]> git.sur5r.net Git - openocd/blob - src/target/target.c
print out an error if srst_pulls_trst is not specified for
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52
53 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55
56 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59
60 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
79
80 /* targets
81  */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 static int target_continous_poll = 1;
135
136 /* read a u32 from a buffer in target memory endianness */
137 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
138 {
139         if (target->endianness == TARGET_LITTLE_ENDIAN)
140                 return le_to_h_u32(buffer);
141         else
142                 return be_to_h_u32(buffer);
143 }
144
145 /* read a u16 from a buffer in target memory endianness */
146 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
147 {
148         if (target->endianness == TARGET_LITTLE_ENDIAN)
149                 return le_to_h_u16(buffer);
150         else
151                 return be_to_h_u16(buffer);
152 }
153
154 /* write a u32 to a buffer in target memory endianness */
155 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
156 {
157         if (target->endianness == TARGET_LITTLE_ENDIAN)
158                 h_u32_to_le(buffer, value);
159         else
160                 h_u32_to_be(buffer, value);
161 }
162
163 /* write a u16 to a buffer in target memory endianness */
164 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
165 {
166         if (target->endianness == TARGET_LITTLE_ENDIAN)
167                 h_u16_to_le(buffer, value);
168         else
169                 h_u16_to_be(buffer, value);
170 }
171
172 /* returns a pointer to the n-th configured target */
173 target_t* get_target_by_num(int num)
174 {
175         target_t *target = targets;
176         int i = 0;
177
178         while (target)
179         {
180                 if (num == i)
181                         return target;
182                 target = target->next;
183                 i++;
184         }
185
186         return NULL;
187 }
188
189 int get_num_by_target(target_t *query_target)
190 {
191         target_t *target = targets;
192         int i = 0;      
193         
194         while (target)
195         {
196                 if (target == query_target)
197                         return i;
198                 target = target->next;
199                 i++;
200         }
201         
202         return -1;
203 }
204
205 target_t* get_current_target(command_context_t *cmd_ctx)
206 {
207         target_t *target = get_target_by_num(cmd_ctx->current_target);
208         
209         if (target == NULL)
210         {
211                 LOG_ERROR("BUG: current_target out of bounds");
212                 exit(-1);
213         }
214         
215         return target;
216 }
217
218 /* Process target initialization, when target entered debug out of reset
219  * the handler is unregistered at the end of this function, so it's only called once
220  */
221 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
222 {
223         FILE *script;
224         struct command_context_s *cmd_ctx = priv;
225         
226         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
227         {
228                 if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
229                 {
230                         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
231                         u32 t=*((u32 *)reg->value);
232                         if (t!=0)
233                         {
234                                 LOG_ERROR("PC was not 0. Does this target does target need srst_pulls_trst?");
235                         }
236                 }
237
238                 target_unregister_event_callback(target_init_handler, priv);
239
240                 script = open_file_from_path(target->reset_script, "r");
241                 if (!script)
242                 {
243                         LOG_ERROR("couldn't open script file %s", target->reset_script);
244                                 return ERROR_OK;
245                 }
246
247                 LOG_INFO("executing reset script '%s'", target->reset_script);
248                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
249                 fclose(script);
250
251                 jtag_execute_queue();
252         }
253         
254         return ERROR_OK;
255 }
256
257 int target_run_and_halt_handler(void *priv)
258 {
259         target_t *target = priv;
260         
261         target_halt(target);
262         
263         return ERROR_OK;
264 }
265
266 int target_poll(struct target_s *target)
267 {
268         /* We can't poll until after examine */
269         if (!target->type->examined)
270         {
271                 /* Fail silently lest we pollute the log */
272                 return ERROR_FAIL;
273         }
274         return target->type->poll(target);
275 }
276
277 int target_halt(struct target_s *target)
278 {
279         /* We can't poll until after examine */
280         if (!target->type->examined)
281         {
282                 LOG_ERROR("Target not examined yet");
283                 return ERROR_FAIL;
284         }
285         return target->type->halt(target);
286 }
287
288 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
289 {
290         /* We can't poll until after examine */
291         if (!target->type->examined)
292         {
293                 LOG_ERROR("Target not examined yet");
294                 return ERROR_FAIL;
295         }
296         return target->type->resume(target, current, address, handle_breakpoints, debug_execution);
297 }
298
299
300 int target_process_reset(struct command_context_s *cmd_ctx)
301 {
302         int retval = ERROR_OK;
303         target_t *target;
304         struct timeval timeout, now;
305
306         jtag->speed(jtag_speed);
307
308         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
309                 return retval;
310         
311         /* First time this is executed after launching OpenOCD, it will read out 
312          * the type of CPU, etc. and init Embedded ICE registers in host
313          * memory. 
314          * 
315          * It will also set up ICE registers in the target.
316          * 
317          * However, if we assert TRST later, we need to set up the registers again. 
318          * 
319          * For the "reset halt/init" case we must only set up the registers here.
320          */
321         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
322                 return retval;
323         
324         /* prepare reset_halt where necessary */
325         target = targets;
326         while (target)
327         {
328                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
329                 {
330                         switch (target->reset_mode)
331                         {
332                                 case RESET_HALT:
333                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
334                                         target->reset_mode = RESET_RUN_AND_HALT;
335                                         break;
336                                 case RESET_INIT:
337                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
338                                         target->reset_mode = RESET_RUN_AND_INIT;
339                                         break;
340                                 default:
341                                         break;
342                         } 
343                 }
344                 target = target->next;
345         }
346         
347         target = targets;
348         while (target)
349         {
350                 /* we have no idea what state the target is in, so we
351                  * have to drop working areas
352                  */
353                 target_free_all_working_areas_restore(target, 0);
354                 target->type->assert_reset(target);
355                 target = target->next;
356         }
357         if ((retval = jtag_execute_queue()) != ERROR_OK)
358         {
359                 LOG_WARNING("JTAG communication failed asserting reset.");
360                 retval = ERROR_OK;
361         }
362         
363         /* request target halt if necessary, and schedule further action */
364         target = targets;
365         while (target)
366         {
367                 switch (target->reset_mode)
368                 {
369                         case RESET_RUN:
370                                 /* nothing to do if target just wants to be run */
371                                 break;
372                         case RESET_RUN_AND_HALT:
373                                 /* schedule halt */
374                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
375                                 break;
376                         case RESET_RUN_AND_INIT:
377                                 /* schedule halt */
378                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
379                                 target_register_event_callback(target_init_handler, cmd_ctx);
380                                 break;
381                         case RESET_HALT:
382                                 target_halt(target);
383                                 break;
384                         case RESET_INIT:
385                                 target_halt(target);
386                                 target_register_event_callback(target_init_handler, cmd_ctx);
387                                 break;
388                         default:
389                                 LOG_ERROR("BUG: unknown target->reset_mode");
390                 }
391                 target = target->next;
392         }
393         
394         if ((retval = jtag_execute_queue()) != ERROR_OK)
395         {
396                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
397                 retval = ERROR_OK;              
398         }
399         
400         target = targets;
401         while (target)
402         {
403                 target->type->deassert_reset(target);
404                 target = target->next;
405         }
406         
407         if ((retval = jtag_execute_queue()) != ERROR_OK)
408         {
409                 LOG_WARNING("JTAG communication failed while deasserting reset.");
410                 retval = ERROR_OK;
411         }
412
413         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
414         {
415                 /* If TRST was asserted we need to set up registers again */
416                 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
417                         return retval;
418         }               
419         
420         
421         LOG_DEBUG("Waiting for halted stated as approperiate");
422         
423         /* Wait for reset to complete, maximum 5 seconds. */    
424         gettimeofday(&timeout, NULL);
425         timeval_add_time(&timeout, 5, 0);
426         for(;;)
427         {
428                 gettimeofday(&now, NULL);
429                 
430                 target_call_timer_callbacks_now();
431                 
432                 target = targets;
433                 while (target)
434                 {
435                         LOG_DEBUG("Polling target");
436                         target_poll(target);
437                         if ((target->reset_mode == RESET_RUN_AND_INIT) || 
438                                         (target->reset_mode == RESET_RUN_AND_HALT) ||
439                                         (target->reset_mode == RESET_HALT) ||
440                                         (target->reset_mode == RESET_INIT))
441                         {
442                                 if (target->state != TARGET_HALTED)
443                                 {
444                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
445                                         {
446                                                 LOG_USER("Timed out waiting for halt after reset");
447                                                 goto done;
448                                         }
449                                         /* this will send alive messages on e.g. GDB remote protocol. */
450                                         usleep(500*1000); 
451                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
452                                         goto again;
453                                 }
454                         }
455                         target = target->next;
456                 }
457                 /* All targets we're waiting for are halted */
458                 break;
459                 
460                 again:;
461         }
462         done:
463         
464         
465         /* We want any events to be processed before the prompt */
466         target_call_timer_callbacks_now();
467
468         /* if we timed out we need to unregister these handlers */
469         target = targets;
470         while (target)
471         {
472                 target_unregister_timer_callback(target_run_and_halt_handler, target);
473                 target = target->next;
474         }
475         target_unregister_event_callback(target_init_handler, cmd_ctx);
476                                 
477         
478         jtag->speed(jtag_speed_post_reset);
479         
480         return retval;
481 }
482
483 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
484 {
485         *physical = virtual;
486         return ERROR_OK;
487 }
488
489 static int default_mmu(struct target_s *target, int *enabled)
490 {
491         *enabled = 0;
492         return ERROR_OK;
493 }
494
495 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
496 {
497         target->type->examined = 1;
498         return ERROR_OK;
499 }
500
501
502 /* Targets that correctly implement init+examine, i.e.
503  * no communication with target during init:
504  * 
505  * XScale 
506  */
507 int target_examine(struct command_context_s *cmd_ctx)
508 {
509         int retval = ERROR_OK;
510         target_t *target = targets;
511         while (target)
512         {
513                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
514                         return retval;
515                 target = target->next;
516         }
517         return retval;
518 }
519
520 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
521 {
522         if (!target->type->examined)
523         {
524                 LOG_ERROR("Target not examined yet");
525                 return ERROR_FAIL;
526         }
527         return target->type->write_memory_imp(target, address, size, count, buffer);
528 }
529
530 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
531 {
532         if (!target->type->examined)
533         {
534                 LOG_ERROR("Target not examined yet");
535                 return ERROR_FAIL;
536         }
537         return target->type->read_memory_imp(target, address, size, count, buffer);
538 }
539
540 static int target_soft_reset_halt_imp(struct target_s *target)
541 {
542         if (!target->type->examined)
543         {
544                 LOG_ERROR("Target not examined yet");
545                 return ERROR_FAIL;
546         }
547         return target->type->soft_reset_halt_imp(target);
548 }
549
550 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
551 {
552         if (!target->type->examined)
553         {
554                 LOG_ERROR("Target not examined yet");
555                 return ERROR_FAIL;
556         }
557         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
558 }
559
560 int target_init(struct command_context_s *cmd_ctx)
561 {
562         target_t *target = targets;
563         
564         while (target)
565         {
566                 target->type->examined = 0;
567                 if (target->type->examine == NULL)
568                 {
569                         target->type->examine = default_examine;
570                 }
571                 
572                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
573                 {
574                         LOG_ERROR("target '%s' init failed", target->type->name);
575                         exit(-1);
576                 }
577                 
578                 /* Set up default functions if none are provided by target */
579                 if (target->type->virt2phys == NULL)
580                 {
581                         target->type->virt2phys = default_virt2phys;
582                 }
583                 target->type->virt2phys = default_virt2phys;
584                 /* a non-invasive way(in terms of patches) to add some code that
585                  * runs before the type->write/read_memory implementation
586                  */
587                 target->type->write_memory_imp = target->type->write_memory;
588                 target->type->write_memory = target_write_memory_imp;
589                 target->type->read_memory_imp = target->type->read_memory;
590                 target->type->read_memory = target_read_memory_imp;
591                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
592                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
593                 target->type->run_algorithm_imp = target->type->run_algorithm;
594                 target->type->run_algorithm = target_run_algorithm_imp;
595
596                 
597                 if (target->type->mmu == NULL)
598                 {
599                         target->type->mmu = default_mmu;
600                 }
601                 target = target->next;
602         }
603         
604         if (targets)
605         {
606                 target_register_user_commands(cmd_ctx);
607                 target_register_timer_callback(handle_target, 100, 1, NULL);
608         }
609                 
610         return ERROR_OK;
611 }
612
613 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
614 {
615         target_event_callback_t **callbacks_p = &target_event_callbacks;
616         
617         if (callback == NULL)
618         {
619                 return ERROR_INVALID_ARGUMENTS;
620         }
621         
622         if (*callbacks_p)
623         {
624                 while ((*callbacks_p)->next)
625                         callbacks_p = &((*callbacks_p)->next);
626                 callbacks_p = &((*callbacks_p)->next);
627         }
628         
629         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
630         (*callbacks_p)->callback = callback;
631         (*callbacks_p)->priv = priv;
632         (*callbacks_p)->next = NULL;
633         
634         return ERROR_OK;
635 }
636
637 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
638 {
639         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
640         struct timeval now;
641         
642         if (callback == NULL)
643         {
644                 return ERROR_INVALID_ARGUMENTS;
645         }
646         
647         if (*callbacks_p)
648         {
649                 while ((*callbacks_p)->next)
650                         callbacks_p = &((*callbacks_p)->next);
651                 callbacks_p = &((*callbacks_p)->next);
652         }
653         
654         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
655         (*callbacks_p)->callback = callback;
656         (*callbacks_p)->periodic = periodic;
657         (*callbacks_p)->time_ms = time_ms;
658         
659         gettimeofday(&now, NULL);
660         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
661         time_ms -= (time_ms % 1000);
662         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
663         if ((*callbacks_p)->when.tv_usec > 1000000)
664         {
665                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
666                 (*callbacks_p)->when.tv_sec += 1;
667         }
668         
669         (*callbacks_p)->priv = priv;
670         (*callbacks_p)->next = NULL;
671         
672         return ERROR_OK;
673 }
674
675 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
676 {
677         target_event_callback_t **p = &target_event_callbacks;
678         target_event_callback_t *c = target_event_callbacks;
679         
680         if (callback == NULL)
681         {
682                 return ERROR_INVALID_ARGUMENTS;
683         }
684                 
685         while (c)
686         {
687                 target_event_callback_t *next = c->next;
688                 if ((c->callback == callback) && (c->priv == priv))
689                 {
690                         *p = next;
691                         free(c);
692                         return ERROR_OK;
693                 }
694                 else
695                         p = &(c->next);
696                 c = next;
697         }
698         
699         return ERROR_OK;
700 }
701
702 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
703 {
704         target_timer_callback_t **p = &target_timer_callbacks;
705         target_timer_callback_t *c = target_timer_callbacks;
706         
707         if (callback == NULL)
708         {
709                 return ERROR_INVALID_ARGUMENTS;
710         }
711                 
712         while (c)
713         {
714                 target_timer_callback_t *next = c->next;
715                 if ((c->callback == callback) && (c->priv == priv))
716                 {
717                         *p = next;
718                         free(c);
719                         return ERROR_OK;
720                 }
721                 else
722                         p = &(c->next);
723                 c = next;
724         }
725         
726         return ERROR_OK;
727 }
728
729 int target_call_event_callbacks(target_t *target, enum target_event event)
730 {
731         target_event_callback_t *callback = target_event_callbacks;
732         target_event_callback_t *next_callback;
733         
734         LOG_DEBUG("target event %i", event);
735         
736         while (callback)
737         {
738                 next_callback = callback->next;
739                 callback->callback(target, event, callback->priv);
740                 callback = next_callback;
741         }
742         
743         return ERROR_OK;
744 }
745
746 static int target_call_timer_callbacks_check_time(int checktime)
747 {
748         target_timer_callback_t *callback = target_timer_callbacks;
749         target_timer_callback_t *next_callback;
750         struct timeval now;
751
752         gettimeofday(&now, NULL);
753         
754         while (callback)
755         {
756                 next_callback = callback->next;
757                 
758                 if ((!checktime&&callback->periodic)||
759                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
760                                                 || (now.tv_sec > callback->when.tv_sec)))
761                 {
762                         if(callback->callback != NULL)
763                         {
764                                 callback->callback(callback->priv);
765                                 if (callback->periodic)
766                                 {
767                                         int time_ms = callback->time_ms;
768                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
769                                         time_ms -= (time_ms % 1000);
770                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
771                                         if (callback->when.tv_usec > 1000000)
772                                         {
773                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
774                                                 callback->when.tv_sec += 1;
775                                         }
776                                 }
777                                 else
778                                         target_unregister_timer_callback(callback->callback, callback->priv);
779                         }
780                 }
781                         
782                 callback = next_callback;
783         }
784         
785         return ERROR_OK;
786 }
787
788 int target_call_timer_callbacks()
789 {
790         return target_call_timer_callbacks_check_time(1);
791 }
792
793 /* invoke periodic callbacks immediately */
794 int target_call_timer_callbacks_now()
795 {
796         return target_call_timer_callbacks(0);
797 }
798
799
800 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
801 {
802         working_area_t *c = target->working_areas;
803         working_area_t *new_wa = NULL;
804         
805         /* Reevaluate working area address based on MMU state*/
806         if (target->working_areas == NULL)
807         {
808                 int retval;
809                 int enabled;
810                 retval = target->type->mmu(target, &enabled);
811                 if (retval != ERROR_OK)
812                 {
813                         return retval;
814                 }
815                 if (enabled)
816                 {
817                         target->working_area = target->working_area_virt;
818                 }
819                 else
820                 {
821                         target->working_area = target->working_area_phys;
822                 }
823         }
824         
825         /* only allocate multiples of 4 byte */
826         if (size % 4)
827         {
828                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
829                 size = CEIL(size, 4);
830         }
831         
832         /* see if there's already a matching working area */
833         while (c)
834         {
835                 if ((c->free) && (c->size == size))
836                 {
837                         new_wa = c;
838                         break;
839                 }
840                 c = c->next;
841         }
842         
843         /* if not, allocate a new one */
844         if (!new_wa)
845         {
846                 working_area_t **p = &target->working_areas;
847                 u32 first_free = target->working_area;
848                 u32 free_size = target->working_area_size;
849                 
850                 LOG_DEBUG("allocating new working area");
851                 
852                 c = target->working_areas;
853                 while (c)
854                 {
855                         first_free += c->size;
856                         free_size -= c->size;
857                         p = &c->next;
858                         c = c->next;
859                 }
860                 
861                 if (free_size < size)
862                 {
863                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
864                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
865                 }
866                 
867                 new_wa = malloc(sizeof(working_area_t));
868                 new_wa->next = NULL;
869                 new_wa->size = size;
870                 new_wa->address = first_free;
871                 
872                 if (target->backup_working_area)
873                 {
874                         new_wa->backup = malloc(new_wa->size);
875                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
876                 }
877                 else
878                 {
879                         new_wa->backup = NULL;
880                 }
881                 
882                 /* put new entry in list */
883                 *p = new_wa;
884         }
885         
886         /* mark as used, and return the new (reused) area */
887         new_wa->free = 0;
888         *area = new_wa;
889         
890         /* user pointer */
891         new_wa->user = area;
892         
893         return ERROR_OK;
894 }
895
896 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
897 {
898         if (area->free)
899                 return ERROR_OK;
900         
901         if (restore&&target->backup_working_area)
902                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
903         
904         area->free = 1;
905         
906         /* mark user pointer invalid */
907         *area->user = NULL;
908         area->user = NULL;
909         
910         return ERROR_OK;
911 }
912
913 int target_free_working_area(struct target_s *target, working_area_t *area)
914 {
915         return target_free_working_area_restore(target, area, 1);
916 }
917
918 int target_free_all_working_areas_restore(struct target_s *target, int restore)
919 {
920         working_area_t *c = target->working_areas;
921
922         while (c)
923         {
924                 working_area_t *next = c->next;
925                 target_free_working_area_restore(target, c, restore);
926                 
927                 if (c->backup)
928                         free(c->backup);
929                 
930                 free(c);
931                 
932                 c = next;
933         }
934         
935         target->working_areas = NULL;
936         
937         return ERROR_OK;
938 }
939
940 int target_free_all_working_areas(struct target_s *target)
941 {
942         return target_free_all_working_areas_restore(target, 1); 
943 }
944
945 int target_register_commands(struct command_context_s *cmd_ctx)
946 {
947         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
948         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
949         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
950         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
951         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
952         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
953         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
954
955         return ERROR_OK;
956 }
957
958 int target_arch_state(struct target_s *target)
959 {
960         int retval;
961         if (target==NULL)
962         {
963                 LOG_USER("No target has been configured");
964                 return ERROR_OK;
965         }
966         
967         LOG_USER("target state: %s", target_state_strings[target->state]);
968         
969         if (target->state!=TARGET_HALTED)
970                 return ERROR_OK;
971         
972         retval=target->type->arch_state(target);
973         return retval;
974 }
975
976 /* Single aligned words are guaranteed to use 16 or 32 bit access 
977  * mode respectively, otherwise data is handled as quickly as 
978  * possible
979  */
980 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
981 {
982         int retval;
983         if (!target->type->examined)
984         {
985                 LOG_ERROR("Target not examined yet");
986                 return ERROR_FAIL;
987         }
988         
989         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
990         
991         if (((address % 2) == 0) && (size == 2))
992         {
993                 return target->type->write_memory(target, address, 2, 1, buffer);
994         }
995         
996         /* handle unaligned head bytes */
997         if (address % 4)
998         {
999                 int unaligned = 4 - (address % 4);
1000                 
1001                 if (unaligned > size)
1002                         unaligned = size;
1003
1004                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1005                         return retval;
1006                 
1007                 buffer += unaligned;
1008                 address += unaligned;
1009                 size -= unaligned;
1010         }
1011                 
1012         /* handle aligned words */
1013         if (size >= 4)
1014         {
1015                 int aligned = size - (size % 4);
1016         
1017                 /* use bulk writes above a certain limit. This may have to be changed */
1018                 if (aligned > 128)
1019                 {
1020                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1021                                 return retval;
1022                 }
1023                 else
1024                 {
1025                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1026                                 return retval;
1027                 }
1028                 
1029                 buffer += aligned;
1030                 address += aligned;
1031                 size -= aligned;
1032         }
1033         
1034         /* handle tail writes of less than 4 bytes */
1035         if (size > 0)
1036         {
1037                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1038                         return retval;
1039         }
1040         
1041         return ERROR_OK;
1042 }
1043
1044
1045 /* Single aligned words are guaranteed to use 16 or 32 bit access 
1046  * mode respectively, otherwise data is handled as quickly as 
1047  * possible
1048  */
1049 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1050 {
1051         int retval;
1052         if (!target->type->examined)
1053         {
1054                 LOG_ERROR("Target not examined yet");
1055                 return ERROR_FAIL;
1056         }
1057
1058         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1059         
1060         if (((address % 2) == 0) && (size == 2))
1061         {
1062                 return target->type->read_memory(target, address, 2, 1, buffer);
1063         }
1064         
1065         /* handle unaligned head bytes */
1066         if (address % 4)
1067         {
1068                 int unaligned = 4 - (address % 4);
1069                 
1070                 if (unaligned > size)
1071                         unaligned = size;
1072
1073                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1074                         return retval;
1075                 
1076                 buffer += unaligned;
1077                 address += unaligned;
1078                 size -= unaligned;
1079         }
1080                 
1081         /* handle aligned words */
1082         if (size >= 4)
1083         {
1084                 int aligned = size - (size % 4);
1085         
1086                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1087                         return retval;
1088                 
1089                 buffer += aligned;
1090                 address += aligned;
1091                 size -= aligned;
1092         }
1093         
1094         /* handle tail writes of less than 4 bytes */
1095         if (size > 0)
1096         {
1097                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1098                         return retval;
1099         }
1100         
1101         return ERROR_OK;
1102 }
1103
1104 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1105 {
1106         u8 *buffer;
1107         int retval;
1108         int i;
1109         u32 checksum = 0;
1110         if (!target->type->examined)
1111         {
1112                 LOG_ERROR("Target not examined yet");
1113                 return ERROR_FAIL;
1114         }
1115         
1116         if ((retval = target->type->checksum_memory(target, address,
1117                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1118         {
1119                 buffer = malloc(size);
1120                 if (buffer == NULL)
1121                 {
1122                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1123                         return ERROR_INVALID_ARGUMENTS;
1124                 }
1125                 retval = target_read_buffer(target, address, size, buffer);
1126                 if (retval != ERROR_OK)
1127                 {
1128                         free(buffer);
1129                         return retval;
1130                 }
1131
1132                 /* convert to target endianess */
1133                 for (i = 0; i < (size/sizeof(u32)); i++)
1134                 {
1135                         u32 target_data;
1136                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1137                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1138                 }
1139
1140                 retval = image_calculate_checksum( buffer, size, &checksum );
1141                 free(buffer);
1142         }
1143         
1144         *crc = checksum;
1145         
1146         return retval;
1147 }
1148
1149 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1150 {
1151         u8 value_buf[4];
1152         if (!target->type->examined)
1153         {
1154                 LOG_ERROR("Target not examined yet");
1155                 return ERROR_FAIL;
1156         }
1157
1158         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1159         
1160         if (retval == ERROR_OK)
1161         {
1162                 *value = target_buffer_get_u32(target, value_buf);
1163                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1164         }
1165         else
1166         {
1167                 *value = 0x0;
1168                 LOG_DEBUG("address: 0x%8.8x failed", address);
1169         }
1170         
1171         return retval;
1172 }
1173
1174 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1175 {
1176         u8 value_buf[2];
1177         if (!target->type->examined)
1178         {
1179                 LOG_ERROR("Target not examined yet");
1180                 return ERROR_FAIL;
1181         }
1182
1183         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1184         
1185         if (retval == ERROR_OK)
1186         {
1187                 *value = target_buffer_get_u16(target, value_buf);
1188                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1189         }
1190         else
1191         {
1192                 *value = 0x0;
1193                 LOG_DEBUG("address: 0x%8.8x failed", address);
1194         }
1195         
1196         return retval;
1197 }
1198
1199 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1200 {
1201         int retval = target->type->read_memory(target, address, 1, 1, value);
1202         if (!target->type->examined)
1203         {
1204                 LOG_ERROR("Target not examined yet");
1205                 return ERROR_FAIL;
1206         }
1207
1208         if (retval == ERROR_OK)
1209         {
1210                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1211         }
1212         else
1213         {
1214                 *value = 0x0;
1215                 LOG_DEBUG("address: 0x%8.8x failed", address);
1216         }
1217         
1218         return retval;
1219 }
1220
1221 int target_write_u32(struct target_s *target, u32 address, u32 value)
1222 {
1223         int retval;
1224         u8 value_buf[4];
1225         if (!target->type->examined)
1226         {
1227                 LOG_ERROR("Target not examined yet");
1228                 return ERROR_FAIL;
1229         }
1230
1231         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1232
1233         target_buffer_set_u32(target, value_buf, value);        
1234         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1235         {
1236                 LOG_DEBUG("failed: %i", retval);
1237         }
1238         
1239         return retval;
1240 }
1241
1242 int target_write_u16(struct target_s *target, u32 address, u16 value)
1243 {
1244         int retval;
1245         u8 value_buf[2];
1246         if (!target->type->examined)
1247         {
1248                 LOG_ERROR("Target not examined yet");
1249                 return ERROR_FAIL;
1250         }
1251
1252         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1253
1254         target_buffer_set_u16(target, value_buf, value);        
1255         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1256         {
1257                 LOG_DEBUG("failed: %i", retval);
1258         }
1259         
1260         return retval;
1261 }
1262
1263 int target_write_u8(struct target_s *target, u32 address, u8 value)
1264 {
1265         int retval;
1266         if (!target->type->examined)
1267         {
1268                 LOG_ERROR("Target not examined yet");
1269                 return ERROR_FAIL;
1270         }
1271
1272         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1273
1274         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1275         {
1276                 LOG_DEBUG("failed: %i", retval);
1277         }
1278         
1279         return retval;
1280 }
1281
1282 int target_register_user_commands(struct command_context_s *cmd_ctx)
1283 {
1284         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1285         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1286         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1287         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1288         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1289         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1290         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1291         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1292
1293         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1294         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1295         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1296         
1297         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1298         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1299         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1300         
1301         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1302         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1303         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1304         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1305         
1306         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1307         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1308         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1309         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1310         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1311         
1312         target_request_register_commands(cmd_ctx);
1313         trace_register_commands(cmd_ctx);
1314         
1315         return ERROR_OK;
1316 }
1317
1318 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1319 {
1320         target_t *target = targets;
1321         int count = 0;
1322         
1323         if (argc == 1)
1324         {
1325                 int num = strtoul(args[0], NULL, 0);
1326                 
1327                 while (target)
1328                 {
1329                         count++;
1330                         target = target->next;
1331                 }
1332                 
1333                 if (num < count)
1334                         cmd_ctx->current_target = num;
1335                 else
1336                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1337                         
1338                 return ERROR_OK;
1339         }
1340                 
1341         while (target)
1342         {
1343                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1344                 target = target->next;
1345         }
1346         
1347         return ERROR_OK;
1348 }
1349
1350 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1351 {
1352         int i;
1353         int found = 0;
1354         
1355         if (argc < 3)
1356         {
1357                 return ERROR_COMMAND_SYNTAX_ERROR;
1358         }
1359         
1360         /* search for the specified target */
1361         if (args[0] && (args[0][0] != 0))
1362         {
1363                 for (i = 0; target_types[i]; i++)
1364                 {
1365                         if (strcmp(args[0], target_types[i]->name) == 0)
1366                         {
1367                                 target_t **last_target_p = &targets;
1368                                 
1369                                 /* register target specific commands */
1370                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1371                                 {
1372                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1373                                         exit(-1);
1374                                 }
1375
1376                                 if (*last_target_p)
1377                                 {
1378                                         while ((*last_target_p)->next)
1379                                                 last_target_p = &((*last_target_p)->next);
1380                                         last_target_p = &((*last_target_p)->next);
1381                                 }
1382
1383                                 *last_target_p = malloc(sizeof(target_t));
1384                                 
1385                                 (*last_target_p)->type = target_types[i];
1386                                 
1387                                 if (strcmp(args[1], "big") == 0)
1388                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1389                                 else if (strcmp(args[1], "little") == 0)
1390                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1391                                 else
1392                                 {
1393                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1394                                         return ERROR_COMMAND_SYNTAX_ERROR;
1395                                 }
1396                                 
1397                                 /* what to do on a target reset */
1398                                 (*last_target_p)->reset_mode = RESET_INIT; /* default */
1399                                 if (strcmp(args[2], "reset_halt") == 0)
1400                                         (*last_target_p)->reset_mode = RESET_HALT;
1401                                 else if (strcmp(args[2], "reset_run") == 0)
1402                                         (*last_target_p)->reset_mode = RESET_RUN;
1403                                 else if (strcmp(args[2], "reset_init") == 0)
1404                                         (*last_target_p)->reset_mode = RESET_INIT;
1405                                 else if (strcmp(args[2], "run_and_halt") == 0)
1406                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1407                                 else if (strcmp(args[2], "run_and_init") == 0)
1408                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1409                                 else
1410                                 {
1411                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1412                                         args--;
1413                                         argc++;
1414                                 }
1415                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1416                                 
1417                                 (*last_target_p)->reset_script = NULL;
1418                                 (*last_target_p)->post_halt_script = NULL;
1419                                 (*last_target_p)->pre_resume_script = NULL;
1420                                 (*last_target_p)->gdb_program_script = NULL;
1421                                 
1422                                 (*last_target_p)->working_area = 0x0;
1423                                 (*last_target_p)->working_area_size = 0x0;
1424                                 (*last_target_p)->working_areas = NULL;
1425                                 (*last_target_p)->backup_working_area = 0;
1426                                 
1427                                 (*last_target_p)->state = TARGET_UNKNOWN;
1428                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1429                                 (*last_target_p)->reg_cache = NULL;
1430                                 (*last_target_p)->breakpoints = NULL;
1431                                 (*last_target_p)->watchpoints = NULL;
1432                                 (*last_target_p)->next = NULL;
1433                                 (*last_target_p)->arch_info = NULL;
1434                                 
1435                                 /* initialize trace information */
1436                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1437                                 (*last_target_p)->trace_info->num_trace_points = 0;
1438                                 (*last_target_p)->trace_info->trace_points_size = 0;
1439                                 (*last_target_p)->trace_info->trace_points = NULL;
1440                                 (*last_target_p)->trace_info->trace_history_size = 0;
1441                                 (*last_target_p)->trace_info->trace_history = NULL;
1442                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1443                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1444                                 
1445                                 (*last_target_p)->dbgmsg = NULL;
1446                                 (*last_target_p)->dbg_msg_enabled = 0;
1447                                                                 
1448                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1449                                 
1450                                 found = 1;
1451                                 break;
1452                         }
1453                 }
1454         }
1455         
1456         /* no matching target found */
1457         if (!found)
1458         {
1459                 LOG_ERROR("target '%s' not found", args[0]);
1460                 return ERROR_COMMAND_SYNTAX_ERROR;
1461         }
1462
1463         return ERROR_OK;
1464 }
1465
1466 /* usage: target_script <target#> <event> <script_file> */
1467 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1468 {
1469         target_t *target = NULL;
1470         
1471         if (argc < 3)
1472         {
1473                 LOG_ERROR("incomplete target_script command");
1474                 return ERROR_COMMAND_SYNTAX_ERROR;
1475         }
1476         
1477         target = get_target_by_num(strtoul(args[0], NULL, 0));
1478         
1479         if (!target)
1480         {
1481                 return ERROR_COMMAND_SYNTAX_ERROR;
1482         }
1483         
1484         if (strcmp(args[1], "reset") == 0)
1485         {
1486                 if (target->reset_script)
1487                         free(target->reset_script);
1488                 target->reset_script = strdup(args[2]);
1489         }
1490         else if (strcmp(args[1], "post_halt") == 0)
1491         {
1492                 if (target->post_halt_script)
1493                         free(target->post_halt_script);
1494                 target->post_halt_script = strdup(args[2]);
1495         }
1496         else if (strcmp(args[1], "pre_resume") == 0)
1497         {
1498                 if (target->pre_resume_script)
1499                         free(target->pre_resume_script);
1500                 target->pre_resume_script = strdup(args[2]);
1501         }
1502         else if (strcmp(args[1], "gdb_program_config") == 0)
1503         {
1504                 if (target->gdb_program_script)
1505                         free(target->gdb_program_script);
1506                 target->gdb_program_script = strdup(args[2]);
1507         }
1508         else
1509         {
1510                 LOG_ERROR("unknown event type: '%s", args[1]);
1511                 return ERROR_COMMAND_SYNTAX_ERROR;
1512         }
1513         
1514         return ERROR_OK;
1515 }
1516
1517 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1518 {
1519         target_t *target = NULL;
1520         
1521         if (argc < 2)
1522         {
1523                 return ERROR_COMMAND_SYNTAX_ERROR;
1524         }
1525         
1526         target = get_target_by_num(strtoul(args[0], NULL, 0));
1527         if (!target)
1528         {
1529                 return ERROR_COMMAND_SYNTAX_ERROR;
1530         }
1531         
1532         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1533         
1534         return ERROR_OK;
1535 }
1536
1537 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1538 {
1539         target_t *target = NULL;
1540         
1541         if ((argc < 4) || (argc > 5))
1542         {
1543                 return ERROR_COMMAND_SYNTAX_ERROR;
1544         }
1545         
1546         target = get_target_by_num(strtoul(args[0], NULL, 0));
1547         if (!target)
1548         {
1549                 return ERROR_COMMAND_SYNTAX_ERROR;
1550         }
1551         target_free_all_working_areas(target);
1552         
1553         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1554         if (argc == 5)
1555         {
1556                 target->working_area_virt = strtoul(args[4], NULL, 0);
1557         }
1558         target->working_area_size = strtoul(args[2], NULL, 0);
1559         
1560         if (strcmp(args[3], "backup") == 0)
1561         {
1562                 target->backup_working_area = 1;
1563         }
1564         else if (strcmp(args[3], "nobackup") == 0)
1565         {
1566                 target->backup_working_area = 0;
1567         }
1568         else
1569         {
1570                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1571                 return ERROR_COMMAND_SYNTAX_ERROR;
1572         }
1573         
1574         return ERROR_OK;
1575 }
1576
1577
1578 /* process target state changes */
1579 int handle_target(void *priv)
1580 {
1581         target_t *target = targets;
1582         
1583         while (target)
1584         {
1585                 if (target_continous_poll)
1586                 {
1587                         /* polling may fail silently until the target has been examined */
1588                         target_poll(target);
1589                 }
1590         
1591                 target = target->next;
1592         }
1593         
1594         return ERROR_OK;
1595 }
1596
1597 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1598 {
1599         target_t *target;
1600         reg_t *reg = NULL;
1601         int count = 0;
1602         char *value;
1603         
1604         LOG_DEBUG("-");
1605         
1606         target = get_current_target(cmd_ctx);
1607         
1608         /* list all available registers for the current target */
1609         if (argc == 0)
1610         {
1611                 reg_cache_t *cache = target->reg_cache;
1612                 
1613                 count = 0;
1614                 while(cache)
1615                 {
1616                         int i;
1617                         for (i = 0; i < cache->num_regs; i++)
1618                         {
1619                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1620                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1621                                 free(value);
1622                         }
1623                         cache = cache->next;
1624                 }
1625                 
1626                 return ERROR_OK;
1627         }
1628         
1629         /* access a single register by its ordinal number */
1630         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1631         {
1632                 int num = strtoul(args[0], NULL, 0);
1633                 reg_cache_t *cache = target->reg_cache;
1634                 
1635                 count = 0;
1636                 while(cache)
1637                 {
1638                         int i;
1639                         for (i = 0; i < cache->num_regs; i++)
1640                         {
1641                                 if (count++ == num)
1642                                 {
1643                                         reg = &cache->reg_list[i];
1644                                         break;
1645                                 }
1646                         }
1647                         if (reg)
1648                                 break;
1649                         cache = cache->next;
1650                 }
1651                 
1652                 if (!reg)
1653                 {
1654                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1655                         return ERROR_OK;
1656                 }
1657         } else /* access a single register by its name */
1658         {
1659                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1660                 
1661                 if (!reg)
1662                 {
1663                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1664                         return ERROR_OK;
1665                 }
1666         }
1667
1668         /* display a register */
1669         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1670         {
1671                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1672                         reg->valid = 0;
1673                 
1674                 if (reg->valid == 0)
1675                 {
1676                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1677                         if (arch_type == NULL)
1678                         {
1679                                 LOG_ERROR("BUG: encountered unregistered arch type");
1680                                 return ERROR_OK;
1681                         }
1682                         arch_type->get(reg);
1683                 }
1684                 value = buf_to_str(reg->value, reg->size, 16);
1685                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1686                 free(value);
1687                 return ERROR_OK;
1688         }
1689         
1690         /* set register value */
1691         if (argc == 2)
1692         {
1693                 u8 *buf = malloc(CEIL(reg->size, 8));
1694                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1695
1696                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1697                 if (arch_type == NULL)
1698                 {
1699                         LOG_ERROR("BUG: encountered unregistered arch type");
1700                         return ERROR_OK;
1701                 }
1702                 
1703                 arch_type->set(reg, buf);
1704                 
1705                 value = buf_to_str(reg->value, reg->size, 16);
1706                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1707                 free(value);
1708                 
1709                 free(buf);
1710                 
1711                 return ERROR_OK;
1712         }
1713         
1714         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1715         
1716         return ERROR_OK;
1717 }
1718
1719 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1720
1721 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1722 {
1723         target_t *target = get_current_target(cmd_ctx);
1724
1725         if (argc == 0)
1726         {
1727                 target_poll(target);
1728                 target_arch_state(target);
1729         }
1730         else
1731         {
1732                 if (strcmp(args[0], "on") == 0)
1733                 {
1734                         target_continous_poll = 1;
1735                 }
1736                 else if (strcmp(args[0], "off") == 0)
1737                 {
1738                         target_continous_poll = 0;
1739                 }
1740                 else
1741                 {
1742                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1743                 }
1744         }
1745         
1746         
1747         return ERROR_OK;
1748 }
1749
1750 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1751 {
1752         int ms = 5000;
1753         
1754         if (argc > 0)
1755         {
1756                 char *end;
1757
1758                 ms = strtoul(args[0], &end, 0) * 1000;
1759                 if (*end)
1760                 {
1761                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1762                         return ERROR_OK;
1763                 }
1764         }
1765
1766         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1767 }
1768
1769 static void target_process_events(struct command_context_s *cmd_ctx)
1770 {
1771         target_t *target = get_current_target(cmd_ctx);
1772         target_poll(target);
1773         target_call_timer_callbacks_now();
1774 }
1775
1776 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1777 {
1778         int retval;
1779         struct timeval timeout, now;
1780         int once=1;
1781         gettimeofday(&timeout, NULL);
1782         timeval_add_time(&timeout, 0, ms * 1000);
1783         
1784         target_t *target = get_current_target(cmd_ctx);
1785         for (;;)
1786         {
1787                 if ((retval=target_poll(target))!=ERROR_OK)
1788                         return retval;
1789                 target_call_timer_callbacks_now();
1790                 if (target->state == state)
1791                 {
1792                         break;
1793                 }
1794                 if (once)
1795                 {
1796                         once=0;
1797                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1798                 }
1799                 
1800                 gettimeofday(&now, NULL);
1801                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1802                 {
1803                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1804                         break;
1805                 }
1806         }
1807         
1808         return ERROR_OK;
1809 }
1810
1811 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1812 {
1813         int retval;
1814         target_t *target = get_current_target(cmd_ctx);
1815
1816         LOG_DEBUG("-");
1817
1818         if ((retval = target_halt(target)) != ERROR_OK)
1819         {
1820                 return retval;
1821         }
1822         
1823         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1824 }
1825
1826                 
1827 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1828 {
1829         target_t *target = get_current_target(cmd_ctx);
1830         
1831         LOG_USER("requesting target halt and executing a soft reset");
1832         
1833         target->type->soft_reset_halt(target);
1834         
1835         return ERROR_OK;
1836 }
1837
1838 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1839 {
1840         target_t *target = get_current_target(cmd_ctx);
1841         enum target_reset_mode reset_mode = target->reset_mode;
1842         enum target_reset_mode save = target->reset_mode;
1843         
1844         LOG_DEBUG("-");
1845         
1846         if (argc >= 1)
1847         {
1848                 if (strcmp("run", args[0]) == 0)
1849                         reset_mode = RESET_RUN;
1850                 else if (strcmp("halt", args[0]) == 0)
1851                         reset_mode = RESET_HALT;
1852                 else if (strcmp("init", args[0]) == 0)
1853                         reset_mode = RESET_INIT;
1854                 else if (strcmp("run_and_halt", args[0]) == 0)
1855                 {
1856                         reset_mode = RESET_RUN_AND_HALT;
1857                         if (argc >= 2)
1858                         {
1859                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1860                         }
1861                 }
1862                 else if (strcmp("run_and_init", args[0]) == 0)
1863                 {
1864                         reset_mode = RESET_RUN_AND_INIT;
1865                         if (argc >= 2)
1866                         {
1867                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1868                         }
1869                 }
1870                 else
1871                 {
1872                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1873                         return ERROR_OK;
1874                 }
1875         }
1876         
1877         /* temporarily modify mode of current reset target */
1878         target->reset_mode = reset_mode;
1879
1880         /* reset *all* targets */
1881         target_process_reset(cmd_ctx);
1882         
1883         /* Restore default reset mode for this target */
1884     target->reset_mode = save;
1885         
1886         return ERROR_OK;
1887 }
1888
1889 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1890 {
1891         int retval;
1892         target_t *target = get_current_target(cmd_ctx);
1893         
1894         if (argc == 0)
1895                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1896         else if (argc == 1)
1897                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1898         else
1899         {
1900                 return ERROR_COMMAND_SYNTAX_ERROR;
1901         }
1902
1903         target_process_events(cmd_ctx);
1904         
1905         return retval;
1906 }
1907
1908 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1909 {
1910         target_t *target = get_current_target(cmd_ctx);
1911         
1912         LOG_DEBUG("-");
1913         
1914         if (argc == 0)
1915                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1916
1917         if (argc == 1)
1918                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1919         
1920         return ERROR_OK;
1921 }
1922
1923 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1924 {
1925         const int line_bytecnt = 32;
1926         int count = 1;
1927         int size = 4;
1928         u32 address = 0;
1929         int line_modulo;
1930         int i;
1931
1932         char output[128];
1933         int output_len;
1934
1935         int retval;
1936
1937         u8 *buffer;
1938         target_t *target = get_current_target(cmd_ctx);
1939
1940         if (argc < 1)
1941                 return ERROR_OK;
1942
1943         if (argc == 2)
1944                 count = strtoul(args[1], NULL, 0);
1945
1946         address = strtoul(args[0], NULL, 0);
1947         
1948
1949         switch (cmd[2])
1950         {
1951                 case 'w':
1952                         size = 4; line_modulo = line_bytecnt / 4;
1953                         break;
1954                 case 'h':
1955                         size = 2; line_modulo = line_bytecnt / 2;
1956                         break;
1957                 case 'b':
1958                         size = 1; line_modulo = line_bytecnt / 1;
1959                         break;
1960                 default:
1961                         return ERROR_OK;
1962         }
1963
1964         buffer = calloc(count, size);
1965         retval  = target->type->read_memory(target, address, size, count, buffer);
1966         if (retval == ERROR_OK)
1967         {
1968                 output_len = 0;
1969         
1970                 for (i = 0; i < count; i++)
1971                 {
1972                         if (i%line_modulo == 0)
1973                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1974                         
1975                         switch (size)
1976                         {
1977                                 case 4:
1978                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1979                                         break;
1980                                 case 2:
1981                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1982                                         break;
1983                                 case 1:
1984                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1985                                         break;
1986                         }
1987         
1988                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1989                         {
1990                                 command_print(cmd_ctx, output);
1991                                 output_len = 0;
1992                         }
1993                 }
1994         } else
1995         {
1996                 LOG_ERROR("Failure examining memory");
1997         }
1998
1999         free(buffer);
2000         
2001         return ERROR_OK;
2002 }
2003
2004 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2005 {
2006         u32 address = 0;
2007         u32 value = 0;
2008         int count = 1;
2009         int i;
2010         int wordsize;
2011         target_t *target = get_current_target(cmd_ctx);
2012         u8 value_buf[4];
2013
2014          if ((argc < 2) || (argc > 3))
2015                 return ERROR_COMMAND_SYNTAX_ERROR;
2016
2017         address = strtoul(args[0], NULL, 0);
2018         value = strtoul(args[1], NULL, 0);
2019         if (argc == 3)
2020                 count = strtoul(args[2], NULL, 0);
2021
2022
2023         switch (cmd[2])
2024         {
2025                 case 'w':
2026                         wordsize = 4;
2027                         target_buffer_set_u32(target, value_buf, value);
2028                         break;
2029                 case 'h':
2030                         wordsize = 2;
2031                         target_buffer_set_u16(target, value_buf, value);
2032                         break;
2033                 case 'b':
2034                         wordsize = 1;
2035                         value_buf[0] = value;
2036                         break;
2037                 default:
2038                         return ERROR_COMMAND_SYNTAX_ERROR;
2039         }
2040         for (i=0; i<count; i++)
2041         {
2042                 int retval;
2043                 switch (wordsize)
2044                 {
2045                         case 4:
2046                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
2047                                 break;
2048                         case 2:
2049                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
2050                                 break;
2051                         case 1:
2052                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
2053                         break;
2054                         default:
2055                         return ERROR_OK;
2056                 }
2057                 if (retval!=ERROR_OK)
2058                 {
2059                         return retval;
2060                 }
2061         }
2062
2063         return ERROR_OK;
2064
2065 }
2066
2067 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2068 {
2069         u8 *buffer;
2070         u32 buf_cnt;
2071         u32 image_size;
2072         int i;
2073         int retval;
2074
2075         image_t image;  
2076         
2077         duration_t duration;
2078         char *duration_text;
2079         
2080         target_t *target = get_current_target(cmd_ctx);
2081
2082         if (argc < 1)
2083         {
2084                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
2085                 return ERROR_OK;
2086         }
2087         
2088         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2089         if (argc >= 2)
2090         {
2091                 image.base_address_set = 1;
2092                 image.base_address = strtoul(args[1], NULL, 0);
2093         }
2094         else
2095         {
2096                 image.base_address_set = 0;
2097         }
2098         
2099         image.start_address_set = 0;
2100
2101         duration_start_measure(&duration);
2102         
2103         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2104         {
2105                 return ERROR_OK;
2106         }
2107         
2108         image_size = 0x0;
2109         retval = ERROR_OK;
2110         for (i = 0; i < image.num_sections; i++)
2111         {
2112                 buffer = malloc(image.sections[i].size);
2113                 if (buffer == NULL)
2114                 {
2115                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2116                         break;
2117                 }
2118                 
2119                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2120                 {
2121                         free(buffer);
2122                         break;
2123                 }
2124                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
2125                 {
2126                         free(buffer);
2127                         break;
2128                 }
2129                 image_size += buf_cnt;
2130                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
2131                 
2132                 free(buffer);
2133         }
2134
2135         duration_stop_measure(&duration, &duration_text);
2136         if (retval==ERROR_OK)
2137         {
2138                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2139         }
2140         free(duration_text);
2141         
2142         image_close(&image);
2143
2144         return retval;
2145
2146 }
2147
2148 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2149 {
2150         fileio_t fileio;
2151         
2152         u32 address;
2153         u32 size;
2154         u8 buffer[560];
2155         int retval=ERROR_OK;
2156         
2157         duration_t duration;
2158         char *duration_text;
2159         
2160         target_t *target = get_current_target(cmd_ctx);
2161
2162         if (argc != 3)
2163         {
2164                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2165                 return ERROR_OK;
2166         }
2167
2168         address = strtoul(args[1], NULL, 0);
2169         size = strtoul(args[2], NULL, 0);
2170
2171         if ((address & 3) || (size & 3))
2172         {
2173                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2174                 return ERROR_OK;
2175         }
2176         
2177         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2178         {
2179                 return ERROR_OK;
2180         }
2181         
2182         duration_start_measure(&duration);
2183         
2184         while (size > 0)
2185         {
2186                 u32 size_written;
2187                 u32 this_run_size = (size > 560) ? 560 : size;
2188                 
2189                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2190                 if (retval != ERROR_OK)
2191                 {
2192                         break;
2193                 }
2194                 
2195                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2196                 if (retval != ERROR_OK)
2197                 {
2198                         break;
2199                 }
2200                 
2201                 size -= this_run_size;
2202                 address += this_run_size;
2203         }
2204
2205         fileio_close(&fileio);
2206
2207         duration_stop_measure(&duration, &duration_text);
2208         if (retval==ERROR_OK)
2209         {
2210                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2211         }
2212         free(duration_text);
2213         
2214         return ERROR_OK;
2215 }
2216
2217 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2218 {
2219         u8 *buffer;
2220         u32 buf_cnt;
2221         u32 image_size;
2222         int i;
2223         int retval;
2224         u32 checksum = 0;
2225         u32 mem_checksum = 0;
2226
2227         image_t image;  
2228         
2229         duration_t duration;
2230         char *duration_text;
2231         
2232         target_t *target = get_current_target(cmd_ctx);
2233         
2234         if (argc < 1)
2235         {
2236                 return ERROR_COMMAND_SYNTAX_ERROR;
2237         }
2238         
2239         if (!target)
2240         {
2241                 LOG_ERROR("no target selected");
2242                 return ERROR_FAIL;
2243         }
2244         
2245         duration_start_measure(&duration);
2246         
2247         if (argc >= 2)
2248         {
2249                 image.base_address_set = 1;
2250                 image.base_address = strtoul(args[1], NULL, 0);
2251         }
2252         else
2253         {
2254                 image.base_address_set = 0;
2255                 image.base_address = 0x0;
2256         }
2257
2258         image.start_address_set = 0;
2259
2260         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2261         {
2262                 return retval;
2263         }
2264         
2265         image_size = 0x0;
2266         retval=ERROR_OK;
2267         for (i = 0; i < image.num_sections; i++)
2268         {
2269                 buffer = malloc(image.sections[i].size);
2270                 if (buffer == NULL)
2271                 {
2272                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2273                         break;
2274                 }
2275                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2276                 {
2277                         free(buffer);
2278                         break;
2279                 }
2280                 
2281                 /* calculate checksum of image */
2282                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2283                 
2284                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2285                 if( retval != ERROR_OK )
2286                 {
2287                         free(buffer);
2288                         break;
2289                 }
2290                 
2291                 if( checksum != mem_checksum )
2292                 {
2293                         /* failed crc checksum, fall back to a binary compare */
2294                         u8 *data;
2295                         
2296                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2297                         
2298                         data = (u8*)malloc(buf_cnt);
2299                         
2300                         /* Can we use 32bit word accesses? */
2301                         int size = 1;
2302                         int count = buf_cnt;
2303                         if ((count % 4) == 0)
2304                         {
2305                                 size *= 4;
2306                                 count /= 4;
2307                         }
2308                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2309                         if (retval == ERROR_OK)
2310                         {
2311                                 int t;
2312                                 for (t = 0; t < buf_cnt; t++)
2313                                 {
2314                                         if (data[t] != buffer[t])
2315                                         {
2316                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2317                                                 free(data);
2318                                                 free(buffer);
2319                                                 retval=ERROR_FAIL;
2320                                                 goto done;
2321                                         }
2322                                 }
2323                         }
2324                         
2325                         free(data);
2326                 }
2327                 
2328                 free(buffer);
2329                 image_size += buf_cnt;
2330         }
2331 done:   
2332         duration_stop_measure(&duration, &duration_text);
2333         if (retval==ERROR_OK)
2334         {
2335                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2336         }
2337         free(duration_text);
2338         
2339         image_close(&image);
2340         
2341         return retval;
2342 }
2343
2344 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2345 {
2346         int retval;
2347         target_t *target = get_current_target(cmd_ctx);
2348
2349         if (argc == 0)
2350         {
2351                 breakpoint_t *breakpoint = target->breakpoints;
2352
2353                 while (breakpoint)
2354                 {
2355                         if (breakpoint->type == BKPT_SOFT)
2356                         {
2357                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2358                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2359                                 free(buf);
2360                         }
2361                         else
2362                         {
2363                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2364                         }
2365                         breakpoint = breakpoint->next;
2366                 }
2367         }
2368         else if (argc >= 2)
2369         {
2370                 int hw = BKPT_SOFT;
2371                 u32 length = 0;
2372
2373                 length = strtoul(args[1], NULL, 0);
2374                 
2375                 if (argc >= 3)
2376                         if (strcmp(args[2], "hw") == 0)
2377                                 hw = BKPT_HARD;
2378
2379                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2380                 {
2381                         LOG_ERROR("Failure setting breakpoints");
2382                 }
2383                 else
2384                 {
2385                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2386                 }
2387         }
2388         else
2389         {
2390                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2391         }
2392
2393         return ERROR_OK;
2394 }
2395
2396 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2397 {
2398         target_t *target = get_current_target(cmd_ctx);
2399
2400         if (argc > 0)
2401                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2402
2403         return ERROR_OK;
2404 }
2405
2406 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2407 {
2408         target_t *target = get_current_target(cmd_ctx);
2409         int retval;
2410
2411         if (argc == 0)
2412         {
2413                 watchpoint_t *watchpoint = target->watchpoints;
2414
2415                 while (watchpoint)
2416                 {
2417                         command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2418                         watchpoint = watchpoint->next;
2419                 }
2420         } 
2421         else if (argc >= 2)
2422         {
2423                 enum watchpoint_rw type = WPT_ACCESS;
2424                 u32 data_value = 0x0;
2425                 u32 data_mask = 0xffffffff;
2426                 
2427                 if (argc >= 3)
2428                 {
2429                         switch(args[2][0])
2430                         {
2431                                 case 'r':
2432                                         type = WPT_READ;
2433                                         break;
2434                                 case 'w':
2435                                         type = WPT_WRITE;
2436                                         break;
2437                                 case 'a':
2438                                         type = WPT_ACCESS;
2439                                         break;
2440                                 default:
2441                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2442                                         return ERROR_OK;
2443                         }
2444                 }
2445                 if (argc >= 4)
2446                 {
2447                         data_value = strtoul(args[3], NULL, 0);
2448                 }
2449                 if (argc >= 5)
2450                 {
2451                         data_mask = strtoul(args[4], NULL, 0);
2452                 }
2453                 
2454                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2455                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2456                 {
2457                         LOG_ERROR("Failure setting breakpoints");
2458                 }
2459         }
2460         else
2461         {
2462                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2463         }
2464                 
2465         return ERROR_OK;
2466 }
2467
2468 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2469 {
2470         target_t *target = get_current_target(cmd_ctx);
2471
2472         if (argc > 0)
2473                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2474         
2475         return ERROR_OK;
2476 }
2477
2478 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2479 {
2480         int retval;
2481         target_t *target = get_current_target(cmd_ctx);
2482         u32 va;
2483         u32 pa;
2484
2485         if (argc != 1)
2486         {
2487                 return ERROR_COMMAND_SYNTAX_ERROR;
2488         }
2489         va = strtoul(args[0], NULL, 0);
2490
2491         retval = target->type->virt2phys(target, va, &pa);
2492         if (retval == ERROR_OK)
2493         {
2494                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2495         }
2496         else
2497         {
2498                 /* lower levels will have logged a detailed error which is 
2499                  * forwarded to telnet/GDB session.  
2500                  */
2501         }
2502         return retval;
2503 }
2504 static void writeLong(FILE *f, int l)
2505 {
2506         int i;
2507         for (i=0; i<4; i++)
2508         {
2509                 char c=(l>>(i*8))&0xff;
2510                 fwrite(&c, 1, 1, f); 
2511         }
2512         
2513 }
2514 static void writeString(FILE *f, char *s)
2515 {
2516         fwrite(s, 1, strlen(s), f); 
2517 }
2518
2519
2520
2521 // Dump a gmon.out histogram file.
2522 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2523 {
2524         int i;
2525         FILE *f=fopen(filename, "w");
2526         if (f==NULL)
2527                 return;
2528         fwrite("gmon", 1, 4, f);
2529         writeLong(f, 0x00000001); // Version
2530         writeLong(f, 0); // padding
2531         writeLong(f, 0); // padding
2532         writeLong(f, 0); // padding
2533                                 
2534         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2535
2536         // figure out bucket size
2537         u32 min=samples[0];
2538         u32 max=samples[0];
2539         for (i=0; i<sampleNum; i++)
2540         {
2541                 if (min>samples[i])
2542                 {
2543                         min=samples[i];
2544                 }
2545                 if (max<samples[i])
2546                 {
2547                         max=samples[i];
2548                 }
2549         }
2550
2551         int addressSpace=(max-min+1);
2552         
2553         static int const maxBuckets=256*1024; // maximum buckets.
2554         int length=addressSpace;
2555         if (length > maxBuckets)
2556         {
2557                 length=maxBuckets; 
2558         }
2559         int *buckets=malloc(sizeof(int)*length);
2560         if (buckets==NULL)
2561         {
2562                 fclose(f);
2563                 return;
2564         }
2565         memset(buckets, 0, sizeof(int)*length);
2566         for (i=0; i<sampleNum;i++)
2567         {
2568                 u32 address=samples[i];
2569                 long long a=address-min;
2570                 long long b=length-1;
2571                 long long c=addressSpace-1;
2572                 int index=(a*b)/c; // danger!!!! int32 overflows 
2573                 buckets[index]++;
2574         }
2575         
2576         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2577         writeLong(f, min);                                      // low_pc
2578         writeLong(f, max);              // high_pc
2579         writeLong(f, length);           // # of samples
2580         writeLong(f, 64000000);                         // 64MHz
2581         writeString(f, "seconds");
2582         for (i=0; i<(15-strlen("seconds")); i++)
2583         {
2584                 fwrite("", 1, 1, f);  // padding
2585         }
2586         writeString(f, "s");
2587                 
2588 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2589         
2590         char *data=malloc(2*length);
2591         if (data!=NULL)
2592         {
2593                 for (i=0; i<length;i++)
2594                 {
2595                         int val;
2596                         val=buckets[i];
2597                         if (val>65535)
2598                         {
2599                                 val=65535;
2600                         }
2601                         data[i*2]=val&0xff;
2602                         data[i*2+1]=(val>>8)&0xff;
2603                 }
2604                 free(buckets);
2605                 fwrite(data, 1, length*2, f);
2606                 free(data);
2607         } else
2608         {
2609                 free(buckets);
2610         }
2611
2612         fclose(f);
2613 }
2614
2615 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2616 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2617 {
2618         target_t *target = get_current_target(cmd_ctx);
2619         struct timeval timeout, now;
2620         
2621         gettimeofday(&timeout, NULL);
2622         if (argc!=2)
2623         {
2624                 return ERROR_COMMAND_SYNTAX_ERROR;
2625         }
2626         char *end;
2627         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2628         if (*end) 
2629         {
2630                 return ERROR_OK;
2631         }
2632         
2633         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2634
2635         static const int maxSample=10000;
2636         u32 *samples=malloc(sizeof(u32)*maxSample);
2637         if (samples==NULL)
2638                 return ERROR_OK;
2639         
2640         int numSamples=0;
2641         int retval=ERROR_OK;
2642         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2643         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2644         
2645         for (;;)
2646         {
2647                 target_poll(target);
2648                 if (target->state == TARGET_HALTED)
2649                 {
2650                         u32 t=*((u32 *)reg->value);
2651                         samples[numSamples++]=t;
2652                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2653                         target_poll(target);
2654                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2655                 } else if (target->state == TARGET_RUNNING)
2656                 {
2657                         // We want to quickly sample the PC.
2658                         target_halt(target);
2659                 } else
2660                 {
2661                         command_print(cmd_ctx, "Target not halted or running");
2662                         retval=ERROR_OK;
2663                         break;
2664                 }
2665                 if (retval!=ERROR_OK)
2666                 {
2667                         break;
2668                 }
2669                 
2670                 gettimeofday(&now, NULL);
2671                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2672                 {
2673                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2674                         target_poll(target);
2675                         if (target->state == TARGET_HALTED)
2676                         {
2677                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2678                         }
2679                         target_poll(target);
2680                         writeGmon(samples, numSamples, args[1]);
2681                         command_print(cmd_ctx, "Wrote %s", args[1]);
2682                         break;
2683                 }
2684         }
2685         free(samples);
2686         
2687         return ERROR_OK;
2688 }
2689