]> git.sur5r.net Git - openocd/blob - src/target/target.c
flash: Constify write buffer
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63                 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65                 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa8_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
104 extern struct target_type or1k_target;
105 extern struct target_type quark_x10xx_target;
106
107 static struct target_type *target_types[] = {
108         &arm7tdmi_target,
109         &arm9tdmi_target,
110         &arm920t_target,
111         &arm720t_target,
112         &arm966e_target,
113         &arm946e_target,
114         &arm926ejs_target,
115         &fa526_target,
116         &feroceon_target,
117         &dragonite_target,
118         &xscale_target,
119         &cortexm_target,
120         &cortexa8_target,
121         &cortexr4_target,
122         &arm11_target,
123         &mips_m4k_target,
124         &avr_target,
125         &dsp563xx_target,
126         &dsp5680xx_target,
127         &testee_target,
128         &avr32_ap7k_target,
129         &hla_target,
130         &nds32_v2_target,
131         &nds32_v3_target,
132         &nds32_v3m_target,
133         &or1k_target,
134         &quark_x10xx_target,
135         NULL,
136 };
137
138 struct target *all_targets;
139 static struct target_event_callback *target_event_callbacks;
140 static struct target_timer_callback *target_timer_callbacks;
141 static const int polling_interval = 100;
142
143 static const Jim_Nvp nvp_assert[] = {
144         { .name = "assert", NVP_ASSERT },
145         { .name = "deassert", NVP_DEASSERT },
146         { .name = "T", NVP_ASSERT },
147         { .name = "F", NVP_DEASSERT },
148         { .name = "t", NVP_ASSERT },
149         { .name = "f", NVP_DEASSERT },
150         { .name = NULL, .value = -1 }
151 };
152
153 static const Jim_Nvp nvp_error_target[] = {
154         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
155         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
156         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
157         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
158         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
159         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
160         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
161         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
162         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
163         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
164         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
165         { .value = -1, .name = NULL }
166 };
167
168 static const char *target_strerror_safe(int err)
169 {
170         const Jim_Nvp *n;
171
172         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
173         if (n->name == NULL)
174                 return "unknown";
175         else
176                 return n->name;
177 }
178
179 static const Jim_Nvp nvp_target_event[] = {
180
181         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
182         { .value = TARGET_EVENT_HALTED, .name = "halted" },
183         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
184         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
185         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
186
187         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
188         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
189
190         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
191         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
192         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
193         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
194         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
195         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
196         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
197         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
198         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
199         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
200         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
201         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
202
203         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
204         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
205
206         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
207         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
208
209         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
210         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
211
212         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
213         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
214
215         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
216         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
217
218         { .name = NULL, .value = -1 }
219 };
220
221 static const Jim_Nvp nvp_target_state[] = {
222         { .name = "unknown", .value = TARGET_UNKNOWN },
223         { .name = "running", .value = TARGET_RUNNING },
224         { .name = "halted",  .value = TARGET_HALTED },
225         { .name = "reset",   .value = TARGET_RESET },
226         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
227         { .name = NULL, .value = -1 },
228 };
229
230 static const Jim_Nvp nvp_target_debug_reason[] = {
231         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
232         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
233         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
234         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
235         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
236         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
237         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
238         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
239         { .name = NULL, .value = -1 },
240 };
241
242 static const Jim_Nvp nvp_target_endian[] = {
243         { .name = "big",    .value = TARGET_BIG_ENDIAN },
244         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
245         { .name = "be",     .value = TARGET_BIG_ENDIAN },
246         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
247         { .name = NULL,     .value = -1 },
248 };
249
250 static const Jim_Nvp nvp_reset_modes[] = {
251         { .name = "unknown", .value = RESET_UNKNOWN },
252         { .name = "run"    , .value = RESET_RUN },
253         { .name = "halt"   , .value = RESET_HALT },
254         { .name = "init"   , .value = RESET_INIT },
255         { .name = NULL     , .value = -1 },
256 };
257
258 const char *debug_reason_name(struct target *t)
259 {
260         const char *cp;
261
262         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
263                         t->debug_reason)->name;
264         if (!cp) {
265                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
266                 cp = "(*BUG*unknown*BUG*)";
267         }
268         return cp;
269 }
270
271 const char *target_state_name(struct target *t)
272 {
273         const char *cp;
274         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
275         if (!cp) {
276                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
277                 cp = "(*BUG*unknown*BUG*)";
278         }
279         return cp;
280 }
281
282 /* determine the number of the new target */
283 static int new_target_number(void)
284 {
285         struct target *t;
286         int x;
287
288         /* number is 0 based */
289         x = -1;
290         t = all_targets;
291         while (t) {
292                 if (x < t->target_number)
293                         x = t->target_number;
294                 t = t->next;
295         }
296         return x + 1;
297 }
298
299 /* read a uint64_t from a buffer in target memory endianness */
300 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
301 {
302         if (target->endianness == TARGET_LITTLE_ENDIAN)
303                 return le_to_h_u64(buffer);
304         else
305                 return be_to_h_u64(buffer);
306 }
307
308 /* read a uint32_t from a buffer in target memory endianness */
309 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
310 {
311         if (target->endianness == TARGET_LITTLE_ENDIAN)
312                 return le_to_h_u32(buffer);
313         else
314                 return be_to_h_u32(buffer);
315 }
316
317 /* read a uint24_t from a buffer in target memory endianness */
318 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
319 {
320         if (target->endianness == TARGET_LITTLE_ENDIAN)
321                 return le_to_h_u24(buffer);
322         else
323                 return be_to_h_u24(buffer);
324 }
325
326 /* read a uint16_t from a buffer in target memory endianness */
327 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
328 {
329         if (target->endianness == TARGET_LITTLE_ENDIAN)
330                 return le_to_h_u16(buffer);
331         else
332                 return be_to_h_u16(buffer);
333 }
334
335 /* read a uint8_t from a buffer in target memory endianness */
336 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
337 {
338         return *buffer & 0x0ff;
339 }
340
341 /* write a uint64_t to a buffer in target memory endianness */
342 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
343 {
344         if (target->endianness == TARGET_LITTLE_ENDIAN)
345                 h_u64_to_le(buffer, value);
346         else
347                 h_u64_to_be(buffer, value);
348 }
349
350 /* write a uint32_t to a buffer in target memory endianness */
351 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
352 {
353         if (target->endianness == TARGET_LITTLE_ENDIAN)
354                 h_u32_to_le(buffer, value);
355         else
356                 h_u32_to_be(buffer, value);
357 }
358
359 /* write a uint24_t to a buffer in target memory endianness */
360 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
361 {
362         if (target->endianness == TARGET_LITTLE_ENDIAN)
363                 h_u24_to_le(buffer, value);
364         else
365                 h_u24_to_be(buffer, value);
366 }
367
368 /* write a uint16_t to a buffer in target memory endianness */
369 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
370 {
371         if (target->endianness == TARGET_LITTLE_ENDIAN)
372                 h_u16_to_le(buffer, value);
373         else
374                 h_u16_to_be(buffer, value);
375 }
376
377 /* write a uint8_t to a buffer in target memory endianness */
378 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
379 {
380         *buffer = value;
381 }
382
383 /* write a uint64_t array to a buffer in target memory endianness */
384 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
385 {
386         uint32_t i;
387         for (i = 0; i < count; i++)
388                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
389 }
390
391 /* write a uint32_t array to a buffer in target memory endianness */
392 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
393 {
394         uint32_t i;
395         for (i = 0; i < count; i++)
396                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
397 }
398
399 /* write a uint16_t array to a buffer in target memory endianness */
400 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
401 {
402         uint32_t i;
403         for (i = 0; i < count; i++)
404                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
405 }
406
407 /* write a uint64_t array to a buffer in target memory endianness */
408 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
409 {
410         uint32_t i;
411         for (i = 0; i < count; i++)
412                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
413 }
414
415 /* write a uint32_t array to a buffer in target memory endianness */
416 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
417 {
418         uint32_t i;
419         for (i = 0; i < count; i++)
420                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
421 }
422
423 /* write a uint16_t array to a buffer in target memory endianness */
424 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
425 {
426         uint32_t i;
427         for (i = 0; i < count; i++)
428                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
429 }
430
431 /* return a pointer to a configured target; id is name or number */
432 struct target *get_target(const char *id)
433 {
434         struct target *target;
435
436         /* try as tcltarget name */
437         for (target = all_targets; target; target = target->next) {
438                 if (target_name(target) == NULL)
439                         continue;
440                 if (strcmp(id, target_name(target)) == 0)
441                         return target;
442         }
443
444         /* It's OK to remove this fallback sometime after August 2010 or so */
445
446         /* no match, try as number */
447         unsigned num;
448         if (parse_uint(id, &num) != ERROR_OK)
449                 return NULL;
450
451         for (target = all_targets; target; target = target->next) {
452                 if (target->target_number == (int)num) {
453                         LOG_WARNING("use '%s' as target identifier, not '%u'",
454                                         target_name(target), num);
455                         return target;
456                 }
457         }
458
459         return NULL;
460 }
461
462 /* returns a pointer to the n-th configured target */
463 static struct target *get_target_by_num(int num)
464 {
465         struct target *target = all_targets;
466
467         while (target) {
468                 if (target->target_number == num)
469                         return target;
470                 target = target->next;
471         }
472
473         return NULL;
474 }
475
476 struct target *get_current_target(struct command_context *cmd_ctx)
477 {
478         struct target *target = get_target_by_num(cmd_ctx->current_target);
479
480         if (target == NULL) {
481                 LOG_ERROR("BUG: current_target out of bounds");
482                 exit(-1);
483         }
484
485         return target;
486 }
487
488 int target_poll(struct target *target)
489 {
490         int retval;
491
492         /* We can't poll until after examine */
493         if (!target_was_examined(target)) {
494                 /* Fail silently lest we pollute the log */
495                 return ERROR_FAIL;
496         }
497
498         retval = target->type->poll(target);
499         if (retval != ERROR_OK)
500                 return retval;
501
502         if (target->halt_issued) {
503                 if (target->state == TARGET_HALTED)
504                         target->halt_issued = false;
505                 else {
506                         long long t = timeval_ms() - target->halt_issued_time;
507                         if (t > DEFAULT_HALT_TIMEOUT) {
508                                 target->halt_issued = false;
509                                 LOG_INFO("Halt timed out, wake up GDB.");
510                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
511                         }
512                 }
513         }
514
515         return ERROR_OK;
516 }
517
518 int target_halt(struct target *target)
519 {
520         int retval;
521         /* We can't poll until after examine */
522         if (!target_was_examined(target)) {
523                 LOG_ERROR("Target not examined yet");
524                 return ERROR_FAIL;
525         }
526
527         retval = target->type->halt(target);
528         if (retval != ERROR_OK)
529                 return retval;
530
531         target->halt_issued = true;
532         target->halt_issued_time = timeval_ms();
533
534         return ERROR_OK;
535 }
536
537 /**
538  * Make the target (re)start executing using its saved execution
539  * context (possibly with some modifications).
540  *
541  * @param target Which target should start executing.
542  * @param current True to use the target's saved program counter instead
543  *      of the address parameter
544  * @param address Optionally used as the program counter.
545  * @param handle_breakpoints True iff breakpoints at the resumption PC
546  *      should be skipped.  (For example, maybe execution was stopped by
547  *      such a breakpoint, in which case it would be counterprodutive to
548  *      let it re-trigger.
549  * @param debug_execution False if all working areas allocated by OpenOCD
550  *      should be released and/or restored to their original contents.
551  *      (This would for example be true to run some downloaded "helper"
552  *      algorithm code, which resides in one such working buffer and uses
553  *      another for data storage.)
554  *
555  * @todo Resolve the ambiguity about what the "debug_execution" flag
556  * signifies.  For example, Target implementations don't agree on how
557  * it relates to invalidation of the register cache, or to whether
558  * breakpoints and watchpoints should be enabled.  (It would seem wrong
559  * to enable breakpoints when running downloaded "helper" algorithms
560  * (debug_execution true), since the breakpoints would be set to match
561  * target firmware being debugged, not the helper algorithm.... and
562  * enabling them could cause such helpers to malfunction (for example,
563  * by overwriting data with a breakpoint instruction.  On the other
564  * hand the infrastructure for running such helpers might use this
565  * procedure but rely on hardware breakpoint to detect termination.)
566  */
567 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
568 {
569         int retval;
570
571         /* We can't poll until after examine */
572         if (!target_was_examined(target)) {
573                 LOG_ERROR("Target not examined yet");
574                 return ERROR_FAIL;
575         }
576
577         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
578
579         /* note that resume *must* be asynchronous. The CPU can halt before
580          * we poll. The CPU can even halt at the current PC as a result of
581          * a software breakpoint being inserted by (a bug?) the application.
582          */
583         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
584         if (retval != ERROR_OK)
585                 return retval;
586
587         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
588
589         return retval;
590 }
591
592 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
593 {
594         char buf[100];
595         int retval;
596         Jim_Nvp *n;
597         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
598         if (n->name == NULL) {
599                 LOG_ERROR("invalid reset mode");
600                 return ERROR_FAIL;
601         }
602
603         /* disable polling during reset to make reset event scripts
604          * more predictable, i.e. dr/irscan & pathmove in events will
605          * not have JTAG operations injected into the middle of a sequence.
606          */
607         bool save_poll = jtag_poll_get_enabled();
608
609         jtag_poll_set_enabled(false);
610
611         sprintf(buf, "ocd_process_reset %s", n->name);
612         retval = Jim_Eval(cmd_ctx->interp, buf);
613
614         jtag_poll_set_enabled(save_poll);
615
616         if (retval != JIM_OK) {
617                 Jim_MakeErrorMessage(cmd_ctx->interp);
618                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
619                 return ERROR_FAIL;
620         }
621
622         /* We want any events to be processed before the prompt */
623         retval = target_call_timer_callbacks_now();
624
625         struct target *target;
626         for (target = all_targets; target; target = target->next) {
627                 target->type->check_reset(target);
628                 target->running_alg = false;
629         }
630
631         return retval;
632 }
633
634 static int identity_virt2phys(struct target *target,
635                 uint32_t virtual, uint32_t *physical)
636 {
637         *physical = virtual;
638         return ERROR_OK;
639 }
640
641 static int no_mmu(struct target *target, int *enabled)
642 {
643         *enabled = 0;
644         return ERROR_OK;
645 }
646
647 static int default_examine(struct target *target)
648 {
649         target_set_examined(target);
650         return ERROR_OK;
651 }
652
653 /* no check by default */
654 static int default_check_reset(struct target *target)
655 {
656         return ERROR_OK;
657 }
658
659 int target_examine_one(struct target *target)
660 {
661         return target->type->examine(target);
662 }
663
664 static int jtag_enable_callback(enum jtag_event event, void *priv)
665 {
666         struct target *target = priv;
667
668         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
669                 return ERROR_OK;
670
671         jtag_unregister_event_callback(jtag_enable_callback, target);
672
673         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
674
675         int retval = target_examine_one(target);
676         if (retval != ERROR_OK)
677                 return retval;
678
679         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
680
681         return retval;
682 }
683
684 /* Targets that correctly implement init + examine, i.e.
685  * no communication with target during init:
686  *
687  * XScale
688  */
689 int target_examine(void)
690 {
691         int retval = ERROR_OK;
692         struct target *target;
693
694         for (target = all_targets; target; target = target->next) {
695                 /* defer examination, but don't skip it */
696                 if (!target->tap->enabled) {
697                         jtag_register_event_callback(jtag_enable_callback,
698                                         target);
699                         continue;
700                 }
701
702                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
703
704                 retval = target_examine_one(target);
705                 if (retval != ERROR_OK)
706                         return retval;
707
708                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
709         }
710         return retval;
711 }
712
713 const char *target_type_name(struct target *target)
714 {
715         return target->type->name;
716 }
717
718 static int target_soft_reset_halt(struct target *target)
719 {
720         if (!target_was_examined(target)) {
721                 LOG_ERROR("Target not examined yet");
722                 return ERROR_FAIL;
723         }
724         if (!target->type->soft_reset_halt) {
725                 LOG_ERROR("Target %s does not support soft_reset_halt",
726                                 target_name(target));
727                 return ERROR_FAIL;
728         }
729         return target->type->soft_reset_halt(target);
730 }
731
732 /**
733  * Downloads a target-specific native code algorithm to the target,
734  * and executes it.  * Note that some targets may need to set up, enable,
735  * and tear down a breakpoint (hard or * soft) to detect algorithm
736  * termination, while others may support  lower overhead schemes where
737  * soft breakpoints embedded in the algorithm automatically terminate the
738  * algorithm.
739  *
740  * @param target used to run the algorithm
741  * @param arch_info target-specific description of the algorithm.
742  */
743 int target_run_algorithm(struct target *target,
744                 int num_mem_params, struct mem_param *mem_params,
745                 int num_reg_params, struct reg_param *reg_param,
746                 uint32_t entry_point, uint32_t exit_point,
747                 int timeout_ms, void *arch_info)
748 {
749         int retval = ERROR_FAIL;
750
751         if (!target_was_examined(target)) {
752                 LOG_ERROR("Target not examined yet");
753                 goto done;
754         }
755         if (!target->type->run_algorithm) {
756                 LOG_ERROR("Target type '%s' does not support %s",
757                                 target_type_name(target), __func__);
758                 goto done;
759         }
760
761         target->running_alg = true;
762         retval = target->type->run_algorithm(target,
763                         num_mem_params, mem_params,
764                         num_reg_params, reg_param,
765                         entry_point, exit_point, timeout_ms, arch_info);
766         target->running_alg = false;
767
768 done:
769         return retval;
770 }
771
772 /**
773  * Downloads a target-specific native code algorithm to the target,
774  * executes and leaves it running.
775  *
776  * @param target used to run the algorithm
777  * @param arch_info target-specific description of the algorithm.
778  */
779 int target_start_algorithm(struct target *target,
780                 int num_mem_params, struct mem_param *mem_params,
781                 int num_reg_params, struct reg_param *reg_params,
782                 uint32_t entry_point, uint32_t exit_point,
783                 void *arch_info)
784 {
785         int retval = ERROR_FAIL;
786
787         if (!target_was_examined(target)) {
788                 LOG_ERROR("Target not examined yet");
789                 goto done;
790         }
791         if (!target->type->start_algorithm) {
792                 LOG_ERROR("Target type '%s' does not support %s",
793                                 target_type_name(target), __func__);
794                 goto done;
795         }
796         if (target->running_alg) {
797                 LOG_ERROR("Target is already running an algorithm");
798                 goto done;
799         }
800
801         target->running_alg = true;
802         retval = target->type->start_algorithm(target,
803                         num_mem_params, mem_params,
804                         num_reg_params, reg_params,
805                         entry_point, exit_point, arch_info);
806
807 done:
808         return retval;
809 }
810
811 /**
812  * Waits for an algorithm started with target_start_algorithm() to complete.
813  *
814  * @param target used to run the algorithm
815  * @param arch_info target-specific description of the algorithm.
816  */
817 int target_wait_algorithm(struct target *target,
818                 int num_mem_params, struct mem_param *mem_params,
819                 int num_reg_params, struct reg_param *reg_params,
820                 uint32_t exit_point, int timeout_ms,
821                 void *arch_info)
822 {
823         int retval = ERROR_FAIL;
824
825         if (!target->type->wait_algorithm) {
826                 LOG_ERROR("Target type '%s' does not support %s",
827                                 target_type_name(target), __func__);
828                 goto done;
829         }
830         if (!target->running_alg) {
831                 LOG_ERROR("Target is not running an algorithm");
832                 goto done;
833         }
834
835         retval = target->type->wait_algorithm(target,
836                         num_mem_params, mem_params,
837                         num_reg_params, reg_params,
838                         exit_point, timeout_ms, arch_info);
839         if (retval != ERROR_TARGET_TIMEOUT)
840                 target->running_alg = false;
841
842 done:
843         return retval;
844 }
845
846 /**
847  * Executes a target-specific native code algorithm in the target.
848  * It differs from target_run_algorithm in that the algorithm is asynchronous.
849  * Because of this it requires an compliant algorithm:
850  * see contrib/loaders/flash/stm32f1x.S for example.
851  *
852  * @param target used to run the algorithm
853  */
854
855 int target_run_flash_async_algorithm(struct target *target,
856                 const uint8_t *buffer, uint32_t count, int block_size,
857                 int num_mem_params, struct mem_param *mem_params,
858                 int num_reg_params, struct reg_param *reg_params,
859                 uint32_t buffer_start, uint32_t buffer_size,
860                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
861 {
862         int retval;
863         int timeout = 0;
864
865         /* Set up working area. First word is write pointer, second word is read pointer,
866          * rest is fifo data area. */
867         uint32_t wp_addr = buffer_start;
868         uint32_t rp_addr = buffer_start + 4;
869         uint32_t fifo_start_addr = buffer_start + 8;
870         uint32_t fifo_end_addr = buffer_start + buffer_size;
871
872         uint32_t wp = fifo_start_addr;
873         uint32_t rp = fifo_start_addr;
874
875         /* validate block_size is 2^n */
876         assert(!block_size || !(block_size & (block_size - 1)));
877
878         retval = target_write_u32(target, wp_addr, wp);
879         if (retval != ERROR_OK)
880                 return retval;
881         retval = target_write_u32(target, rp_addr, rp);
882         if (retval != ERROR_OK)
883                 return retval;
884
885         /* Start up algorithm on target and let it idle while writing the first chunk */
886         retval = target_start_algorithm(target, num_mem_params, mem_params,
887                         num_reg_params, reg_params,
888                         entry_point,
889                         exit_point,
890                         arch_info);
891
892         if (retval != ERROR_OK) {
893                 LOG_ERROR("error starting target flash write algorithm");
894                 return retval;
895         }
896
897         while (count > 0) {
898
899                 retval = target_read_u32(target, rp_addr, &rp);
900                 if (retval != ERROR_OK) {
901                         LOG_ERROR("failed to get read pointer");
902                         break;
903                 }
904
905                 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
906
907                 if (rp == 0) {
908                         LOG_ERROR("flash write algorithm aborted by target");
909                         retval = ERROR_FLASH_OPERATION_FAILED;
910                         break;
911                 }
912
913                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
914                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
915                         break;
916                 }
917
918                 /* Count the number of bytes available in the fifo without
919                  * crossing the wrap around. Make sure to not fill it completely,
920                  * because that would make wp == rp and that's the empty condition. */
921                 uint32_t thisrun_bytes;
922                 if (rp > wp)
923                         thisrun_bytes = rp - wp - block_size;
924                 else if (rp > fifo_start_addr)
925                         thisrun_bytes = fifo_end_addr - wp;
926                 else
927                         thisrun_bytes = fifo_end_addr - wp - block_size;
928
929                 if (thisrun_bytes == 0) {
930                         /* Throttle polling a bit if transfer is (much) faster than flash
931                          * programming. The exact delay shouldn't matter as long as it's
932                          * less than buffer size / flash speed. This is very unlikely to
933                          * run when using high latency connections such as USB. */
934                         alive_sleep(10);
935
936                         /* to stop an infinite loop on some targets check and increment a timeout
937                          * this issue was observed on a stellaris using the new ICDI interface */
938                         if (timeout++ >= 500) {
939                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
940                                 return ERROR_FLASH_OPERATION_FAILED;
941                         }
942                         continue;
943                 }
944
945                 /* reset our timeout */
946                 timeout = 0;
947
948                 /* Limit to the amount of data we actually want to write */
949                 if (thisrun_bytes > count * block_size)
950                         thisrun_bytes = count * block_size;
951
952                 /* Write data to fifo */
953                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
954                 if (retval != ERROR_OK)
955                         break;
956
957                 /* Update counters and wrap write pointer */
958                 buffer += thisrun_bytes;
959                 count -= thisrun_bytes / block_size;
960                 wp += thisrun_bytes;
961                 if (wp >= fifo_end_addr)
962                         wp = fifo_start_addr;
963
964                 /* Store updated write pointer to target */
965                 retval = target_write_u32(target, wp_addr, wp);
966                 if (retval != ERROR_OK)
967                         break;
968         }
969
970         if (retval != ERROR_OK) {
971                 /* abort flash write algorithm on target */
972                 target_write_u32(target, wp_addr, 0);
973         }
974
975         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
976                         num_reg_params, reg_params,
977                         exit_point,
978                         10000,
979                         arch_info);
980
981         if (retval2 != ERROR_OK) {
982                 LOG_ERROR("error waiting for target flash write algorithm");
983                 retval = retval2;
984         }
985
986         return retval;
987 }
988
989 int target_read_memory(struct target *target,
990                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
991 {
992         if (!target_was_examined(target)) {
993                 LOG_ERROR("Target not examined yet");
994                 return ERROR_FAIL;
995         }
996         return target->type->read_memory(target, address, size, count, buffer);
997 }
998
999 int target_read_phys_memory(struct target *target,
1000                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1001 {
1002         if (!target_was_examined(target)) {
1003                 LOG_ERROR("Target not examined yet");
1004                 return ERROR_FAIL;
1005         }
1006         return target->type->read_phys_memory(target, address, size, count, buffer);
1007 }
1008
1009 int target_write_memory(struct target *target,
1010                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1011 {
1012         if (!target_was_examined(target)) {
1013                 LOG_ERROR("Target not examined yet");
1014                 return ERROR_FAIL;
1015         }
1016         return target->type->write_memory(target, address, size, count, buffer);
1017 }
1018
1019 int target_write_phys_memory(struct target *target,
1020                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1021 {
1022         if (!target_was_examined(target)) {
1023                 LOG_ERROR("Target not examined yet");
1024                 return ERROR_FAIL;
1025         }
1026         return target->type->write_phys_memory(target, address, size, count, buffer);
1027 }
1028
1029 int target_add_breakpoint(struct target *target,
1030                 struct breakpoint *breakpoint)
1031 {
1032         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1033                 LOG_WARNING("target %s is not halted", target_name(target));
1034                 return ERROR_TARGET_NOT_HALTED;
1035         }
1036         return target->type->add_breakpoint(target, breakpoint);
1037 }
1038
1039 int target_add_context_breakpoint(struct target *target,
1040                 struct breakpoint *breakpoint)
1041 {
1042         if (target->state != TARGET_HALTED) {
1043                 LOG_WARNING("target %s is not halted", target_name(target));
1044                 return ERROR_TARGET_NOT_HALTED;
1045         }
1046         return target->type->add_context_breakpoint(target, breakpoint);
1047 }
1048
1049 int target_add_hybrid_breakpoint(struct target *target,
1050                 struct breakpoint *breakpoint)
1051 {
1052         if (target->state != TARGET_HALTED) {
1053                 LOG_WARNING("target %s is not halted", target_name(target));
1054                 return ERROR_TARGET_NOT_HALTED;
1055         }
1056         return target->type->add_hybrid_breakpoint(target, breakpoint);
1057 }
1058
1059 int target_remove_breakpoint(struct target *target,
1060                 struct breakpoint *breakpoint)
1061 {
1062         return target->type->remove_breakpoint(target, breakpoint);
1063 }
1064
1065 int target_add_watchpoint(struct target *target,
1066                 struct watchpoint *watchpoint)
1067 {
1068         if (target->state != TARGET_HALTED) {
1069                 LOG_WARNING("target %s is not halted", target_name(target));
1070                 return ERROR_TARGET_NOT_HALTED;
1071         }
1072         return target->type->add_watchpoint(target, watchpoint);
1073 }
1074 int target_remove_watchpoint(struct target *target,
1075                 struct watchpoint *watchpoint)
1076 {
1077         return target->type->remove_watchpoint(target, watchpoint);
1078 }
1079 int target_hit_watchpoint(struct target *target,
1080                 struct watchpoint **hit_watchpoint)
1081 {
1082         if (target->state != TARGET_HALTED) {
1083                 LOG_WARNING("target %s is not halted", target->cmd_name);
1084                 return ERROR_TARGET_NOT_HALTED;
1085         }
1086
1087         if (target->type->hit_watchpoint == NULL) {
1088                 /* For backward compatible, if hit_watchpoint is not implemented,
1089                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1090                  * information. */
1091                 return ERROR_FAIL;
1092         }
1093
1094         return target->type->hit_watchpoint(target, hit_watchpoint);
1095 }
1096
1097 int target_get_gdb_reg_list(struct target *target,
1098                 struct reg **reg_list[], int *reg_list_size,
1099                 enum target_register_class reg_class)
1100 {
1101         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1102 }
1103 int target_step(struct target *target,
1104                 int current, uint32_t address, int handle_breakpoints)
1105 {
1106         return target->type->step(target, current, address, handle_breakpoints);
1107 }
1108
1109 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1110 {
1111         if (target->state != TARGET_HALTED) {
1112                 LOG_WARNING("target %s is not halted", target->cmd_name);
1113                 return ERROR_TARGET_NOT_HALTED;
1114         }
1115         return target->type->get_gdb_fileio_info(target, fileio_info);
1116 }
1117
1118 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1119 {
1120         if (target->state != TARGET_HALTED) {
1121                 LOG_WARNING("target %s is not halted", target->cmd_name);
1122                 return ERROR_TARGET_NOT_HALTED;
1123         }
1124         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1125 }
1126
1127 int target_profiling(struct target *target, uint32_t *samples,
1128                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1129 {
1130         if (target->state != TARGET_HALTED) {
1131                 LOG_WARNING("target %s is not halted", target->cmd_name);
1132                 return ERROR_TARGET_NOT_HALTED;
1133         }
1134         return target->type->profiling(target, samples, max_num_samples,
1135                         num_samples, seconds);
1136 }
1137
1138 /**
1139  * Reset the @c examined flag for the given target.
1140  * Pure paranoia -- targets are zeroed on allocation.
1141  */
1142 static void target_reset_examined(struct target *target)
1143 {
1144         target->examined = false;
1145 }
1146
1147 static int err_read_phys_memory(struct target *target, uint32_t address,
1148                 uint32_t size, uint32_t count, uint8_t *buffer)
1149 {
1150         LOG_ERROR("Not implemented: %s", __func__);
1151         return ERROR_FAIL;
1152 }
1153
1154 static int err_write_phys_memory(struct target *target, uint32_t address,
1155                 uint32_t size, uint32_t count, const uint8_t *buffer)
1156 {
1157         LOG_ERROR("Not implemented: %s", __func__);
1158         return ERROR_FAIL;
1159 }
1160
1161 static int handle_target(void *priv);
1162
1163 static int target_init_one(struct command_context *cmd_ctx,
1164                 struct target *target)
1165 {
1166         target_reset_examined(target);
1167
1168         struct target_type *type = target->type;
1169         if (type->examine == NULL)
1170                 type->examine = default_examine;
1171
1172         if (type->check_reset == NULL)
1173                 type->check_reset = default_check_reset;
1174
1175         assert(type->init_target != NULL);
1176
1177         int retval = type->init_target(cmd_ctx, target);
1178         if (ERROR_OK != retval) {
1179                 LOG_ERROR("target '%s' init failed", target_name(target));
1180                 return retval;
1181         }
1182
1183         /* Sanity-check MMU support ... stub in what we must, to help
1184          * implement it in stages, but warn if we need to do so.
1185          */
1186         if (type->mmu) {
1187                 if (type->write_phys_memory == NULL) {
1188                         LOG_ERROR("type '%s' is missing write_phys_memory",
1189                                         type->name);
1190                         type->write_phys_memory = err_write_phys_memory;
1191                 }
1192                 if (type->read_phys_memory == NULL) {
1193                         LOG_ERROR("type '%s' is missing read_phys_memory",
1194                                         type->name);
1195                         type->read_phys_memory = err_read_phys_memory;
1196                 }
1197                 if (type->virt2phys == NULL) {
1198                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1199                         type->virt2phys = identity_virt2phys;
1200                 }
1201         } else {
1202                 /* Make sure no-MMU targets all behave the same:  make no
1203                  * distinction between physical and virtual addresses, and
1204                  * ensure that virt2phys() is always an identity mapping.
1205                  */
1206                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1207                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1208
1209                 type->mmu = no_mmu;
1210                 type->write_phys_memory = type->write_memory;
1211                 type->read_phys_memory = type->read_memory;
1212                 type->virt2phys = identity_virt2phys;
1213         }
1214
1215         if (target->type->read_buffer == NULL)
1216                 target->type->read_buffer = target_read_buffer_default;
1217
1218         if (target->type->write_buffer == NULL)
1219                 target->type->write_buffer = target_write_buffer_default;
1220
1221         if (target->type->get_gdb_fileio_info == NULL)
1222                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1223
1224         if (target->type->gdb_fileio_end == NULL)
1225                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1226
1227         if (target->type->profiling == NULL)
1228                 target->type->profiling = target_profiling_default;
1229
1230         return ERROR_OK;
1231 }
1232
1233 static int target_init(struct command_context *cmd_ctx)
1234 {
1235         struct target *target;
1236         int retval;
1237
1238         for (target = all_targets; target; target = target->next) {
1239                 retval = target_init_one(cmd_ctx, target);
1240                 if (ERROR_OK != retval)
1241                         return retval;
1242         }
1243
1244         if (!all_targets)
1245                 return ERROR_OK;
1246
1247         retval = target_register_user_commands(cmd_ctx);
1248         if (ERROR_OK != retval)
1249                 return retval;
1250
1251         retval = target_register_timer_callback(&handle_target,
1252                         polling_interval, 1, cmd_ctx->interp);
1253         if (ERROR_OK != retval)
1254                 return retval;
1255
1256         return ERROR_OK;
1257 }
1258
1259 COMMAND_HANDLER(handle_target_init_command)
1260 {
1261         int retval;
1262
1263         if (CMD_ARGC != 0)
1264                 return ERROR_COMMAND_SYNTAX_ERROR;
1265
1266         static bool target_initialized;
1267         if (target_initialized) {
1268                 LOG_INFO("'target init' has already been called");
1269                 return ERROR_OK;
1270         }
1271         target_initialized = true;
1272
1273         retval = command_run_line(CMD_CTX, "init_targets");
1274         if (ERROR_OK != retval)
1275                 return retval;
1276
1277         retval = command_run_line(CMD_CTX, "init_board");
1278         if (ERROR_OK != retval)
1279                 return retval;
1280
1281         LOG_DEBUG("Initializing targets...");
1282         return target_init(CMD_CTX);
1283 }
1284
1285 int target_register_event_callback(int (*callback)(struct target *target,
1286                 enum target_event event, void *priv), void *priv)
1287 {
1288         struct target_event_callback **callbacks_p = &target_event_callbacks;
1289
1290         if (callback == NULL)
1291                 return ERROR_COMMAND_SYNTAX_ERROR;
1292
1293         if (*callbacks_p) {
1294                 while ((*callbacks_p)->next)
1295                         callbacks_p = &((*callbacks_p)->next);
1296                 callbacks_p = &((*callbacks_p)->next);
1297         }
1298
1299         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1300         (*callbacks_p)->callback = callback;
1301         (*callbacks_p)->priv = priv;
1302         (*callbacks_p)->next = NULL;
1303
1304         return ERROR_OK;
1305 }
1306
1307 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1308 {
1309         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1310         struct timeval now;
1311
1312         if (callback == NULL)
1313                 return ERROR_COMMAND_SYNTAX_ERROR;
1314
1315         if (*callbacks_p) {
1316                 while ((*callbacks_p)->next)
1317                         callbacks_p = &((*callbacks_p)->next);
1318                 callbacks_p = &((*callbacks_p)->next);
1319         }
1320
1321         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1322         (*callbacks_p)->callback = callback;
1323         (*callbacks_p)->periodic = periodic;
1324         (*callbacks_p)->time_ms = time_ms;
1325
1326         gettimeofday(&now, NULL);
1327         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1328         time_ms -= (time_ms % 1000);
1329         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1330         if ((*callbacks_p)->when.tv_usec > 1000000) {
1331                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1332                 (*callbacks_p)->when.tv_sec += 1;
1333         }
1334
1335         (*callbacks_p)->priv = priv;
1336         (*callbacks_p)->next = NULL;
1337
1338         return ERROR_OK;
1339 }
1340
1341 int target_unregister_event_callback(int (*callback)(struct target *target,
1342                 enum target_event event, void *priv), void *priv)
1343 {
1344         struct target_event_callback **p = &target_event_callbacks;
1345         struct target_event_callback *c = target_event_callbacks;
1346
1347         if (callback == NULL)
1348                 return ERROR_COMMAND_SYNTAX_ERROR;
1349
1350         while (c) {
1351                 struct target_event_callback *next = c->next;
1352                 if ((c->callback == callback) && (c->priv == priv)) {
1353                         *p = next;
1354                         free(c);
1355                         return ERROR_OK;
1356                 } else
1357                         p = &(c->next);
1358                 c = next;
1359         }
1360
1361         return ERROR_OK;
1362 }
1363
1364 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1365 {
1366         struct target_timer_callback **p = &target_timer_callbacks;
1367         struct target_timer_callback *c = target_timer_callbacks;
1368
1369         if (callback == NULL)
1370                 return ERROR_COMMAND_SYNTAX_ERROR;
1371
1372         while (c) {
1373                 struct target_timer_callback *next = c->next;
1374                 if ((c->callback == callback) && (c->priv == priv)) {
1375                         *p = next;
1376                         free(c);
1377                         return ERROR_OK;
1378                 } else
1379                         p = &(c->next);
1380                 c = next;
1381         }
1382
1383         return ERROR_OK;
1384 }
1385
1386 int target_call_event_callbacks(struct target *target, enum target_event event)
1387 {
1388         struct target_event_callback *callback = target_event_callbacks;
1389         struct target_event_callback *next_callback;
1390
1391         if (event == TARGET_EVENT_HALTED) {
1392                 /* execute early halted first */
1393                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1394         }
1395
1396         LOG_DEBUG("target event %i (%s)", event,
1397                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1398
1399         target_handle_event(target, event);
1400
1401         while (callback) {
1402                 next_callback = callback->next;
1403                 callback->callback(target, event, callback->priv);
1404                 callback = next_callback;
1405         }
1406
1407         return ERROR_OK;
1408 }
1409
1410 static int target_timer_callback_periodic_restart(
1411                 struct target_timer_callback *cb, struct timeval *now)
1412 {
1413         int time_ms = cb->time_ms;
1414         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1415         time_ms -= (time_ms % 1000);
1416         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1417         if (cb->when.tv_usec > 1000000) {
1418                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1419                 cb->when.tv_sec += 1;
1420         }
1421         return ERROR_OK;
1422 }
1423
1424 static int target_call_timer_callback(struct target_timer_callback *cb,
1425                 struct timeval *now)
1426 {
1427         cb->callback(cb->priv);
1428
1429         if (cb->periodic)
1430                 return target_timer_callback_periodic_restart(cb, now);
1431
1432         return target_unregister_timer_callback(cb->callback, cb->priv);
1433 }
1434
1435 static int target_call_timer_callbacks_check_time(int checktime)
1436 {
1437         keep_alive();
1438
1439         struct timeval now;
1440         gettimeofday(&now, NULL);
1441
1442         struct target_timer_callback *callback = target_timer_callbacks;
1443         while (callback) {
1444                 /* cleaning up may unregister and free this callback */
1445                 struct target_timer_callback *next_callback = callback->next;
1446
1447                 bool call_it = callback->callback &&
1448                         ((!checktime && callback->periodic) ||
1449                           now.tv_sec > callback->when.tv_sec ||
1450                          (now.tv_sec == callback->when.tv_sec &&
1451                           now.tv_usec >= callback->when.tv_usec));
1452
1453                 if (call_it) {
1454                         int retval = target_call_timer_callback(callback, &now);
1455                         if (retval != ERROR_OK)
1456                                 return retval;
1457                 }
1458
1459                 callback = next_callback;
1460         }
1461
1462         return ERROR_OK;
1463 }
1464
1465 int target_call_timer_callbacks(void)
1466 {
1467         return target_call_timer_callbacks_check_time(1);
1468 }
1469
1470 /* invoke periodic callbacks immediately */
1471 int target_call_timer_callbacks_now(void)
1472 {
1473         return target_call_timer_callbacks_check_time(0);
1474 }
1475
1476 /* Prints the working area layout for debug purposes */
1477 static void print_wa_layout(struct target *target)
1478 {
1479         struct working_area *c = target->working_areas;
1480
1481         while (c) {
1482                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1483                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1484                         c->address, c->address + c->size - 1, c->size);
1485                 c = c->next;
1486         }
1487 }
1488
1489 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1490 static void target_split_working_area(struct working_area *area, uint32_t size)
1491 {
1492         assert(area->free); /* Shouldn't split an allocated area */
1493         assert(size <= area->size); /* Caller should guarantee this */
1494
1495         /* Split only if not already the right size */
1496         if (size < area->size) {
1497                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1498
1499                 if (new_wa == NULL)
1500                         return;
1501
1502                 new_wa->next = area->next;
1503                 new_wa->size = area->size - size;
1504                 new_wa->address = area->address + size;
1505                 new_wa->backup = NULL;
1506                 new_wa->user = NULL;
1507                 new_wa->free = true;
1508
1509                 area->next = new_wa;
1510                 area->size = size;
1511
1512                 /* If backup memory was allocated to this area, it has the wrong size
1513                  * now so free it and it will be reallocated if/when needed */
1514                 if (area->backup) {
1515                         free(area->backup);
1516                         area->backup = NULL;
1517                 }
1518         }
1519 }
1520
1521 /* Merge all adjacent free areas into one */
1522 static void target_merge_working_areas(struct target *target)
1523 {
1524         struct working_area *c = target->working_areas;
1525
1526         while (c && c->next) {
1527                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1528
1529                 /* Find two adjacent free areas */
1530                 if (c->free && c->next->free) {
1531                         /* Merge the last into the first */
1532                         c->size += c->next->size;
1533
1534                         /* Remove the last */
1535                         struct working_area *to_be_freed = c->next;
1536                         c->next = c->next->next;
1537                         if (to_be_freed->backup)
1538                                 free(to_be_freed->backup);
1539                         free(to_be_freed);
1540
1541                         /* If backup memory was allocated to the remaining area, it's has
1542                          * the wrong size now */
1543                         if (c->backup) {
1544                                 free(c->backup);
1545                                 c->backup = NULL;
1546                         }
1547                 } else {
1548                         c = c->next;
1549                 }
1550         }
1551 }
1552
1553 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1554 {
1555         /* Reevaluate working area address based on MMU state*/
1556         if (target->working_areas == NULL) {
1557                 int retval;
1558                 int enabled;
1559
1560                 retval = target->type->mmu(target, &enabled);
1561                 if (retval != ERROR_OK)
1562                         return retval;
1563
1564                 if (!enabled) {
1565                         if (target->working_area_phys_spec) {
1566                                 LOG_DEBUG("MMU disabled, using physical "
1567                                         "address for working memory 0x%08"PRIx32,
1568                                         target->working_area_phys);
1569                                 target->working_area = target->working_area_phys;
1570                         } else {
1571                                 LOG_ERROR("No working memory available. "
1572                                         "Specify -work-area-phys to target.");
1573                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1574                         }
1575                 } else {
1576                         if (target->working_area_virt_spec) {
1577                                 LOG_DEBUG("MMU enabled, using virtual "
1578                                         "address for working memory 0x%08"PRIx32,
1579                                         target->working_area_virt);
1580                                 target->working_area = target->working_area_virt;
1581                         } else {
1582                                 LOG_ERROR("No working memory available. "
1583                                         "Specify -work-area-virt to target.");
1584                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1585                         }
1586                 }
1587
1588                 /* Set up initial working area on first call */
1589                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1590                 if (new_wa) {
1591                         new_wa->next = NULL;
1592                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1593                         new_wa->address = target->working_area;
1594                         new_wa->backup = NULL;
1595                         new_wa->user = NULL;
1596                         new_wa->free = true;
1597                 }
1598
1599                 target->working_areas = new_wa;
1600         }
1601
1602         /* only allocate multiples of 4 byte */
1603         if (size % 4)
1604                 size = (size + 3) & (~3UL);
1605
1606         struct working_area *c = target->working_areas;
1607
1608         /* Find the first large enough working area */
1609         while (c) {
1610                 if (c->free && c->size >= size)
1611                         break;
1612                 c = c->next;
1613         }
1614
1615         if (c == NULL)
1616                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1617
1618         /* Split the working area into the requested size */
1619         target_split_working_area(c, size);
1620
1621         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1622
1623         if (target->backup_working_area) {
1624                 if (c->backup == NULL) {
1625                         c->backup = malloc(c->size);
1626                         if (c->backup == NULL)
1627                                 return ERROR_FAIL;
1628                 }
1629
1630                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1631                 if (retval != ERROR_OK)
1632                         return retval;
1633         }
1634
1635         /* mark as used, and return the new (reused) area */
1636         c->free = false;
1637         *area = c;
1638
1639         /* user pointer */
1640         c->user = area;
1641
1642         print_wa_layout(target);
1643
1644         return ERROR_OK;
1645 }
1646
1647 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1648 {
1649         int retval;
1650
1651         retval = target_alloc_working_area_try(target, size, area);
1652         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1653                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1654         return retval;
1655
1656 }
1657
1658 static int target_restore_working_area(struct target *target, struct working_area *area)
1659 {
1660         int retval = ERROR_OK;
1661
1662         if (target->backup_working_area && area->backup != NULL) {
1663                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1664                 if (retval != ERROR_OK)
1665                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1666                                         area->size, area->address);
1667         }
1668
1669         return retval;
1670 }
1671
1672 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1673 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1674 {
1675         int retval = ERROR_OK;
1676
1677         if (area->free)
1678                 return retval;
1679
1680         if (restore) {
1681                 retval = target_restore_working_area(target, area);
1682                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1683                 if (retval != ERROR_OK)
1684                         return retval;
1685         }
1686
1687         area->free = true;
1688
1689         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1690                         area->size, area->address);
1691
1692         /* mark user pointer invalid */
1693         /* TODO: Is this really safe? It points to some previous caller's memory.
1694          * How could we know that the area pointer is still in that place and not
1695          * some other vital data? What's the purpose of this, anyway? */
1696         *area->user = NULL;
1697         area->user = NULL;
1698
1699         target_merge_working_areas(target);
1700
1701         print_wa_layout(target);
1702
1703         return retval;
1704 }
1705
1706 int target_free_working_area(struct target *target, struct working_area *area)
1707 {
1708         return target_free_working_area_restore(target, area, 1);
1709 }
1710
1711 /* free resources and restore memory, if restoring memory fails,
1712  * free up resources anyway
1713  */
1714 static void target_free_all_working_areas_restore(struct target *target, int restore)
1715 {
1716         struct working_area *c = target->working_areas;
1717
1718         LOG_DEBUG("freeing all working areas");
1719
1720         /* Loop through all areas, restoring the allocated ones and marking them as free */
1721         while (c) {
1722                 if (!c->free) {
1723                         if (restore)
1724                                 target_restore_working_area(target, c);
1725                         c->free = true;
1726                         *c->user = NULL; /* Same as above */
1727                         c->user = NULL;
1728                 }
1729                 c = c->next;
1730         }
1731
1732         /* Run a merge pass to combine all areas into one */
1733         target_merge_working_areas(target);
1734
1735         print_wa_layout(target);
1736 }
1737
1738 void target_free_all_working_areas(struct target *target)
1739 {
1740         target_free_all_working_areas_restore(target, 1);
1741 }
1742
1743 /* Find the largest number of bytes that can be allocated */
1744 uint32_t target_get_working_area_avail(struct target *target)
1745 {
1746         struct working_area *c = target->working_areas;
1747         uint32_t max_size = 0;
1748
1749         if (c == NULL)
1750                 return target->working_area_size;
1751
1752         while (c) {
1753                 if (c->free && max_size < c->size)
1754                         max_size = c->size;
1755
1756                 c = c->next;
1757         }
1758
1759         return max_size;
1760 }
1761
1762 int target_arch_state(struct target *target)
1763 {
1764         int retval;
1765         if (target == NULL) {
1766                 LOG_USER("No target has been configured");
1767                 return ERROR_OK;
1768         }
1769
1770         LOG_USER("target state: %s", target_state_name(target));
1771
1772         if (target->state != TARGET_HALTED)
1773                 return ERROR_OK;
1774
1775         retval = target->type->arch_state(target);
1776         return retval;
1777 }
1778
1779 static int target_get_gdb_fileio_info_default(struct target *target,
1780                 struct gdb_fileio_info *fileio_info)
1781 {
1782         /* If target does not support semi-hosting function, target
1783            has no need to provide .get_gdb_fileio_info callback.
1784            It just return ERROR_FAIL and gdb_server will return "Txx"
1785            as target halted every time.  */
1786         return ERROR_FAIL;
1787 }
1788
1789 static int target_gdb_fileio_end_default(struct target *target,
1790                 int retcode, int fileio_errno, bool ctrl_c)
1791 {
1792         return ERROR_OK;
1793 }
1794
1795 static int target_profiling_default(struct target *target, uint32_t *samples,
1796                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1797 {
1798         struct timeval timeout, now;
1799
1800         gettimeofday(&timeout, NULL);
1801         timeval_add_time(&timeout, seconds, 0);
1802
1803         LOG_INFO("Starting profiling. Halting and resuming the"
1804                         " target as often as we can...");
1805
1806         uint32_t sample_count = 0;
1807         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1808         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1809
1810         int retval = ERROR_OK;
1811         for (;;) {
1812                 target_poll(target);
1813                 if (target->state == TARGET_HALTED) {
1814                         uint32_t t = *((uint32_t *)reg->value);
1815                         samples[sample_count++] = t;
1816                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
1817                         retval = target_resume(target, 1, 0, 0, 0);
1818                         target_poll(target);
1819                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1820                 } else if (target->state == TARGET_RUNNING) {
1821                         /* We want to quickly sample the PC. */
1822                         retval = target_halt(target);
1823                 } else {
1824                         LOG_INFO("Target not halted or running");
1825                         retval = ERROR_OK;
1826                         break;
1827                 }
1828
1829                 if (retval != ERROR_OK)
1830                         break;
1831
1832                 gettimeofday(&now, NULL);
1833                 if ((sample_count >= max_num_samples) ||
1834                         ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1835                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1836                         break;
1837                 }
1838         }
1839
1840         *num_samples = sample_count;
1841         return retval;
1842 }
1843
1844 /* Single aligned words are guaranteed to use 16 or 32 bit access
1845  * mode respectively, otherwise data is handled as quickly as
1846  * possible
1847  */
1848 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1849 {
1850         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1851                         (int)size, (unsigned)address);
1852
1853         if (!target_was_examined(target)) {
1854                 LOG_ERROR("Target not examined yet");
1855                 return ERROR_FAIL;
1856         }
1857
1858         if (size == 0)
1859                 return ERROR_OK;
1860
1861         if ((address + size - 1) < address) {
1862                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1863                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1864                                   (unsigned)address,
1865                                   (unsigned)size);
1866                 return ERROR_FAIL;
1867         }
1868
1869         return target->type->write_buffer(target, address, size, buffer);
1870 }
1871
1872 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1873 {
1874         uint32_t size;
1875
1876         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1877          * will have something to do with the size we leave to it. */
1878         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1879                 if (address & size) {
1880                         int retval = target_write_memory(target, address, size, 1, buffer);
1881                         if (retval != ERROR_OK)
1882                                 return retval;
1883                         address += size;
1884                         count -= size;
1885                         buffer += size;
1886                 }
1887         }
1888
1889         /* Write the data with as large access size as possible. */
1890         for (; size > 0; size /= 2) {
1891                 uint32_t aligned = count - count % size;
1892                 if (aligned > 0) {
1893                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
1894                         if (retval != ERROR_OK)
1895                                 return retval;
1896                         address += aligned;
1897                         count -= aligned;
1898                         buffer += aligned;
1899                 }
1900         }
1901
1902         return ERROR_OK;
1903 }
1904
1905 /* Single aligned words are guaranteed to use 16 or 32 bit access
1906  * mode respectively, otherwise data is handled as quickly as
1907  * possible
1908  */
1909 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1910 {
1911         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1912                           (int)size, (unsigned)address);
1913
1914         if (!target_was_examined(target)) {
1915                 LOG_ERROR("Target not examined yet");
1916                 return ERROR_FAIL;
1917         }
1918
1919         if (size == 0)
1920                 return ERROR_OK;
1921
1922         if ((address + size - 1) < address) {
1923                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1924                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1925                                   address,
1926                                   size);
1927                 return ERROR_FAIL;
1928         }
1929
1930         return target->type->read_buffer(target, address, size, buffer);
1931 }
1932
1933 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
1934 {
1935         uint32_t size;
1936
1937         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1938          * will have something to do with the size we leave to it. */
1939         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1940                 if (address & size) {
1941                         int retval = target_read_memory(target, address, size, 1, buffer);
1942                         if (retval != ERROR_OK)
1943                                 return retval;
1944                         address += size;
1945                         count -= size;
1946                         buffer += size;
1947                 }
1948         }
1949
1950         /* Read the data with as large access size as possible. */
1951         for (; size > 0; size /= 2) {
1952                 uint32_t aligned = count - count % size;
1953                 if (aligned > 0) {
1954                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
1955                         if (retval != ERROR_OK)
1956                                 return retval;
1957                         address += aligned;
1958                         count -= aligned;
1959                         buffer += aligned;
1960                 }
1961         }
1962
1963         return ERROR_OK;
1964 }
1965
1966 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1967 {
1968         uint8_t *buffer;
1969         int retval;
1970         uint32_t i;
1971         uint32_t checksum = 0;
1972         if (!target_was_examined(target)) {
1973                 LOG_ERROR("Target not examined yet");
1974                 return ERROR_FAIL;
1975         }
1976
1977         retval = target->type->checksum_memory(target, address, size, &checksum);
1978         if (retval != ERROR_OK) {
1979                 buffer = malloc(size);
1980                 if (buffer == NULL) {
1981                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1982                         return ERROR_COMMAND_SYNTAX_ERROR;
1983                 }
1984                 retval = target_read_buffer(target, address, size, buffer);
1985                 if (retval != ERROR_OK) {
1986                         free(buffer);
1987                         return retval;
1988                 }
1989
1990                 /* convert to target endianness */
1991                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1992                         uint32_t target_data;
1993                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1994                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1995                 }
1996
1997                 retval = image_calculate_checksum(buffer, size, &checksum);
1998                 free(buffer);
1999         }
2000
2001         *crc = checksum;
2002
2003         return retval;
2004 }
2005
2006 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2007 {
2008         int retval;
2009         if (!target_was_examined(target)) {
2010                 LOG_ERROR("Target not examined yet");
2011                 return ERROR_FAIL;
2012         }
2013
2014         if (target->type->blank_check_memory == 0)
2015                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2016
2017         retval = target->type->blank_check_memory(target, address, size, blank);
2018
2019         return retval;
2020 }
2021
2022 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2023 {
2024         uint8_t value_buf[8];
2025         if (!target_was_examined(target)) {
2026                 LOG_ERROR("Target not examined yet");
2027                 return ERROR_FAIL;
2028         }
2029
2030         int retval = target_read_memory(target, address, 8, 1, value_buf);
2031
2032         if (retval == ERROR_OK) {
2033                 *value = target_buffer_get_u64(target, value_buf);
2034                 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2035                                   address,
2036                                   *value);
2037         } else {
2038                 *value = 0x0;
2039                 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2040                                   address);
2041         }
2042
2043         return retval;
2044 }
2045
2046 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2047 {
2048         uint8_t value_buf[4];
2049         if (!target_was_examined(target)) {
2050                 LOG_ERROR("Target not examined yet");
2051                 return ERROR_FAIL;
2052         }
2053
2054         int retval = target_read_memory(target, address, 4, 1, value_buf);
2055
2056         if (retval == ERROR_OK) {
2057                 *value = target_buffer_get_u32(target, value_buf);
2058                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2059                                   address,
2060                                   *value);
2061         } else {
2062                 *value = 0x0;
2063                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2064                                   address);
2065         }
2066
2067         return retval;
2068 }
2069
2070 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2071 {
2072         uint8_t value_buf[2];
2073         if (!target_was_examined(target)) {
2074                 LOG_ERROR("Target not examined yet");
2075                 return ERROR_FAIL;
2076         }
2077
2078         int retval = target_read_memory(target, address, 2, 1, value_buf);
2079
2080         if (retval == ERROR_OK) {
2081                 *value = target_buffer_get_u16(target, value_buf);
2082                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2083                                   address,
2084                                   *value);
2085         } else {
2086                 *value = 0x0;
2087                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2088                                   address);
2089         }
2090
2091         return retval;
2092 }
2093
2094 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2095 {
2096         if (!target_was_examined(target)) {
2097                 LOG_ERROR("Target not examined yet");
2098                 return ERROR_FAIL;
2099         }
2100
2101         int retval = target_read_memory(target, address, 1, 1, value);
2102
2103         if (retval == ERROR_OK) {
2104                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2105                                   address,
2106                                   *value);
2107         } else {
2108                 *value = 0x0;
2109                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2110                                   address);
2111         }
2112
2113         return retval;
2114 }
2115
2116 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2117 {
2118         int retval;
2119         uint8_t value_buf[8];
2120         if (!target_was_examined(target)) {
2121                 LOG_ERROR("Target not examined yet");
2122                 return ERROR_FAIL;
2123         }
2124
2125         LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2126                           address,
2127                           value);
2128
2129         target_buffer_set_u64(target, value_buf, value);
2130         retval = target_write_memory(target, address, 8, 1, value_buf);
2131         if (retval != ERROR_OK)
2132                 LOG_DEBUG("failed: %i", retval);
2133
2134         return retval;
2135 }
2136
2137 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2138 {
2139         int retval;
2140         uint8_t value_buf[4];
2141         if (!target_was_examined(target)) {
2142                 LOG_ERROR("Target not examined yet");
2143                 return ERROR_FAIL;
2144         }
2145
2146         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2147                           address,
2148                           value);
2149
2150         target_buffer_set_u32(target, value_buf, value);
2151         retval = target_write_memory(target, address, 4, 1, value_buf);
2152         if (retval != ERROR_OK)
2153                 LOG_DEBUG("failed: %i", retval);
2154
2155         return retval;
2156 }
2157
2158 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2159 {
2160         int retval;
2161         uint8_t value_buf[2];
2162         if (!target_was_examined(target)) {
2163                 LOG_ERROR("Target not examined yet");
2164                 return ERROR_FAIL;
2165         }
2166
2167         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2168                           address,
2169                           value);
2170
2171         target_buffer_set_u16(target, value_buf, value);
2172         retval = target_write_memory(target, address, 2, 1, value_buf);
2173         if (retval != ERROR_OK)
2174                 LOG_DEBUG("failed: %i", retval);
2175
2176         return retval;
2177 }
2178
2179 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2180 {
2181         int retval;
2182         if (!target_was_examined(target)) {
2183                 LOG_ERROR("Target not examined yet");
2184                 return ERROR_FAIL;
2185         }
2186
2187         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2188                           address, value);
2189
2190         retval = target_write_memory(target, address, 1, 1, &value);
2191         if (retval != ERROR_OK)
2192                 LOG_DEBUG("failed: %i", retval);
2193
2194         return retval;
2195 }
2196
2197 static int find_target(struct command_context *cmd_ctx, const char *name)
2198 {
2199         struct target *target = get_target(name);
2200         if (target == NULL) {
2201                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2202                 return ERROR_FAIL;
2203         }
2204         if (!target->tap->enabled) {
2205                 LOG_USER("Target: TAP %s is disabled, "
2206                          "can't be the current target\n",
2207                          target->tap->dotted_name);
2208                 return ERROR_FAIL;
2209         }
2210
2211         cmd_ctx->current_target = target->target_number;
2212         return ERROR_OK;
2213 }
2214
2215
2216 COMMAND_HANDLER(handle_targets_command)
2217 {
2218         int retval = ERROR_OK;
2219         if (CMD_ARGC == 1) {
2220                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2221                 if (retval == ERROR_OK) {
2222                         /* we're done! */
2223                         return retval;
2224                 }
2225         }
2226
2227         struct target *target = all_targets;
2228         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2229         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2230         while (target) {
2231                 const char *state;
2232                 char marker = ' ';
2233
2234                 if (target->tap->enabled)
2235                         state = target_state_name(target);
2236                 else
2237                         state = "tap-disabled";
2238
2239                 if (CMD_CTX->current_target == target->target_number)
2240                         marker = '*';
2241
2242                 /* keep columns lined up to match the headers above */
2243                 command_print(CMD_CTX,
2244                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2245                                 target->target_number,
2246                                 marker,
2247                                 target_name(target),
2248                                 target_type_name(target),
2249                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2250                                         target->endianness)->name,
2251                                 target->tap->dotted_name,
2252                                 state);
2253                 target = target->next;
2254         }
2255
2256         return retval;
2257 }
2258
2259 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2260
2261 static int powerDropout;
2262 static int srstAsserted;
2263
2264 static int runPowerRestore;
2265 static int runPowerDropout;
2266 static int runSrstAsserted;
2267 static int runSrstDeasserted;
2268
2269 static int sense_handler(void)
2270 {
2271         static int prevSrstAsserted;
2272         static int prevPowerdropout;
2273
2274         int retval = jtag_power_dropout(&powerDropout);
2275         if (retval != ERROR_OK)
2276                 return retval;
2277
2278         int powerRestored;
2279         powerRestored = prevPowerdropout && !powerDropout;
2280         if (powerRestored)
2281                 runPowerRestore = 1;
2282
2283         long long current = timeval_ms();
2284         static long long lastPower;
2285         int waitMore = lastPower + 2000 > current;
2286         if (powerDropout && !waitMore) {
2287                 runPowerDropout = 1;
2288                 lastPower = current;
2289         }
2290
2291         retval = jtag_srst_asserted(&srstAsserted);
2292         if (retval != ERROR_OK)
2293                 return retval;
2294
2295         int srstDeasserted;
2296         srstDeasserted = prevSrstAsserted && !srstAsserted;
2297
2298         static long long lastSrst;
2299         waitMore = lastSrst + 2000 > current;
2300         if (srstDeasserted && !waitMore) {
2301                 runSrstDeasserted = 1;
2302                 lastSrst = current;
2303         }
2304
2305         if (!prevSrstAsserted && srstAsserted)
2306                 runSrstAsserted = 1;
2307
2308         prevSrstAsserted = srstAsserted;
2309         prevPowerdropout = powerDropout;
2310
2311         if (srstDeasserted || powerRestored) {
2312                 /* Other than logging the event we can't do anything here.
2313                  * Issuing a reset is a particularly bad idea as we might
2314                  * be inside a reset already.
2315                  */
2316         }
2317
2318         return ERROR_OK;
2319 }
2320
2321 /* process target state changes */
2322 static int handle_target(void *priv)
2323 {
2324         Jim_Interp *interp = (Jim_Interp *)priv;
2325         int retval = ERROR_OK;
2326
2327         if (!is_jtag_poll_safe()) {
2328                 /* polling is disabled currently */
2329                 return ERROR_OK;
2330         }
2331
2332         /* we do not want to recurse here... */
2333         static int recursive;
2334         if (!recursive) {
2335                 recursive = 1;
2336                 sense_handler();
2337                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2338                  * We need to avoid an infinite loop/recursion here and we do that by
2339                  * clearing the flags after running these events.
2340                  */
2341                 int did_something = 0;
2342                 if (runSrstAsserted) {
2343                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2344                         Jim_Eval(interp, "srst_asserted");
2345                         did_something = 1;
2346                 }
2347                 if (runSrstDeasserted) {
2348                         Jim_Eval(interp, "srst_deasserted");
2349                         did_something = 1;
2350                 }
2351                 if (runPowerDropout) {
2352                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2353                         Jim_Eval(interp, "power_dropout");
2354                         did_something = 1;
2355                 }
2356                 if (runPowerRestore) {
2357                         Jim_Eval(interp, "power_restore");
2358                         did_something = 1;
2359                 }
2360
2361                 if (did_something) {
2362                         /* clear detect flags */
2363                         sense_handler();
2364                 }
2365
2366                 /* clear action flags */
2367
2368                 runSrstAsserted = 0;
2369                 runSrstDeasserted = 0;
2370                 runPowerRestore = 0;
2371                 runPowerDropout = 0;
2372
2373                 recursive = 0;
2374         }
2375
2376         /* Poll targets for state changes unless that's globally disabled.
2377          * Skip targets that are currently disabled.
2378          */
2379         for (struct target *target = all_targets;
2380                         is_jtag_poll_safe() && target;
2381                         target = target->next) {
2382
2383                 if (!target_was_examined(target))
2384                         continue;
2385
2386                 if (!target->tap->enabled)
2387                         continue;
2388
2389                 if (target->backoff.times > target->backoff.count) {
2390                         /* do not poll this time as we failed previously */
2391                         target->backoff.count++;
2392                         continue;
2393                 }
2394                 target->backoff.count = 0;
2395
2396                 /* only poll target if we've got power and srst isn't asserted */
2397                 if (!powerDropout && !srstAsserted) {
2398                         /* polling may fail silently until the target has been examined */
2399                         retval = target_poll(target);
2400                         if (retval != ERROR_OK) {
2401                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2402                                 if (target->backoff.times * polling_interval < 5000) {
2403                                         target->backoff.times *= 2;
2404                                         target->backoff.times++;
2405                                 }
2406                                 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2407                                                 target_name(target),
2408                                                 target->backoff.times * polling_interval);
2409
2410                                 /* Tell GDB to halt the debugger. This allows the user to
2411                                  * run monitor commands to handle the situation.
2412                                  */
2413                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2414                                 return retval;
2415                         }
2416                         /* Since we succeeded, we reset backoff count */
2417                         if (target->backoff.times > 0)
2418                                 LOG_USER("Polling target %s succeeded again", target_name(target));
2419                         target->backoff.times = 0;
2420                 }
2421         }
2422
2423         return retval;
2424 }
2425
2426 COMMAND_HANDLER(handle_reg_command)
2427 {
2428         struct target *target;
2429         struct reg *reg = NULL;
2430         unsigned count = 0;
2431         char *value;
2432
2433         LOG_DEBUG("-");
2434
2435         target = get_current_target(CMD_CTX);
2436
2437         /* list all available registers for the current target */
2438         if (CMD_ARGC == 0) {
2439                 struct reg_cache *cache = target->reg_cache;
2440
2441                 count = 0;
2442                 while (cache) {
2443                         unsigned i;
2444
2445                         command_print(CMD_CTX, "===== %s", cache->name);
2446
2447                         for (i = 0, reg = cache->reg_list;
2448                                         i < cache->num_regs;
2449                                         i++, reg++, count++) {
2450                                 /* only print cached values if they are valid */
2451                                 if (reg->valid) {
2452                                         value = buf_to_str(reg->value,
2453                                                         reg->size, 16);
2454                                         command_print(CMD_CTX,
2455                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2456                                                         count, reg->name,
2457                                                         reg->size, value,
2458                                                         reg->dirty
2459                                                                 ? " (dirty)"
2460                                                                 : "");
2461                                         free(value);
2462                                 } else {
2463                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2464                                                           count, reg->name,
2465                                                           reg->size) ;
2466                                 }
2467                         }
2468                         cache = cache->next;
2469                 }
2470
2471                 return ERROR_OK;
2472         }
2473
2474         /* access a single register by its ordinal number */
2475         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2476                 unsigned num;
2477                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2478
2479                 struct reg_cache *cache = target->reg_cache;
2480                 count = 0;
2481                 while (cache) {
2482                         unsigned i;
2483                         for (i = 0; i < cache->num_regs; i++) {
2484                                 if (count++ == num) {
2485                                         reg = &cache->reg_list[i];
2486                                         break;
2487                                 }
2488                         }
2489                         if (reg)
2490                                 break;
2491                         cache = cache->next;
2492                 }
2493
2494                 if (!reg) {
2495                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2496                                         "has only %i registers (0 - %i)", num, count, count - 1);
2497                         return ERROR_OK;
2498                 }
2499         } else {
2500                 /* access a single register by its name */
2501                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2502
2503                 if (!reg) {
2504                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2505                         return ERROR_OK;
2506                 }
2507         }
2508
2509         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2510
2511         /* display a register */
2512         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2513                         && (CMD_ARGV[1][0] <= '9')))) {
2514                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2515                         reg->valid = 0;
2516
2517                 if (reg->valid == 0)
2518                         reg->type->get(reg);
2519                 value = buf_to_str(reg->value, reg->size, 16);
2520                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2521                 free(value);
2522                 return ERROR_OK;
2523         }
2524
2525         /* set register value */
2526         if (CMD_ARGC == 2) {
2527                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2528                 if (buf == NULL)
2529                         return ERROR_FAIL;
2530                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2531
2532                 reg->type->set(reg, buf);
2533
2534                 value = buf_to_str(reg->value, reg->size, 16);
2535                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2536                 free(value);
2537
2538                 free(buf);
2539
2540                 return ERROR_OK;
2541         }
2542
2543         return ERROR_COMMAND_SYNTAX_ERROR;
2544 }
2545
2546 COMMAND_HANDLER(handle_poll_command)
2547 {
2548         int retval = ERROR_OK;
2549         struct target *target = get_current_target(CMD_CTX);
2550
2551         if (CMD_ARGC == 0) {
2552                 command_print(CMD_CTX, "background polling: %s",
2553                                 jtag_poll_get_enabled() ? "on" : "off");
2554                 command_print(CMD_CTX, "TAP: %s (%s)",
2555                                 target->tap->dotted_name,
2556                                 target->tap->enabled ? "enabled" : "disabled");
2557                 if (!target->tap->enabled)
2558                         return ERROR_OK;
2559                 retval = target_poll(target);
2560                 if (retval != ERROR_OK)
2561                         return retval;
2562                 retval = target_arch_state(target);
2563                 if (retval != ERROR_OK)
2564                         return retval;
2565         } else if (CMD_ARGC == 1) {
2566                 bool enable;
2567                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2568                 jtag_poll_set_enabled(enable);
2569         } else
2570                 return ERROR_COMMAND_SYNTAX_ERROR;
2571
2572         return retval;
2573 }
2574
2575 COMMAND_HANDLER(handle_wait_halt_command)
2576 {
2577         if (CMD_ARGC > 1)
2578                 return ERROR_COMMAND_SYNTAX_ERROR;
2579
2580         unsigned ms = DEFAULT_HALT_TIMEOUT;
2581         if (1 == CMD_ARGC) {
2582                 int retval = parse_uint(CMD_ARGV[0], &ms);
2583                 if (ERROR_OK != retval)
2584                         return ERROR_COMMAND_SYNTAX_ERROR;
2585         }
2586
2587         struct target *target = get_current_target(CMD_CTX);
2588         return target_wait_state(target, TARGET_HALTED, ms);
2589 }
2590
2591 /* wait for target state to change. The trick here is to have a low
2592  * latency for short waits and not to suck up all the CPU time
2593  * on longer waits.
2594  *
2595  * After 500ms, keep_alive() is invoked
2596  */
2597 int target_wait_state(struct target *target, enum target_state state, int ms)
2598 {
2599         int retval;
2600         long long then = 0, cur;
2601         int once = 1;
2602
2603         for (;;) {
2604                 retval = target_poll(target);
2605                 if (retval != ERROR_OK)
2606                         return retval;
2607                 if (target->state == state)
2608                         break;
2609                 cur = timeval_ms();
2610                 if (once) {
2611                         once = 0;
2612                         then = timeval_ms();
2613                         LOG_DEBUG("waiting for target %s...",
2614                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2615                 }
2616
2617                 if (cur-then > 500)
2618                         keep_alive();
2619
2620                 if ((cur-then) > ms) {
2621                         LOG_ERROR("timed out while waiting for target %s",
2622                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2623                         return ERROR_FAIL;
2624                 }
2625         }
2626
2627         return ERROR_OK;
2628 }
2629
2630 COMMAND_HANDLER(handle_halt_command)
2631 {
2632         LOG_DEBUG("-");
2633
2634         struct target *target = get_current_target(CMD_CTX);
2635         int retval = target_halt(target);
2636         if (ERROR_OK != retval)
2637                 return retval;
2638
2639         if (CMD_ARGC == 1) {
2640                 unsigned wait_local;
2641                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2642                 if (ERROR_OK != retval)
2643                         return ERROR_COMMAND_SYNTAX_ERROR;
2644                 if (!wait_local)
2645                         return ERROR_OK;
2646         }
2647
2648         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2649 }
2650
2651 COMMAND_HANDLER(handle_soft_reset_halt_command)
2652 {
2653         struct target *target = get_current_target(CMD_CTX);
2654
2655         LOG_USER("requesting target halt and executing a soft reset");
2656
2657         target_soft_reset_halt(target);
2658
2659         return ERROR_OK;
2660 }
2661
2662 COMMAND_HANDLER(handle_reset_command)
2663 {
2664         if (CMD_ARGC > 1)
2665                 return ERROR_COMMAND_SYNTAX_ERROR;
2666
2667         enum target_reset_mode reset_mode = RESET_RUN;
2668         if (CMD_ARGC == 1) {
2669                 const Jim_Nvp *n;
2670                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2671                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2672                         return ERROR_COMMAND_SYNTAX_ERROR;
2673                 reset_mode = n->value;
2674         }
2675
2676         /* reset *all* targets */
2677         return target_process_reset(CMD_CTX, reset_mode);
2678 }
2679
2680
2681 COMMAND_HANDLER(handle_resume_command)
2682 {
2683         int current = 1;
2684         if (CMD_ARGC > 1)
2685                 return ERROR_COMMAND_SYNTAX_ERROR;
2686
2687         struct target *target = get_current_target(CMD_CTX);
2688
2689         /* with no CMD_ARGV, resume from current pc, addr = 0,
2690          * with one arguments, addr = CMD_ARGV[0],
2691          * handle breakpoints, not debugging */
2692         uint32_t addr = 0;
2693         if (CMD_ARGC == 1) {
2694                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2695                 current = 0;
2696         }
2697
2698         return target_resume(target, current, addr, 1, 0);
2699 }
2700
2701 COMMAND_HANDLER(handle_step_command)
2702 {
2703         if (CMD_ARGC > 1)
2704                 return ERROR_COMMAND_SYNTAX_ERROR;
2705
2706         LOG_DEBUG("-");
2707
2708         /* with no CMD_ARGV, step from current pc, addr = 0,
2709          * with one argument addr = CMD_ARGV[0],
2710          * handle breakpoints, debugging */
2711         uint32_t addr = 0;
2712         int current_pc = 1;
2713         if (CMD_ARGC == 1) {
2714                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2715                 current_pc = 0;
2716         }
2717
2718         struct target *target = get_current_target(CMD_CTX);
2719
2720         return target->type->step(target, current_pc, addr, 1);
2721 }
2722
2723 static void handle_md_output(struct command_context *cmd_ctx,
2724                 struct target *target, uint32_t address, unsigned size,
2725                 unsigned count, const uint8_t *buffer)
2726 {
2727         const unsigned line_bytecnt = 32;
2728         unsigned line_modulo = line_bytecnt / size;
2729
2730         char output[line_bytecnt * 4 + 1];
2731         unsigned output_len = 0;
2732
2733         const char *value_fmt;
2734         switch (size) {
2735         case 4:
2736                 value_fmt = "%8.8x ";
2737                 break;
2738         case 2:
2739                 value_fmt = "%4.4x ";
2740                 break;
2741         case 1:
2742                 value_fmt = "%2.2x ";
2743                 break;
2744         default:
2745                 /* "can't happen", caller checked */
2746                 LOG_ERROR("invalid memory read size: %u", size);
2747                 return;
2748         }
2749
2750         for (unsigned i = 0; i < count; i++) {
2751                 if (i % line_modulo == 0) {
2752                         output_len += snprintf(output + output_len,
2753                                         sizeof(output) - output_len,
2754                                         "0x%8.8x: ",
2755                                         (unsigned)(address + (i*size)));
2756                 }
2757
2758                 uint32_t value = 0;
2759                 const uint8_t *value_ptr = buffer + i * size;
2760                 switch (size) {
2761                 case 4:
2762                         value = target_buffer_get_u32(target, value_ptr);
2763                         break;
2764                 case 2:
2765                         value = target_buffer_get_u16(target, value_ptr);
2766                         break;
2767                 case 1:
2768                         value = *value_ptr;
2769                 }
2770                 output_len += snprintf(output + output_len,
2771                                 sizeof(output) - output_len,
2772                                 value_fmt, value);
2773
2774                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2775                         command_print(cmd_ctx, "%s", output);
2776                         output_len = 0;
2777                 }
2778         }
2779 }
2780
2781 COMMAND_HANDLER(handle_md_command)
2782 {
2783         if (CMD_ARGC < 1)
2784                 return ERROR_COMMAND_SYNTAX_ERROR;
2785
2786         unsigned size = 0;
2787         switch (CMD_NAME[2]) {
2788         case 'w':
2789                 size = 4;
2790                 break;
2791         case 'h':
2792                 size = 2;
2793                 break;
2794         case 'b':
2795                 size = 1;
2796                 break;
2797         default:
2798                 return ERROR_COMMAND_SYNTAX_ERROR;
2799         }
2800
2801         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2802         int (*fn)(struct target *target,
2803                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2804         if (physical) {
2805                 CMD_ARGC--;
2806                 CMD_ARGV++;
2807                 fn = target_read_phys_memory;
2808         } else
2809                 fn = target_read_memory;
2810         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2811                 return ERROR_COMMAND_SYNTAX_ERROR;
2812
2813         uint32_t address;
2814         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2815
2816         unsigned count = 1;
2817         if (CMD_ARGC == 2)
2818                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2819
2820         uint8_t *buffer = calloc(count, size);
2821
2822         struct target *target = get_current_target(CMD_CTX);
2823         int retval = fn(target, address, size, count, buffer);
2824         if (ERROR_OK == retval)
2825                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2826
2827         free(buffer);
2828
2829         return retval;
2830 }
2831
2832 typedef int (*target_write_fn)(struct target *target,
2833                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2834
2835 static int target_fill_mem(struct target *target,
2836                 uint32_t address,
2837                 target_write_fn fn,
2838                 unsigned data_size,
2839                 /* value */
2840                 uint32_t b,
2841                 /* count */
2842                 unsigned c)
2843 {
2844         /* We have to write in reasonably large chunks to be able
2845          * to fill large memory areas with any sane speed */
2846         const unsigned chunk_size = 16384;
2847         uint8_t *target_buf = malloc(chunk_size * data_size);
2848         if (target_buf == NULL) {
2849                 LOG_ERROR("Out of memory");
2850                 return ERROR_FAIL;
2851         }
2852
2853         for (unsigned i = 0; i < chunk_size; i++) {
2854                 switch (data_size) {
2855                 case 4:
2856                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2857                         break;
2858                 case 2:
2859                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2860                         break;
2861                 case 1:
2862                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2863                         break;
2864                 default:
2865                         exit(-1);
2866                 }
2867         }
2868
2869         int retval = ERROR_OK;
2870
2871         for (unsigned x = 0; x < c; x += chunk_size) {
2872                 unsigned current;
2873                 current = c - x;
2874                 if (current > chunk_size)
2875                         current = chunk_size;
2876                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2877                 if (retval != ERROR_OK)
2878                         break;
2879                 /* avoid GDB timeouts */
2880                 keep_alive();
2881         }
2882         free(target_buf);
2883
2884         return retval;
2885 }
2886
2887
2888 COMMAND_HANDLER(handle_mw_command)
2889 {
2890         if (CMD_ARGC < 2)
2891                 return ERROR_COMMAND_SYNTAX_ERROR;
2892         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2893         target_write_fn fn;
2894         if (physical) {
2895                 CMD_ARGC--;
2896                 CMD_ARGV++;
2897                 fn = target_write_phys_memory;
2898         } else
2899                 fn = target_write_memory;
2900         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2901                 return ERROR_COMMAND_SYNTAX_ERROR;
2902
2903         uint32_t address;
2904         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2905
2906         uint32_t value;
2907         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2908
2909         unsigned count = 1;
2910         if (CMD_ARGC == 3)
2911                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2912
2913         struct target *target = get_current_target(CMD_CTX);
2914         unsigned wordsize;
2915         switch (CMD_NAME[2]) {
2916                 case 'w':
2917                         wordsize = 4;
2918                         break;
2919                 case 'h':
2920                         wordsize = 2;
2921                         break;
2922                 case 'b':
2923                         wordsize = 1;
2924                         break;
2925                 default:
2926                         return ERROR_COMMAND_SYNTAX_ERROR;
2927         }
2928
2929         return target_fill_mem(target, address, fn, wordsize, value, count);
2930 }
2931
2932 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2933                 uint32_t *min_address, uint32_t *max_address)
2934 {
2935         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2936                 return ERROR_COMMAND_SYNTAX_ERROR;
2937
2938         /* a base address isn't always necessary,
2939          * default to 0x0 (i.e. don't relocate) */
2940         if (CMD_ARGC >= 2) {
2941                 uint32_t addr;
2942                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2943                 image->base_address = addr;
2944                 image->base_address_set = 1;
2945         } else
2946                 image->base_address_set = 0;
2947
2948         image->start_address_set = 0;
2949
2950         if (CMD_ARGC >= 4)
2951                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2952         if (CMD_ARGC == 5) {
2953                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2954                 /* use size (given) to find max (required) */
2955                 *max_address += *min_address;
2956         }
2957
2958         if (*min_address > *max_address)
2959                 return ERROR_COMMAND_SYNTAX_ERROR;
2960
2961         return ERROR_OK;
2962 }
2963
2964 COMMAND_HANDLER(handle_load_image_command)
2965 {
2966         uint8_t *buffer;
2967         size_t buf_cnt;
2968         uint32_t image_size;
2969         uint32_t min_address = 0;
2970         uint32_t max_address = 0xffffffff;
2971         int i;
2972         struct image image;
2973
2974         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2975                         &image, &min_address, &max_address);
2976         if (ERROR_OK != retval)
2977                 return retval;
2978
2979         struct target *target = get_current_target(CMD_CTX);
2980
2981         struct duration bench;
2982         duration_start(&bench);
2983
2984         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2985                 return ERROR_OK;
2986
2987         image_size = 0x0;
2988         retval = ERROR_OK;
2989         for (i = 0; i < image.num_sections; i++) {
2990                 buffer = malloc(image.sections[i].size);
2991                 if (buffer == NULL) {
2992                         command_print(CMD_CTX,
2993                                                   "error allocating buffer for section (%d bytes)",
2994                                                   (int)(image.sections[i].size));
2995                         break;
2996                 }
2997
2998                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2999                 if (retval != ERROR_OK) {
3000                         free(buffer);
3001                         break;
3002                 }
3003
3004                 uint32_t offset = 0;
3005                 uint32_t length = buf_cnt;
3006
3007                 /* DANGER!!! beware of unsigned comparision here!!! */
3008
3009                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3010                                 (image.sections[i].base_address < max_address)) {
3011
3012                         if (image.sections[i].base_address < min_address) {
3013                                 /* clip addresses below */
3014                                 offset += min_address-image.sections[i].base_address;
3015                                 length -= offset;
3016                         }
3017
3018                         if (image.sections[i].base_address + buf_cnt > max_address)
3019                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3020
3021                         retval = target_write_buffer(target,
3022                                         image.sections[i].base_address + offset, length, buffer + offset);
3023                         if (retval != ERROR_OK) {
3024                                 free(buffer);
3025                                 break;
3026                         }
3027                         image_size += length;
3028                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3029                                         (unsigned int)length,
3030                                         image.sections[i].base_address + offset);
3031                 }
3032
3033                 free(buffer);
3034         }
3035
3036         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3037                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3038                                 "in %fs (%0.3f KiB/s)", image_size,
3039                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3040         }
3041
3042         image_close(&image);
3043
3044         return retval;
3045
3046 }
3047
3048 COMMAND_HANDLER(handle_dump_image_command)
3049 {
3050         struct fileio fileio;
3051         uint8_t *buffer;
3052         int retval, retvaltemp;
3053         uint32_t address, size;
3054         struct duration bench;
3055         struct target *target = get_current_target(CMD_CTX);
3056
3057         if (CMD_ARGC != 3)
3058                 return ERROR_COMMAND_SYNTAX_ERROR;
3059
3060         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3061         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3062
3063         uint32_t buf_size = (size > 4096) ? 4096 : size;
3064         buffer = malloc(buf_size);
3065         if (!buffer)
3066                 return ERROR_FAIL;
3067
3068         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3069         if (retval != ERROR_OK) {
3070                 free(buffer);
3071                 return retval;
3072         }
3073
3074         duration_start(&bench);
3075
3076         while (size > 0) {
3077                 size_t size_written;
3078                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3079                 retval = target_read_buffer(target, address, this_run_size, buffer);
3080                 if (retval != ERROR_OK)
3081                         break;
3082
3083                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
3084                 if (retval != ERROR_OK)
3085                         break;
3086
3087                 size -= this_run_size;
3088                 address += this_run_size;
3089         }
3090
3091         free(buffer);
3092
3093         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3094                 int filesize;
3095                 retval = fileio_size(&fileio, &filesize);
3096                 if (retval != ERROR_OK)
3097                         return retval;
3098                 command_print(CMD_CTX,
3099                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3100                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3101         }
3102
3103         retvaltemp = fileio_close(&fileio);
3104         if (retvaltemp != ERROR_OK)
3105                 return retvaltemp;
3106
3107         return retval;
3108 }
3109
3110 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3111 {
3112         uint8_t *buffer;
3113         size_t buf_cnt;
3114         uint32_t image_size;
3115         int i;
3116         int retval;
3117         uint32_t checksum = 0;
3118         uint32_t mem_checksum = 0;
3119
3120         struct image image;
3121
3122         struct target *target = get_current_target(CMD_CTX);
3123
3124         if (CMD_ARGC < 1)
3125                 return ERROR_COMMAND_SYNTAX_ERROR;
3126
3127         if (!target) {
3128                 LOG_ERROR("no target selected");
3129                 return ERROR_FAIL;
3130         }
3131
3132         struct duration bench;
3133         duration_start(&bench);
3134
3135         if (CMD_ARGC >= 2) {
3136                 uint32_t addr;
3137                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3138                 image.base_address = addr;
3139                 image.base_address_set = 1;
3140         } else {
3141                 image.base_address_set = 0;
3142                 image.base_address = 0x0;
3143         }
3144
3145         image.start_address_set = 0;
3146
3147         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3148         if (retval != ERROR_OK)
3149                 return retval;
3150
3151         image_size = 0x0;
3152         int diffs = 0;
3153         retval = ERROR_OK;
3154         for (i = 0; i < image.num_sections; i++) {
3155                 buffer = malloc(image.sections[i].size);
3156                 if (buffer == NULL) {
3157                         command_print(CMD_CTX,
3158                                         "error allocating buffer for section (%d bytes)",
3159                                         (int)(image.sections[i].size));
3160                         break;
3161                 }
3162                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3163                 if (retval != ERROR_OK) {
3164                         free(buffer);
3165                         break;
3166                 }
3167
3168                 if (verify) {
3169                         /* calculate checksum of image */
3170                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3171                         if (retval != ERROR_OK) {
3172                                 free(buffer);
3173                                 break;
3174                         }
3175
3176                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3177                         if (retval != ERROR_OK) {
3178                                 free(buffer);
3179                                 break;
3180                         }
3181
3182                         if (checksum != mem_checksum) {
3183                                 /* failed crc checksum, fall back to a binary compare */
3184                                 uint8_t *data;
3185
3186                                 if (diffs == 0)
3187                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3188
3189                                 data = (uint8_t *)malloc(buf_cnt);
3190
3191                                 /* Can we use 32bit word accesses? */
3192                                 int size = 1;
3193                                 int count = buf_cnt;
3194                                 if ((count % 4) == 0) {
3195                                         size *= 4;
3196                                         count /= 4;
3197                                 }
3198                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3199                                 if (retval == ERROR_OK) {
3200                                         uint32_t t;
3201                                         for (t = 0; t < buf_cnt; t++) {
3202                                                 if (data[t] != buffer[t]) {
3203                                                         command_print(CMD_CTX,
3204                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3205                                                                                   diffs,
3206                                                                                   (unsigned)(t + image.sections[i].base_address),
3207                                                                                   data[t],
3208                                                                                   buffer[t]);
3209                                                         if (diffs++ >= 127) {
3210                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3211                                                                 free(data);
3212                                                                 free(buffer);
3213                                                                 goto done;
3214                                                         }
3215                                                 }
3216                                                 keep_alive();
3217                                         }
3218                                 }
3219                                 free(data);
3220                         }
3221                 } else {
3222                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3223                                                   image.sections[i].base_address,
3224                                                   buf_cnt);
3225                 }
3226
3227                 free(buffer);
3228                 image_size += buf_cnt;
3229         }
3230         if (diffs > 0)
3231                 command_print(CMD_CTX, "No more differences found.");
3232 done:
3233         if (diffs > 0)
3234                 retval = ERROR_FAIL;
3235         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3236                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3237                                 "in %fs (%0.3f KiB/s)", image_size,
3238                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3239         }
3240
3241         image_close(&image);
3242
3243         return retval;
3244 }
3245
3246 COMMAND_HANDLER(handle_verify_image_command)
3247 {
3248         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3249 }
3250
3251 COMMAND_HANDLER(handle_test_image_command)
3252 {
3253         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3254 }
3255
3256 static int handle_bp_command_list(struct command_context *cmd_ctx)
3257 {
3258         struct target *target = get_current_target(cmd_ctx);
3259         struct breakpoint *breakpoint = target->breakpoints;
3260         while (breakpoint) {
3261                 if (breakpoint->type == BKPT_SOFT) {
3262                         char *buf = buf_to_str(breakpoint->orig_instr,
3263                                         breakpoint->length, 16);
3264                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3265                                         breakpoint->address,
3266                                         breakpoint->length,
3267                                         breakpoint->set, buf);
3268                         free(buf);
3269                 } else {
3270                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3271                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3272                                                         breakpoint->asid,
3273                                                         breakpoint->length, breakpoint->set);
3274                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3275                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3276                                                         breakpoint->address,
3277                                                         breakpoint->length, breakpoint->set);
3278                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3279                                                         breakpoint->asid);
3280                         } else
3281                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3282                                                         breakpoint->address,
3283                                                         breakpoint->length, breakpoint->set);
3284                 }
3285
3286                 breakpoint = breakpoint->next;
3287         }
3288         return ERROR_OK;
3289 }
3290
3291 static int handle_bp_command_set(struct command_context *cmd_ctx,
3292                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3293 {
3294         struct target *target = get_current_target(cmd_ctx);
3295
3296         if (asid == 0) {
3297                 int retval = breakpoint_add(target, addr, length, hw);
3298                 if (ERROR_OK == retval)
3299                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3300                 else {
3301                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3302                         return retval;
3303                 }
3304         } else if (addr == 0) {
3305                 int retval = context_breakpoint_add(target, asid, length, hw);
3306                 if (ERROR_OK == retval)
3307                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3308                 else {
3309                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3310                         return retval;
3311                 }
3312         } else {
3313                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3314                 if (ERROR_OK == retval)
3315                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3316                 else {
3317                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3318                         return retval;
3319                 }
3320         }
3321         return ERROR_OK;
3322 }
3323
3324 COMMAND_HANDLER(handle_bp_command)
3325 {
3326         uint32_t addr;
3327         uint32_t asid;
3328         uint32_t length;
3329         int hw = BKPT_SOFT;
3330
3331         switch (CMD_ARGC) {
3332                 case 0:
3333                         return handle_bp_command_list(CMD_CTX);
3334
3335                 case 2:
3336                         asid = 0;
3337                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3338                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3339                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3340
3341                 case 3:
3342                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3343                                 hw = BKPT_HARD;
3344                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3345
3346                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3347
3348                                 asid = 0;
3349                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3350                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3351                                 hw = BKPT_HARD;
3352                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3353                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3354                                 addr = 0;
3355                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3356                         }
3357
3358                 case 4:
3359                         hw = BKPT_HARD;
3360                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3361                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3362                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3363                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3364
3365                 default:
3366                         return ERROR_COMMAND_SYNTAX_ERROR;
3367         }
3368 }
3369
3370 COMMAND_HANDLER(handle_rbp_command)
3371 {
3372         if (CMD_ARGC != 1)
3373                 return ERROR_COMMAND_SYNTAX_ERROR;
3374
3375         uint32_t addr;
3376         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3377
3378         struct target *target = get_current_target(CMD_CTX);
3379         breakpoint_remove(target, addr);
3380
3381         return ERROR_OK;
3382 }
3383
3384 COMMAND_HANDLER(handle_wp_command)
3385 {
3386         struct target *target = get_current_target(CMD_CTX);
3387
3388         if (CMD_ARGC == 0) {
3389                 struct watchpoint *watchpoint = target->watchpoints;
3390
3391                 while (watchpoint) {
3392                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3393                                         ", len: 0x%8.8" PRIx32
3394                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3395                                         ", mask: 0x%8.8" PRIx32,
3396                                         watchpoint->address,
3397                                         watchpoint->length,
3398                                         (int)watchpoint->rw,
3399                                         watchpoint->value,
3400                                         watchpoint->mask);
3401                         watchpoint = watchpoint->next;
3402                 }
3403                 return ERROR_OK;
3404         }
3405
3406         enum watchpoint_rw type = WPT_ACCESS;
3407         uint32_t addr = 0;
3408         uint32_t length = 0;
3409         uint32_t data_value = 0x0;
3410         uint32_t data_mask = 0xffffffff;
3411
3412         switch (CMD_ARGC) {
3413         case 5:
3414                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3415                 /* fall through */
3416         case 4:
3417                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3418                 /* fall through */
3419         case 3:
3420                 switch (CMD_ARGV[2][0]) {
3421                 case 'r':
3422                         type = WPT_READ;
3423                         break;
3424                 case 'w':
3425                         type = WPT_WRITE;
3426                         break;
3427                 case 'a':
3428                         type = WPT_ACCESS;
3429                         break;
3430                 default:
3431                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3432                         return ERROR_COMMAND_SYNTAX_ERROR;
3433                 }
3434                 /* fall through */
3435         case 2:
3436                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3437                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3438                 break;
3439
3440         default:
3441                 return ERROR_COMMAND_SYNTAX_ERROR;
3442         }
3443
3444         int retval = watchpoint_add(target, addr, length, type,
3445                         data_value, data_mask);
3446         if (ERROR_OK != retval)
3447                 LOG_ERROR("Failure setting watchpoints");
3448
3449         return retval;
3450 }
3451
3452 COMMAND_HANDLER(handle_rwp_command)
3453 {
3454         if (CMD_ARGC != 1)
3455                 return ERROR_COMMAND_SYNTAX_ERROR;
3456
3457         uint32_t addr;
3458         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3459
3460         struct target *target = get_current_target(CMD_CTX);
3461         watchpoint_remove(target, addr);
3462
3463         return ERROR_OK;
3464 }
3465
3466 /**
3467  * Translate a virtual address to a physical address.
3468  *
3469  * The low-level target implementation must have logged a detailed error
3470  * which is forwarded to telnet/GDB session.
3471  */
3472 COMMAND_HANDLER(handle_virt2phys_command)
3473 {
3474         if (CMD_ARGC != 1)
3475                 return ERROR_COMMAND_SYNTAX_ERROR;
3476
3477         uint32_t va;
3478         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3479         uint32_t pa;
3480
3481         struct target *target = get_current_target(CMD_CTX);
3482         int retval = target->type->virt2phys(target, va, &pa);
3483         if (retval == ERROR_OK)
3484                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3485
3486         return retval;
3487 }
3488
3489 static void writeData(FILE *f, const void *data, size_t len)
3490 {
3491         size_t written = fwrite(data, 1, len, f);
3492         if (written != len)
3493                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3494 }
3495
3496 static void writeLong(FILE *f, int l)
3497 {
3498         int i;
3499         for (i = 0; i < 4; i++) {
3500                 char c = (l >> (i*8))&0xff;
3501                 writeData(f, &c, 1);
3502         }
3503
3504 }
3505
3506 static void writeString(FILE *f, char *s)
3507 {
3508         writeData(f, s, strlen(s));
3509 }
3510
3511 typedef unsigned char UNIT[2];  /* unit of profiling */
3512
3513 /* Dump a gmon.out histogram file. */
3514 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename,
3515                 bool with_range, uint32_t start_address, uint32_t end_address)
3516 {
3517         uint32_t i;
3518         FILE *f = fopen(filename, "w");
3519         if (f == NULL)
3520                 return;
3521         writeString(f, "gmon");
3522         writeLong(f, 0x00000001); /* Version */
3523         writeLong(f, 0); /* padding */
3524         writeLong(f, 0); /* padding */
3525         writeLong(f, 0); /* padding */
3526
3527         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3528         writeData(f, &zero, 1);
3529
3530         /* figure out bucket size */
3531         uint32_t min;
3532         uint32_t max;
3533         if (with_range) {
3534                 min = start_address;
3535                 max = end_address;
3536         } else {
3537                 min = samples[0];
3538                 max = samples[0];
3539                 for (i = 0; i < sampleNum; i++) {
3540                         if (min > samples[i])
3541                                 min = samples[i];
3542                         if (max < samples[i])
3543                                 max = samples[i];
3544                 }
3545
3546                 /* max should be (largest sample + 1)
3547                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3548                 max++;
3549         }
3550
3551         int addressSpace = max - min;
3552         assert(addressSpace >= 2);
3553
3554         /* FIXME: What is the reasonable number of buckets?
3555          * The profiling result will be more accurate if there are enough buckets. */
3556         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3557         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3558         if (numBuckets > maxBuckets)
3559                 numBuckets = maxBuckets;
3560         int *buckets = malloc(sizeof(int) * numBuckets);
3561         if (buckets == NULL) {
3562                 fclose(f);
3563                 return;
3564         }
3565         memset(buckets, 0, sizeof(int) * numBuckets);
3566         for (i = 0; i < sampleNum; i++) {
3567                 uint32_t address = samples[i];
3568
3569                 if ((address < min) || (max <= address))
3570                         continue;
3571
3572                 long long a = address - min;
3573                 long long b = numBuckets;
3574                 long long c = addressSpace;
3575                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3576                 buckets[index_t]++;
3577         }
3578
3579         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3580         writeLong(f, min);                      /* low_pc */
3581         writeLong(f, max);                      /* high_pc */
3582         writeLong(f, numBuckets);       /* # of buckets */
3583         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3584         writeString(f, "seconds");
3585         for (i = 0; i < (15-strlen("seconds")); i++)
3586                 writeData(f, &zero, 1);
3587         writeString(f, "s");
3588
3589         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3590
3591         char *data = malloc(2 * numBuckets);
3592         if (data != NULL) {
3593                 for (i = 0; i < numBuckets; i++) {
3594                         int val;
3595                         val = buckets[i];
3596                         if (val > 65535)
3597                                 val = 65535;
3598                         data[i * 2] = val&0xff;
3599                         data[i * 2 + 1] = (val >> 8) & 0xff;
3600                 }
3601                 free(buckets);
3602                 writeData(f, data, numBuckets * 2);
3603                 free(data);
3604         } else
3605                 free(buckets);
3606
3607         fclose(f);
3608 }
3609
3610 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3611  * which will be used as a random sampling of PC */
3612 COMMAND_HANDLER(handle_profile_command)
3613 {
3614         struct target *target = get_current_target(CMD_CTX);
3615
3616         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3617                 return ERROR_COMMAND_SYNTAX_ERROR;
3618
3619         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3620         uint32_t offset;
3621         uint32_t num_of_sampels;
3622         int retval = ERROR_OK;
3623         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3624         if (samples == NULL) {
3625                 LOG_ERROR("No memory to store samples.");
3626                 return ERROR_FAIL;
3627         }
3628
3629         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3630
3631         /**
3632          * Some cores let us sample the PC without the
3633          * annoying halt/resume step; for example, ARMv7 PCSR.
3634          * Provide a way to use that more efficient mechanism.
3635          */
3636         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3637                                 &num_of_sampels, offset);
3638         if (retval != ERROR_OK) {
3639                 free(samples);
3640                 return retval;
3641         }
3642
3643         assert(num_of_sampels <= MAX_PROFILE_SAMPLE_NUM);
3644
3645         retval = target_poll(target);
3646         if (retval != ERROR_OK) {
3647                 free(samples);
3648                 return retval;
3649         }
3650         if (target->state == TARGET_RUNNING) {
3651                 retval = target_halt(target);
3652                 if (retval != ERROR_OK) {
3653                         free(samples);
3654                         return retval;
3655                 }
3656         }
3657
3658         retval = target_poll(target);
3659         if (retval != ERROR_OK) {
3660                 free(samples);
3661                 return retval;
3662         }
3663
3664         uint32_t start_address = 0;
3665         uint32_t end_address = 0;
3666         bool with_range = false;
3667         if (CMD_ARGC == 4) {
3668                 with_range = true;
3669                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3670                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3671         }
3672
3673         write_gmon(samples, num_of_sampels, CMD_ARGV[1],
3674                         with_range, start_address, end_address);
3675         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3676
3677         free(samples);
3678         return retval;
3679 }
3680
3681 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3682 {
3683         char *namebuf;
3684         Jim_Obj *nameObjPtr, *valObjPtr;
3685         int result;
3686
3687         namebuf = alloc_printf("%s(%d)", varname, idx);
3688         if (!namebuf)
3689                 return JIM_ERR;
3690
3691         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3692         valObjPtr = Jim_NewIntObj(interp, val);
3693         if (!nameObjPtr || !valObjPtr) {
3694                 free(namebuf);
3695                 return JIM_ERR;
3696         }
3697
3698         Jim_IncrRefCount(nameObjPtr);
3699         Jim_IncrRefCount(valObjPtr);
3700         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3701         Jim_DecrRefCount(interp, nameObjPtr);
3702         Jim_DecrRefCount(interp, valObjPtr);
3703         free(namebuf);
3704         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3705         return result;
3706 }
3707
3708 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3709 {
3710         struct command_context *context;
3711         struct target *target;
3712
3713         context = current_command_context(interp);
3714         assert(context != NULL);
3715
3716         target = get_current_target(context);
3717         if (target == NULL) {
3718                 LOG_ERROR("mem2array: no current target");
3719                 return JIM_ERR;
3720         }
3721
3722         return target_mem2array(interp, target, argc - 1, argv + 1);
3723 }
3724
3725 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3726 {
3727         long l;
3728         uint32_t width;
3729         int len;
3730         uint32_t addr;
3731         uint32_t count;
3732         uint32_t v;
3733         const char *varname;
3734         int  n, e, retval;
3735         uint32_t i;
3736
3737         /* argv[1] = name of array to receive the data
3738          * argv[2] = desired width
3739          * argv[3] = memory address
3740          * argv[4] = count of times to read
3741          */
3742         if (argc != 4) {
3743                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3744                 return JIM_ERR;
3745         }
3746         varname = Jim_GetString(argv[0], &len);
3747         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3748
3749         e = Jim_GetLong(interp, argv[1], &l);
3750         width = l;
3751         if (e != JIM_OK)
3752                 return e;
3753
3754         e = Jim_GetLong(interp, argv[2], &l);
3755         addr = l;
3756         if (e != JIM_OK)
3757                 return e;
3758         e = Jim_GetLong(interp, argv[3], &l);
3759         len = l;
3760         if (e != JIM_OK)
3761                 return e;
3762         switch (width) {
3763                 case 8:
3764                         width = 1;
3765                         break;
3766                 case 16:
3767                         width = 2;
3768                         break;
3769                 case 32:
3770                         width = 4;
3771                         break;
3772                 default:
3773                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3774                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3775                         return JIM_ERR;
3776         }
3777         if (len == 0) {
3778                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3779                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3780                 return JIM_ERR;
3781         }
3782         if ((addr + (len * width)) < addr) {
3783                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3784                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3785                 return JIM_ERR;
3786         }
3787         /* absurd transfer size? */
3788         if (len > 65536) {
3789                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3790                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3791                 return JIM_ERR;
3792         }
3793
3794         if ((width == 1) ||
3795                 ((width == 2) && ((addr & 1) == 0)) ||
3796                 ((width == 4) && ((addr & 3) == 0))) {
3797                 /* all is well */
3798         } else {
3799                 char buf[100];
3800                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3801                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3802                                 addr,
3803                                 width);
3804                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3805                 return JIM_ERR;
3806         }
3807
3808         /* Transfer loop */
3809
3810         /* index counter */
3811         n = 0;
3812
3813         size_t buffersize = 4096;
3814         uint8_t *buffer = malloc(buffersize);
3815         if (buffer == NULL)
3816                 return JIM_ERR;
3817
3818         /* assume ok */
3819         e = JIM_OK;
3820         while (len) {
3821                 /* Slurp... in buffer size chunks */
3822
3823                 count = len; /* in objects.. */
3824                 if (count > (buffersize / width))
3825                         count = (buffersize / width);
3826
3827                 retval = target_read_memory(target, addr, width, count, buffer);
3828                 if (retval != ERROR_OK) {
3829                         /* BOO !*/
3830                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3831                                           (unsigned int)addr,
3832                                           (int)width,
3833                                           (int)count);
3834                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3835                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3836                         e = JIM_ERR;
3837                         break;
3838                 } else {
3839                         v = 0; /* shut up gcc */
3840                         for (i = 0; i < count ; i++, n++) {
3841                                 switch (width) {
3842                                         case 4:
3843                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3844                                                 break;
3845                                         case 2:
3846                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3847                                                 break;
3848                                         case 1:
3849                                                 v = buffer[i] & 0x0ff;
3850                                                 break;
3851                                 }
3852                                 new_int_array_element(interp, varname, n, v);
3853                         }
3854                         len -= count;
3855                         addr += count * width;
3856                 }
3857         }
3858
3859         free(buffer);
3860
3861         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3862
3863         return e;
3864 }
3865
3866 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3867 {
3868         char *namebuf;
3869         Jim_Obj *nameObjPtr, *valObjPtr;
3870         int result;
3871         long l;
3872
3873         namebuf = alloc_printf("%s(%d)", varname, idx);
3874         if (!namebuf)
3875                 return JIM_ERR;
3876
3877         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3878         if (!nameObjPtr) {
3879                 free(namebuf);
3880                 return JIM_ERR;
3881         }
3882
3883         Jim_IncrRefCount(nameObjPtr);
3884         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3885         Jim_DecrRefCount(interp, nameObjPtr);
3886         free(namebuf);
3887         if (valObjPtr == NULL)
3888                 return JIM_ERR;
3889
3890         result = Jim_GetLong(interp, valObjPtr, &l);
3891         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3892         *val = l;
3893         return result;
3894 }
3895
3896 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3897 {
3898         struct command_context *context;
3899         struct target *target;
3900
3901         context = current_command_context(interp);
3902         assert(context != NULL);
3903
3904         target = get_current_target(context);
3905         if (target == NULL) {
3906                 LOG_ERROR("array2mem: no current target");
3907                 return JIM_ERR;
3908         }
3909
3910         return target_array2mem(interp, target, argc-1, argv + 1);
3911 }
3912
3913 static int target_array2mem(Jim_Interp *interp, struct target *target,
3914                 int argc, Jim_Obj *const *argv)
3915 {
3916         long l;
3917         uint32_t width;
3918         int len;
3919         uint32_t addr;
3920         uint32_t count;
3921         uint32_t v;
3922         const char *varname;
3923         int  n, e, retval;
3924         uint32_t i;
3925
3926         /* argv[1] = name of array to get the data
3927          * argv[2] = desired width
3928          * argv[3] = memory address
3929          * argv[4] = count to write
3930          */
3931         if (argc != 4) {
3932                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3933                 return JIM_ERR;
3934         }
3935         varname = Jim_GetString(argv[0], &len);
3936         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3937
3938         e = Jim_GetLong(interp, argv[1], &l);
3939         width = l;
3940         if (e != JIM_OK)
3941                 return e;
3942
3943         e = Jim_GetLong(interp, argv[2], &l);
3944         addr = l;
3945         if (e != JIM_OK)
3946                 return e;
3947         e = Jim_GetLong(interp, argv[3], &l);
3948         len = l;
3949         if (e != JIM_OK)
3950                 return e;
3951         switch (width) {
3952                 case 8:
3953                         width = 1;
3954                         break;
3955                 case 16:
3956                         width = 2;
3957                         break;
3958                 case 32:
3959                         width = 4;
3960                         break;
3961                 default:
3962                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3963                         Jim_AppendStrings(interp, Jim_GetResult(interp),
3964                                         "Invalid width param, must be 8/16/32", NULL);
3965                         return JIM_ERR;
3966         }
3967         if (len == 0) {
3968                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3969                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3970                                 "array2mem: zero width read?", NULL);
3971                 return JIM_ERR;
3972         }
3973         if ((addr + (len * width)) < addr) {
3974                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3975                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3976                                 "array2mem: addr + len - wraps to zero?", NULL);
3977                 return JIM_ERR;
3978         }
3979         /* absurd transfer size? */
3980         if (len > 65536) {
3981                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3982                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3983                                 "array2mem: absurd > 64K item request", NULL);
3984                 return JIM_ERR;
3985         }
3986
3987         if ((width == 1) ||
3988                 ((width == 2) && ((addr & 1) == 0)) ||
3989                 ((width == 4) && ((addr & 3) == 0))) {
3990                 /* all is well */
3991         } else {
3992                 char buf[100];
3993                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3994                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3995                                 (unsigned int)addr,
3996                                 (int)width);
3997                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3998                 return JIM_ERR;
3999         }
4000
4001         /* Transfer loop */
4002
4003         /* index counter */
4004         n = 0;
4005         /* assume ok */
4006         e = JIM_OK;
4007
4008         size_t buffersize = 4096;
4009         uint8_t *buffer = malloc(buffersize);
4010         if (buffer == NULL)
4011                 return JIM_ERR;
4012
4013         while (len) {
4014                 /* Slurp... in buffer size chunks */
4015
4016                 count = len; /* in objects.. */
4017                 if (count > (buffersize / width))
4018                         count = (buffersize / width);
4019
4020                 v = 0; /* shut up gcc */
4021                 for (i = 0; i < count; i++, n++) {
4022                         get_int_array_element(interp, varname, n, &v);
4023                         switch (width) {
4024                         case 4:
4025                                 target_buffer_set_u32(target, &buffer[i * width], v);
4026                                 break;
4027                         case 2:
4028                                 target_buffer_set_u16(target, &buffer[i * width], v);
4029                                 break;
4030                         case 1:
4031                                 buffer[i] = v & 0x0ff;
4032                                 break;
4033                         }
4034                 }
4035                 len -= count;
4036
4037                 retval = target_write_memory(target, addr, width, count, buffer);
4038                 if (retval != ERROR_OK) {
4039                         /* BOO !*/
4040                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
4041                                           (unsigned int)addr,
4042                                           (int)width,
4043                                           (int)count);
4044                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4045                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4046                         e = JIM_ERR;
4047                         break;
4048                 }
4049                 addr += count * width;
4050         }
4051
4052         free(buffer);
4053
4054         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4055
4056         return e;
4057 }
4058
4059 /* FIX? should we propagate errors here rather than printing them
4060  * and continuing?
4061  */
4062 void target_handle_event(struct target *target, enum target_event e)
4063 {
4064         struct target_event_action *teap;
4065
4066         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4067                 if (teap->event == e) {
4068                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4069                                            target->target_number,
4070                                            target_name(target),
4071                                            target_type_name(target),
4072                                            e,
4073                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4074                                            Jim_GetString(teap->body, NULL));
4075                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4076                                 Jim_MakeErrorMessage(teap->interp);
4077                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4078                         }
4079                 }
4080         }
4081 }
4082
4083 /**
4084  * Returns true only if the target has a handler for the specified event.
4085  */
4086 bool target_has_event_action(struct target *target, enum target_event event)
4087 {
4088         struct target_event_action *teap;
4089
4090         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4091                 if (teap->event == event)
4092                         return true;
4093         }
4094         return false;
4095 }
4096
4097 enum target_cfg_param {
4098         TCFG_TYPE,
4099         TCFG_EVENT,
4100         TCFG_WORK_AREA_VIRT,
4101         TCFG_WORK_AREA_PHYS,
4102         TCFG_WORK_AREA_SIZE,
4103         TCFG_WORK_AREA_BACKUP,
4104         TCFG_ENDIAN,
4105         TCFG_VARIANT,
4106         TCFG_COREID,
4107         TCFG_CHAIN_POSITION,
4108         TCFG_DBGBASE,
4109         TCFG_RTOS,
4110 };
4111
4112 static Jim_Nvp nvp_config_opts[] = {
4113         { .name = "-type",             .value = TCFG_TYPE },
4114         { .name = "-event",            .value = TCFG_EVENT },
4115         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4116         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4117         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4118         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4119         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4120         { .name = "-variant",          .value = TCFG_VARIANT },
4121         { .name = "-coreid",           .value = TCFG_COREID },
4122         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4123         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4124         { .name = "-rtos",             .value = TCFG_RTOS },
4125         { .name = NULL, .value = -1 }
4126 };
4127
4128 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4129 {
4130         Jim_Nvp *n;
4131         Jim_Obj *o;
4132         jim_wide w;
4133         char *cp;
4134         int e;
4135
4136         /* parse config or cget options ... */
4137         while (goi->argc > 0) {
4138                 Jim_SetEmptyResult(goi->interp);
4139                 /* Jim_GetOpt_Debug(goi); */
4140
4141                 if (target->type->target_jim_configure) {
4142                         /* target defines a configure function */
4143                         /* target gets first dibs on parameters */
4144                         e = (*(target->type->target_jim_configure))(target, goi);
4145                         if (e == JIM_OK) {
4146                                 /* more? */
4147                                 continue;
4148                         }
4149                         if (e == JIM_ERR) {
4150                                 /* An error */
4151                                 return e;
4152                         }
4153                         /* otherwise we 'continue' below */
4154                 }
4155                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4156                 if (e != JIM_OK) {
4157                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4158                         return e;
4159                 }
4160                 switch (n->value) {
4161                 case TCFG_TYPE:
4162                         /* not setable */
4163                         if (goi->isconfigure) {
4164                                 Jim_SetResultFormatted(goi->interp,
4165                                                 "not settable: %s", n->name);
4166                                 return JIM_ERR;
4167                         } else {
4168 no_params:
4169                                 if (goi->argc != 0) {
4170                                         Jim_WrongNumArgs(goi->interp,
4171                                                         goi->argc, goi->argv,
4172                                                         "NO PARAMS");
4173                                         return JIM_ERR;
4174                                 }
4175                         }
4176                         Jim_SetResultString(goi->interp,
4177                                         target_type_name(target), -1);
4178                         /* loop for more */
4179                         break;
4180                 case TCFG_EVENT:
4181                         if (goi->argc == 0) {
4182                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4183                                 return JIM_ERR;
4184                         }
4185
4186                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4187                         if (e != JIM_OK) {
4188                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4189                                 return e;
4190                         }
4191
4192                         if (goi->isconfigure) {
4193                                 if (goi->argc != 1) {
4194                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4195                                         return JIM_ERR;
4196                                 }
4197                         } else {
4198                                 if (goi->argc != 0) {
4199                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4200                                         return JIM_ERR;
4201                                 }
4202                         }
4203
4204                         {
4205                                 struct target_event_action *teap;
4206
4207                                 teap = target->event_action;
4208                                 /* replace existing? */
4209                                 while (teap) {
4210                                         if (teap->event == (enum target_event)n->value)
4211                                                 break;
4212                                         teap = teap->next;
4213                                 }
4214
4215                                 if (goi->isconfigure) {
4216                                         bool replace = true;
4217                                         if (teap == NULL) {
4218                                                 /* create new */
4219                                                 teap = calloc(1, sizeof(*teap));
4220                                                 replace = false;
4221                                         }
4222                                         teap->event = n->value;
4223                                         teap->interp = goi->interp;
4224                                         Jim_GetOpt_Obj(goi, &o);
4225                                         if (teap->body)
4226                                                 Jim_DecrRefCount(teap->interp, teap->body);
4227                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4228                                         /*
4229                                          * FIXME:
4230                                          *     Tcl/TK - "tk events" have a nice feature.
4231                                          *     See the "BIND" command.
4232                                          *    We should support that here.
4233                                          *     You can specify %X and %Y in the event code.
4234                                          *     The idea is: %T - target name.
4235                                          *     The idea is: %N - target number
4236                                          *     The idea is: %E - event name.
4237                                          */
4238                                         Jim_IncrRefCount(teap->body);
4239
4240                                         if (!replace) {
4241                                                 /* add to head of event list */
4242                                                 teap->next = target->event_action;
4243                                                 target->event_action = teap;
4244                                         }
4245                                         Jim_SetEmptyResult(goi->interp);
4246                                 } else {
4247                                         /* get */
4248                                         if (teap == NULL)
4249                                                 Jim_SetEmptyResult(goi->interp);
4250                                         else
4251                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4252                                 }
4253                         }
4254                         /* loop for more */
4255                         break;
4256
4257                 case TCFG_WORK_AREA_VIRT:
4258                         if (goi->isconfigure) {
4259                                 target_free_all_working_areas(target);
4260                                 e = Jim_GetOpt_Wide(goi, &w);
4261                                 if (e != JIM_OK)
4262                                         return e;
4263                                 target->working_area_virt = w;
4264                                 target->working_area_virt_spec = true;
4265                         } else {
4266                                 if (goi->argc != 0)
4267                                         goto no_params;
4268                         }
4269                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4270                         /* loop for more */
4271                         break;
4272
4273                 case TCFG_WORK_AREA_PHYS:
4274                         if (goi->isconfigure) {
4275                                 target_free_all_working_areas(target);
4276                                 e = Jim_GetOpt_Wide(goi, &w);
4277                                 if (e != JIM_OK)
4278                                         return e;
4279                                 target->working_area_phys = w;
4280                                 target->working_area_phys_spec = true;
4281                         } else {
4282                                 if (goi->argc != 0)
4283                                         goto no_params;
4284                         }
4285                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4286                         /* loop for more */
4287                         break;
4288
4289                 case TCFG_WORK_AREA_SIZE:
4290                         if (goi->isconfigure) {
4291                                 target_free_all_working_areas(target);
4292                                 e = Jim_GetOpt_Wide(goi, &w);
4293                                 if (e != JIM_OK)
4294                                         return e;
4295                                 target->working_area_size = w;
4296                         } else {
4297                                 if (goi->argc != 0)
4298                                         goto no_params;
4299                         }
4300                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4301                         /* loop for more */
4302                         break;
4303
4304                 case TCFG_WORK_AREA_BACKUP:
4305                         if (goi->isconfigure) {
4306                                 target_free_all_working_areas(target);
4307                                 e = Jim_GetOpt_Wide(goi, &w);
4308                                 if (e != JIM_OK)
4309                                         return e;
4310                                 /* make this exactly 1 or 0 */
4311                                 target->backup_working_area = (!!w);
4312                         } else {
4313                                 if (goi->argc != 0)
4314                                         goto no_params;
4315                         }
4316                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4317                         /* loop for more e*/
4318                         break;
4319
4320
4321                 case TCFG_ENDIAN:
4322                         if (goi->isconfigure) {
4323                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4324                                 if (e != JIM_OK) {
4325                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4326                                         return e;
4327                                 }
4328                                 target->endianness = n->value;
4329                         } else {
4330                                 if (goi->argc != 0)
4331                                         goto no_params;
4332                         }
4333                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4334                         if (n->name == NULL) {
4335                                 target->endianness = TARGET_LITTLE_ENDIAN;
4336                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4337                         }
4338                         Jim_SetResultString(goi->interp, n->name, -1);
4339                         /* loop for more */
4340                         break;
4341
4342                 case TCFG_VARIANT:
4343                         if (goi->isconfigure) {
4344                                 if (goi->argc < 1) {
4345                                         Jim_SetResultFormatted(goi->interp,
4346                                                                                    "%s ?STRING?",
4347                                                                                    n->name);
4348                                         return JIM_ERR;
4349                                 }
4350                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4351                                 if (e != JIM_OK)
4352                                         return e;
4353                                 free(target->variant);
4354                                 target->variant = strdup(cp);
4355                         } else {
4356                                 if (goi->argc != 0)
4357                                         goto no_params;
4358                         }
4359                         Jim_SetResultString(goi->interp, target->variant, -1);
4360                         /* loop for more */
4361                         break;
4362
4363                 case TCFG_COREID:
4364                         if (goi->isconfigure) {
4365                                 e = Jim_GetOpt_Wide(goi, &w);
4366                                 if (e != JIM_OK)
4367                                         return e;
4368                                 target->coreid = (int32_t)w;
4369                         } else {
4370                                 if (goi->argc != 0)
4371                                         goto no_params;
4372                         }
4373                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4374                         /* loop for more */
4375                         break;
4376
4377                 case TCFG_CHAIN_POSITION:
4378                         if (goi->isconfigure) {
4379                                 Jim_Obj *o_t;
4380                                 struct jtag_tap *tap;
4381                                 target_free_all_working_areas(target);
4382                                 e = Jim_GetOpt_Obj(goi, &o_t);
4383                                 if (e != JIM_OK)
4384                                         return e;
4385                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4386                                 if (tap == NULL)
4387                                         return JIM_ERR;
4388                                 /* make this exactly 1 or 0 */
4389                                 target->tap = tap;
4390                         } else {
4391                                 if (goi->argc != 0)
4392                                         goto no_params;
4393                         }
4394                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4395                         /* loop for more e*/
4396                         break;
4397                 case TCFG_DBGBASE:
4398                         if (goi->isconfigure) {
4399                                 e = Jim_GetOpt_Wide(goi, &w);
4400                                 if (e != JIM_OK)
4401                                         return e;
4402                                 target->dbgbase = (uint32_t)w;
4403                                 target->dbgbase_set = true;
4404                         } else {
4405                                 if (goi->argc != 0)
4406                                         goto no_params;
4407                         }
4408                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4409                         /* loop for more */
4410                         break;
4411
4412                 case TCFG_RTOS:
4413                         /* RTOS */
4414                         {
4415                                 int result = rtos_create(goi, target);
4416                                 if (result != JIM_OK)
4417                                         return result;
4418                         }
4419                         /* loop for more */
4420                         break;
4421                 }
4422         } /* while (goi->argc) */
4423
4424
4425                 /* done - we return */
4426         return JIM_OK;
4427 }
4428
4429 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4430 {
4431         Jim_GetOptInfo goi;
4432
4433         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4434         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4435         int need_args = 1 + goi.isconfigure;
4436         if (goi.argc < need_args) {
4437                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4438                         goi.isconfigure
4439                                 ? "missing: -option VALUE ..."
4440                                 : "missing: -option ...");
4441                 return JIM_ERR;
4442         }
4443         struct target *target = Jim_CmdPrivData(goi.interp);
4444         return target_configure(&goi, target);
4445 }
4446
4447 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4448 {
4449         const char *cmd_name = Jim_GetString(argv[0], NULL);
4450
4451         Jim_GetOptInfo goi;
4452         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4453
4454         if (goi.argc < 2 || goi.argc > 4) {
4455                 Jim_SetResultFormatted(goi.interp,
4456                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4457                 return JIM_ERR;
4458         }
4459
4460         target_write_fn fn;
4461         fn = target_write_memory;
4462
4463         int e;
4464         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4465                 /* consume it */
4466                 struct Jim_Obj *obj;
4467                 e = Jim_GetOpt_Obj(&goi, &obj);
4468                 if (e != JIM_OK)
4469                         return e;
4470
4471                 fn = target_write_phys_memory;
4472         }
4473
4474         jim_wide a;
4475         e = Jim_GetOpt_Wide(&goi, &a);
4476         if (e != JIM_OK)
4477                 return e;
4478
4479         jim_wide b;
4480         e = Jim_GetOpt_Wide(&goi, &b);
4481         if (e != JIM_OK)
4482                 return e;
4483
4484         jim_wide c = 1;
4485         if (goi.argc == 1) {
4486                 e = Jim_GetOpt_Wide(&goi, &c);
4487                 if (e != JIM_OK)
4488                         return e;
4489         }
4490
4491         /* all args must be consumed */
4492         if (goi.argc != 0)
4493                 return JIM_ERR;
4494
4495         struct target *target = Jim_CmdPrivData(goi.interp);
4496         unsigned data_size;
4497         if (strcasecmp(cmd_name, "mww") == 0)
4498                 data_size = 4;
4499         else if (strcasecmp(cmd_name, "mwh") == 0)
4500                 data_size = 2;
4501         else if (strcasecmp(cmd_name, "mwb") == 0)
4502                 data_size = 1;
4503         else {
4504                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4505                 return JIM_ERR;
4506         }
4507
4508         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4509 }
4510
4511 /**
4512 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4513 *
4514 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4515 *         mdh [phys] <address> [<count>] - for 16 bit reads
4516 *         mdb [phys] <address> [<count>] - for  8 bit reads
4517 *
4518 *  Count defaults to 1.
4519 *
4520 *  Calls target_read_memory or target_read_phys_memory depending on
4521 *  the presence of the "phys" argument
4522 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4523 *  to int representation in base16.
4524 *  Also outputs read data in a human readable form using command_print
4525 *
4526 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4527 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4528 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4529 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4530 *  on success, with [<count>] number of elements.
4531 *
4532 *  In case of little endian target:
4533 *      Example1: "mdw 0x00000000"  returns "10123456"
4534 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4535 *      Example3: "mdb 0x00000000" returns "56"
4536 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4537 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4538 **/
4539 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4540 {
4541         const char *cmd_name = Jim_GetString(argv[0], NULL);
4542
4543         Jim_GetOptInfo goi;
4544         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4545
4546         if ((goi.argc < 1) || (goi.argc > 3)) {
4547                 Jim_SetResultFormatted(goi.interp,
4548                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4549                 return JIM_ERR;
4550         }
4551
4552         int (*fn)(struct target *target,
4553                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4554         fn = target_read_memory;
4555
4556         int e;
4557         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4558                 /* consume it */
4559                 struct Jim_Obj *obj;
4560                 e = Jim_GetOpt_Obj(&goi, &obj);
4561                 if (e != JIM_OK)
4562                         return e;
4563
4564                 fn = target_read_phys_memory;
4565         }
4566
4567         /* Read address parameter */
4568         jim_wide addr;
4569         e = Jim_GetOpt_Wide(&goi, &addr);
4570         if (e != JIM_OK)
4571                 return JIM_ERR;
4572
4573         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4574         jim_wide count;
4575         if (goi.argc == 1) {
4576                 e = Jim_GetOpt_Wide(&goi, &count);
4577                 if (e != JIM_OK)
4578                         return JIM_ERR;
4579         } else
4580                 count = 1;
4581
4582         /* all args must be consumed */
4583         if (goi.argc != 0)
4584                 return JIM_ERR;
4585
4586         jim_wide dwidth = 1; /* shut up gcc */
4587         if (strcasecmp(cmd_name, "mdw") == 0)
4588                 dwidth = 4;
4589         else if (strcasecmp(cmd_name, "mdh") == 0)
4590                 dwidth = 2;
4591         else if (strcasecmp(cmd_name, "mdb") == 0)
4592                 dwidth = 1;
4593         else {
4594                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4595                 return JIM_ERR;
4596         }
4597
4598         /* convert count to "bytes" */
4599         int bytes = count * dwidth;
4600
4601         struct target *target = Jim_CmdPrivData(goi.interp);
4602         uint8_t  target_buf[32];
4603         jim_wide x, y, z;
4604         while (bytes > 0) {
4605                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4606
4607                 /* Try to read out next block */
4608                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4609
4610                 if (e != ERROR_OK) {
4611                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4612                         return JIM_ERR;
4613                 }
4614
4615                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4616                 switch (dwidth) {
4617                 case 4:
4618                         for (x = 0; x < 16 && x < y; x += 4) {
4619                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4620                                 command_print_sameline(NULL, "%08x ", (int)(z));
4621                         }
4622                         for (; (x < 16) ; x += 4)
4623                                 command_print_sameline(NULL, "         ");
4624                         break;
4625                 case 2:
4626                         for (x = 0; x < 16 && x < y; x += 2) {
4627                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4628                                 command_print_sameline(NULL, "%04x ", (int)(z));
4629                         }
4630                         for (; (x < 16) ; x += 2)
4631                                 command_print_sameline(NULL, "     ");
4632                         break;
4633                 case 1:
4634                 default:
4635                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4636                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4637                                 command_print_sameline(NULL, "%02x ", (int)(z));
4638                         }
4639                         for (; (x < 16) ; x += 1)
4640                                 command_print_sameline(NULL, "   ");
4641                         break;
4642                 }
4643                 /* ascii-ify the bytes */
4644                 for (x = 0 ; x < y ; x++) {
4645                         if ((target_buf[x] >= 0x20) &&
4646                                 (target_buf[x] <= 0x7e)) {
4647                                 /* good */
4648                         } else {
4649                                 /* smack it */
4650                                 target_buf[x] = '.';
4651                         }
4652                 }
4653                 /* space pad  */
4654                 while (x < 16) {
4655                         target_buf[x] = ' ';
4656                         x++;
4657                 }
4658                 /* terminate */
4659                 target_buf[16] = 0;
4660                 /* print - with a newline */
4661                 command_print_sameline(NULL, "%s\n", target_buf);
4662                 /* NEXT... */
4663                 bytes -= 16;
4664                 addr += 16;
4665         }
4666         return JIM_OK;
4667 }
4668
4669 static int jim_target_mem2array(Jim_Interp *interp,
4670                 int argc, Jim_Obj *const *argv)
4671 {
4672         struct target *target = Jim_CmdPrivData(interp);
4673         return target_mem2array(interp, target, argc - 1, argv + 1);
4674 }
4675
4676 static int jim_target_array2mem(Jim_Interp *interp,
4677                 int argc, Jim_Obj *const *argv)
4678 {
4679         struct target *target = Jim_CmdPrivData(interp);
4680         return target_array2mem(interp, target, argc - 1, argv + 1);
4681 }
4682
4683 static int jim_target_tap_disabled(Jim_Interp *interp)
4684 {
4685         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4686         return JIM_ERR;
4687 }
4688
4689 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4690 {
4691         if (argc != 1) {
4692                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4693                 return JIM_ERR;
4694         }
4695         struct target *target = Jim_CmdPrivData(interp);
4696         if (!target->tap->enabled)
4697                 return jim_target_tap_disabled(interp);
4698
4699         int e = target->type->examine(target);
4700         if (e != ERROR_OK)
4701                 return JIM_ERR;
4702         return JIM_OK;
4703 }
4704
4705 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4706 {
4707         if (argc != 1) {
4708                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4709                 return JIM_ERR;
4710         }
4711         struct target *target = Jim_CmdPrivData(interp);
4712
4713         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4714                 return JIM_ERR;
4715
4716         return JIM_OK;
4717 }
4718
4719 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4720 {
4721         if (argc != 1) {
4722                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4723                 return JIM_ERR;
4724         }
4725         struct target *target = Jim_CmdPrivData(interp);
4726         if (!target->tap->enabled)
4727                 return jim_target_tap_disabled(interp);
4728
4729         int e;
4730         if (!(target_was_examined(target)))
4731                 e = ERROR_TARGET_NOT_EXAMINED;
4732         else
4733                 e = target->type->poll(target);
4734         if (e != ERROR_OK)
4735                 return JIM_ERR;
4736         return JIM_OK;
4737 }
4738
4739 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4740 {
4741         Jim_GetOptInfo goi;
4742         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4743
4744         if (goi.argc != 2) {
4745                 Jim_WrongNumArgs(interp, 0, argv,
4746                                 "([tT]|[fF]|assert|deassert) BOOL");
4747                 return JIM_ERR;
4748         }
4749
4750         Jim_Nvp *n;
4751         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4752         if (e != JIM_OK) {
4753                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4754                 return e;
4755         }
4756         /* the halt or not param */
4757         jim_wide a;
4758         e = Jim_GetOpt_Wide(&goi, &a);
4759         if (e != JIM_OK)
4760                 return e;
4761
4762         struct target *target = Jim_CmdPrivData(goi.interp);
4763         if (!target->tap->enabled)
4764                 return jim_target_tap_disabled(interp);
4765         if (!(target_was_examined(target))) {
4766                 LOG_ERROR("Target not examined yet");
4767                 return ERROR_TARGET_NOT_EXAMINED;
4768         }
4769         if (!target->type->assert_reset || !target->type->deassert_reset) {
4770                 Jim_SetResultFormatted(interp,
4771                                 "No target-specific reset for %s",
4772                                 target_name(target));
4773                 return JIM_ERR;
4774         }
4775         /* determine if we should halt or not. */
4776         target->reset_halt = !!a;
4777         /* When this happens - all workareas are invalid. */
4778         target_free_all_working_areas_restore(target, 0);
4779
4780         /* do the assert */
4781         if (n->value == NVP_ASSERT)
4782                 e = target->type->assert_reset(target);
4783         else
4784                 e = target->type->deassert_reset(target);
4785         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4786 }
4787
4788 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4789 {
4790         if (argc != 1) {
4791                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4792                 return JIM_ERR;
4793         }
4794         struct target *target = Jim_CmdPrivData(interp);
4795         if (!target->tap->enabled)
4796                 return jim_target_tap_disabled(interp);
4797         int e = target->type->halt(target);
4798         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4799 }
4800
4801 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4802 {
4803         Jim_GetOptInfo goi;
4804         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4805
4806         /* params:  <name>  statename timeoutmsecs */
4807         if (goi.argc != 2) {
4808                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4809                 Jim_SetResultFormatted(goi.interp,
4810                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4811                 return JIM_ERR;
4812         }
4813
4814         Jim_Nvp *n;
4815         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4816         if (e != JIM_OK) {
4817                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4818                 return e;
4819         }
4820         jim_wide a;
4821         e = Jim_GetOpt_Wide(&goi, &a);
4822         if (e != JIM_OK)
4823                 return e;
4824         struct target *target = Jim_CmdPrivData(interp);
4825         if (!target->tap->enabled)
4826                 return jim_target_tap_disabled(interp);
4827
4828         e = target_wait_state(target, n->value, a);
4829         if (e != ERROR_OK) {
4830                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4831                 Jim_SetResultFormatted(goi.interp,
4832                                 "target: %s wait %s fails (%#s) %s",
4833                                 target_name(target), n->name,
4834                                 eObj, target_strerror_safe(e));
4835                 Jim_FreeNewObj(interp, eObj);
4836                 return JIM_ERR;
4837         }
4838         return JIM_OK;
4839 }
4840 /* List for human, Events defined for this target.
4841  * scripts/programs should use 'name cget -event NAME'
4842  */
4843 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4844 {
4845         struct command_context *cmd_ctx = current_command_context(interp);
4846         assert(cmd_ctx != NULL);
4847
4848         struct target *target = Jim_CmdPrivData(interp);
4849         struct target_event_action *teap = target->event_action;
4850         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4851                                    target->target_number,
4852                                    target_name(target));
4853         command_print(cmd_ctx, "%-25s | Body", "Event");
4854         command_print(cmd_ctx, "------------------------- | "
4855                         "----------------------------------------");
4856         while (teap) {
4857                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4858                 command_print(cmd_ctx, "%-25s | %s",
4859                                 opt->name, Jim_GetString(teap->body, NULL));
4860                 teap = teap->next;
4861         }
4862         command_print(cmd_ctx, "***END***");
4863         return JIM_OK;
4864 }
4865 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4866 {
4867         if (argc != 1) {
4868                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4869                 return JIM_ERR;
4870         }
4871         struct target *target = Jim_CmdPrivData(interp);
4872         Jim_SetResultString(interp, target_state_name(target), -1);
4873         return JIM_OK;
4874 }
4875 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4876 {
4877         Jim_GetOptInfo goi;
4878         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4879         if (goi.argc != 1) {
4880                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4881                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4882                 return JIM_ERR;
4883         }
4884         Jim_Nvp *n;
4885         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4886         if (e != JIM_OK) {
4887                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4888                 return e;
4889         }
4890         struct target *target = Jim_CmdPrivData(interp);
4891         target_handle_event(target, n->value);
4892         return JIM_OK;
4893 }
4894
4895 static const struct command_registration target_instance_command_handlers[] = {
4896         {
4897                 .name = "configure",
4898                 .mode = COMMAND_CONFIG,
4899                 .jim_handler = jim_target_configure,
4900                 .help  = "configure a new target for use",
4901                 .usage = "[target_attribute ...]",
4902         },
4903         {
4904                 .name = "cget",
4905                 .mode = COMMAND_ANY,
4906                 .jim_handler = jim_target_configure,
4907                 .help  = "returns the specified target attribute",
4908                 .usage = "target_attribute",
4909         },
4910         {
4911                 .name = "mww",
4912                 .mode = COMMAND_EXEC,
4913                 .jim_handler = jim_target_mw,
4914                 .help = "Write 32-bit word(s) to target memory",
4915                 .usage = "address data [count]",
4916         },
4917         {
4918                 .name = "mwh",
4919                 .mode = COMMAND_EXEC,
4920                 .jim_handler = jim_target_mw,
4921                 .help = "Write 16-bit half-word(s) to target memory",
4922                 .usage = "address data [count]",
4923         },
4924         {
4925                 .name = "mwb",
4926                 .mode = COMMAND_EXEC,
4927                 .jim_handler = jim_target_mw,
4928                 .help = "Write byte(s) to target memory",
4929                 .usage = "address data [count]",
4930         },
4931         {
4932                 .name = "mdw",
4933                 .mode = COMMAND_EXEC,
4934                 .jim_handler = jim_target_md,
4935                 .help = "Display target memory as 32-bit words",
4936                 .usage = "address [count]",
4937         },
4938         {
4939                 .name = "mdh",
4940                 .mode = COMMAND_EXEC,
4941                 .jim_handler = jim_target_md,
4942                 .help = "Display target memory as 16-bit half-words",
4943                 .usage = "address [count]",
4944         },
4945         {
4946                 .name = "mdb",
4947                 .mode = COMMAND_EXEC,
4948                 .jim_handler = jim_target_md,
4949                 .help = "Display target memory as 8-bit bytes",
4950                 .usage = "address [count]",
4951         },
4952         {
4953                 .name = "array2mem",
4954                 .mode = COMMAND_EXEC,
4955                 .jim_handler = jim_target_array2mem,
4956                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4957                         "to target memory",
4958                 .usage = "arrayname bitwidth address count",
4959         },
4960         {
4961                 .name = "mem2array",
4962                 .mode = COMMAND_EXEC,
4963                 .jim_handler = jim_target_mem2array,
4964                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4965                         "from target memory",
4966                 .usage = "arrayname bitwidth address count",
4967         },
4968         {
4969                 .name = "eventlist",
4970                 .mode = COMMAND_EXEC,
4971                 .jim_handler = jim_target_event_list,
4972                 .help = "displays a table of events defined for this target",
4973         },
4974         {
4975                 .name = "curstate",
4976                 .mode = COMMAND_EXEC,
4977                 .jim_handler = jim_target_current_state,
4978                 .help = "displays the current state of this target",
4979         },
4980         {
4981                 .name = "arp_examine",
4982                 .mode = COMMAND_EXEC,
4983                 .jim_handler = jim_target_examine,
4984                 .help = "used internally for reset processing",
4985         },
4986         {
4987                 .name = "arp_halt_gdb",
4988                 .mode = COMMAND_EXEC,
4989                 .jim_handler = jim_target_halt_gdb,
4990                 .help = "used internally for reset processing to halt GDB",
4991         },
4992         {
4993                 .name = "arp_poll",
4994                 .mode = COMMAND_EXEC,
4995                 .jim_handler = jim_target_poll,
4996                 .help = "used internally for reset processing",
4997         },
4998         {
4999                 .name = "arp_reset",
5000                 .mode = COMMAND_EXEC,
5001                 .jim_handler = jim_target_reset,
5002                 .help = "used internally for reset processing",
5003         },
5004         {
5005                 .name = "arp_halt",
5006                 .mode = COMMAND_EXEC,
5007                 .jim_handler = jim_target_halt,
5008                 .help = "used internally for reset processing",
5009         },
5010         {
5011                 .name = "arp_waitstate",
5012                 .mode = COMMAND_EXEC,
5013                 .jim_handler = jim_target_wait_state,
5014                 .help = "used internally for reset processing",
5015         },
5016         {
5017                 .name = "invoke-event",
5018                 .mode = COMMAND_EXEC,
5019                 .jim_handler = jim_target_invoke_event,
5020                 .help = "invoke handler for specified event",
5021                 .usage = "event_name",
5022         },
5023         COMMAND_REGISTRATION_DONE
5024 };
5025
5026 static int target_create(Jim_GetOptInfo *goi)
5027 {
5028         Jim_Obj *new_cmd;
5029         Jim_Cmd *cmd;
5030         const char *cp;
5031         char *cp2;
5032         int e;
5033         int x;
5034         struct target *target;
5035         struct command_context *cmd_ctx;
5036
5037         cmd_ctx = current_command_context(goi->interp);
5038         assert(cmd_ctx != NULL);
5039
5040         if (goi->argc < 3) {
5041                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5042                 return JIM_ERR;
5043         }
5044
5045         /* COMMAND */
5046         Jim_GetOpt_Obj(goi, &new_cmd);
5047         /* does this command exist? */
5048         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5049         if (cmd) {
5050                 cp = Jim_GetString(new_cmd, NULL);
5051                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5052                 return JIM_ERR;
5053         }
5054
5055         /* TYPE */
5056         e = Jim_GetOpt_String(goi, &cp2, NULL);
5057         if (e != JIM_OK)
5058                 return e;
5059         cp = cp2;
5060         /* now does target type exist */
5061         for (x = 0 ; target_types[x] ; x++) {
5062                 if (0 == strcmp(cp, target_types[x]->name)) {
5063                         /* found */
5064                         break;
5065                 }
5066
5067                 /* check for deprecated name */
5068                 if (target_types[x]->deprecated_name) {
5069                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5070                                 /* found */
5071                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5072                                 break;
5073                         }
5074                 }
5075         }
5076         if (target_types[x] == NULL) {
5077                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5078                 for (x = 0 ; target_types[x] ; x++) {
5079                         if (target_types[x + 1]) {
5080                                 Jim_AppendStrings(goi->interp,
5081                                                                    Jim_GetResult(goi->interp),
5082                                                                    target_types[x]->name,
5083                                                                    ", ", NULL);
5084                         } else {
5085                                 Jim_AppendStrings(goi->interp,
5086                                                                    Jim_GetResult(goi->interp),
5087                                                                    " or ",
5088                                                                    target_types[x]->name, NULL);
5089                         }
5090                 }
5091                 return JIM_ERR;
5092         }
5093
5094         /* Create it */
5095         target = calloc(1, sizeof(struct target));
5096         /* set target number */
5097         target->target_number = new_target_number();
5098
5099         /* allocate memory for each unique target type */
5100         target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
5101
5102         memcpy(target->type, target_types[x], sizeof(struct target_type));
5103
5104         /* will be set by "-endian" */
5105         target->endianness = TARGET_ENDIAN_UNKNOWN;
5106
5107         /* default to first core, override with -coreid */
5108         target->coreid = 0;
5109
5110         target->working_area        = 0x0;
5111         target->working_area_size   = 0x0;
5112         target->working_areas       = NULL;
5113         target->backup_working_area = 0;
5114
5115         target->state               = TARGET_UNKNOWN;
5116         target->debug_reason        = DBG_REASON_UNDEFINED;
5117         target->reg_cache           = NULL;
5118         target->breakpoints         = NULL;
5119         target->watchpoints         = NULL;
5120         target->next                = NULL;
5121         target->arch_info           = NULL;
5122
5123         target->display             = 1;
5124
5125         target->halt_issued                     = false;
5126
5127         /* initialize trace information */
5128         target->trace_info = malloc(sizeof(struct trace));
5129         target->trace_info->num_trace_points         = 0;
5130         target->trace_info->trace_points_size        = 0;
5131         target->trace_info->trace_points             = NULL;
5132         target->trace_info->trace_history_size       = 0;
5133         target->trace_info->trace_history            = NULL;
5134         target->trace_info->trace_history_pos        = 0;
5135         target->trace_info->trace_history_overflowed = 0;
5136
5137         target->dbgmsg          = NULL;
5138         target->dbg_msg_enabled = 0;
5139
5140         target->endianness = TARGET_ENDIAN_UNKNOWN;
5141
5142         target->rtos = NULL;
5143         target->rtos_auto_detect = false;
5144
5145         /* Do the rest as "configure" options */
5146         goi->isconfigure = 1;
5147         e = target_configure(goi, target);
5148
5149         if (target->tap == NULL) {
5150                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5151                 e = JIM_ERR;
5152         }
5153
5154         if (e != JIM_OK) {
5155                 free(target->type);
5156                 free(target);
5157                 return e;
5158         }
5159
5160         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5161                 /* default endian to little if not specified */
5162                 target->endianness = TARGET_LITTLE_ENDIAN;
5163         }
5164
5165         /* incase variant is not set */
5166         if (!target->variant)
5167                 target->variant = strdup("");
5168
5169         cp = Jim_GetString(new_cmd, NULL);
5170         target->cmd_name = strdup(cp);
5171
5172         /* create the target specific commands */
5173         if (target->type->commands) {
5174                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5175                 if (ERROR_OK != e)
5176                         LOG_ERROR("unable to register '%s' commands", cp);
5177         }
5178         if (target->type->target_create)
5179                 (*(target->type->target_create))(target, goi->interp);
5180
5181         /* append to end of list */
5182         {
5183                 struct target **tpp;
5184                 tpp = &(all_targets);
5185                 while (*tpp)
5186                         tpp = &((*tpp)->next);
5187                 *tpp = target;
5188         }
5189
5190         /* now - create the new target name command */
5191         const struct command_registration target_subcommands[] = {
5192                 {
5193                         .chain = target_instance_command_handlers,
5194                 },
5195                 {
5196                         .chain = target->type->commands,
5197                 },
5198                 COMMAND_REGISTRATION_DONE
5199         };
5200         const struct command_registration target_commands[] = {
5201                 {
5202                         .name = cp,
5203                         .mode = COMMAND_ANY,
5204                         .help = "target command group",
5205                         .usage = "",
5206                         .chain = target_subcommands,
5207                 },
5208                 COMMAND_REGISTRATION_DONE
5209         };
5210         e = register_commands(cmd_ctx, NULL, target_commands);
5211         if (ERROR_OK != e)
5212                 return JIM_ERR;
5213
5214         struct command *c = command_find_in_context(cmd_ctx, cp);
5215         assert(c);
5216         command_set_handler_data(c, target);
5217
5218         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5219 }
5220
5221 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5222 {
5223         if (argc != 1) {
5224                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5225                 return JIM_ERR;
5226         }
5227         struct command_context *cmd_ctx = current_command_context(interp);
5228         assert(cmd_ctx != NULL);
5229
5230         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5231         return JIM_OK;
5232 }
5233
5234 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5235 {
5236         if (argc != 1) {
5237                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5238                 return JIM_ERR;
5239         }
5240         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5241         for (unsigned x = 0; NULL != target_types[x]; x++) {
5242                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5243                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5244         }
5245         return JIM_OK;
5246 }
5247
5248 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5249 {
5250         if (argc != 1) {
5251                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5252                 return JIM_ERR;
5253         }
5254         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5255         struct target *target = all_targets;
5256         while (target) {
5257                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5258                         Jim_NewStringObj(interp, target_name(target), -1));
5259                 target = target->next;
5260         }
5261         return JIM_OK;
5262 }
5263
5264 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5265 {
5266         int i;
5267         const char *targetname;
5268         int retval, len;
5269         struct target *target = (struct target *) NULL;
5270         struct target_list *head, *curr, *new;
5271         curr = (struct target_list *) NULL;
5272         head = (struct target_list *) NULL;
5273
5274         retval = 0;
5275         LOG_DEBUG("%d", argc);
5276         /* argv[1] = target to associate in smp
5277          * argv[2] = target to assoicate in smp
5278          * argv[3] ...
5279          */
5280
5281         for (i = 1; i < argc; i++) {
5282
5283                 targetname = Jim_GetString(argv[i], &len);
5284                 target = get_target(targetname);
5285                 LOG_DEBUG("%s ", targetname);
5286                 if (target) {
5287                         new = malloc(sizeof(struct target_list));
5288                         new->target = target;
5289                         new->next = (struct target_list *)NULL;
5290                         if (head == (struct target_list *)NULL) {
5291                                 head = new;
5292                                 curr = head;
5293                         } else {
5294                                 curr->next = new;
5295                                 curr = new;
5296                         }
5297                 }
5298         }
5299         /*  now parse the list of cpu and put the target in smp mode*/
5300         curr = head;
5301
5302         while (curr != (struct target_list *)NULL) {
5303                 target = curr->target;
5304                 target->smp = 1;
5305                 target->head = head;
5306                 curr = curr->next;
5307         }
5308
5309         if (target && target->rtos)
5310                 retval = rtos_smp_init(head->target);
5311
5312         return retval;
5313 }
5314
5315
5316 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5317 {
5318         Jim_GetOptInfo goi;
5319         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5320         if (goi.argc < 3) {
5321                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5322                         "<name> <target_type> [<target_options> ...]");
5323                 return JIM_ERR;
5324         }
5325         return target_create(&goi);
5326 }
5327
5328 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5329 {
5330         Jim_GetOptInfo goi;
5331         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5332
5333         /* It's OK to remove this mechanism sometime after August 2010 or so */
5334         LOG_WARNING("don't use numbers as target identifiers; use names");
5335         if (goi.argc != 1) {
5336                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5337                 return JIM_ERR;
5338         }
5339         jim_wide w;
5340         int e = Jim_GetOpt_Wide(&goi, &w);
5341         if (e != JIM_OK)
5342                 return JIM_ERR;
5343
5344         struct target *target;
5345         for (target = all_targets; NULL != target; target = target->next) {
5346                 if (target->target_number != w)
5347                         continue;
5348
5349                 Jim_SetResultString(goi.interp, target_name(target), -1);
5350                 return JIM_OK;
5351         }
5352         {
5353                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5354                 Jim_SetResultFormatted(goi.interp,
5355                         "Target: number %#s does not exist", wObj);
5356                 Jim_FreeNewObj(interp, wObj);
5357         }
5358         return JIM_ERR;
5359 }
5360
5361 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5362 {
5363         if (argc != 1) {
5364                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5365                 return JIM_ERR;
5366         }
5367         unsigned count = 0;
5368         struct target *target = all_targets;
5369         while (NULL != target) {
5370                 target = target->next;
5371                 count++;
5372         }
5373         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5374         return JIM_OK;
5375 }
5376
5377 static const struct command_registration target_subcommand_handlers[] = {
5378         {
5379                 .name = "init",
5380                 .mode = COMMAND_CONFIG,
5381                 .handler = handle_target_init_command,
5382                 .help = "initialize targets",
5383         },
5384         {
5385                 .name = "create",
5386                 /* REVISIT this should be COMMAND_CONFIG ... */
5387                 .mode = COMMAND_ANY,
5388                 .jim_handler = jim_target_create,
5389                 .usage = "name type '-chain-position' name [options ...]",
5390                 .help = "Creates and selects a new target",
5391         },
5392         {
5393                 .name = "current",
5394                 .mode = COMMAND_ANY,
5395                 .jim_handler = jim_target_current,
5396                 .help = "Returns the currently selected target",
5397         },
5398         {
5399                 .name = "types",
5400                 .mode = COMMAND_ANY,
5401                 .jim_handler = jim_target_types,
5402                 .help = "Returns the available target types as "
5403                                 "a list of strings",
5404         },
5405         {
5406                 .name = "names",
5407                 .mode = COMMAND_ANY,
5408                 .jim_handler = jim_target_names,
5409                 .help = "Returns the names of all targets as a list of strings",
5410         },
5411         {
5412                 .name = "number",
5413                 .mode = COMMAND_ANY,
5414                 .jim_handler = jim_target_number,
5415                 .usage = "number",
5416                 .help = "Returns the name of the numbered target "
5417                         "(DEPRECATED)",
5418         },
5419         {
5420                 .name = "count",
5421                 .mode = COMMAND_ANY,
5422                 .jim_handler = jim_target_count,
5423                 .help = "Returns the number of targets as an integer "
5424                         "(DEPRECATED)",
5425         },
5426         {
5427                 .name = "smp",
5428                 .mode = COMMAND_ANY,
5429                 .jim_handler = jim_target_smp,
5430                 .usage = "targetname1 targetname2 ...",
5431                 .help = "gather several target in a smp list"
5432         },
5433
5434         COMMAND_REGISTRATION_DONE
5435 };
5436
5437 struct FastLoad {
5438         uint32_t address;
5439         uint8_t *data;
5440         int length;
5441
5442 };
5443
5444 static int fastload_num;
5445 static struct FastLoad *fastload;
5446
5447 static void free_fastload(void)
5448 {
5449         if (fastload != NULL) {
5450                 int i;
5451                 for (i = 0; i < fastload_num; i++) {
5452                         if (fastload[i].data)
5453                                 free(fastload[i].data);
5454                 }
5455                 free(fastload);
5456                 fastload = NULL;
5457         }
5458 }
5459
5460 COMMAND_HANDLER(handle_fast_load_image_command)
5461 {
5462         uint8_t *buffer;
5463         size_t buf_cnt;
5464         uint32_t image_size;
5465         uint32_t min_address = 0;
5466         uint32_t max_address = 0xffffffff;
5467         int i;
5468
5469         struct image image;
5470
5471         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5472                         &image, &min_address, &max_address);
5473         if (ERROR_OK != retval)
5474                 return retval;
5475
5476         struct duration bench;
5477         duration_start(&bench);
5478
5479         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5480         if (retval != ERROR_OK)
5481                 return retval;
5482
5483         image_size = 0x0;
5484         retval = ERROR_OK;
5485         fastload_num = image.num_sections;
5486         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5487         if (fastload == NULL) {
5488                 command_print(CMD_CTX, "out of memory");
5489                 image_close(&image);
5490                 return ERROR_FAIL;
5491         }
5492         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5493         for (i = 0; i < image.num_sections; i++) {
5494                 buffer = malloc(image.sections[i].size);
5495                 if (buffer == NULL) {
5496                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5497                                                   (int)(image.sections[i].size));
5498                         retval = ERROR_FAIL;
5499                         break;
5500                 }
5501
5502                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5503                 if (retval != ERROR_OK) {
5504                         free(buffer);
5505                         break;
5506                 }
5507
5508                 uint32_t offset = 0;
5509                 uint32_t length = buf_cnt;
5510
5511                 /* DANGER!!! beware of unsigned comparision here!!! */
5512
5513                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5514                                 (image.sections[i].base_address < max_address)) {
5515                         if (image.sections[i].base_address < min_address) {
5516                                 /* clip addresses below */
5517                                 offset += min_address-image.sections[i].base_address;
5518                                 length -= offset;
5519                         }
5520
5521                         if (image.sections[i].base_address + buf_cnt > max_address)
5522                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5523
5524                         fastload[i].address = image.sections[i].base_address + offset;
5525                         fastload[i].data = malloc(length);
5526                         if (fastload[i].data == NULL) {
5527                                 free(buffer);
5528                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5529                                                           length);
5530                                 retval = ERROR_FAIL;
5531                                 break;
5532                         }
5533                         memcpy(fastload[i].data, buffer + offset, length);
5534                         fastload[i].length = length;
5535
5536                         image_size += length;
5537                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5538                                                   (unsigned int)length,
5539                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5540                 }
5541
5542                 free(buffer);
5543         }
5544
5545         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5546                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5547                                 "in %fs (%0.3f KiB/s)", image_size,
5548                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5549
5550                 command_print(CMD_CTX,
5551                                 "WARNING: image has not been loaded to target!"
5552                                 "You can issue a 'fast_load' to finish loading.");
5553         }
5554
5555         image_close(&image);
5556
5557         if (retval != ERROR_OK)
5558                 free_fastload();
5559
5560         return retval;
5561 }
5562
5563 COMMAND_HANDLER(handle_fast_load_command)
5564 {
5565         if (CMD_ARGC > 0)
5566                 return ERROR_COMMAND_SYNTAX_ERROR;
5567         if (fastload == NULL) {
5568                 LOG_ERROR("No image in memory");
5569                 return ERROR_FAIL;
5570         }
5571         int i;
5572         int ms = timeval_ms();
5573         int size = 0;
5574         int retval = ERROR_OK;
5575         for (i = 0; i < fastload_num; i++) {
5576                 struct target *target = get_current_target(CMD_CTX);
5577                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5578                                           (unsigned int)(fastload[i].address),
5579                                           (unsigned int)(fastload[i].length));
5580                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5581                 if (retval != ERROR_OK)
5582                         break;
5583                 size += fastload[i].length;
5584         }
5585         if (retval == ERROR_OK) {
5586                 int after = timeval_ms();
5587                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5588         }
5589         return retval;
5590 }
5591
5592 static const struct command_registration target_command_handlers[] = {
5593         {
5594                 .name = "targets",
5595                 .handler = handle_targets_command,
5596                 .mode = COMMAND_ANY,
5597                 .help = "change current default target (one parameter) "
5598                         "or prints table of all targets (no parameters)",
5599                 .usage = "[target]",
5600         },
5601         {
5602                 .name = "target",
5603                 .mode = COMMAND_CONFIG,
5604                 .help = "configure target",
5605
5606                 .chain = target_subcommand_handlers,
5607         },
5608         COMMAND_REGISTRATION_DONE
5609 };
5610
5611 int target_register_commands(struct command_context *cmd_ctx)
5612 {
5613         return register_commands(cmd_ctx, NULL, target_command_handlers);
5614 }
5615
5616 static bool target_reset_nag = true;
5617
5618 bool get_target_reset_nag(void)
5619 {
5620         return target_reset_nag;
5621 }
5622
5623 COMMAND_HANDLER(handle_target_reset_nag)
5624 {
5625         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5626                         &target_reset_nag, "Nag after each reset about options to improve "
5627                         "performance");
5628 }
5629
5630 COMMAND_HANDLER(handle_ps_command)
5631 {
5632         struct target *target = get_current_target(CMD_CTX);
5633         char *display;
5634         if (target->state != TARGET_HALTED) {
5635                 LOG_INFO("target not halted !!");
5636                 return ERROR_OK;
5637         }
5638
5639         if ((target->rtos) && (target->rtos->type)
5640                         && (target->rtos->type->ps_command)) {
5641                 display = target->rtos->type->ps_command(target);
5642                 command_print(CMD_CTX, "%s", display);
5643                 free(display);
5644                 return ERROR_OK;
5645         } else {
5646                 LOG_INFO("failed");
5647                 return ERROR_TARGET_FAILURE;
5648         }
5649 }
5650
5651 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5652 {
5653         if (text != NULL)
5654                 command_print_sameline(cmd_ctx, "%s", text);
5655         for (int i = 0; i < size; i++)
5656                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5657         command_print(cmd_ctx, " ");
5658 }
5659
5660 COMMAND_HANDLER(handle_test_mem_access_command)
5661 {
5662         struct target *target = get_current_target(CMD_CTX);
5663         uint32_t test_size;
5664         int retval = ERROR_OK;
5665
5666         if (target->state != TARGET_HALTED) {
5667                 LOG_INFO("target not halted !!");
5668                 return ERROR_FAIL;
5669         }
5670
5671         if (CMD_ARGC != 1)
5672                 return ERROR_COMMAND_SYNTAX_ERROR;
5673
5674         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5675
5676         /* Test reads */
5677         size_t num_bytes = test_size + 4;
5678
5679         struct working_area *wa = NULL;
5680         retval = target_alloc_working_area(target, num_bytes, &wa);
5681         if (retval != ERROR_OK) {
5682                 LOG_ERROR("Not enough working area");
5683                 return ERROR_FAIL;
5684         }
5685
5686         uint8_t *test_pattern = malloc(num_bytes);
5687
5688         for (size_t i = 0; i < num_bytes; i++)
5689                 test_pattern[i] = rand();
5690
5691         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5692         if (retval != ERROR_OK) {
5693                 LOG_ERROR("Test pattern write failed");
5694                 goto out;
5695         }
5696
5697         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5698                 for (int size = 1; size <= 4; size *= 2) {
5699                         for (int offset = 0; offset < 4; offset++) {
5700                                 uint32_t count = test_size / size;
5701                                 size_t host_bufsiz = (count + 2) * size + host_offset;
5702                                 uint8_t *read_ref = malloc(host_bufsiz);
5703                                 uint8_t *read_buf = malloc(host_bufsiz);
5704
5705                                 for (size_t i = 0; i < host_bufsiz; i++) {
5706                                         read_ref[i] = rand();
5707                                         read_buf[i] = read_ref[i];
5708                                 }
5709                                 command_print_sameline(CMD_CTX,
5710                                                 "Test read %d x %d @ %d to %saligned buffer: ", count,
5711                                                 size, offset, host_offset ? "un" : "");
5712
5713                                 struct duration bench;
5714                                 duration_start(&bench);
5715
5716                                 retval = target_read_memory(target, wa->address + offset, size, count,
5717                                                 read_buf + size + host_offset);
5718
5719                                 duration_measure(&bench);
5720
5721                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5722                                         command_print(CMD_CTX, "Unsupported alignment");
5723                                         goto next;
5724                                 } else if (retval != ERROR_OK) {
5725                                         command_print(CMD_CTX, "Memory read failed");
5726                                         goto next;
5727                                 }
5728
5729                                 /* replay on host */
5730                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
5731
5732                                 /* check result */
5733                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
5734                                 if (result == 0) {
5735                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5736                                                         duration_elapsed(&bench),
5737                                                         duration_kbps(&bench, count * size));
5738                                 } else {
5739                                         command_print(CMD_CTX, "Compare failed");
5740                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
5741                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
5742                                 }
5743 next:
5744                                 free(read_ref);
5745                                 free(read_buf);
5746                         }
5747                 }
5748         }
5749
5750 out:
5751         free(test_pattern);
5752
5753         if (wa != NULL)
5754                 target_free_working_area(target, wa);
5755
5756         /* Test writes */
5757         num_bytes = test_size + 4 + 4 + 4;
5758
5759         retval = target_alloc_working_area(target, num_bytes, &wa);
5760         if (retval != ERROR_OK) {
5761                 LOG_ERROR("Not enough working area");
5762                 return ERROR_FAIL;
5763         }
5764
5765         test_pattern = malloc(num_bytes);
5766
5767         for (size_t i = 0; i < num_bytes; i++)
5768                 test_pattern[i] = rand();
5769
5770         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5771                 for (int size = 1; size <= 4; size *= 2) {
5772                         for (int offset = 0; offset < 4; offset++) {
5773                                 uint32_t count = test_size / size;
5774                                 size_t host_bufsiz = count * size + host_offset;
5775                                 uint8_t *read_ref = malloc(num_bytes);
5776                                 uint8_t *read_buf = malloc(num_bytes);
5777                                 uint8_t *write_buf = malloc(host_bufsiz);
5778
5779                                 for (size_t i = 0; i < host_bufsiz; i++)
5780                                         write_buf[i] = rand();
5781                                 command_print_sameline(CMD_CTX,
5782                                                 "Test write %d x %d @ %d from %saligned buffer: ", count,
5783                                                 size, offset, host_offset ? "un" : "");
5784
5785                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5786                                 if (retval != ERROR_OK) {
5787                                         command_print(CMD_CTX, "Test pattern write failed");
5788                                         goto nextw;
5789                                 }
5790
5791                                 /* replay on host */
5792                                 memcpy(read_ref, test_pattern, num_bytes);
5793                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
5794
5795                                 struct duration bench;
5796                                 duration_start(&bench);
5797
5798                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
5799                                                 write_buf + host_offset);
5800
5801                                 duration_measure(&bench);
5802
5803                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5804                                         command_print(CMD_CTX, "Unsupported alignment");
5805                                         goto nextw;
5806                                 } else if (retval != ERROR_OK) {
5807                                         command_print(CMD_CTX, "Memory write failed");
5808                                         goto nextw;
5809                                 }
5810
5811                                 /* read back */
5812                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
5813                                 if (retval != ERROR_OK) {
5814                                         command_print(CMD_CTX, "Test pattern write failed");
5815                                         goto nextw;
5816                                 }
5817
5818                                 /* check result */
5819                                 int result = memcmp(read_ref, read_buf, num_bytes);
5820                                 if (result == 0) {
5821                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5822                                                         duration_elapsed(&bench),
5823                                                         duration_kbps(&bench, count * size));
5824                                 } else {
5825                                         command_print(CMD_CTX, "Compare failed");
5826                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
5827                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
5828                                 }
5829 nextw:
5830                                 free(read_ref);
5831                                 free(read_buf);
5832                         }
5833                 }
5834         }
5835
5836         free(test_pattern);
5837
5838         if (wa != NULL)
5839                 target_free_working_area(target, wa);
5840         return retval;
5841 }
5842
5843 static const struct command_registration target_exec_command_handlers[] = {
5844         {
5845                 .name = "fast_load_image",
5846                 .handler = handle_fast_load_image_command,
5847                 .mode = COMMAND_ANY,
5848                 .help = "Load image into server memory for later use by "
5849                         "fast_load; primarily for profiling",
5850                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5851                         "[min_address [max_length]]",
5852         },
5853         {
5854                 .name = "fast_load",
5855                 .handler = handle_fast_load_command,
5856                 .mode = COMMAND_EXEC,
5857                 .help = "loads active fast load image to current target "
5858                         "- mainly for profiling purposes",
5859                 .usage = "",
5860         },
5861         {
5862                 .name = "profile",
5863                 .handler = handle_profile_command,
5864                 .mode = COMMAND_EXEC,
5865                 .usage = "seconds filename [start end]",
5866                 .help = "profiling samples the CPU PC",
5867         },
5868         /** @todo don't register virt2phys() unless target supports it */
5869         {
5870                 .name = "virt2phys",
5871                 .handler = handle_virt2phys_command,
5872                 .mode = COMMAND_ANY,
5873                 .help = "translate a virtual address into a physical address",
5874                 .usage = "virtual_address",
5875         },
5876         {
5877                 .name = "reg",
5878                 .handler = handle_reg_command,
5879                 .mode = COMMAND_EXEC,
5880                 .help = "display (reread from target with \"force\") or set a register; "
5881                         "with no arguments, displays all registers and their values",
5882                 .usage = "[(register_number|register_name) [(value|'force')]]",
5883         },
5884         {
5885                 .name = "poll",
5886                 .handler = handle_poll_command,
5887                 .mode = COMMAND_EXEC,
5888                 .help = "poll target state; or reconfigure background polling",
5889                 .usage = "['on'|'off']",
5890         },
5891         {
5892                 .name = "wait_halt",
5893                 .handler = handle_wait_halt_command,
5894                 .mode = COMMAND_EXEC,
5895                 .help = "wait up to the specified number of milliseconds "
5896                         "(default 5000) for a previously requested halt",
5897                 .usage = "[milliseconds]",
5898         },
5899         {
5900                 .name = "halt",
5901                 .handler = handle_halt_command,
5902                 .mode = COMMAND_EXEC,
5903                 .help = "request target to halt, then wait up to the specified"
5904                         "number of milliseconds (default 5000) for it to complete",
5905                 .usage = "[milliseconds]",
5906         },
5907         {
5908                 .name = "resume",
5909                 .handler = handle_resume_command,
5910                 .mode = COMMAND_EXEC,
5911                 .help = "resume target execution from current PC or address",
5912                 .usage = "[address]",
5913         },
5914         {
5915                 .name = "reset",
5916                 .handler = handle_reset_command,
5917                 .mode = COMMAND_EXEC,
5918                 .usage = "[run|halt|init]",
5919                 .help = "Reset all targets into the specified mode."
5920                         "Default reset mode is run, if not given.",
5921         },
5922         {
5923                 .name = "soft_reset_halt",
5924                 .handler = handle_soft_reset_halt_command,
5925                 .mode = COMMAND_EXEC,
5926                 .usage = "",
5927                 .help = "halt the target and do a soft reset",
5928         },
5929         {
5930                 .name = "step",
5931                 .handler = handle_step_command,
5932                 .mode = COMMAND_EXEC,
5933                 .help = "step one instruction from current PC or address",
5934                 .usage = "[address]",
5935         },
5936         {
5937                 .name = "mdw",
5938                 .handler = handle_md_command,
5939                 .mode = COMMAND_EXEC,
5940                 .help = "display memory words",
5941                 .usage = "['phys'] address [count]",
5942         },
5943         {
5944                 .name = "mdh",
5945                 .handler = handle_md_command,
5946                 .mode = COMMAND_EXEC,
5947                 .help = "display memory half-words",
5948                 .usage = "['phys'] address [count]",
5949         },
5950         {
5951                 .name = "mdb",
5952                 .handler = handle_md_command,
5953                 .mode = COMMAND_EXEC,
5954                 .help = "display memory bytes",
5955                 .usage = "['phys'] address [count]",
5956         },
5957         {
5958                 .name = "mww",
5959                 .handler = handle_mw_command,
5960                 .mode = COMMAND_EXEC,
5961                 .help = "write memory word",
5962                 .usage = "['phys'] address value [count]",
5963         },
5964         {
5965                 .name = "mwh",
5966                 .handler = handle_mw_command,
5967                 .mode = COMMAND_EXEC,
5968                 .help = "write memory half-word",
5969                 .usage = "['phys'] address value [count]",
5970         },
5971         {
5972                 .name = "mwb",
5973                 .handler = handle_mw_command,
5974                 .mode = COMMAND_EXEC,
5975                 .help = "write memory byte",
5976                 .usage = "['phys'] address value [count]",
5977         },
5978         {
5979                 .name = "bp",
5980                 .handler = handle_bp_command,
5981                 .mode = COMMAND_EXEC,
5982                 .help = "list or set hardware or software breakpoint",
5983                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5984         },
5985         {
5986                 .name = "rbp",
5987                 .handler = handle_rbp_command,
5988                 .mode = COMMAND_EXEC,
5989                 .help = "remove breakpoint",
5990                 .usage = "address",
5991         },
5992         {
5993                 .name = "wp",
5994                 .handler = handle_wp_command,
5995                 .mode = COMMAND_EXEC,
5996                 .help = "list (no params) or create watchpoints",
5997                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5998         },
5999         {
6000                 .name = "rwp",
6001                 .handler = handle_rwp_command,
6002                 .mode = COMMAND_EXEC,
6003                 .help = "remove watchpoint",
6004                 .usage = "address",
6005         },
6006         {
6007                 .name = "load_image",
6008                 .handler = handle_load_image_command,
6009                 .mode = COMMAND_EXEC,
6010                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6011                         "[min_address] [max_length]",
6012         },
6013         {
6014                 .name = "dump_image",
6015                 .handler = handle_dump_image_command,
6016                 .mode = COMMAND_EXEC,
6017                 .usage = "filename address size",
6018         },
6019         {
6020                 .name = "verify_image",
6021                 .handler = handle_verify_image_command,
6022                 .mode = COMMAND_EXEC,
6023                 .usage = "filename [offset [type]]",
6024         },
6025         {
6026                 .name = "test_image",
6027                 .handler = handle_test_image_command,
6028                 .mode = COMMAND_EXEC,
6029                 .usage = "filename [offset [type]]",
6030         },
6031         {
6032                 .name = "mem2array",
6033                 .mode = COMMAND_EXEC,
6034                 .jim_handler = jim_mem2array,
6035                 .help = "read 8/16/32 bit memory and return as a TCL array "
6036                         "for script processing",
6037                 .usage = "arrayname bitwidth address count",
6038         },
6039         {
6040                 .name = "array2mem",
6041                 .mode = COMMAND_EXEC,
6042                 .jim_handler = jim_array2mem,
6043                 .help = "convert a TCL array to memory locations "
6044                         "and write the 8/16/32 bit values",
6045                 .usage = "arrayname bitwidth address count",
6046         },
6047         {
6048                 .name = "reset_nag",
6049                 .handler = handle_target_reset_nag,
6050                 .mode = COMMAND_ANY,
6051                 .help = "Nag after each reset about options that could have been "
6052                                 "enabled to improve performance. ",
6053                 .usage = "['enable'|'disable']",
6054         },
6055         {
6056                 .name = "ps",
6057                 .handler = handle_ps_command,
6058                 .mode = COMMAND_EXEC,
6059                 .help = "list all tasks ",
6060                 .usage = " ",
6061         },
6062         {
6063                 .name = "test_mem_access",
6064                 .handler = handle_test_mem_access_command,
6065                 .mode = COMMAND_EXEC,
6066                 .help = "Test the target's memory access functions",
6067                 .usage = "size",
6068         },
6069
6070         COMMAND_REGISTRATION_DONE
6071 };
6072 static int target_register_user_commands(struct command_context *cmd_ctx)
6073 {
6074         int retval = ERROR_OK;
6075         retval = target_request_register_commands(cmd_ctx);
6076         if (retval != ERROR_OK)
6077                 return retval;
6078
6079         retval = trace_register_commands(cmd_ctx);
6080         if (retval != ERROR_OK)
6081                 return retval;
6082
6083
6084         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6085 }