERROR_OK;
1093         }
1094
1095         if ((address + size - 1) < address)
1096         {
1097                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1098                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1099                 return ERROR_FAIL;
1100         }
1101
1102         if (((address % 2) == 0) && (size == 2))
1103         {
1104                 return target_read_memory(target, address, 2, 1, buffer);
1105         }
1106
1107         /* handle unaligned head bytes */
1108         if (address % 4)
1109         {
1110                 u32 unaligned = 4 - (address % 4);
1111
1112                 if (unaligned > size)
1113                         unaligned = size;
1114
1115                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1116                         return retval;
1117
1118                 buffer += unaligned;
1119                 address += unaligned;
1120                 size -= unaligned;
1121         }
1122
1123         /* handle aligned words */
1124         if (size >= 4)
1125         {
1126                 int aligned = size - (size % 4);
1127
1128                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1129                         return retval;
1130
1131                 buffer += aligned;
1132                 address += aligned;
1133                 size -= aligned;
1134         }
1135
1136         /* handle tail writes of less than 4 bytes */
1137         if (size > 0)
1138         {
1139                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1140                         return retval;
1141         }
1142
1143         return ERROR_OK;
1144 }
1145
1146 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1147 {
1148         u8 *buffer;
1149         int retval;
1150         u32 i;
1151         u32 checksum = 0;
1152         if (!target->type->examined)
1153         {
1154                 LOG_ERROR("Target not examined yet");
1155                 return ERROR_FAIL;
1156         }
1157
1158         if ((retval = target->type->checksum_memory(target, address,
1159                 size, &checksum)) != ERROR_OK)
1160         {
1161                 buffer = malloc(size);
1162                 if (buffer == NULL)
1163                 {
1164                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1165                         return ERROR_INVALID_ARGUMENTS;
1166                 }
1167                 retval = target_read_buffer(target, address, size, buffer);
1168                 if (retval != ERROR_OK)
1169                 {
1170                         free(buffer);
1171                         return retval;
1172                 }
1173
1174                 /* convert to target endianess */
1175                 for (i = 0; i < (size/sizeof(u32)); i++)
1176                 {
1177                         u32 target_data;
1178                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1179                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1180                 }
1181
1182                 retval = image_calculate_checksum( buffer, size, &checksum );
1183                 free(buffer);
1184         }
1185
1186         *crc = checksum;
1187
1188         return retval;
1189 }
1190
1191 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1192 {
1193         int retval;
1194         if (!target->type->examined)
1195         {
1196                 LOG_ERROR("Target not examined yet");
1197                 return ERROR_FAIL;
1198         }
1199
1200         if (target->type->blank_check_memory == 0)
1201                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1202
1203         retval = target->type->blank_check_memory(target, address, size, blank);
1204
1205         return retval;
1206 }
1207
1208 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1209 {
1210         u8 value_buf[4];
1211         if (!target->type->examined)
1212         {
1213                 LOG_ERROR("Target not examined yet");
1214                 return ERROR_FAIL;
1215         }
1216
1217         int retval = target_read_memory(target, address, 4, 1, value_buf);
1218
1219         if (retval == ERROR_OK)
1220         {
1221                 *value = target_buffer_get_u32(target, value_buf);
1222                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1223         }
1224         else
1225         {
1226                 *value = 0x0;
1227                 LOG_DEBUG("address: 0x%8.8x failed", address);
1228         }
1229
1230         return retval;
1231 }
1232
1233 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1234 {
1235         u8 value_buf[2];
1236         if (!target->type->examined)
1237         {
1238                 LOG_ERROR("Target not examined yet");
1239                 return ERROR_FAIL;
1240         }
1241
1242         int retval = target_read_memory(target, address, 2, 1, value_buf);
1243
1244         if (retval == ERROR_OK)
1245         {
1246                 *value = target_buffer_get_u16(target, value_buf);
1247                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1248         }
1249         else
1250         {
1251                 *value = 0x0;
1252                 LOG_DEBUG("address: 0x%8.8x failed", address);
1253         }
1254
1255         return retval;
1256 }
1257
1258 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1259 {
1260         int retval = target_read_memory(target, address, 1, 1, value);
1261         if (!target->type->examined)
1262         {
1263                 LOG_ERROR("Target not examined yet");
1264                 return ERROR_FAIL;
1265         }
1266
1267         if (retval == ERROR_OK)
1268         {
1269                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1270         }
1271         else
1272         {
1273                 *value = 0x0;
1274                 LOG_DEBUG("address: 0x%8.8x failed", address);
1275         }
1276
1277         return retval;
1278 }
1279
1280 int target_write_u32(struct target_s *target, u32 address, u32 value)
1281 {
1282         int retval;
1283         u8 value_buf[4];
1284         if (!target->type->examined)
1285         {
1286                 LOG_ERROR("Target not examined yet");
1287                 return ERROR_FAIL;
1288         }
1289
1290         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1291
1292         target_buffer_set_u32(target, value_buf, value);
1293         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1294         {
1295                 LOG_DEBUG("failed: %i", retval);
1296         }
1297
1298         return retval;
1299 }
1300
1301 int target_write_u16(struct target_s *target, u32 address, u16 value)
1302 {
1303         int retval;
1304         u8 value_buf[2];
1305         if (!target->type->examined)
1306         {
1307                 LOG_ERROR("Target not examined yet");
1308                 return ERROR_FAIL;
1309         }
1310
1311         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1312
1313         target_buffer_set_u16(target, value_buf, value);
1314         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1315         {
1316                 LOG_DEBUG("failed: %i", retval);
1317         }
1318
1319         return retval;
1320 }
1321
1322 int target_write_u8(struct target_s *target, u32 address, u8 value)
1323 {
1324         int retval;
1325         if (!target->type->examined)
1326         {
1327                 LOG_ERROR("Target not examined yet");
1328                 return ERROR_FAIL;
1329         }
1330
1331         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1332
1333         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1334         {
1335                 LOG_DEBUG("failed: %i", retval);
1336         }
1337
1338         return retval;
1339 }
1340
1341 int target_register_user_commands(struct command_context_s *cmd_ctx)
1342 {
1343         int retval = ERROR_OK;
1344
1345
1346         /* script procedures */
1347         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1348         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1349         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1350
1351         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1352                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1353
1354         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1355                         "loads active fast load image to current target - mainly for profiling purposes");
1356
1357
1358         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1359         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1360         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1361         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1362         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1363         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1364         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1365         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1366         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1367
1368         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1369         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1370         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1371
1372         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1373         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1374         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1375
1376         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1377         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1378         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1379         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1380
1381         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1382         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1383         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1384         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1385
1386         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1387                 return retval;
1388         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1389                 return retval;
1390
1391         return retval;
1392 }
1393
1394 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1395 {
1396         target_t *target = all_targets;
1397
1398         if (argc == 1)
1399         {
1400                 target = get_target(args[0]);
1401                 if (target == NULL) {
1402                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1403                         goto DumpTargets;
1404                 }
1405
1406                 cmd_ctx->current_target = target->target_number;
1407                 return ERROR_OK;
1408         }
1409 DumpTargets:
1410
1411         target = all_targets;
1412         command_print(cmd_ctx, "    CmdName    Type       Endian     AbsChainPos Name          State     ");
1413         command_print(cmd_ctx, "--  ---------- ---------- ---------- ----------- ------------- ----------");
1414         while (target)
1415         {
1416                 /* XX: abcdefghij abcdefghij abcdefghij abcdefghij */
1417                 command_print(cmd_ctx, "%2d: %-10s %-10s %-10s %10d %14s %s",
1418                                           target->target_number,
1419                                           target->cmd_name,
1420                                           target->type->name,
1421                                           Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness )->name,
1422                                           target->tap->abs_chain_position,
1423                                           target->tap->dotted_name,
1424                                           Jim_Nvp_value2name_simple( nvp_target_state, target->state )->name );
1425                 target = target->next;
1426         }
1427
1428         return ERROR_OK;
1429 }
1430
1431 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1432
1433 static int powerDropout;
1434 static int srstAsserted;
1435
1436 static int runPowerRestore;
1437 static int runPowerDropout;
1438 static int runSrstAsserted;
1439 static int runSrstDeasserted;
1440
1441 static int sense_handler(void)
1442 {
1443         static int prevSrstAsserted = 0;
1444         static int prevPowerdropout = 0;
1445
1446         int retval;
1447         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1448                 return retval;
1449
1450         int powerRestored;
1451         powerRestored = prevPowerdropout && !powerDropout;
1452         if (powerRestored)
1453         {
1454                 runPowerRestore = 1;
1455         }
1456
1457         long long current = timeval_ms();
1458         static long long lastPower = 0;
1459         int waitMore = lastPower + 2000 > current;
1460         if (powerDropout && !waitMore)
1461         {
1462                 runPowerDropout = 1;
1463                 lastPower = current;
1464         }
1465
1466         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1467                 return retval;
1468
1469         int srstDeasserted;
1470         srstDeasserted = prevSrstAsserted && !srstAsserted;
1471
1472         static long long lastSrst = 0;
1473         waitMore = lastSrst + 2000 > current;
1474         if (srstDeasserted && !waitMore)
1475         {
1476                 runSrstDeasserted = 1;
1477                 lastSrst = current;
1478         }
1479
1480         if (!prevSrstAsserted && srstAsserted)
1481         {
1482                 runSrstAsserted = 1;
1483         }
1484
1485         prevSrstAsserted = srstAsserted;
1486         prevPowerdropout = powerDropout;
1487
1488         if (srstDeasserted || powerRestored)
1489         {
1490                 /* Other than logging the event we can't do anything here.
1491                  * Issuing a reset is a particularly bad idea as we might
1492                  * be inside a reset already.
1493                  */
1494         }
1495
1496         return ERROR_OK;
1497 }
1498
1499 /* process target state changes */
1500 int handle_target(void *priv)
1501 {
1502         int retval = ERROR_OK;
1503
1504         /* we do not want to recurse here... */
1505         static int recursive = 0;
1506         if (! recursive)
1507         {
1508                 recursive = 1;
1509                 sense_handler();
1510                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1511                  * We need to avoid an infinite loop/recursion here and we do that by
1512                  * clearing the flags after running these events.
1513                  */
1514                 int did_something = 0;
1515                 if (runSrstAsserted)
1516                 {
1517                         Jim_Eval( interp, "srst_asserted");
1518                         did_something = 1;
1519                 }
1520                 if (runSrstDeasserted)
1521                 {
1522                         Jim_Eval( interp, "srst_deasserted");
1523                         did_something = 1;
1524                 }
1525                 if (runPowerDropout)
1526                 {
1527                         Jim_Eval( interp, "power_dropout");
1528                         did_something = 1;
1529                 }
1530                 if (runPowerRestore)
1531                 {
1532                         Jim_Eval( interp, "power_restore");
1533                         did_something = 1;
1534                 }
1535
1536                 if (did_something)
1537                 {
1538                         /* clear detect flags */
1539                         sense_handler();
1540                 }
1541
1542                 /* clear action flags */
1543
1544                 runSrstAsserted=0;
1545                 runSrstDeasserted=0;
1546                 runPowerRestore=0;
1547                 runPowerDropout=0;
1548
1549                 recursive = 0;
1550         }
1551
1552         target_t *target = all_targets;
1553
1554         while (target)
1555         {
1556
1557                 /* only poll target if we've got power and srst isn't asserted */
1558                 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1559                 {
1560                         /* polling may fail silently until the target has been examined */
1561                         if((retval = target_poll(target)) != ERROR_OK)
1562                                 return retval;
1563                 }
1564
1565                 target = target->next;
1566         }
1567
1568         return retval;
1569 }
1570
1571 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1572 {
1573         target_t *target;
1574         reg_t *reg = NULL;
1575         int count = 0;
1576         char *value;
1577
1578         LOG_DEBUG("-");
1579
1580         target = get_current_target(cmd_ctx);
1581
1582         /* list all available registers for the current target */
1583         if (argc == 0)
1584         {
1585                 reg_cache_t *cache = target->reg_cache;
1586
1587                 count = 0;
1588                 while(cache)
1589                 {
1590                         int i;
1591                         for (i = 0; i < cache->num_regs; i++)
1592                         {
1593                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1594                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1595                                 free(value);
1596                         }
1597                         cache = cache->next;
1598                 }
1599
1600                 return ERROR_OK;
1601         }
1602
1603         /* access a single register by its ordinal number */
1604         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1605         {
1606                 int num = strtoul(args[0], NULL, 0);
1607                 reg_cache_t *cache = target->reg_cache;
1608
1609                 count = 0;
1610                 while(cache)
1611                 {
1612                         int i;
1613                         for (i = 0; i < cache->num_regs; i++)
1614                         {
1615                                 if (count++ == num)
1616                                 {
1617                                         reg = &cache->reg_list[i];
1618                                         break;
1619                                 }
1620                         }
1621                         if (reg)
1622                                 break;
1623                         cache = cache->next;
1624                 }
1625
1626                 if (!reg)
1627                 {
1628                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1629                         return ERROR_OK;
1630                 }
1631         } else /* access a single register by its name */
1632         {
1633                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1634
1635                 if (!reg)
1636                 {
1637                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1638                         return ERROR_OK;
1639                 }
1640         }
1641
1642         /* display a register */
1643         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1644         {
1645                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1646                         reg->valid = 0;
1647
1648                 if (reg->valid == 0)
1649                 {
1650                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1651                         arch_type->get(reg);
1652                 }
1653                 value = buf_to_str(reg->value, reg->size, 16);
1654                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1655                 free(value);
1656                 return ERROR_OK;
1657         }
1658
1659         /* set register value */
1660         if (argc == 2)
1661         {
1662                 u8 *buf = malloc(CEIL(reg->size, 8));
1663                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1664
1665                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1666                 arch_type->set(reg, buf);
1667
1668                 value = buf_to_str(reg->value, reg->size, 16);
1669                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1670                 free(value);
1671
1672                 free(buf);
1673
1674                 return ERROR_OK;
1675         }
1676
1677         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1678
1679         return ERROR_OK;
1680 }
1681
1682 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1683 {
1684         int retval = ERROR_OK;
1685         target_t *target = get_current_target(cmd_ctx);
1686
1687         if (argc == 0)
1688         {
1689                 if((retval = target_poll(target)) != ERROR_OK)
1690                         return retval;
1691                 if((retval = target_arch_state(target)) != ERROR_OK)
1692                         return retval;
1693
1694         }
1695         else if (argc==1)
1696         {
1697                 if (strcmp(args[0], "on") == 0)
1698                 {
1699                         target_continous_poll = 1;
1700                 }
1701                 else if (strcmp(args[0], "off") == 0)
1702                 {
1703                         target_continous_poll = 0;
1704                 }
1705                 else
1706                 {
1707                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1708                 }
1709         } else
1710         {
1711                 return ERROR_COMMAND_SYNTAX_ERROR;
1712         }
1713
1714         return retval;
1715 }
1716
1717 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1718 {
1719         int ms = 5000;
1720
1721         if (argc > 0)
1722         {
1723                 char *end;
1724
1725                 ms = strtoul(args[0], &end, 0) * 1000;
1726                 if (*end)
1727                 {
1728                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1729                         return ERROR_OK;
1730                 }
1731         }
1732         target_t *target = get_current_target(cmd_ctx);
1733
1734         return target_wait_state(target, TARGET_HALTED, ms);
1735 }
1736
1737 /* wait for target state to change. The trick here is to have a low
1738  * latency for short waits and not to suck up all the CPU time
1739  * on longer waits.
1740  *
1741  * After 500ms, keep_alive() is invoked
1742  */
1743 int target_wait_state(target_t *target, enum target_state state, int ms)
1744 {
1745         int retval;
1746         long long then=0, cur;
1747         int once=1;
1748
1749         for (;;)
1750         {
1751                 if ((retval=target_poll(target))!=ERROR_OK)
1752                         return retval;
1753                 if (target->state == state)
1754                 {
1755                         break;
1756                 }
1757                 cur = timeval_ms();
1758                 if (once)
1759                 {
1760                         once=0;
1761                         then = timeval_ms();
1762                         LOG_DEBUG("waiting for target %s...",
1763                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1764                 }
1765
1766                 if (cur-then>500)
1767                 {
1768                         keep_alive();
1769                 }
1770
1771                 if ((cur-then)>ms)
1772                 {
1773                         LOG_ERROR("timed out while waiting for target %s",
1774                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1775                         return ERROR_FAIL;
1776                 }
1777         }
1778
1779         return ERROR_OK;
1780 }
1781
1782 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1783 {
1784         int retval;
1785         target_t *target = get_current_target(cmd_ctx);
1786
1787         LOG_DEBUG("-");
1788
1789         if ((retval = target_halt(target)) != ERROR_OK)
1790         {
1791                 return retval;
1792         }
1793
1794         if (argc == 1)
1795         {
1796                 int wait;
1797                 char *end;
1798
1799                 wait = strtoul(args[0], &end, 0);
1800                 if (!*end && !wait)
1801                         return ERROR_OK;
1802         }
1803
1804         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1805 }
1806
1807 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1808 {
1809         target_t *target = get_current_target(cmd_ctx);
1810
1811         LOG_USER("requesting target halt and executing a soft reset");
1812
1813         target->type->soft_reset_halt(target);
1814
1815         return ERROR_OK;
1816 }
1817
1818 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1819 {
1820         const Jim_Nvp *n;
1821         enum target_reset_mode reset_mode = RESET_RUN;
1822
1823         if (argc >= 1)
1824         {
1825                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1826                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1827                         return ERROR_COMMAND_SYNTAX_ERROR;
1828                 }
1829                 reset_mode = n->value;
1830         }
1831
1832         /* reset *all* targets */
1833         return target_process_reset(cmd_ctx, reset_mode);
1834 }
1835
1836
1837 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1838 {
1839         int retval;
1840         target_t *target = get_current_target(cmd_ctx);
1841
1842         target_handle_event( target, TARGET_EVENT_OLD_pre_resume );
1843
1844         if (argc == 0)
1845                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1846         else if (argc == 1)
1847                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1848         else
1849         {
1850                 retval = ERROR_COMMAND_SYNTAX_ERROR;
1851         }
1852
1853         return retval;
1854 }
1855
1856 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1857 {
1858         target_t *target = get_current_target(cmd_ctx);
1859
1860         LOG_DEBUG("-");
1861
1862         if (argc == 0)
1863                 return target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1864
1865         if (argc == 1)
1866                 return target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1867
1868         return ERROR_OK;
1869 }
1870
1871 static void handle_md_output(struct command_context_s *cmd_ctx,
1872                 struct target_s *target, u32 address, unsigned size,
1873                 unsigned count, const u8 *buffer)
1874 {
1875         const unsigned line_bytecnt = 32;
1876         unsigned line_modulo = line_bytecnt / size;
1877
1878         char output[line_bytecnt * 4 + 1];
1879         unsigned output_len = 0;
1880
1881         const char *value_fmt;
1882         switch (size) {
1883         case 4: value_fmt = "%8.8x"; break;
1884         case 2: value_fmt = "%4.2x"; break;
1885         case 1: value_fmt = "%2.2x"; break;
1886         default:
1887                 LOG_ERROR("invalid memory read size: %u", size);
1888                 exit(-1);
1889         }
1890
1891         for (unsigned i = 0; i < count; i++)
1892         {
1893                 if (i % line_modulo == 0)
1894                 {
1895                         output_len += snprintf(output + output_len,
1896                                         sizeof(output) - output_len,
1897                                         "0x%8.8x: ", address + (i*size));
1898                 }
1899
1900                 u32 value;
1901                 const u8 *value_ptr = buffer + i * size;
1902                 switch (size) {
1903                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
1904                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
1905                 case 1: value = *value_ptr;
1906                 }
1907                 output_len += snprintf(output + output_len,
1908                                 sizeof(output) - output_len,
1909                                 value_fmt, value);
1910
1911                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
1912                 {
1913                         command_print(cmd_ctx, "%s", output);
1914                         output_len = 0;
1915                 }
1916         }
1917 }
1918
1919 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1920 {
1921         if (argc < 1)
1922                 return ERROR_COMMAND_SYNTAX_ERROR;
1923
1924         unsigned size = 0;
1925         switch (cmd[2]) {
1926         case 'w': size = 4; break;
1927         case 'h': size = 2; break;
1928         case 'b': size = 1; break;
1929         default: return ERROR_COMMAND_SYNTAX_ERROR;
1930         }
1931
1932         u32 address = strtoul(args[0], NULL, 0);
1933
1934         unsigned count = 1;
1935         if (argc == 2)
1936                 count = strtoul(args[1], NULL, 0);
1937
1938         u8 *buffer = calloc(count, size);
1939
1940         target_t *target = get_current_target(cmd_ctx);
1941         int retval = target_read_memory(target,
1942                                 address, size, count, buffer);
1943         if (ERROR_OK == retval)
1944                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
1945
1946         free(buffer);
1947
1948         return retval;
1949 }
1950
1951 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1952 {
1953         u32 address = 0;
1954         u32 value = 0;
1955         int count = 1;
1956         int i;
1957         int wordsize;
1958         target_t *target = get_current_target(cmd_ctx);
1959         u8 value_buf[4];
1960
1961          if ((argc < 2) || (argc > 3))
1962                 return ERROR_COMMAND_SYNTAX_ERROR;
1963
1964         address = strtoul(args[0], NULL, 0);
1965         value = strtoul(args[1], NULL, 0);
1966         if (argc == 3)
1967                 count = strtoul(args[2], NULL, 0);
1968
1969         switch (cmd[2])
1970         {
1971                 case 'w':
1972                         wordsize = 4;
1973                         target_buffer_set_u32(target, value_buf, value);
1974                         break;
1975                 case 'h':
1976                         wordsize = 2;
1977                         target_buffer_set_u16(target, value_buf, value);
1978                         break;
1979                 case 'b':
1980                         wordsize = 1;
1981                         value_buf[0] = value;
1982                         break;
1983                 default:
1984                         return ERROR_COMMAND_SYNTAX_ERROR;
1985         }
1986         for (i=0; i<count; i++)
1987         {
1988                 int retval = target_write_memory(target,
1989                                 address + i * wordsize, wordsize, 1, value_buf);
1990                 if (ERROR_OK != retval)
1991                         return retval;
1992                 keep_alive();
1993         }
1994
1995         return ERROR_OK;
1996
1997 }
1998
1999 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2000 {
2001         u8 *buffer;
2002         u32 buf_cnt;
2003         u32 image_size;
2004         u32 min_address=0;
2005         u32 max_address=0xffffffff;
2006         int i;
2007         int retval, retvaltemp;
2008
2009         image_t image;
2010
2011         duration_t duration;
2012         char *duration_text;
2013
2014         target_t *target = get_current_target(cmd_ctx);
2015
2016         if ((argc < 1)||(argc > 5))
2017         {
2018                 return ERROR_COMMAND_SYNTAX_ERROR;
2019         }
2020
2021         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2022         if (argc >= 2)
2023         {
2024                 image.base_address_set = 1;
2025                 image.base_address = strtoul(args[1], NULL, 0);
2026         }
2027         else
2028         {
2029                 image.base_address_set = 0;
2030         }
2031
2032
2033         image.start_address_set = 0;
2034
2035         if (argc>=4)
2036         {
2037                 min_address=strtoul(args[3], NULL, 0);
2038         }
2039         if (argc>=5)
2040         {
2041                 max_address=strtoul(args[4], NULL, 0)+min_address;
2042         }
2043
2044         if (min_address>max_address)
2045         {
2046                 return ERROR_COMMAND_SYNTAX_ERROR;
2047         }
2048
2049         duration_start_measure(&duration);
2050
2051         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2052         {
2053                 return ERROR_OK;
2054         }
2055
2056         image_size = 0x0;
2057         retval = ERROR_OK;
2058         for (i = 0; i < image.num_sections; i++)
2059         {
2060                 buffer = malloc(image.sections[i].size);
2061                 if (buffer == NULL)
2062                 {
2063                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2064                         break;
2065                 }
2066
2067                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2068                 {
2069                         free(buffer);
2070                         break;
2071                 }
2072
2073                 u32 offset=0;
2074                 u32 length=buf_cnt;
2075
2076                 /* DANGER!!! beware of unsigned comparision here!!! */
2077
2078                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2079                                 (image.sections[i].base_address<max_address))
2080                 {
2081                         if (image.sections[i].base_address<min_address)
2082                         {
2083                                 /* clip addresses below */
2084                                 offset+=min_address-image.sections[i].base_address;
2085                                 length-=offset;
2086                         }
2087
2088                         if (image.sections[i].base_address+buf_cnt>max_address)
2089                         {
2090                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2091                         }
2092
2093                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2094                         {
2095                                 free(buffer);
2096                                 break;
2097                         }
2098                         image_size += length;
2099                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2100                 }
2101
2102                 free(buffer);
2103         }
2104
2105         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2106         {
2107                 image_close(&image);
2108                 return retvaltemp;
2109         }
2110
2111         if (retval==ERROR_OK)
2112         {
2113                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2114         }
2115         free(duration_text);
2116
2117         image_close(&image);
2118
2119         return retval;
2120
2121 }
2122
2123 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2124 {
2125         fileio_t fileio;
2126
2127         u32 address;
2128         u32 size;
2129         u8 buffer[560];
2130         int retval=ERROR_OK, retvaltemp;
2131
2132         duration_t duration;
2133         char *duration_text;
2134
2135         target_t *target = get_current_target(cmd_ctx);
2136
2137         if (argc != 3)
2138         {
2139                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2140                 return ERROR_OK;
2141         }
2142
2143         address = strtoul(args[1], NULL, 0);
2144         size = strtoul(args[2], NULL, 0);
2145
2146         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2147         {
2148                 return ERROR_OK;
2149         }
2150
2151         duration_start_measure(&duration);
2152
2153         while (size > 0)
2154         {
2155                 u32 size_written;
2156                 u32 this_run_size = (size > 560) ? 560 : size;
2157
2158                 retval = target_read_buffer(target, address, this_run_size, buffer);
2159                 if (retval != ERROR_OK)
2160                 {
2161                         break;
2162                 }
2163
2164                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2165                 if (retval != ERROR_OK)
2166                 {
2167                         break;
2168                 }
2169
2170                 size -= this_run_size;
2171                 address += this_run_size;
2172         }
2173
2174         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2175                 return retvaltemp;
2176
2177         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2178                 return retvaltemp;
2179
2180         if (retval==ERROR_OK)
2181         {
2182                 command_print(cmd_ctx, "dumped %lld byte in %s",
2183                                 fileio.size, duration_text);
2184                 free(duration_text);
2185         }
2186
2187         return retval;
2188 }
2189
2190 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2191 {
2192         u8 *buffer;
2193         u32 buf_cnt;
2194         u32 image_size;
2195         int i;
2196         int retval, retvaltemp;
2197         u32 checksum = 0;
2198         u32 mem_checksum = 0;
2199
2200         image_t image;
2201
2202         duration_t duration;
2203         char *duration_text;
2204
2205         target_t *target = get_current_target(cmd_ctx);
2206
2207         if (argc < 1)
2208         {
2209                 return ERROR_COMMAND_SYNTAX_ERROR;
2210         }
2211
2212         if (!target)
2213         {
2214                 LOG_ERROR("no target selected");
2215                 return ERROR_FAIL;
2216         }
2217
2218         duration_start_measure(&duration);
2219
2220         if (argc >= 2)
2221         {
2222                 image.base_address_set = 1;
2223                 image.base_address = strtoul(args[1], NULL, 0);
2224         }
2225         else
2226         {
2227                 image.base_address_set = 0;
2228                 image.base_address = 0x0;
2229         }
2230
2231         image.start_address_set = 0;
2232
2233         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2234         {
2235                 return retval;
2236         }
2237
2238         image_size = 0x0;
2239         retval=ERROR_OK;
2240         for (i = 0; i < image.num_sections; i++)
2241         {
2242                 buffer = malloc(image.sections[i].size);
2243                 if (buffer == NULL)
2244                 {
2245                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2246                         break;
2247                 }
2248                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2249                 {
2250                         free(buffer);
2251                         break;
2252                 }
2253
2254                 if (verify)
2255                 {
2256                         /* calculate checksum of image */
2257                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2258
2259                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2260                         if( retval != ERROR_OK )
2261                         {
2262                                 free(buffer);
2263                                 break;
2264                         }
2265
2266                         if( checksum != mem_checksum )
2267                         {
2268                                 /* failed crc checksum, fall back to a binary compare */
2269                                 u8 *data;
2270
2271                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2272
2273                                 data = (u8*)malloc(buf_cnt);
2274
2275                                 /* Can we use 32bit word accesses? */
2276                                 int size = 1;
2277                                 int count = buf_cnt;
2278                                 if ((count % 4) == 0)
2279                                 {
2280                                         size *= 4;
2281                                         count /= 4;
2282                                 }
2283                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2284                                 if (retval == ERROR_OK)
2285                                 {
2286                                         u32 t;
2287                                         for (t = 0; t < buf_cnt; t++)
2288                                         {
2289                                                 if (data[t] != buffer[t])
2290                                                 {
2291                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2292                                                         free(data);
2293                                                         free(buffer);
2294                                                         retval=ERROR_FAIL;
2295                                                         goto done;
2296                                                 }
2297                                                 if ((t%16384)==0)
2298                                                 {
2299                                                         keep_alive();
2300                                                 }
2301                                         }
2302                                 }
2303
2304                                 free(data);
2305                         }
2306                 } else
2307                 {
2308                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2309                 }
2310
2311                 free(buffer);
2312                 image_size += buf_cnt;
2313         }
2314 done:
2315
2316         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2317         {
2318                 image_close(&image);
2319                 return retvaltemp;
2320         }
2321
2322         if (retval==ERROR_OK)
2323         {
2324                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2325         }
2326         free(duration_text);
2327
2328         image_close(&image);
2329
2330         return retval;
2331 }
2332
2333 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2334 {
2335         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2336 }
2337
2338 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2339 {
2340         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2341 }
2342
2343 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2344 {
2345         int retval;
2346         target_t *target = get_current_target(cmd_ctx);
2347
2348         if (argc == 0)
2349         {
2350                 breakpoint_t *breakpoint = target->breakpoints;
2351
2352                 while (breakpoint)
2353                 {
2354                         if (breakpoint->type == BKPT_SOFT)
2355                         {
2356                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2357                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2358                                 free(buf);
2359                         }
2360                         else
2361                         {
2362                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2363                         }
2364                         breakpoint = breakpoint->next;
2365                 }
2366         }
2367         else if (argc >= 2)
2368         {
2369                 int hw = BKPT_SOFT;
2370                 u32 length = 0;
2371
2372                 length = strtoul(args[1], NULL, 0);
2373
2374                 if (argc >= 3)
2375                         if (strcmp(args[2], "hw") == 0)
2376                                 hw = BKPT_HARD;
2377
2378                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2379                 {
2380                         LOG_ERROR("Failure setting breakpoints");
2381                 }
2382                 else
2383                 {
2384                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8lx",
2385                                         strtoul(args[0], NULL, 0));
2386                 }
2387         }
2388         else
2389         {
2390                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2391         }
2392
2393         return ERROR_OK;
2394 }
2395
2396 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2397 {
2398         target_t *target = get_current_target(cmd_ctx);
2399
2400         if (argc > 0)
2401                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2402
2403         return ERROR_OK;
2404 }
2405
2406 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2407 {
2408         target_t *target = get_current_target(cmd_ctx);
2409         int retval;
2410
2411         if (argc == 0)
2412         {
2413                 watchpoint_t *watchpoint = target->watchpoints;
2414
2415                 while (watchpoint)
2416                 {
2417                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2418                         watchpoint = watchpoint->next;
2419                 }
2420         }
2421         else if (argc >= 2)
2422         {
2423                 enum watchpoint_rw type = WPT_ACCESS;
2424                 u32 data_value = 0x0;
2425                 u32 data_mask = 0xffffffff;
2426
2427                 if (argc >= 3)
2428                 {
2429                         switch(args[2][0])
2430                         {
2431                                 case 'r':
2432                                         type = WPT_READ;
2433                                         break;
2434                                 case 'w':
2435                                         type = WPT_WRITE;
2436                                         break;
2437                                 case 'a':
2438                                         type = WPT_ACCESS;
2439                                         break;
2440                                 default:
2441                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2442                                         return ERROR_OK;
2443                         }
2444                 }
2445                 if (argc >= 4)
2446                 {
2447                         data_value = strtoul(args[3], NULL, 0);
2448                 }
2449                 if (argc >= 5)
2450                 {
2451                         data_mask = strtoul(args[4], NULL, 0);
2452                 }
2453
2454                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2455                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2456                 {
2457                         LOG_ERROR("Failure setting breakpoints");
2458                 }
2459         }
2460         else
2461         {
2462                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2463         }
2464
2465         return ERROR_OK;
2466 }
2467
2468 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2469 {
2470         target_t *target = get_current_target(cmd_ctx);
2471
2472         if (argc > 0)
2473                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2474
2475         return ERROR_OK;
2476 }
2477
2478 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2479 {
2480         int retval;
2481         target_t *target = get_current_target(cmd_ctx);
2482         u32 va;
2483         u32 pa;
2484
2485         if (argc != 1)
2486         {
2487                 return ERROR_COMMAND_SYNTAX_ERROR;
2488         }
2489         va = strtoul(args[0], NULL, 0);
2490
2491         retval = target->type->virt2phys(target, va, &pa);
2492         if (retval == ERROR_OK)
2493         {
2494                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2495         }
2496         else
2497         {
2498                 /* lower levels will have logged a detailed error which is
2499                  * forwarded to telnet/GDB session.
2500                  */
2501         }
2502         return retval;
2503 }
2504
2505 static void writeData(FILE *f, const void *data, size_t len)
2506 {
2507         size_t written = fwrite(data, len, 1, f);
2508         if (written != len)
2509                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2510 }
2511
2512 static void writeLong(FILE *f, int l)
2513 {
2514         int i;
2515         for (i=0; i<4; i++)
2516         {
2517                 char c=(l>>(i*8))&0xff;
2518                 writeData(f, &c, 1);
2519         }
2520
2521 }
2522
2523 static void writeString(FILE *f, char *s)
2524 {
2525         writeData(f, s, strlen(s));
2526 }
2527
2528 /* Dump a gmon.out histogram file. */
2529 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2530 {
2531         u32 i;
2532         FILE *f=fopen(filename, "w");
2533         if (f==NULL)
2534                 return;
2535         writeString(f, "gmon");
2536         writeLong(f, 0x00000001); /* Version */
2537         writeLong(f, 0); /* padding */
2538         writeLong(f, 0); /* padding */
2539         writeLong(f, 0); /* padding */
2540
2541         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2542         writeData(f, &zero, 1);
2543
2544         /* figure out bucket size */
2545         u32 min=samples[0];
2546         u32 max=samples[0];
2547         for (i=0; i<sampleNum; i++)
2548         {
2549                 if (min>samples[i])
2550                 {
2551                         min=samples[i];
2552                 }
2553                 if (max<samples[i])
2554                 {
2555                         max=samples[i];
2556                 }
2557         }
2558
2559         int addressSpace=(max-min+1);
2560
2561         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2562         u32 length = addressSpace;
2563         if (length > maxBuckets)
2564         {
2565                 length=maxBuckets;
2566         }
2567         int *buckets=malloc(sizeof(int)*length);
2568         if (buckets==NULL)
2569         {
2570                 fclose(f);
2571                 return;
2572         }
2573         memset(buckets, 0, sizeof(int)*length);
2574         for (i=0; i<sampleNum;i++)
2575         {
2576                 u32 address=samples[i];
2577                 long long a=address-min;
2578                 long long b=length-1;
2579                 long long c=addressSpace-1;
2580                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2581                 buckets[index]++;
2582         }
2583
2584         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2585         writeLong(f, min);                      /* low_pc */
2586         writeLong(f, max);                      /* high_pc */
2587         writeLong(f, length);           /* # of samples */
2588         writeLong(f, 64000000);         /* 64MHz */
2589         writeString(f, "seconds");
2590         for (i=0; i<(15-strlen("seconds")); i++)
2591                 writeData(f, &zero, 1);
2592         writeString(f, "s");
2593
2594         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2595
2596         char *data=malloc(2*length);
2597         if (data!=NULL)
2598         {
2599                 for (i=0; i<length;i++)
2600                 {
2601                         int val;
2602                         val=buckets[i];
2603                         if (val>65535)
2604                         {
2605                                 val=65535;
2606                         }
2607                         data[i*2]=val&0xff;
2608                         data[i*2+1]=(val>>8)&0xff;
2609                 }
2610                 free(buckets);
2611                 writeData(f, data, length * 2);
2612                 free(data);
2613         } else
2614         {
2615                 free(buckets);
2616         }
2617
2618         fclose(f);
2619 }
2620
2621 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2622 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2623 {
2624         target_t *target = get_current_target(cmd_ctx);
2625         struct timeval timeout, now;
2626
2627         gettimeofday(&timeout, NULL);
2628         if (argc!=2)
2629         {
2630                 return ERROR_COMMAND_SYNTAX_ERROR;
2631         }
2632         char *end;
2633         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2634         if (*end)
2635         {
2636                 return ERROR_OK;
2637         }
2638
2639         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2640
2641         static const int maxSample=10000;
2642         u32 *samples=malloc(sizeof(u32)*maxSample);
2643         if (samples==NULL)
2644                 return ERROR_OK;
2645
2646         int numSamples=0;
2647         int retval=ERROR_OK;
2648         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2649         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2650
2651         for (;;)
2652         {
2653                 target_poll(target);
2654                 if (target->state == TARGET_HALTED)
2655                 {
2656                         u32 t=*((u32 *)reg->value);
2657                         samples[numSamples++]=t;
2658                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2659                         target_poll(target);
2660                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2661                 } else if (target->state == TARGET_RUNNING)
2662                 {
2663                         /* We want to quickly sample the PC. */
2664                         if((retval = target_halt(target)) != ERROR_OK)
2665                         {
2666                                 free(samples);
2667                                 return retval;
2668                         }
2669                 } else
2670                 {
2671                         command_print(cmd_ctx, "Target not halted or running");
2672                         retval=ERROR_OK;
2673                         break;
2674                 }
2675                 if (retval!=ERROR_OK)
2676                 {
2677                         break;
2678                 }
2679
2680                 gettimeofday(&now, NULL);
2681                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2682                 {
2683                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2684                         if((retval = target_poll(target)) != ERROR_OK)
2685                         {
2686                                 free(samples);
2687                                 return retval;
2688                         }
2689                         if (target->state == TARGET_HALTED)
2690                         {
2691                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2692                         }
2693                         if((retval = target_poll(target)) != ERROR_OK)
2694                         {
2695                                 free(samples);
2696                                 return retval;
2697                         }
2698                         writeGmon(samples, numSamples, args[1]);
2699                         command_print(cmd_ctx, "Wrote %s", args[1]);
2700                         break;
2701                 }
2702         }
2703         free(samples);
2704
2705         return ERROR_OK;
2706 }
2707
2708 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2709 {
2710         char *namebuf;
2711         Jim_Obj *nameObjPtr, *valObjPtr;
2712         int result;
2713
2714         namebuf = alloc_printf("%s(%d)", varname, idx);
2715         if (!namebuf)
2716                 return JIM_ERR;
2717
2718         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2719         valObjPtr = Jim_NewIntObj(interp, val);
2720         if (!nameObjPtr || !valObjPtr)
2721         {
2722                 free(namebuf);
2723                 return JIM_ERR;
2724         }
2725
2726         Jim_IncrRefCount(nameObjPtr);
2727         Jim_IncrRefCount(valObjPtr);
2728         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2729         Jim_DecrRefCount(interp, nameObjPtr);
2730         Jim_DecrRefCount(interp, valObjPtr);
2731         free(namebuf);
2732         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2733         return result;
2734 }
2735
2736 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2737 {
2738         command_context_t *context;
2739         target_t *target;
2740
2741         context = Jim_GetAssocData(interp, "context");
2742         if (context == NULL)
2743         {
2744                 LOG_ERROR("mem2array: no command context");
2745                 return JIM_ERR;
2746         }
2747         target = get_current_target(context);
2748         if (target == NULL)
2749         {
2750                 LOG_ERROR("mem2array: no current target");
2751                 return JIM_ERR;
2752         }
2753
2754         return  target_mem2array(interp, target, argc-1, argv+1);
2755 }
2756
2757 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2758 {
2759         long l;
2760         u32 width;
2761         int len;
2762         u32 addr;
2763         u32 count;
2764         u32 v;
2765         const char *varname;
2766         u8 buffer[4096];
2767         int  n, e, retval;
2768         u32 i;
2769
2770         /* argv[1] = name of array to receive the data
2771          * argv[2] = desired width
2772          * argv[3] = memory address
2773          * argv[4] = count of times to read
2774          */
2775         if (argc != 4) {
2776                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2777                 return JIM_ERR;
2778         }
2779         varname = Jim_GetString(argv[0], &len);
2780         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2781
2782         e = Jim_GetLong(interp, argv[1], &l);
2783         width = l;
2784         if (e != JIM_OK) {
2785                 return e;
2786         }
2787
2788         e = Jim_GetLong(interp, argv[2], &l);
2789         addr = l;
2790         if (e != JIM_OK) {
2791                 return e;
2792         }
2793         e = Jim_GetLong(interp, argv[3], &l);
2794         len = l;
2795         if (e != JIM_OK) {
2796                 return e;
2797         }
2798         switch (width) {
2799                 case 8:
2800                         width = 1;
2801                         break;
2802                 case 16:
2803                         width = 2;
2804                         break;
2805                 case 32:
2806                         width = 4;
2807                         break;
2808                 default:
2809                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2810                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2811                         return JIM_ERR;
2812         }
2813         if (len == 0) {
2814                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2815                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2816                 return JIM_ERR;
2817         }
2818         if ((addr + (len * width)) < addr) {
2819                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2820                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2821                 return JIM_ERR;
2822         }
2823         /* absurd transfer size? */
2824         if (len > 65536) {
2825                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2826                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2827                 return JIM_ERR;
2828         }
2829
2830         if ((width == 1) ||
2831                 ((width == 2) && ((addr & 1) == 0)) ||
2832                 ((width == 4) && ((addr & 3) == 0))) {
2833                 /* all is well */
2834         } else {
2835                 char buf[100];
2836                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2837                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2838                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2839                 return JIM_ERR;
2840         }
2841
2842         /* Transfer loop */
2843
2844         /* index counter */
2845         n = 0;
2846         /* assume ok */
2847         e = JIM_OK;
2848         while (len) {
2849                 /* Slurp... in buffer size chunks */
2850
2851                 count = len; /* in objects.. */
2852                 if (count > (sizeof(buffer)/width)) {
2853                         count = (sizeof(buffer)/width);
2854                 }
2855
2856                 retval = target_read_memory( target, addr, width, count, buffer );
2857                 if (retval != ERROR_OK) {
2858                         /* BOO !*/
2859                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2860                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2861                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2862                         e = JIM_ERR;
2863                         len = 0;
2864                 } else {
2865                         v = 0; /* shut up gcc */
2866                         for (i = 0 ;i < count ;i++, n++) {
2867                                 switch (width) {
2868                                         case 4:
2869                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2870                                                 break;
2871                                         case 2:
2872                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2873                                                 break;
2874                                         case 1:
2875                                                 v = buffer[i] & 0x0ff;
2876                                                 break;
2877                                 }
2878                                 new_int_array_element(interp, varname, n, v);
2879                         }
2880                         len -= count;
2881                 }
2882         }
2883
2884         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2885
2886         return JIM_OK;
2887 }
2888
2889 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2890 {
2891         char *namebuf;
2892         Jim_Obj *nameObjPtr, *valObjPtr;
2893         int result;
2894         long l;
2895
2896         namebuf = alloc_printf("%s(%d)", varname, idx);
2897         if (!namebuf)
2898                 return JIM_ERR;
2899
2900         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2901         if (!nameObjPtr)
2902         {
2903                 free(namebuf);
2904                 return JIM_ERR;
2905         }
2906
2907         Jim_IncrRefCount(nameObjPtr);
2908         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2909         Jim_DecrRefCount(interp, nameObjPtr);
2910         free(namebuf);
2911         if (valObjPtr == NULL)
2912                 return JIM_ERR;
2913
2914         result = Jim_GetLong(interp, valObjPtr, &l);
2915         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2916         *val = l;
2917         return result;
2918 }
2919
2920 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2921 {
2922         command_context_t *context;
2923         target_t *target;
2924
2925         context = Jim_GetAssocData(interp, "context");
2926         if (context == NULL){
2927                 LOG_ERROR("array2mem: no command context");
2928                 return JIM_ERR;
2929         }
2930         target = get_current_target(context);
2931         if (target == NULL){
2932                 LOG_ERROR("array2mem: no current target");
2933                 return JIM_ERR;
2934         }
2935
2936         return target_array2mem( interp,target, argc-1, argv+1 );
2937 }
2938
2939 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2940 {
2941         long l;
2942         u32 width;
2943         int len;
2944         u32 addr;
2945         u32 count;
2946         u32 v;
2947         const char *varname;
2948         u8 buffer[4096];
2949         int  n, e, retval;
2950         u32 i;
2951
2952         /* argv[1] = name of array to get the data
2953          * argv[2] = desired width
2954          * argv[3] = memory address
2955          * argv[4] = count to write
2956          */
2957         if (argc != 4) {
2958                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2959                 return JIM_ERR;
2960         }
2961         varname = Jim_GetString(argv[0], &len);
2962         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2963
2964         e = Jim_GetLong(interp, argv[1], &l);
2965         width = l;
2966         if (e != JIM_OK) {
2967                 return e;
2968         }
2969
2970         e = Jim_GetLong(interp, argv[2], &l);
2971         addr = l;
2972         if (e != JIM_OK) {
2973                 return e;
2974         }
2975         e = Jim_GetLong(interp, argv[3], &l);
2976         len = l;
2977         if (e != JIM_OK) {
2978                 return e;
2979         }
2980         switch (width) {
2981                 case 8:
2982                         width = 1;
2983                         break;
2984                 case 16:
2985                         width = 2;
2986                         break;
2987                 case 32:
2988                         width = 4;
2989                         break;
2990                 default:
2991                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2992                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2993                         return JIM_ERR;
2994         }
2995         if (len == 0) {
2996                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2997                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
2998                 return JIM_ERR;
2999         }
3000         if ((addr + (len * width)) < addr) {
3001                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3002                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3003                 return JIM_ERR;
3004         }
3005         /* absurd transfer size? */
3006         if (len > 65536) {
3007                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3008                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3009                 return JIM_ERR;
3010         }
3011
3012         if ((width == 1) ||
3013                 ((width == 2) && ((addr & 1) == 0)) ||
3014                 ((width == 4) && ((addr & 3) == 0))) {
3015                 /* all is well */
3016         } else {
3017                 char buf[100];
3018                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3019                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3020                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3021                 return JIM_ERR;
3022         }
3023
3024         /* Transfer loop */
3025
3026         /* index counter */
3027         n = 0;
3028         /* assume ok */
3029         e = JIM_OK;
3030         while (len) {
3031                 /* Slurp... in buffer size chunks */
3032
3033                 count = len; /* in objects.. */
3034                 if (count > (sizeof(buffer)/width)) {
3035                         count = (sizeof(buffer)/width);
3036                 }
3037
3038                 v = 0; /* shut up gcc */
3039                 for (i = 0 ;i < count ;i++, n++) {
3040                         get_int_array_element(interp, varname, n, &v);
3041                         switch (width) {
3042                         case 4:
3043                                 target_buffer_set_u32(target, &buffer[i*width], v);
3044                                 break;
3045                         case 2:
3046                                 target_buffer_set_u16(target, &buffer[i*width], v);
3047                                 break;
3048                         case 1:
3049                                 buffer[i] = v & 0x0ff;
3050                                 break;
3051                         }
3052                 }
3053                 len -= count;
3054
3055                 retval = target_write_memory(target, addr, width, count, buffer);
3056                 if (retval != ERROR_OK) {
3057                         /* BOO !*/
3058                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3059                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3060                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3061                         e = JIM_ERR;
3062                         len = 0;
3063                 }
3064         }
3065
3066         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3067
3068         return JIM_OK;
3069 }
3070
3071 void target_all_handle_event( enum target_event e )
3072 {
3073         target_t *target;
3074
3075         LOG_DEBUG( "**all*targets: event: %d, %s",
3076                         e,
3077                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3078
3079         target = all_targets;
3080         while (target){
3081                 target_handle_event( target, e );
3082                 target = target->next;
3083         }
3084 }
3085
3086 void target_handle_event( target_t *target, enum target_event e )
3087 {
3088         target_event_action_t *teap;
3089         int done;
3090
3091         teap = target->event_action;
3092
3093         done = 0;
3094         while( teap ){
3095                 if( teap->event == e ){
3096                         done = 1;
3097                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3098                                            target->target_number,
3099                                            target->cmd_name,
3100                                            target->type->name,
3101                                            e,
3102                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3103                                            Jim_GetString( teap->body, NULL ) );
3104                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3105                         {
3106                                 Jim_PrintErrorMessage(interp);
3107                         }
3108                 }
3109                 teap = teap->next;
3110         }
3111         if( !done ){
3112                 LOG_DEBUG( "event: %d %s - no action",
3113                                    e,
3114                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3115         }
3116 }
3117
3118 enum target_cfg_param {
3119         TCFG_TYPE,
3120         TCFG_EVENT,
3121         TCFG_WORK_AREA_VIRT,
3122         TCFG_WORK_AREA_PHYS,
3123         TCFG_WORK_AREA_SIZE,
3124         TCFG_WORK_AREA_BACKUP,
3125         TCFG_ENDIAN,
3126         TCFG_VARIANT,
3127         TCFG_CHAIN_POSITION,
3128 };
3129
3130 static Jim_Nvp nvp_config_opts[] = {
3131         { .name = "-type",             .value = TCFG_TYPE },
3132         { .name = "-event",            .value = TCFG_EVENT },
3133         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3134         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3135         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3136         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3137         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3138         { .name = "-variant",          .value = TCFG_VARIANT },
3139         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3140
3141         { .name = NULL, .value = -1 }
3142 };
3143
3144 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3145 {
3146         Jim_Nvp *n;
3147         Jim_Obj *o;
3148         jim_wide w;
3149         char *cp;
3150         int e;
3151
3152         /* parse config or cget options ... */
3153         while( goi->argc > 0 ){
3154                 Jim_SetEmptyResult( goi->interp );
3155                 /* Jim_GetOpt_Debug( goi ); */
3156
3157                 if( target->type->target_jim_configure ){
3158                         /* target defines a configure function */
3159                         /* target gets first dibs on parameters */
3160                         e = (*(target->type->target_jim_configure))( target, goi );
3161                         if( e == JIM_OK ){
3162                                 /* more? */
3163                                 continue;
3164                         }
3165                         if( e == JIM_ERR ){
3166                                 /* An error */
3167                                 return e;
3168                         }
3169                         /* otherwise we 'continue' below */
3170                 }
3171                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3172                 if( e != JIM_OK ){
3173                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3174                         return e;
3175                 }
3176                 switch( n->value ){
3177                 case TCFG_TYPE:
3178                         /* not setable */
3179                         if( goi->isconfigure ){
3180                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3181                                 return JIM_ERR;
3182                         } else {
3183                         no_params:
3184                                 if( goi->argc != 0 ){
3185                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3186                                         return JIM_ERR;
3187                                 }
3188                         }
3189                         Jim_SetResultString( goi->interp, target->type->name, -1 );
3190                         /* loop for more */
3191                         break;
3192                 case TCFG_EVENT:
3193                         if( goi->argc == 0 ){
3194                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3195                                 return JIM_ERR;
3196                         }
3197
3198                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3199                         if( e != JIM_OK ){
3200                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3201                                 return e;
3202                         }
3203
3204                         if( goi->isconfigure ){
3205                                 if( goi->argc != 1 ){
3206                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3207                                         return JIM_ERR;
3208                                 }
3209                         } else {
3210                                 if( goi->argc != 0 ){
3211                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3212                                         return JIM_ERR;
3213                                 }
3214                         }
3215
3216                         {
3217                                 target_event_action_t *teap;
3218
3219                                 teap = target->event_action;
3220                                 /* replace existing? */
3221                                 while( teap ){
3222                                         if( teap->event == (enum target_event)n->value ){
3223                                                 break;
3224                                         }
3225                                         teap = teap->next;
3226                                 }
3227
3228                                 if( goi->isconfigure ){
3229                                         if( teap == NULL ){
3230                                                 /* create new */
3231                                                 teap = calloc( 1, sizeof(*teap) );
3232                                         }
3233                                         teap->event = n->value;
3234                                         Jim_GetOpt_Obj( goi, &o );
3235                                         if( teap->body ){
3236                                                 Jim_DecrRefCount( interp, teap->body );
3237                                         }
3238                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3239                                         /*
3240                                          * FIXME:
3241                                          *     Tcl/TK - "tk events" have a nice feature.
3242                                          *     See the "BIND" command.
3243                                          *    We should support that here.
3244                                          *     You can specify %X and %Y in the event code.
3245                                          *     The idea is: %T - target name.
3246                                          *     The idea is: %N - target number
3247                                          *     The idea is: %E - event name.
3248                                          */
3249                                         Jim_IncrRefCount( teap->body );
3250
3251                                         /* add to head of event list */
3252                                         teap->next = target->event_action;
3253                                         target->event_action = teap;
3254                                         Jim_SetEmptyResult(goi->interp);
3255                                 } else {
3256                                         /* get */
3257                                         if( teap == NULL ){
3258                                                 Jim_SetEmptyResult( goi->interp );
3259                                         } else {
3260                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3261                                         }
3262                                 }
3263                         }
3264                         /* loop for more */
3265                         break;
3266
3267                 case TCFG_WORK_AREA_VIRT:
3268                         if( goi->isconfigure ){
3269                                 target_free_all_working_areas(target);
3270                                 e = Jim_GetOpt_Wide( goi, &w );
3271                                 if( e != JIM_OK ){
3272                                         return e;
3273                                 }
3274                                 target->working_area_virt = w;
3275                         } else {
3276                                 if( goi->argc != 0 ){
3277                                         goto no_params;
3278                                 }
3279                         }
3280                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3281                         /* loop for more */
3282                         break;
3283
3284                 case TCFG_WORK_AREA_PHYS:
3285                         if( goi->isconfigure ){
3286                                 target_free_all_working_areas(target);
3287                                 e = Jim_GetOpt_Wide( goi, &w );
3288                                 if( e != JIM_OK ){
3289                                         return e;
3290                                 }
3291                                 target->working_area_phys = w;
3292                         } else {
3293                                 if( goi->argc != 0 ){
3294                                         goto no_params;
3295                                 }
3296                         }
3297                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3298                         /* loop for more */
3299                         break;
3300
3301                 case TCFG_WORK_AREA_SIZE:
3302                         if( goi->isconfigure ){
3303                                 target_free_all_working_areas(target);
3304                                 e = Jim_GetOpt_Wide( goi, &w );
3305                                 if( e != JIM_OK ){
3306                                         return e;
3307                                 }
3308                                 target->working_area_size = w;
3309                         } else {
3310                                 if( goi->argc != 0 ){
3311                                         goto no_params;
3312                                 }
3313                         }
3314                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3315                         /* loop for more */
3316                         break;
3317
3318                 case TCFG_WORK_AREA_BACKUP:
3319                         if( goi->isconfigure ){
3320                                 target_free_all_working_areas(target);
3321                                 e = Jim_GetOpt_Wide( goi, &w );
3322                                 if( e != JIM_OK ){
3323                                         return e;
3324                                 }
3325                                 /* make this exactly 1 or 0 */
3326                                 target->backup_working_area = (!!w);
3327                         } else {
3328                                 if( goi->argc != 0 ){
3329                                         goto no_params;
3330                                 }
3331                         }
3332                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3333                         /* loop for more e*/
3334                         break;
3335
3336                 case TCFG_ENDIAN:
3337                         if( goi->isconfigure ){
3338                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3339                                 if( e != JIM_OK ){
3340                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3341                                         return e;
3342                                 }
3343                                 target->endianness = n->value;
3344                         } else {
3345                                 if( goi->argc != 0 ){
3346                                         goto no_params;
3347                                 }
3348                         }
3349                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3350                         if( n->name == NULL ){
3351                                 target->endianness = TARGET_LITTLE_ENDIAN;
3352                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3353                         }
3354                         Jim_SetResultString( goi->interp, n->name, -1 );
3355                         /* loop for more */
3356                         break;
3357
3358                 case TCFG_VARIANT:
3359                         if( goi->isconfigure ){
3360                                 if( goi->argc < 1 ){
3361                                         Jim_SetResult_sprintf( goi->interp,
3362                                                                                    "%s ?STRING?",
3363                                                                                    n->name );
3364                                         return JIM_ERR;
3365                                 }
3366                                 if( target->variant ){
3367                                         free((void *)(target->variant));
3368                                 }
3369                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3370                                 target->variant = strdup(cp);
3371                         } else {
3372                                 if( goi->argc != 0 ){
3373                                         goto no_params;
3374                                 }
3375                         }
3376                         Jim_SetResultString( goi->interp, target->variant,-1 );
3377                         /* loop for more */
3378                         break;
3379                 case TCFG_CHAIN_POSITION:
3380                         if( goi->isconfigure ){
3381                                 Jim_Obj *o;
3382                                 jtag_tap_t *tap;
3383                                 target_free_all_working_areas(target);
3384                                 e = Jim_GetOpt_Obj( goi, &o );
3385                                 if( e != JIM_OK ){
3386                                         return e;
3387                                 }
3388                                 tap = jtag_TapByJimObj( goi->interp, o );
3389                                 if( tap == NULL ){
3390                                         return JIM_ERR;
3391                                 }
3392                                 /* make this exactly 1 or 0 */
3393                                 target->tap = tap;
3394                         } else {
3395                                 if( goi->argc != 0 ){
3396                                         goto no_params;
3397                                 }
3398                         }
3399                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3400                         /* loop for more e*/
3401                         break;
3402                 }
3403         } /* while( goi->argc ) */
3404
3405
3406                 /* done - we return */
3407         return JIM_OK;
3408 }
3409
3410 /** this is the 'tcl' handler for the target specific command */
3411 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3412 {
3413         Jim_GetOptInfo goi;
3414         jim_wide a,b,c;
3415         int x,y,z;
3416         u8  target_buf[32];
3417         Jim_Nvp *n;
3418         target_t *target;
3419         struct command_context_s *cmd_ctx;
3420         int e;
3421
3422         enum {
3423                 TS_CMD_CONFIGURE,
3424                 TS_CMD_CGET,
3425
3426                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3427                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3428                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3429                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3430                 TS_CMD_EXAMINE,
3431                 TS_CMD_POLL,
3432                 TS_CMD_RESET,
3433                 TS_CMD_HALT,
3434                 TS_CMD_WAITSTATE,
3435                 TS_CMD_EVENTLIST,
3436                 TS_CMD_CURSTATE,
3437                 TS_CMD_INVOKE_EVENT,
3438         };
3439
3440         static const Jim_Nvp target_options[] = {
3441                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3442                 { .name = "cget", .value = TS_CMD_CGET },
3443                 { .name = "mww", .value = TS_CMD_MWW },
3444                 { .name = "mwh", .value = TS_CMD_MWH },
3445                 { .name = "mwb", .value = TS_CMD_MWB },
3446                 { .name = "mdw", .value = TS_CMD_MDW },
3447                 { .name = "mdh", .value = TS_CMD_MDH },
3448                 { .name = "mdb", .value = TS_CMD_MDB },
3449                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3450                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3451                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3452                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3453
3454                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3455                 { .name = "arp_poll", .value = TS_CMD_POLL },
3456                 { .name = "arp_reset", .value = TS_CMD_RESET },
3457                 { .name = "arp_halt", .value = TS_CMD_HALT },
3458                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3459                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3460
3461                 { .name = NULL, .value = -1 },
3462         };
3463
3464         /* go past the "command" */
3465         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3466
3467         target = Jim_CmdPrivData( goi.interp );
3468         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3469
3470         /* commands here are in an NVP table */
3471         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3472         if( e != JIM_OK ){
3473                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3474                 return e;
3475         }
3476         /* Assume blank result */
3477         Jim_SetEmptyResult( goi.interp );
3478
3479         switch( n->value ){
3480         case TS_CMD_CONFIGURE:
3481                 if( goi.argc < 2 ){
3482                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3483                         return JIM_ERR;
3484                 }
3485                 goi.isconfigure = 1;
3486                 return target_configure( &goi, target );
3487         case TS_CMD_CGET:
3488                 // some things take params
3489                 if( goi.argc < 1 ){
3490                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3491                         return JIM_ERR;
3492                 }
3493                 goi.isconfigure = 0;
3494                 return target_configure( &goi, target );
3495                 break;
3496         case TS_CMD_MWW:
3497         case TS_CMD_MWH:
3498         case TS_CMD_MWB:
3499                 /* argv[0] = cmd
3500                  * argv[1] = address
3501                  * argv[2] = data
3502                  * argv[3] = optional count.
3503                  */
3504
3505                 if( (goi.argc == 3) || (goi.argc == 4) ){
3506                         /* all is well */
3507                 } else {
3508                 mwx_error:
3509                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3510                         return JIM_ERR;
3511                 }
3512
3513                 e = Jim_GetOpt_Wide( &goi, &a );
3514                 if( e != JIM_OK ){
3515                         goto mwx_error;
3516                 }
3517
3518                 e = Jim_GetOpt_Wide( &goi, &b );
3519                 if( e != JIM_OK ){
3520                         goto mwx_error;
3521                 }
3522                 if( goi.argc ){
3523                         e = Jim_GetOpt_Wide( &goi, &c );
3524                         if( e != JIM_OK ){
3525                                 goto mwx_error;
3526                         }
3527                 } else {
3528                         c = 1;
3529                 }
3530
3531                 switch( n->value ){
3532                 case TS_CMD_MWW:
3533                         target_buffer_set_u32( target, target_buf, b );
3534                         b = 4;
3535                         break;
3536                 case TS_CMD_MWH:
3537                         target_buffer_set_u16( target, target_buf, b );
3538                         b = 2;
3539                         break;
3540                 case TS_CMD_MWB:
3541                         target_buffer_set_u8( target, target_buf, b );
3542                         b = 1;
3543                         break;
3544                 }
3545                 for( x = 0 ; x < c ; x++ ){
3546                         e = target_write_memory( target, a, b, 1, target_buf );
3547                         if( e != ERROR_OK ){
3548                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3549                                 return JIM_ERR;
3550                         }
3551                         /* b = width */
3552                         a = a + b;
3553                 }
3554                 return JIM_OK;
3555                 break;
3556
3557                 /* display */
3558         case TS_CMD_MDW:
3559         case TS_CMD_MDH:
3560         case TS_CMD_MDB:
3561                 /* argv[0] = command
3562                  * argv[1] = address
3563                  * argv[2] = optional count
3564                  */
3565                 if( (goi.argc == 2) || (goi.argc == 3) ){
3566                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3567                         return JIM_ERR;
3568                 }
3569                 e = Jim_GetOpt_Wide( &goi, &a );
3570                 if( e != JIM_OK ){
3571                         return JIM_ERR;
3572                 }
3573                 if( goi.argc ){
3574                         e = Jim_GetOpt_Wide( &goi, &c );
3575                         if( e != JIM_OK ){
3576                                 return JIM_ERR;
3577                         }
3578                 } else {
3579                         c = 1;
3580                 }
3581                 b = 1; /* shut up gcc */
3582                 switch( n->value ){
3583                 case TS_CMD_MDW:
3584                         b =  4;
3585                         break;
3586                 case TS_CMD_MDH:
3587                         b = 2;
3588                         break;
3589                 case TS_CMD_MDB:
3590                         b = 1;
3591                         break;
3592                 }
3593
3594                 /* convert to "bytes" */
3595                 c = c * b;
3596                 /* count is now in 'BYTES' */
3597                 while( c > 0 ){
3598                         y = c;
3599                         if( y > 16 ){
3600                                 y = 16;
3601                         }
3602                         e = target_read_memory( target, a, b, y / b, target_buf );
3603                         if( e != ERROR_OK ){
3604                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3605                                 return JIM_ERR;
3606                         }
3607
3608                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3609                         switch( b ){
3610                         case 4:
3611                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3612                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3613                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3614                                 }
3615                                 for( ; (x < 16) ; x += 4 ){
3616                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3617                                 }
3618                                 break;
3619                         case 2:
3620                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3621                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3622                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3623                                 }
3624                                 for( ; (x < 16) ; x += 2 ){
3625                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3626                                 }
3627                                 break;
3628                         case 1:
3629                         default:
3630                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3631                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3632                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3633                                 }
3634                                 for( ; (x < 16) ; x += 1 ){
3635                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3636                                 }
3637                                 break;
3638                         }
3639                         /* ascii-ify the bytes */
3640                         for( x = 0 ; x < y ; x++ ){
3641                                 if( (target_buf[x] >= 0x20) &&
3642                                         (target_buf[x] <= 0x7e) ){
3643                                         /* good */
3644                                 } else {
3645                                         /* smack it */
3646                                         target_buf[x] = '.';
3647                                 }
3648                         }
3649                         /* space pad  */
3650                         while( x < 16 ){
3651                                 target_buf[x] = ' ';
3652                                 x++;
3653                         }
3654                         /* terminate */
3655                         target_buf[16] = 0;
3656                         /* print - with a newline */
3657                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3658                         /* NEXT... */
3659                         c -= 16;
3660                         a += 16;
3661                 }
3662                 return JIM_OK;
3663         case TS_CMD_MEM2ARRAY:
3664                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3665                 break;
3666         case TS_CMD_ARRAY2MEM:
3667                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3668                 break;
3669         case TS_CMD_EXAMINE:
3670                 if( goi.argc ){
3671                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3672                         return JIM_ERR;
3673                 }
3674                 e = target->type->examine( target );
3675                 if( e != ERROR_OK ){
3676                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3677                         return JIM_ERR;
3678                 }
3679                 return JIM_OK;
3680         case TS_CMD_POLL:
3681                 if( goi.argc ){
3682                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3683                         return JIM_ERR;
3684                 }
3685                 if( !(target->type->examined) ){
3686                         e = ERROR_TARGET_NOT_EXAMINED;
3687                 } else {
3688                         e = target->type->poll( target );
3689                 }
3690                 if( e != ERROR_OK ){
3691                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3692                         return JIM_ERR;
3693                 } else {
3694                         return JIM_OK;
3695                 }
3696                 break;
3697         case TS_CMD_RESET:
3698                 if( goi.argc != 2 ){
3699                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3700                         return JIM_ERR;
3701                 }
3702                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3703                 if( e != JIM_OK ){
3704                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3705                         return e;
3706                 }
3707                 /* the halt or not param */
3708                 e = Jim_GetOpt_Wide( &goi, &a);
3709                 if( e != JIM_OK ){
3710                         return e;
3711                 }
3712                 /* determine if we should halt or not. */
3713                 target->reset_halt = !!a;
3714                 /* When this happens - all workareas are invalid. */
3715                 target_free_all_working_areas_restore(target, 0);
3716
3717                 /* do the assert */
3718                 if( n->value == NVP_ASSERT ){
3719                         target->type->assert_reset( target );
3720                 } else {
3721                         target->type->deassert_reset( target );
3722                 }
3723                 return JIM_OK;
3724         case TS_CMD_HALT:
3725                 if( goi.argc ){
3726                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3727                         return JIM_ERR;
3728                 }
3729                 target->type->halt( target );
3730                 return JIM_OK;
3731         case TS_CMD_WAITSTATE:
3732                 /* params:  <name>  statename timeoutmsecs */
3733                 if( goi.argc != 2 ){
3734                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3735                         return JIM_ERR;
3736                 }
3737                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3738                 if( e != JIM_OK ){
3739                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3740                         return e;
3741                 }
3742                 e = Jim_GetOpt_Wide( &goi, &a );
3743                 if( e != JIM_OK ){
3744                         return e;
3745                 }
3746                 e = target_wait_state( target, n->value, a );
3747                 if( e != ERROR_OK ){
3748                         Jim_SetResult_sprintf( goi.interp,
3749                                                                    "target: %s wait %s fails (%d) %s",
3750                                                                    target->cmd_name,
3751                                                                    n->name,
3752                                                                    e, target_strerror_safe(e) );
3753                         return JIM_ERR;
3754                 } else {
3755                         return JIM_OK;
3756                 }
3757         case TS_CMD_EVENTLIST:
3758                 /* List for human, Events defined for this target.
3759                  * scripts/programs should use 'name cget -event NAME'
3760                  */
3761                 {
3762                         target_event_action_t *teap;
3763                         teap = target->event_action;
3764                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3765                                                    target->target_number,
3766                                                    target->cmd_name );
3767                         command_print( cmd_ctx, "%-25s | Body", "Event");
3768                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3769                         while( teap ){
3770                                 command_print( cmd_ctx,
3771                                                            "%-25s | %s",
3772                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3773                                                            Jim_GetString( teap->body, NULL ) );
3774                                 teap = teap->next;
3775                         }
3776                         command_print( cmd_ctx, "***END***");
3777                         return JIM_OK;
3778                 }
3779         case TS_CMD_CURSTATE:
3780                 if( goi.argc != 0 ){
3781                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3782                         return JIM_ERR;
3783                 }
3784                 Jim_SetResultString( goi.interp,
3785                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3786                 return JIM_OK;
3787         case TS_CMD_INVOKE_EVENT:
3788                 if( goi.argc != 1 ){
3789                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3790                         return JIM_ERR;
3791                 }
3792                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3793                 if( e != JIM_OK ){
3794                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3795                         return e;
3796                 }
3797                 target_handle_event( target, n->value );
3798                 return JIM_OK;
3799         }
3800         return JIM_ERR;
3801 }
3802
3803 static int target_create( Jim_GetOptInfo *goi )
3804 {
3805         Jim_Obj *new_cmd;
3806         Jim_Cmd *cmd;
3807         const char *cp;
3808         char *cp2;
3809         int e;
3810         int x;
3811         target_t *target;
3812         struct command_context_s *cmd_ctx;
3813
3814         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3815         if( goi->argc < 3 ){
3816                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3817                 return JIM_ERR;
3818         }
3819
3820         /* COMMAND */
3821         Jim_GetOpt_Obj( goi, &new_cmd );
3822         /* does this command exist? */
3823         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3824         if( cmd ){
3825                 cp = Jim_GetString( new_cmd, NULL );
3826                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3827                 return JIM_ERR;
3828         }
3829
3830         /* TYPE */
3831         e = Jim_GetOpt_String( goi, &cp2, NULL );
3832         cp = cp2;
3833         /* now does target type exist */
3834         for( x = 0 ; target_types[x] ; x++ ){
3835                 if( 0 == strcmp( cp, target_types[x]->name ) ){
3836                         /* found */
3837                         break;
3838                 }
3839         }
3840         if( target_types[x] == NULL ){
3841                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
3842                 for( x = 0 ; target_types[x] ; x++ ){
3843                         if( target_types[x+1] ){
3844                                 Jim_AppendStrings( goi->interp,
3845                                                                    Jim_GetResult(goi->interp),
3846                                                                    target_types[x]->name,
3847                                                                    ", ", NULL);
3848                         } else {
3849                                 Jim_AppendStrings( goi->interp,
3850                                                                    Jim_GetResult(goi->interp),
3851                                                                    " or ",
3852                                                                    target_types[x]->name,NULL );
3853                         }
3854                 }
3855                 return JIM_ERR;
3856         }
3857
3858         /* Create it */
3859         target = calloc(1,sizeof(target_t));
3860         /* set target number */
3861         target->target_number = new_target_number();
3862
3863         /* allocate memory for each unique target type */
3864         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
3865
3866         memcpy( target->type, target_types[x], sizeof(target_type_t));
3867
3868         /* will be set by "-endian" */
3869         target->endianness = TARGET_ENDIAN_UNKNOWN;
3870
3871         target->working_area        = 0x0;
3872         target->working_area_size   = 0x0;
3873         target->working_areas       = NULL;
3874         target->backup_working_area = 0;
3875
3876         target->state               = TARGET_UNKNOWN;
3877         target->debug_reason        = DBG_REASON_UNDEFINED;
3878         target->reg_cache           = NULL;
3879         target->breakpoints         = NULL;
3880         target->watchpoints         = NULL;
3881         target->next                = NULL;
3882         target->arch_info           = NULL;
3883
3884         target->display             = 1;
3885
3886         /* initialize trace information */
3887         target->trace_info = malloc(sizeof(trace_t));
3888         target->trace_info->num_trace_points         = 0;
3889         target->trace_info->trace_points_size        = 0;
3890         target->trace_info->trace_points             = NULL;
3891         target->trace_info->trace_history_size       = 0;
3892         target->trace_info->trace_history            = NULL;
3893         target->trace_info->trace_history_pos        = 0;
3894         target->trace_info->trace_history_overflowed = 0;
3895
3896         target->dbgmsg          = NULL;
3897         target->dbg_msg_enabled = 0;
3898
3899         target->endianness = TARGET_ENDIAN_UNKNOWN;
3900
3901         /* Do the rest as "configure" options */
3902         goi->isconfigure = 1;
3903         e = target_configure( goi, target);
3904
3905         if (target->tap == NULL)
3906         {
3907                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
3908                 e=JIM_ERR;
3909         }
3910
3911         if( e != JIM_OK ){
3912                 free( target->type );
3913                 free( target );
3914                 return e;
3915         }
3916
3917         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
3918                 /* default endian to little if not specified */
3919                 target->endianness = TARGET_LITTLE_ENDIAN;
3920         }
3921
3922         /* incase variant is not set */
3923         if (!target->variant)
3924                 target->variant = strdup("");
3925
3926         /* create the target specific commands */
3927         if( target->type->register_commands ){
3928                 (*(target->type->register_commands))( cmd_ctx );
3929         }
3930         if( target->type->target_create ){
3931                 (*(target->type->target_create))( target, goi->interp );
3932         }
3933
3934         /* append to end of list */
3935         {
3936                 target_t **tpp;
3937                 tpp = &(all_targets);
3938                 while( *tpp ){
3939                         tpp = &( (*tpp)->next );
3940                 }
3941                 *tpp = target;
3942         }
3943
3944         cp = Jim_GetString( new_cmd, NULL );
3945         target->cmd_name = strdup(cp);
3946
3947         /* now - create the new target name command */
3948         e = Jim_CreateCommand( goi->interp,
3949                                                    /* name */
3950                                                    cp,
3951                                                    tcl_target_func, /* C function */
3952                                                    target, /* private data */
3953                                                    NULL ); /* no del proc */
3954
3955         return e;
3956 }
3957
3958 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3959 {
3960         int x,r,e;
3961         jim_wide w;
3962         struct command_context_s *cmd_ctx;
3963         target_t *target;
3964         Jim_GetOptInfo goi;
3965         enum tcmd {
3966                 /* TG = target generic */
3967                 TG_CMD_CREATE,
3968                 TG_CMD_TYPES,
3969                 TG_CMD_NAMES,
3970                 TG_CMD_CURRENT,
3971                 TG_CMD_NUMBER,
3972                 TG_CMD_COUNT,
3973         };
3974         const char *target_cmds[] = {
3975                 "create", "types", "names", "current", "number",
3976                 "count",
3977                 NULL /* terminate */
3978         };
3979
3980         LOG_DEBUG("Target command params:");
3981         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
3982
3983         cmd_ctx = Jim_GetAssocData( interp, "context" );
3984
3985         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3986
3987         if( goi.argc == 0 ){
3988                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
3989                 return JIM_ERR;
3990         }
3991
3992         /* Jim_GetOpt_Debug( &goi ); */
3993         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
3994         if( r != JIM_OK ){
3995                 return r;
3996         }
3997
3998         switch(x){
3999         default:
4000                 Jim_Panic(goi.interp,"Why am I here?");
4001                 return JIM_ERR;
4002         case TG_CMD_CURRENT:
4003                 if( goi.argc != 0 ){
4004                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4005                         return JIM_ERR;
4006                 }
4007                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4008                 return JIM_OK;
4009         case TG_CMD_TYPES:
4010                 if( goi.argc != 0 ){
4011                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4012                         return JIM_ERR;
4013                 }
4014                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4015                 for( x = 0 ; target_types[x] ; x++ ){
4016                         Jim_ListAppendElement( goi.interp,
4017                                                                    Jim_GetResult(goi.interp),
4018                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4019                 }
4020                 return JIM_OK;
4021         case TG_CMD_NAMES:
4022                 if( goi.argc != 0 ){
4023                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4024                         return JIM_ERR;
4025                 }
4026                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4027                 target = all_targets;
4028                 while( target ){
4029                         Jim_ListAppendElement( goi.interp,
4030                                                                    Jim_GetResult(goi.interp),
4031                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4032                         target = target->next;
4033                 }
4034                 return JIM_OK;
4035         case TG_CMD_CREATE:
4036                 if( goi.argc < 3 ){
4037                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4038                         return JIM_ERR;
4039                 }
4040                 return target_create( &goi );
4041                 break;
4042         case TG_CMD_NUMBER:
4043                 if( goi.argc != 1 ){
4044                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4045                         return JIM_ERR;
4046                 }
4047                 e = Jim_GetOpt_Wide( &goi, &w );
4048                 if( e != JIM_OK ){
4049                         return JIM_ERR;
4050                 }
4051                 {
4052                         target_t *t;
4053                         t = get_target_by_num(w);
4054                         if( t == NULL ){
4055                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4056                                 return JIM_ERR;
4057                         }
4058                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4059                         return JIM_OK;
4060                 }
4061         case TG_CMD_COUNT:
4062                 if( goi.argc != 0 ){
4063                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4064                         return JIM_ERR;
4065                 }
4066                 Jim_SetResult( goi.interp,
4067                                            Jim_NewIntObj( goi.interp, max_target_number()));
4068                 return JIM_OK;
4069         }
4070
4071         return JIM_ERR;
4072 }
4073
4074
4075 struct FastLoad
4076 {
4077         u32 address;
4078         u8 *data;
4079         int length;
4080
4081 };
4082
4083 static int fastload_num;
4084 static struct FastLoad *fastload;
4085
4086 static void free_fastload(void)
4087 {
4088         if (fastload!=NULL)
4089         {
4090                 int i;
4091                 for (i=0; i<fastload_num; i++)
4092                 {
4093                         if (fastload[i].data)
4094                                 free(fastload[i].data);
4095                 }
4096                 free(fastload);
4097                 fastload=NULL;
4098         }
4099 }
4100
4101
4102
4103
4104 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4105 {
4106         u8 *buffer;
4107         u32 buf_cnt;
4108         u32 image_size;
4109         u32 min_address=0;
4110         u32 max_address=0xffffffff;
4111         int i;
4112         int retval;
4113
4114         image_t image;
4115
4116         duration_t duration;
4117         char *duration_text;
4118
4119         if ((argc < 1)||(argc > 5))
4120         {
4121                 return ERROR_COMMAND_SYNTAX_ERROR;
4122         }
4123
4124         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4125         if (argc >= 2)
4126         {
4127                 image.base_address_set = 1;
4128                 image.base_address = strtoul(args[1], NULL, 0);
4129         }
4130         else
4131         {
4132                 image.base_address_set = 0;
4133         }
4134
4135
4136         image.start_address_set = 0;
4137
4138         if (argc>=4)
4139         {
4140                 min_address=strtoul(args[3], NULL, 0);
4141         }
4142         if (argc>=5)
4143         {
4144                 max_address=strtoul(args[4], NULL, 0)+min_address;
4145         }
4146
4147         if (min_address>max_address)
4148         {
4149                 return ERROR_COMMAND_SYNTAX_ERROR;
4150         }
4151
4152         duration_start_measure(&duration);
4153
4154         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4155         {
4156                 return ERROR_OK;
4157         }
4158
4159         image_size = 0x0;
4160         retval = ERROR_OK;
4161         fastload_num=image.num_sections;
4162         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4163         if (fastload==NULL)
4164         {
4165                 image_close(&image);
4166                 return ERROR_FAIL;
4167         }
4168         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4169         for (i = 0; i < image.num_sections; i++)
4170         {
4171                 buffer = malloc(image.sections[i].size);
4172                 if (buffer == NULL)
4173                 {
4174                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4175                         break;
4176                 }
4177
4178                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4179                 {
4180                         free(buffer);
4181                         break;
4182                 }
4183
4184                 u32 offset=0;
4185                 u32 length=buf_cnt;
4186
4187
4188                 /* DANGER!!! beware of unsigned comparision here!!! */
4189
4190                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4191                                 (image.sections[i].base_address<max_address))
4192                 {
4193                         if (image.sections[i].base_address<min_address)
4194                         {
4195                                 /* clip addresses below */
4196                                 offset+=min_address-image.sections[i].base_address;
4197                                 length-=offset;
4198                         }
4199
4200                         if (image.sections[i].base_address+buf_cnt>max_address)
4201                         {
4202                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4203                         }
4204
4205                         fastload[i].address=image.sections[i].base_address+offset;
4206                         fastload[i].data=malloc(length);
4207                         if (fastload[i].data==NULL)
4208                         {
4209                                 free(buffer);
4210                                 break;
4211                         }
4212                         memcpy(fastload[i].data, buffer+offset, length);
4213                         fastload[i].length=length;
4214
4215                         image_size += length;
4216                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4217                 }
4218
4219                 free(buffer);
4220         }
4221
4222         duration_stop_measure(&duration, &duration_text);
4223         if (retval==ERROR_OK)
4224         {
4225                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4226                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4227         }
4228         free(duration_text);
4229
4230         image_close(&image);
4231
4232         if (retval!=ERROR_OK)
4233         {
4234                 free_fastload();
4235         }
4236
4237         return retval;
4238 }
4239
4240 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4241 {
4242         if (argc>0)
4243                 return ERROR_COMMAND_SYNTAX_ERROR;
4244         if (fastload==NULL)
4245         {
4246                 LOG_ERROR("No image in memory");
4247                 return ERROR_FAIL;
4248         }
4249         int i;
4250         int ms=timeval_ms();
4251         int size=0;
4252         int retval=ERROR_OK;
4253         for (i=0; i<fastload_num;i++)
4254         {
4255                 target_t *target = get_current_target(cmd_ctx);
4256                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4257                 if (retval==ERROR_OK)
4258                 {
4259                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4260                 }
4261                 size+=fastload[i].length;
4262         }
4263         int after=timeval_ms();
4264         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4265         return retval;
4266 }