]> git.sur5r.net Git - openocd/blob - src/target/target.c
Improve handle_profile_command argument parsing:
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74
75 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
76 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77
78 /* targets */
79 extern target_type_t arm7tdmi_target;
80 extern target_type_t arm720t_target;
81 extern target_type_t arm9tdmi_target;
82 extern target_type_t arm920t_target;
83 extern target_type_t arm966e_target;
84 extern target_type_t arm926ejs_target;
85 extern target_type_t feroceon_target;
86 extern target_type_t xscale_target;
87 extern target_type_t cortexm3_target;
88 extern target_type_t cortexa8_target;
89 extern target_type_t arm11_target;
90 extern target_type_t mips_m4k_target;
91 extern target_type_t avr_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &cortexa8_target,
105         &arm11_target,
106         &mips_m4k_target,
107         &avr_target,
108         NULL,
109 };
110
111 target_t *all_targets = NULL;
112 target_event_callback_t *target_event_callbacks = NULL;
113 target_timer_callback_t *target_timer_callbacks = NULL;
114
115 const Jim_Nvp nvp_assert[] = {
116         { .name = "assert", NVP_ASSERT },
117         { .name = "deassert", NVP_DEASSERT },
118         { .name = "T", NVP_ASSERT },
119         { .name = "F", NVP_DEASSERT },
120         { .name = "t", NVP_ASSERT },
121         { .name = "f", NVP_DEASSERT },
122         { .name = NULL, .value = -1 }
123 };
124
125 const Jim_Nvp nvp_error_target[] = {
126         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
127         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
128         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
129         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
130         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
131         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
132         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
133         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
134         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
135         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
136         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
137         { .value = -1, .name = NULL }
138 };
139
140 const char *target_strerror_safe( int err )
141 {
142         const Jim_Nvp *n;
143
144         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
145         if( n->name == NULL ){
146                 return "unknown";
147         } else {
148                 return n->name;
149         }
150 }
151
152 static const Jim_Nvp nvp_target_event[] = {
153         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
154         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
155
156         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
157         { .value = TARGET_EVENT_HALTED, .name = "halted" },
158         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
159         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
160         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
161
162         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
163         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
164
165         /* historical name */
166
167         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
168
169         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
170         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
171         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
172         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
173         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
174         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
175         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
176         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
177         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
178         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
179
180         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
181         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
182
183         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
184         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
185
186         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
187         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
188
189         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
190         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
191
192         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
193         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
194
195         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
197         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
198
199         { .name = NULL, .value = -1 }
200 };
201
202 const Jim_Nvp nvp_target_state[] = {
203         { .name = "unknown", .value = TARGET_UNKNOWN },
204         { .name = "running", .value = TARGET_RUNNING },
205         { .name = "halted",  .value = TARGET_HALTED },
206         { .name = "reset",   .value = TARGET_RESET },
207         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
208         { .name = NULL, .value = -1 },
209 };
210
211 const Jim_Nvp nvp_target_debug_reason [] = {
212         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
213         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
214         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
215         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
216         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
217         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
218         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
219         { .name = NULL, .value = -1 },
220 };
221
222 const Jim_Nvp nvp_target_endian[] = {
223         { .name = "big",    .value = TARGET_BIG_ENDIAN },
224         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
225         { .name = "be",     .value = TARGET_BIG_ENDIAN },
226         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
227         { .name = NULL,     .value = -1 },
228 };
229
230 const Jim_Nvp nvp_reset_modes[] = {
231         { .name = "unknown", .value = RESET_UNKNOWN },
232         { .name = "run"    , .value = RESET_RUN },
233         { .name = "halt"   , .value = RESET_HALT },
234         { .name = "init"   , .value = RESET_INIT },
235         { .name = NULL     , .value = -1 },
236 };
237
238 static int max_target_number(void)
239 {
240         target_t *t;
241         int x;
242
243         x = -1;
244         t = all_targets;
245         while( t ){
246                 if( x < t->target_number ){
247                         x = (t->target_number)+1;
248                 }
249                 t = t->next;
250         }
251         return x;
252 }
253
254 /* determine the number of the new target */
255 static int new_target_number(void)
256 {
257         target_t *t;
258         int x;
259
260         /* number is 0 based */
261         x = -1;
262         t = all_targets;
263         while(t){
264                 if( x < t->target_number ){
265                         x = t->target_number;
266                 }
267                 t = t->next;
268         }
269         return x+1;
270 }
271
272 static int target_continous_poll = 1;
273
274 /* read a u32 from a buffer in target memory endianness */
275 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
276 {
277         if (target->endianness == TARGET_LITTLE_ENDIAN)
278                 return le_to_h_u32(buffer);
279         else
280                 return be_to_h_u32(buffer);
281 }
282
283 /* read a u16 from a buffer in target memory endianness */
284 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
285 {
286         if (target->endianness == TARGET_LITTLE_ENDIAN)
287                 return le_to_h_u16(buffer);
288         else
289                 return be_to_h_u16(buffer);
290 }
291
292 /* read a u8 from a buffer in target memory endianness */
293 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
294 {
295         return *buffer & 0x0ff;
296 }
297
298 /* write a u32 to a buffer in target memory endianness */
299 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
300 {
301         if (target->endianness == TARGET_LITTLE_ENDIAN)
302                 h_u32_to_le(buffer, value);
303         else
304                 h_u32_to_be(buffer, value);
305 }
306
307 /* write a u16 to a buffer in target memory endianness */
308 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
309 {
310         if (target->endianness == TARGET_LITTLE_ENDIAN)
311                 h_u16_to_le(buffer, value);
312         else
313                 h_u16_to_be(buffer, value);
314 }
315
316 /* write a u8 to a buffer in target memory endianness */
317 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
318 {
319         *buffer = value;
320 }
321
322 /* return a pointer to a configured target; id is name or number */
323 target_t *get_target(const char *id)
324 {
325         target_t *target;
326
327         /* try as tcltarget name */
328         for (target = all_targets; target; target = target->next) {
329                 if (target->cmd_name == NULL)
330                         continue;
331                 if (strcmp(id, target->cmd_name) == 0)
332                         return target;
333         }
334
335         /* no match, try as number */
336         unsigned num;
337         if (parse_uint(id, &num) != ERROR_OK)
338                 return NULL;
339
340         for (target = all_targets; target; target = target->next) {
341                 if (target->target_number == (int)num)
342                         return target;
343         }
344
345         return NULL;
346 }
347
348 /* returns a pointer to the n-th configured target */
349 static target_t *get_target_by_num(int num)
350 {
351         target_t *target = all_targets;
352
353         while (target){
354                 if( target->target_number == num ){
355                         return target;
356                 }
357                 target = target->next;
358         }
359
360         return NULL;
361 }
362
363 int get_num_by_target(target_t *query_target)
364 {
365         return query_target->target_number;
366 }
367
368 target_t* get_current_target(command_context_t *cmd_ctx)
369 {
370         target_t *target = get_target_by_num(cmd_ctx->current_target);
371
372         if (target == NULL)
373         {
374                 LOG_ERROR("BUG: current_target out of bounds");
375                 exit(-1);
376         }
377
378         return target;
379 }
380
381 int target_poll(struct target_s *target)
382 {
383         /* We can't poll until after examine */
384         if (!target_was_examined(target))
385         {
386                 /* Fail silently lest we pollute the log */
387                 return ERROR_FAIL;
388         }
389         return target->type->poll(target);
390 }
391
392 int target_halt(struct target_s *target)
393 {
394         /* We can't poll until after examine */
395         if (!target_was_examined(target))
396         {
397                 LOG_ERROR("Target not examined yet");
398                 return ERROR_FAIL;
399         }
400         return target->type->halt(target);
401 }
402
403 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
404 {
405         int retval;
406
407         /* We can't poll until after examine */
408         if (!target_was_examined(target))
409         {
410                 LOG_ERROR("Target not examined yet");
411                 return ERROR_FAIL;
412         }
413
414         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
415          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
416          * the application.
417          */
418         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
419                 return retval;
420
421         return retval;
422 }
423
424 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
425 {
426         char buf[100];
427         int retval;
428         Jim_Nvp *n;
429         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
430         if( n->name == NULL ){
431                 LOG_ERROR("invalid reset mode");
432                 return ERROR_FAIL;
433         }
434
435         /* disable polling during reset to make reset event scripts
436          * more predictable, i.e. dr/irscan & pathmove in events will
437          * not have JTAG operations injected into the middle of a sequence.
438          */
439         int save_poll = target_continous_poll;
440         target_continous_poll = 0;
441
442         sprintf( buf, "ocd_process_reset %s", n->name );
443         retval = Jim_Eval( interp, buf );
444
445         target_continous_poll = save_poll;
446
447         if(retval != JIM_OK) {
448                 Jim_PrintErrorMessage(interp);
449                 return ERROR_FAIL;
450         }
451
452         /* We want any events to be processed before the prompt */
453         retval = target_call_timer_callbacks_now();
454
455         return retval;
456 }
457
458 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
459 {
460         *physical = virtual;
461         return ERROR_OK;
462 }
463
464 static int default_mmu(struct target_s *target, int *enabled)
465 {
466         *enabled = 0;
467         return ERROR_OK;
468 }
469
470 static int default_examine(struct target_s *target)
471 {
472         target_set_examined(target);
473         return ERROR_OK;
474 }
475
476 int target_examine_one(struct target_s *target)
477 {
478         return target->type->examine(target);
479 }
480
481 /* Targets that correctly implement init+examine, i.e.
482  * no communication with target during init:
483  *
484  * XScale
485  */
486 int target_examine(void)
487 {
488         int retval = ERROR_OK;
489         target_t *target;
490
491         for (target = all_targets; target; target = target->next)
492         {
493                 if (!target->tap->enabled)
494                         continue;
495                 if ((retval = target_examine_one(target)) != ERROR_OK)
496                         return retval;
497         }
498         return retval;
499 }
500 const char *target_get_name(struct target_s *target)
501 {
502         return target->type->name;
503 }
504
505 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
506 {
507         if (!target_was_examined(target))
508         {
509                 LOG_ERROR("Target not examined yet");
510                 return ERROR_FAIL;
511         }
512         return target->type->write_memory_imp(target, address, size, count, buffer);
513 }
514
515 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
516 {
517         if (!target_was_examined(target))
518         {
519                 LOG_ERROR("Target not examined yet");
520                 return ERROR_FAIL;
521         }
522         return target->type->read_memory_imp(target, address, size, count, buffer);
523 }
524
525 static int target_soft_reset_halt_imp(struct target_s *target)
526 {
527         if (!target_was_examined(target))
528         {
529                 LOG_ERROR("Target not examined yet");
530                 return ERROR_FAIL;
531         }
532         return target->type->soft_reset_halt_imp(target);
533 }
534
535 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
536 {
537         if (!target_was_examined(target))
538         {
539                 LOG_ERROR("Target not examined yet");
540                 return ERROR_FAIL;
541         }
542         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
543 }
544
545 int target_read_memory(struct target_s *target,
546                 u32 address, u32 size, u32 count, u8 *buffer)
547 {
548         return target->type->read_memory(target, address, size, count, buffer);
549 }
550
551 int target_write_memory(struct target_s *target,
552                 u32 address, u32 size, u32 count, u8 *buffer)
553 {
554         return target->type->write_memory(target, address, size, count, buffer);
555 }
556 int target_bulk_write_memory(struct target_s *target,
557                 u32 address, u32 count, u8 *buffer)
558 {
559         return target->type->bulk_write_memory(target, address, count, buffer);
560 }
561
562 int target_add_breakpoint(struct target_s *target,
563                 struct breakpoint_s *breakpoint)
564 {
565         return target->type->add_breakpoint(target, breakpoint);
566 }
567 int target_remove_breakpoint(struct target_s *target,
568                 struct breakpoint_s *breakpoint)
569 {
570         return target->type->remove_breakpoint(target, breakpoint);
571 }
572
573 int target_add_watchpoint(struct target_s *target,
574                 struct watchpoint_s *watchpoint)
575 {
576         return target->type->add_watchpoint(target, watchpoint);
577 }
578 int target_remove_watchpoint(struct target_s *target,
579                 struct watchpoint_s *watchpoint)
580 {
581         return target->type->remove_watchpoint(target, watchpoint);
582 }
583
584 int target_get_gdb_reg_list(struct target_s *target,
585                 struct reg_s **reg_list[], int *reg_list_size)
586 {
587         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
588 }
589 int target_step(struct target_s *target,
590                 int current, u32 address, int handle_breakpoints)
591 {
592         return target->type->step(target, current, address, handle_breakpoints);
593 }
594
595
596 int target_run_algorithm(struct target_s *target,
597                 int num_mem_params, mem_param_t *mem_params,
598                 int num_reg_params, reg_param_t *reg_param,
599                 u32 entry_point, u32 exit_point,
600                 int timeout_ms, void *arch_info)
601 {
602         return target->type->run_algorithm(target,
603                         num_mem_params, mem_params, num_reg_params, reg_param,
604                         entry_point, exit_point, timeout_ms, arch_info);
605 }
606
607 /// @returns @c true if the target has been examined.
608 bool target_was_examined(struct target_s *target)
609 {
610         return target->type->examined;
611 }
612 /// Sets the @c examined flag for the given target.
613 void target_set_examined(struct target_s *target)
614 {
615         target->type->examined = true;
616 }
617 // Reset the @c examined flag for the given target.
618 void target_reset_examined(struct target_s *target)
619 {
620         target->type->examined = false;
621 }
622
623
624 int target_init(struct command_context_s *cmd_ctx)
625 {
626         target_t *target = all_targets;
627         int retval;
628
629         while (target)
630         {
631                 target_reset_examined(target);
632                 if (target->type->examine == NULL)
633                 {
634                         target->type->examine = default_examine;
635                 }
636
637                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
638                 {
639                         LOG_ERROR("target '%s' init failed", target_get_name(target));
640                         return retval;
641                 }
642
643                 /* Set up default functions if none are provided by target */
644                 if (target->type->virt2phys == NULL)
645                 {
646                         target->type->virt2phys = default_virt2phys;
647                 }
648                 target->type->virt2phys = default_virt2phys;
649                 /* a non-invasive way(in terms of patches) to add some code that
650                  * runs before the type->write/read_memory implementation
651                  */
652                 target->type->write_memory_imp = target->type->write_memory;
653                 target->type->write_memory = target_write_memory_imp;
654                 target->type->read_memory_imp = target->type->read_memory;
655                 target->type->read_memory = target_read_memory_imp;
656                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
657                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
658                 target->type->run_algorithm_imp = target->type->run_algorithm;
659                 target->type->run_algorithm = target_run_algorithm_imp;
660
661                 if (target->type->mmu == NULL)
662                 {
663                         target->type->mmu = default_mmu;
664                 }
665                 target = target->next;
666         }
667
668         if (all_targets)
669         {
670                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
671                         return retval;
672                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
673                         return retval;
674         }
675
676         return ERROR_OK;
677 }
678
679 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
680 {
681         target_event_callback_t **callbacks_p = &target_event_callbacks;
682
683         if (callback == NULL)
684         {
685                 return ERROR_INVALID_ARGUMENTS;
686         }
687
688         if (*callbacks_p)
689         {
690                 while ((*callbacks_p)->next)
691                         callbacks_p = &((*callbacks_p)->next);
692                 callbacks_p = &((*callbacks_p)->next);
693         }
694
695         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
696         (*callbacks_p)->callback = callback;
697         (*callbacks_p)->priv = priv;
698         (*callbacks_p)->next = NULL;
699
700         return ERROR_OK;
701 }
702
703 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
704 {
705         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
706         struct timeval now;
707
708         if (callback == NULL)
709         {
710                 return ERROR_INVALID_ARGUMENTS;
711         }
712
713         if (*callbacks_p)
714         {
715                 while ((*callbacks_p)->next)
716                         callbacks_p = &((*callbacks_p)->next);
717                 callbacks_p = &((*callbacks_p)->next);
718         }
719
720         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
721         (*callbacks_p)->callback = callback;
722         (*callbacks_p)->periodic = periodic;
723         (*callbacks_p)->time_ms = time_ms;
724
725         gettimeofday(&now, NULL);
726         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
727         time_ms -= (time_ms % 1000);
728         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
729         if ((*callbacks_p)->when.tv_usec > 1000000)
730         {
731                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
732                 (*callbacks_p)->when.tv_sec += 1;
733         }
734
735         (*callbacks_p)->priv = priv;
736         (*callbacks_p)->next = NULL;
737
738         return ERROR_OK;
739 }
740
741 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
742 {
743         target_event_callback_t **p = &target_event_callbacks;
744         target_event_callback_t *c = target_event_callbacks;
745
746         if (callback == NULL)
747         {
748                 return ERROR_INVALID_ARGUMENTS;
749         }
750
751         while (c)
752         {
753                 target_event_callback_t *next = c->next;
754                 if ((c->callback == callback) && (c->priv == priv))
755                 {
756                         *p = next;
757                         free(c);
758                         return ERROR_OK;
759                 }
760                 else
761                         p = &(c->next);
762                 c = next;
763         }
764
765         return ERROR_OK;
766 }
767
768 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
769 {
770         target_timer_callback_t **p = &target_timer_callbacks;
771         target_timer_callback_t *c = target_timer_callbacks;
772
773         if (callback == NULL)
774         {
775                 return ERROR_INVALID_ARGUMENTS;
776         }
777
778         while (c)
779         {
780                 target_timer_callback_t *next = c->next;
781                 if ((c->callback == callback) && (c->priv == priv))
782                 {
783                         *p = next;
784                         free(c);
785                         return ERROR_OK;
786                 }
787                 else
788                         p = &(c->next);
789                 c = next;
790         }
791
792         return ERROR_OK;
793 }
794
795 int target_call_event_callbacks(target_t *target, enum target_event event)
796 {
797         target_event_callback_t *callback = target_event_callbacks;
798         target_event_callback_t *next_callback;
799
800         if (event == TARGET_EVENT_HALTED)
801         {
802                 /* execute early halted first */
803                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
804         }
805
806         LOG_DEBUG("target event %i (%s)",
807                           event,
808                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
809
810         target_handle_event( target, event );
811
812         while (callback)
813         {
814                 next_callback = callback->next;
815                 callback->callback(target, event, callback->priv);
816                 callback = next_callback;
817         }
818
819         return ERROR_OK;
820 }
821
822 static int target_timer_callback_periodic_restart(
823                 target_timer_callback_t *cb, struct timeval *now)
824 {
825         int time_ms = cb->time_ms;
826         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
827         time_ms -= (time_ms % 1000);
828         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
829         if (cb->when.tv_usec > 1000000)
830         {
831                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
832                 cb->when.tv_sec += 1;
833         }
834         return ERROR_OK;
835 }
836
837 static int target_call_timer_callback(target_timer_callback_t *cb,
838                 struct timeval *now)
839 {
840         cb->callback(cb->priv);
841
842         if (cb->periodic)
843                 return target_timer_callback_periodic_restart(cb, now);
844
845         return target_unregister_timer_callback(cb->callback, cb->priv);
846 }
847
848 static int target_call_timer_callbacks_check_time(int checktime)
849 {
850         keep_alive();
851
852         struct timeval now;
853         gettimeofday(&now, NULL);
854
855         target_timer_callback_t *callback = target_timer_callbacks;
856         while (callback)
857         {
858                 // cleaning up may unregister and free this callback
859                 target_timer_callback_t *next_callback = callback->next;
860
861                 bool call_it = callback->callback &&
862                         ((!checktime && callback->periodic) ||
863                           now.tv_sec > callback->when.tv_sec ||
864                          (now.tv_sec == callback->when.tv_sec &&
865                           now.tv_usec >= callback->when.tv_usec));
866
867                 if (call_it)
868                 {
869                         int retval = target_call_timer_callback(callback, &now);
870                         if (retval != ERROR_OK)
871                                 return retval;
872                 }
873
874                 callback = next_callback;
875         }
876
877         return ERROR_OK;
878 }
879
880 int target_call_timer_callbacks(void)
881 {
882         return target_call_timer_callbacks_check_time(1);
883 }
884
885 /* invoke periodic callbacks immediately */
886 int target_call_timer_callbacks_now(void)
887 {
888         return target_call_timer_callbacks_check_time(0);
889 }
890
891 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
892 {
893         working_area_t *c = target->working_areas;
894         working_area_t *new_wa = NULL;
895
896         /* Reevaluate working area address based on MMU state*/
897         if (target->working_areas == NULL)
898         {
899                 int retval;
900                 int enabled;
901                 retval = target->type->mmu(target, &enabled);
902                 if (retval != ERROR_OK)
903                 {
904                         return retval;
905                 }
906                 if (enabled)
907                 {
908                         target->working_area = target->working_area_virt;
909                 }
910                 else
911                 {
912                         target->working_area = target->working_area_phys;
913                 }
914         }
915
916         /* only allocate multiples of 4 byte */
917         if (size % 4)
918         {
919                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
920                 size = CEIL(size, 4);
921         }
922
923         /* see if there's already a matching working area */
924         while (c)
925         {
926                 if ((c->free) && (c->size == size))
927                 {
928                         new_wa = c;
929                         break;
930                 }
931                 c = c->next;
932         }
933
934         /* if not, allocate a new one */
935         if (!new_wa)
936         {
937                 working_area_t **p = &target->working_areas;
938                 u32 first_free = target->working_area;
939                 u32 free_size = target->working_area_size;
940
941                 LOG_DEBUG("allocating new working area");
942
943                 c = target->working_areas;
944                 while (c)
945                 {
946                         first_free += c->size;
947                         free_size -= c->size;
948                         p = &c->next;
949                         c = c->next;
950                 }
951
952                 if (free_size < size)
953                 {
954                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
955                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
956                 }
957
958                 new_wa = malloc(sizeof(working_area_t));
959                 new_wa->next = NULL;
960                 new_wa->size = size;
961                 new_wa->address = first_free;
962
963                 if (target->backup_working_area)
964                 {
965                         int retval;
966                         new_wa->backup = malloc(new_wa->size);
967                         if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
968                         {
969                                 free(new_wa->backup);
970                                 free(new_wa);
971                                 return retval;
972                         }
973                 }
974                 else
975                 {
976                         new_wa->backup = NULL;
977                 }
978
979                 /* put new entry in list */
980                 *p = new_wa;
981         }
982
983         /* mark as used, and return the new (reused) area */
984         new_wa->free = 0;
985         *area = new_wa;
986
987         /* user pointer */
988         new_wa->user = area;
989
990         return ERROR_OK;
991 }
992
993 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
994 {
995         if (area->free)
996                 return ERROR_OK;
997
998         if (restore&&target->backup_working_area)
999         {
1000                 int retval;
1001                 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1002                         return retval;
1003         }
1004
1005         area->free = 1;
1006
1007         /* mark user pointer invalid */
1008         *area->user = NULL;
1009         area->user = NULL;
1010
1011         return ERROR_OK;
1012 }
1013
1014 int target_free_working_area(struct target_s *target, working_area_t *area)
1015 {
1016         return target_free_working_area_restore(target, area, 1);
1017 }
1018
1019 /* free resources and restore memory, if restoring memory fails,
1020  * free up resources anyway
1021  */
1022 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1023 {
1024         working_area_t *c = target->working_areas;
1025
1026         while (c)
1027         {
1028                 working_area_t *next = c->next;
1029                 target_free_working_area_restore(target, c, restore);
1030
1031                 if (c->backup)
1032                         free(c->backup);
1033
1034                 free(c);
1035
1036                 c = next;
1037         }
1038
1039         target->working_areas = NULL;
1040 }
1041
1042 void target_free_all_working_areas(struct target_s *target)
1043 {
1044         target_free_all_working_areas_restore(target, 1);
1045 }
1046
1047 int target_register_commands(struct command_context_s *cmd_ctx)
1048 {
1049
1050         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1051
1052
1053
1054
1055         register_jim(cmd_ctx, "target", jim_target, "configure target" );
1056
1057         return ERROR_OK;
1058 }
1059
1060 int target_arch_state(struct target_s *target)
1061 {
1062         int retval;
1063         if (target==NULL)
1064         {
1065                 LOG_USER("No target has been configured");
1066                 return ERROR_OK;
1067         }
1068
1069         LOG_USER("target state: %s",
1070                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1071
1072         if (target->state!=TARGET_HALTED)
1073                 return ERROR_OK;
1074
1075         retval=target->type->arch_state(target);
1076         return retval;
1077 }
1078
1079 /* Single aligned words are guaranteed to use 16 or 32 bit access
1080  * mode respectively, otherwise data is handled as quickly as
1081  * possible
1082  */
1083 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1084 {
1085         int retval;
1086         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1087
1088         if (!target_was_examined(target))
1089         {
1090                 LOG_ERROR("Target not examined yet");
1091                 return ERROR_FAIL;
1092         }
1093
1094         if (size == 0) {
1095                 return ERROR_OK;
1096         }
1097
1098         if ((address + size - 1) < address)
1099         {
1100                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1101                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1102                 return ERROR_FAIL;
1103         }
1104
1105         if (((address % 2) == 0) && (size == 2))
1106         {
1107                 return target_write_memory(target, address, 2, 1, buffer);
1108         }
1109
1110         /* handle unaligned head bytes */
1111         if (address % 4)
1112         {
1113                 u32 unaligned = 4 - (address % 4);
1114
1115                 if (unaligned > size)
1116                         unaligned = size;
1117
1118                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1119                         return retval;
1120
1121                 buffer += unaligned;
1122                 address += unaligned;
1123                 size -= unaligned;
1124         }
1125
1126         /* handle aligned words */
1127         if (size >= 4)
1128         {
1129                 int aligned = size - (size % 4);
1130
1131                 /* use bulk writes above a certain limit. This may have to be changed */
1132                 if (aligned > 128)
1133                 {
1134                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1135                                 return retval;
1136                 }
1137                 else
1138                 {
1139                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1140                                 return retval;
1141                 }
1142
1143                 buffer += aligned;
1144                 address += aligned;
1145                 size -= aligned;
1146         }
1147
1148         /* handle tail writes of less than 4 bytes */
1149         if (size > 0)
1150         {
1151                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1152                         return retval;
1153         }
1154
1155         return ERROR_OK;
1156 }
1157
1158 /* Single aligned words are guaranteed to use 16 or 32 bit access
1159  * mode respectively, otherwise data is handled as quickly as
1160  * possible
1161  */
1162 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1163 {
1164         int retval;
1165         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1166
1167         if (!target_was_examined(target))
1168         {
1169                 LOG_ERROR("Target not examined yet");
1170                 return ERROR_FAIL;
1171         }
1172
1173         if (size == 0) {
1174                 return ERROR_OK;
1175         }
1176
1177         if ((address + size - 1) < address)
1178         {
1179                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1180                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1181                 return ERROR_FAIL;
1182         }
1183
1184         if (((address % 2) == 0) && (size == 2))
1185         {
1186                 return target_read_memory(target, address, 2, 1, buffer);
1187         }
1188
1189         /* handle unaligned head bytes */
1190         if (address % 4)
1191         {
1192                 u32 unaligned = 4 - (address % 4);
1193
1194                 if (unaligned > size)
1195                         unaligned = size;
1196
1197                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1198                         return retval;
1199
1200                 buffer += unaligned;
1201                 address += unaligned;
1202                 size -= unaligned;
1203         }
1204
1205         /* handle aligned words */
1206         if (size >= 4)
1207         {
1208                 int aligned = size - (size % 4);
1209
1210                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1211                         return retval;
1212
1213                 buffer += aligned;
1214                 address += aligned;
1215                 size -= aligned;
1216         }
1217
1218         /* handle tail writes of less than 4 bytes */
1219         if (size > 0)
1220         {
1221                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1222                         return retval;
1223         }
1224
1225         return ERROR_OK;
1226 }
1227
1228 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1229 {
1230         u8 *buffer;
1231         int retval;
1232         u32 i;
1233         u32 checksum = 0;
1234         if (!target_was_examined(target))
1235         {
1236                 LOG_ERROR("Target not examined yet");
1237                 return ERROR_FAIL;
1238         }
1239
1240         if ((retval = target->type->checksum_memory(target, address,
1241                 size, &checksum)) != ERROR_OK)
1242         {
1243                 buffer = malloc(size);
1244                 if (buffer == NULL)
1245                 {
1246                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1247                         return ERROR_INVALID_ARGUMENTS;
1248                 }
1249                 retval = target_read_buffer(target, address, size, buffer);
1250                 if (retval != ERROR_OK)
1251                 {
1252                         free(buffer);
1253                         return retval;
1254                 }
1255
1256                 /* convert to target endianess */
1257                 for (i = 0; i < (size/sizeof(u32)); i++)
1258                 {
1259                         u32 target_data;
1260                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1261                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1262                 }
1263
1264                 retval = image_calculate_checksum( buffer, size, &checksum );
1265                 free(buffer);
1266         }
1267
1268         *crc = checksum;
1269
1270         return retval;
1271 }
1272
1273 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1274 {
1275         int retval;
1276         if (!target_was_examined(target))
1277         {
1278                 LOG_ERROR("Target not examined yet");
1279                 return ERROR_FAIL;
1280         }
1281
1282         if (target->type->blank_check_memory == 0)
1283                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1284
1285         retval = target->type->blank_check_memory(target, address, size, blank);
1286
1287         return retval;
1288 }
1289
1290 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1291 {
1292         u8 value_buf[4];
1293         if (!target_was_examined(target))
1294         {
1295                 LOG_ERROR("Target not examined yet");
1296                 return ERROR_FAIL;
1297         }
1298
1299         int retval = target_read_memory(target, address, 4, 1, value_buf);
1300
1301         if (retval == ERROR_OK)
1302         {
1303                 *value = target_buffer_get_u32(target, value_buf);
1304                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1305         }
1306         else
1307         {
1308                 *value = 0x0;
1309                 LOG_DEBUG("address: 0x%8.8x failed", address);
1310         }
1311
1312         return retval;
1313 }
1314
1315 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1316 {
1317         u8 value_buf[2];
1318         if (!target_was_examined(target))
1319         {
1320                 LOG_ERROR("Target not examined yet");
1321                 return ERROR_FAIL;
1322         }
1323
1324         int retval = target_read_memory(target, address, 2, 1, value_buf);
1325
1326         if (retval == ERROR_OK)
1327         {
1328                 *value = target_buffer_get_u16(target, value_buf);
1329                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1330         }
1331         else
1332         {
1333                 *value = 0x0;
1334                 LOG_DEBUG("address: 0x%8.8x failed", address);
1335         }
1336
1337         return retval;
1338 }
1339
1340 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1341 {
1342         int retval = target_read_memory(target, address, 1, 1, value);
1343         if (!target_was_examined(target))
1344         {
1345                 LOG_ERROR("Target not examined yet");
1346                 return ERROR_FAIL;
1347         }
1348
1349         if (retval == ERROR_OK)
1350         {
1351                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1352         }
1353         else
1354         {
1355                 *value = 0x0;
1356                 LOG_DEBUG("address: 0x%8.8x failed", address);
1357         }
1358
1359         return retval;
1360 }
1361
1362 int target_write_u32(struct target_s *target, u32 address, u32 value)
1363 {
1364         int retval;
1365         u8 value_buf[4];
1366         if (!target_was_examined(target))
1367         {
1368                 LOG_ERROR("Target not examined yet");
1369                 return ERROR_FAIL;
1370         }
1371
1372         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1373
1374         target_buffer_set_u32(target, value_buf, value);
1375         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1376         {
1377                 LOG_DEBUG("failed: %i", retval);
1378         }
1379
1380         return retval;
1381 }
1382
1383 int target_write_u16(struct target_s *target, u32 address, u16 value)
1384 {
1385         int retval;
1386         u8 value_buf[2];
1387         if (!target_was_examined(target))
1388         {
1389                 LOG_ERROR("Target not examined yet");
1390                 return ERROR_FAIL;
1391         }
1392
1393         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1394
1395         target_buffer_set_u16(target, value_buf, value);
1396         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1397         {
1398                 LOG_DEBUG("failed: %i", retval);
1399         }
1400
1401         return retval;
1402 }
1403
1404 int target_write_u8(struct target_s *target, u32 address, u8 value)
1405 {
1406         int retval;
1407         if (!target_was_examined(target))
1408         {
1409                 LOG_ERROR("Target not examined yet");
1410                 return ERROR_FAIL;
1411         }
1412
1413         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1414
1415         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1416         {
1417                 LOG_DEBUG("failed: %i", retval);
1418         }
1419
1420         return retval;
1421 }
1422
1423 int target_register_user_commands(struct command_context_s *cmd_ctx)
1424 {
1425         int retval = ERROR_OK;
1426
1427
1428         /* script procedures */
1429         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1430         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1431         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1432
1433         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1434                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1435
1436         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1437                         "loads active fast load image to current target - mainly for profiling purposes");
1438
1439
1440         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1441         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1442         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1443         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1444         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1445         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1446         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1447         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1448         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1449
1450         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1451         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1452         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1453
1454         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1455         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1456         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1457
1458         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1459         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1460         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1461         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1462
1463         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1464         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1465         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1466         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1467
1468         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1469                 return retval;
1470         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1471                 return retval;
1472
1473         return retval;
1474 }
1475
1476 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1477 {
1478         target_t *target = all_targets;
1479
1480         if (argc == 1)
1481         {
1482                 target = get_target(args[0]);
1483                 if (target == NULL) {
1484                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1485                         goto DumpTargets;
1486                 }
1487                 if (!target->tap->enabled) {
1488                         command_print(cmd_ctx,"Target: TAP %s is disabled, "
1489                                         "can't be the current target\n",
1490                                         target->tap->dotted_name);
1491                         return ERROR_FAIL;
1492                 }
1493
1494                 cmd_ctx->current_target = target->target_number;
1495                 return ERROR_OK;
1496         }
1497 DumpTargets:
1498
1499         target = all_targets;
1500         command_print(cmd_ctx, "    TargetName         Type       Endian TapName            State       ");
1501         command_print(cmd_ctx, "--  ------------------ ---------- ------ ------------------ ------------");
1502         while (target)
1503         {
1504                 const char *state;
1505                 char marker = ' ';
1506
1507                 if (target->tap->enabled)
1508                         state = Jim_Nvp_value2name_simple(nvp_target_state,
1509                                         target->state)->name;
1510                 else
1511                         state = "tap-disabled";
1512
1513                 if (cmd_ctx->current_target == target->target_number)
1514                         marker = '*';
1515
1516                 /* keep columns lined up to match the headers above */
1517                 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1518                                           target->target_number,
1519                                           marker,
1520                                           target->cmd_name,
1521                                           target_get_name(target),
1522                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1523                                                                 target->endianness)->name,
1524                                           target->tap->dotted_name,
1525                                           state);
1526                 target = target->next;
1527         }
1528
1529         return ERROR_OK;
1530 }
1531
1532 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1533
1534 static int powerDropout;
1535 static int srstAsserted;
1536
1537 static int runPowerRestore;
1538 static int runPowerDropout;
1539 static int runSrstAsserted;
1540 static int runSrstDeasserted;
1541
1542 static int sense_handler(void)
1543 {
1544         static int prevSrstAsserted = 0;
1545         static int prevPowerdropout = 0;
1546
1547         int retval;
1548         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1549                 return retval;
1550
1551         int powerRestored;
1552         powerRestored = prevPowerdropout && !powerDropout;
1553         if (powerRestored)
1554         {
1555                 runPowerRestore = 1;
1556         }
1557
1558         long long current = timeval_ms();
1559         static long long lastPower = 0;
1560         int waitMore = lastPower + 2000 > current;
1561         if (powerDropout && !waitMore)
1562         {
1563                 runPowerDropout = 1;
1564                 lastPower = current;
1565         }
1566
1567         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1568                 return retval;
1569
1570         int srstDeasserted;
1571         srstDeasserted = prevSrstAsserted && !srstAsserted;
1572
1573         static long long lastSrst = 0;
1574         waitMore = lastSrst + 2000 > current;
1575         if (srstDeasserted && !waitMore)
1576         {
1577                 runSrstDeasserted = 1;
1578                 lastSrst = current;
1579         }
1580
1581         if (!prevSrstAsserted && srstAsserted)
1582         {
1583                 runSrstAsserted = 1;
1584         }
1585
1586         prevSrstAsserted = srstAsserted;
1587         prevPowerdropout = powerDropout;
1588
1589         if (srstDeasserted || powerRestored)
1590         {
1591                 /* Other than logging the event we can't do anything here.
1592                  * Issuing a reset is a particularly bad idea as we might
1593                  * be inside a reset already.
1594                  */
1595         }
1596
1597         return ERROR_OK;
1598 }
1599
1600 /* process target state changes */
1601 int handle_target(void *priv)
1602 {
1603         int retval = ERROR_OK;
1604
1605         /* we do not want to recurse here... */
1606         static int recursive = 0;
1607         if (! recursive)
1608         {
1609                 recursive = 1;
1610                 sense_handler();
1611                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1612                  * We need to avoid an infinite loop/recursion here and we do that by
1613                  * clearing the flags after running these events.
1614                  */
1615                 int did_something = 0;
1616                 if (runSrstAsserted)
1617                 {
1618                         Jim_Eval( interp, "srst_asserted");
1619                         did_something = 1;
1620                 }
1621                 if (runSrstDeasserted)
1622                 {
1623                         Jim_Eval( interp, "srst_deasserted");
1624                         did_something = 1;
1625                 }
1626                 if (runPowerDropout)
1627                 {
1628                         Jim_Eval( interp, "power_dropout");
1629                         did_something = 1;
1630                 }
1631                 if (runPowerRestore)
1632                 {
1633                         Jim_Eval( interp, "power_restore");
1634                         did_something = 1;
1635                 }
1636
1637                 if (did_something)
1638                 {
1639                         /* clear detect flags */
1640                         sense_handler();
1641                 }
1642
1643                 /* clear action flags */
1644
1645                 runSrstAsserted=0;
1646                 runSrstDeasserted=0;
1647                 runPowerRestore=0;
1648                 runPowerDropout=0;
1649
1650                 recursive = 0;
1651         }
1652
1653         target_t *target = all_targets;
1654
1655         while (target)
1656         {
1657
1658                 /* only poll target if we've got power and srst isn't asserted */
1659                 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1660                 {
1661                         /* polling may fail silently until the target has been examined */
1662                         if((retval = target_poll(target)) != ERROR_OK)
1663                                 return retval;
1664                 }
1665
1666                 target = target->next;
1667         }
1668
1669         return retval;
1670 }
1671
1672 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1673 {
1674         target_t *target;
1675         reg_t *reg = NULL;
1676         int count = 0;
1677         char *value;
1678
1679         LOG_DEBUG("-");
1680
1681         target = get_current_target(cmd_ctx);
1682
1683         /* list all available registers for the current target */
1684         if (argc == 0)
1685         {
1686                 reg_cache_t *cache = target->reg_cache;
1687
1688                 count = 0;
1689                 while(cache)
1690                 {
1691                         int i;
1692                         for (i = 0; i < cache->num_regs; i++)
1693                         {
1694                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1695                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1696                                 free(value);
1697                         }
1698                         cache = cache->next;
1699                 }
1700
1701                 return ERROR_OK;
1702         }
1703
1704         /* access a single register by its ordinal number */
1705         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1706         {
1707                 unsigned num;
1708                 int retval = parse_uint(args[0], &num);
1709                 if (ERROR_OK != retval)
1710                         return ERROR_COMMAND_SYNTAX_ERROR;
1711
1712                 reg_cache_t *cache = target->reg_cache;
1713                 count = 0;
1714                 while(cache)
1715                 {
1716                         int i;
1717                         for (i = 0; i < cache->num_regs; i++)
1718                         {
1719                                 if (count++ == (int)num)
1720                                 {
1721                                         reg = &cache->reg_list[i];
1722                                         break;
1723                                 }
1724                         }
1725                         if (reg)
1726                                 break;
1727                         cache = cache->next;
1728                 }
1729
1730                 if (!reg)
1731                 {
1732                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1733                         return ERROR_OK;
1734                 }
1735         } else /* access a single register by its name */
1736         {
1737                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1738
1739                 if (!reg)
1740                 {
1741                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1742                         return ERROR_OK;
1743                 }
1744         }
1745
1746         /* display a register */
1747         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1748         {
1749                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1750                         reg->valid = 0;
1751
1752                 if (reg->valid == 0)
1753                 {
1754                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1755                         arch_type->get(reg);
1756                 }
1757                 value = buf_to_str(reg->value, reg->size, 16);
1758                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1759                 free(value);
1760                 return ERROR_OK;
1761         }
1762
1763         /* set register value */
1764         if (argc == 2)
1765         {
1766                 u8 *buf = malloc(CEIL(reg->size, 8));
1767                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1768
1769                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1770                 arch_type->set(reg, buf);
1771
1772                 value = buf_to_str(reg->value, reg->size, 16);
1773                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1774                 free(value);
1775
1776                 free(buf);
1777
1778                 return ERROR_OK;
1779         }
1780
1781         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1782
1783         return ERROR_OK;
1784 }
1785
1786 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1787 {
1788         int retval = ERROR_OK;
1789         target_t *target = get_current_target(cmd_ctx);
1790
1791         if (argc == 0)
1792         {
1793                 command_print(cmd_ctx, "background polling: %s",
1794                                 target_continous_poll ?  "on" : "off");
1795                 if ((retval = target_poll(target)) != ERROR_OK)
1796                         return retval;
1797                 if ((retval = target_arch_state(target)) != ERROR_OK)
1798                         return retval;
1799
1800         }
1801         else if (argc==1)
1802         {
1803                 if (strcmp(args[0], "on") == 0)
1804                 {
1805                         target_continous_poll = 1;
1806                 }
1807                 else if (strcmp(args[0], "off") == 0)
1808                 {
1809                         target_continous_poll = 0;
1810                 }
1811                 else
1812                 {
1813                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1814                 }
1815         } else
1816         {
1817                 return ERROR_COMMAND_SYNTAX_ERROR;
1818         }
1819
1820         return retval;
1821 }
1822
1823 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1824 {
1825         if (argc > 1)
1826                 return ERROR_COMMAND_SYNTAX_ERROR;
1827
1828         unsigned ms = 5000;
1829         if (1 == argc)
1830         {
1831                 int retval = parse_uint(args[0], &ms);
1832                 if (ERROR_OK != retval)
1833                 {
1834                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1835                         return ERROR_COMMAND_SYNTAX_ERROR;
1836                 }
1837                 // convert seconds (given) to milliseconds (needed)
1838                 ms *= 1000;
1839         }
1840
1841         target_t *target = get_current_target(cmd_ctx);
1842         return target_wait_state(target, TARGET_HALTED, ms);
1843 }
1844
1845 /* wait for target state to change. The trick here is to have a low
1846  * latency for short waits and not to suck up all the CPU time
1847  * on longer waits.
1848  *
1849  * After 500ms, keep_alive() is invoked
1850  */
1851 int target_wait_state(target_t *target, enum target_state state, int ms)
1852 {
1853         int retval;
1854         long long then=0, cur;
1855         int once=1;
1856
1857         for (;;)
1858         {
1859                 if ((retval=target_poll(target))!=ERROR_OK)
1860                         return retval;
1861                 if (target->state == state)
1862                 {
1863                         break;
1864                 }
1865                 cur = timeval_ms();
1866                 if (once)
1867                 {
1868                         once=0;
1869                         then = timeval_ms();
1870                         LOG_DEBUG("waiting for target %s...",
1871                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1872                 }
1873
1874                 if (cur-then>500)
1875                 {
1876                         keep_alive();
1877                 }
1878
1879                 if ((cur-then)>ms)
1880                 {
1881                         LOG_ERROR("timed out while waiting for target %s",
1882                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1883                         return ERROR_FAIL;
1884                 }
1885         }
1886
1887         return ERROR_OK;
1888 }
1889
1890 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1891 {
1892         LOG_DEBUG("-");
1893
1894         target_t *target = get_current_target(cmd_ctx);
1895         int retval = target_halt(target);
1896         if (ERROR_OK != retval)
1897                 return retval;
1898
1899         if (argc == 1)
1900         {
1901                 unsigned wait;
1902                 retval = parse_uint(args[0], &wait);
1903                 if (ERROR_OK != retval)
1904                         return ERROR_COMMAND_SYNTAX_ERROR;
1905                 if (!wait)
1906                         return ERROR_OK;
1907         }
1908
1909         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1910 }
1911
1912 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1913 {
1914         target_t *target = get_current_target(cmd_ctx);
1915
1916         LOG_USER("requesting target halt and executing a soft reset");
1917
1918         target->type->soft_reset_halt(target);
1919
1920         return ERROR_OK;
1921 }
1922
1923 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1924 {
1925         if (argc > 1)
1926                 return ERROR_COMMAND_SYNTAX_ERROR;
1927
1928         enum target_reset_mode reset_mode = RESET_RUN;
1929         if (argc == 1)
1930         {
1931                 const Jim_Nvp *n;
1932                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1933                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1934                         return ERROR_COMMAND_SYNTAX_ERROR;
1935                 }
1936                 reset_mode = n->value;
1937         }
1938
1939         /* reset *all* targets */
1940         return target_process_reset(cmd_ctx, reset_mode);
1941 }
1942
1943
1944 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1945 {
1946         if (argc > 1)
1947                 return ERROR_COMMAND_SYNTAX_ERROR;
1948
1949         target_t *target = get_current_target(cmd_ctx);
1950         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
1951
1952         /* with no args, resume from current pc, addr = 0,
1953          * with one arguments, addr = args[0],
1954          * handle breakpoints, not debugging */
1955         u32 addr = 0;
1956         if (argc == 1)
1957         {
1958                 int retval = parse_u32(args[0], &addr);
1959                 if (ERROR_OK != retval)
1960                         return retval;
1961         }
1962
1963         return target_resume(target, 0, addr, 1, 0);
1964 }
1965
1966 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1967 {
1968         if (argc > 1)
1969                 return ERROR_COMMAND_SYNTAX_ERROR;
1970
1971         LOG_DEBUG("-");
1972
1973         /* with no args, step from current pc, addr = 0,
1974          * with one argument addr = args[0],
1975          * handle breakpoints, debugging */
1976         u32 addr = 0;
1977         if (argc == 1)
1978         {
1979                 int retval = parse_u32(args[0], &addr);
1980                 if (ERROR_OK != retval)
1981                         return retval;
1982         }
1983
1984         target_t *target = get_current_target(cmd_ctx);
1985         return target->type->step(target, 0, addr, 1);
1986 }
1987
1988 static void handle_md_output(struct command_context_s *cmd_ctx,
1989                 struct target_s *target, u32 address, unsigned size,
1990                 unsigned count, const u8 *buffer)
1991 {
1992         const unsigned line_bytecnt = 32;
1993         unsigned line_modulo = line_bytecnt / size;
1994
1995         char output[line_bytecnt * 4 + 1];
1996         unsigned output_len = 0;
1997
1998         const char *value_fmt;
1999         switch (size) {
2000         case 4: value_fmt = "%8.8x "; break;
2001         case 2: value_fmt = "%4.2x "; break;
2002         case 1: value_fmt = "%2.2x "; break;
2003         default:
2004                 LOG_ERROR("invalid memory read size: %u", size);
2005                 exit(-1);
2006         }
2007
2008         for (unsigned i = 0; i < count; i++)
2009         {
2010                 if (i % line_modulo == 0)
2011                 {
2012                         output_len += snprintf(output + output_len,
2013                                         sizeof(output) - output_len,
2014                                         "0x%8.8x: ", address + (i*size));
2015                 }
2016
2017                 u32 value=0;
2018                 const u8 *value_ptr = buffer + i * size;
2019                 switch (size) {
2020                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2021                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2022                 case 1: value = *value_ptr;
2023                 }
2024                 output_len += snprintf(output + output_len,
2025                                 sizeof(output) - output_len,
2026                                 value_fmt, value);
2027
2028                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2029                 {
2030                         command_print(cmd_ctx, "%s", output);
2031                         output_len = 0;
2032                 }
2033         }
2034 }
2035
2036 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2037 {
2038         if (argc < 1)
2039                 return ERROR_COMMAND_SYNTAX_ERROR;
2040
2041         unsigned size = 0;
2042         switch (cmd[2]) {
2043         case 'w': size = 4; break;
2044         case 'h': size = 2; break;
2045         case 'b': size = 1; break;
2046         default: return ERROR_COMMAND_SYNTAX_ERROR;
2047         }
2048
2049         u32 address;
2050         int retval = parse_u32(args[0], &address);
2051         if (ERROR_OK != retval)
2052                 return retval;
2053
2054         unsigned count = 1;
2055         if (argc == 2)
2056         {
2057                 retval = parse_uint(args[1], &count);
2058                 if (ERROR_OK != retval)
2059                         return retval;
2060         }
2061
2062         u8 *buffer = calloc(count, size);
2063
2064         target_t *target = get_current_target(cmd_ctx);
2065         retval = target_read_memory(target,
2066                                 address, size, count, buffer);
2067         if (ERROR_OK == retval)
2068                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2069
2070         free(buffer);
2071
2072         return retval;
2073 }
2074
2075 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2076 {
2077          if ((argc < 2) || (argc > 3))
2078                 return ERROR_COMMAND_SYNTAX_ERROR;
2079
2080         u32 address;
2081         int retval = parse_u32(args[0], &address);
2082         if (ERROR_OK != retval)
2083                 return retval;
2084
2085         u32 value;
2086         retval = parse_u32(args[1], &value);
2087         if (ERROR_OK != retval)
2088                 return retval;
2089
2090         unsigned count = 1;
2091         if (argc == 3)
2092         {
2093                 retval = parse_uint(args[2], &count);
2094                 if (ERROR_OK != retval)
2095                         return retval;
2096         }
2097
2098         target_t *target = get_current_target(cmd_ctx);
2099         unsigned wordsize;
2100         u8 value_buf[4];
2101         switch (cmd[2])
2102         {
2103                 case 'w':
2104                         wordsize = 4;
2105                         target_buffer_set_u32(target, value_buf, value);
2106                         break;
2107                 case 'h':
2108                         wordsize = 2;
2109                         target_buffer_set_u16(target, value_buf, value);
2110                         break;
2111                 case 'b':
2112                         wordsize = 1;
2113                         value_buf[0] = value;
2114                         break;
2115                 default:
2116                         return ERROR_COMMAND_SYNTAX_ERROR;
2117         }
2118         for (unsigned i = 0; i < count; i++)
2119         {
2120                 retval = target_write_memory(target,
2121                                 address + i * wordsize, wordsize, 1, value_buf);
2122                 if (ERROR_OK != retval)
2123                         return retval;
2124                 keep_alive();
2125         }
2126
2127         return ERROR_OK;
2128
2129 }
2130
2131 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2132 {
2133         u8 *buffer;
2134         u32 buf_cnt;
2135         u32 image_size;
2136         u32 min_address=0;
2137         u32 max_address=0xffffffff;
2138         int i;
2139         int retval, retvaltemp;
2140
2141         image_t image;
2142
2143         duration_t duration;
2144         char *duration_text;
2145
2146         target_t *target = get_current_target(cmd_ctx);
2147
2148         if ((argc < 1)||(argc > 5))
2149         {
2150                 return ERROR_COMMAND_SYNTAX_ERROR;
2151         }
2152
2153         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2154         if (argc >= 2)
2155         {
2156                 u32 addr;
2157                 retval = parse_u32(args[1], &addr);
2158                 if (ERROR_OK != retval)
2159                         return ERROR_COMMAND_SYNTAX_ERROR;
2160                 image.base_address = addr;
2161                 image.base_address_set = 1;
2162         }
2163         else
2164         {
2165                 image.base_address_set = 0;
2166         }
2167
2168
2169         image.start_address_set = 0;
2170
2171         if (argc>=4)
2172         {
2173                 retval = parse_u32(args[3], &min_address);
2174                 if (ERROR_OK != retval)
2175                         return ERROR_COMMAND_SYNTAX_ERROR;
2176         }
2177         if (argc>=5)
2178         {
2179                 retval = parse_u32(args[4], &max_address);
2180                 if (ERROR_OK != retval)
2181                         return ERROR_COMMAND_SYNTAX_ERROR;
2182                 // use size (given) to find max (required)
2183                 max_address += min_address;
2184         }
2185
2186         if (min_address>max_address)
2187         {
2188                 return ERROR_COMMAND_SYNTAX_ERROR;
2189         }
2190
2191         duration_start_measure(&duration);
2192
2193         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2194         {
2195                 return ERROR_OK;
2196         }
2197
2198         image_size = 0x0;
2199         retval = ERROR_OK;
2200         for (i = 0; i < image.num_sections; i++)
2201         {
2202                 buffer = malloc(image.sections[i].size);
2203                 if (buffer == NULL)
2204                 {
2205                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2206                         break;
2207                 }
2208
2209                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2210                 {
2211                         free(buffer);
2212                         break;
2213                 }
2214
2215                 u32 offset=0;
2216                 u32 length=buf_cnt;
2217
2218                 /* DANGER!!! beware of unsigned comparision here!!! */
2219
2220                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2221                                 (image.sections[i].base_address<max_address))
2222                 {
2223                         if (image.sections[i].base_address<min_address)
2224                         {
2225                                 /* clip addresses below */
2226                                 offset+=min_address-image.sections[i].base_address;
2227                                 length-=offset;
2228                         }
2229
2230                         if (image.sections[i].base_address+buf_cnt>max_address)
2231                         {
2232                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2233                         }
2234
2235                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2236                         {
2237                                 free(buffer);
2238                                 break;
2239                         }
2240                         image_size += length;
2241                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2242                 }
2243
2244                 free(buffer);
2245         }
2246
2247         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2248         {
2249                 image_close(&image);
2250                 return retvaltemp;
2251         }
2252
2253         if (retval==ERROR_OK)
2254         {
2255                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2256         }
2257         free(duration_text);
2258
2259         image_close(&image);
2260
2261         return retval;
2262
2263 }
2264
2265 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2266 {
2267         fileio_t fileio;
2268
2269         u8 buffer[560];
2270         int retvaltemp;
2271
2272         duration_t duration;
2273         char *duration_text;
2274
2275         target_t *target = get_current_target(cmd_ctx);
2276
2277         if (argc != 3)
2278         {
2279                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2280                 return ERROR_OK;
2281         }
2282
2283         u32 address;
2284         int retval = parse_u32(args[1], &address);
2285         if (ERROR_OK != retval)
2286                 return retval;
2287
2288         u32 size;
2289         retval = parse_u32(args[2], &size);
2290         if (ERROR_OK != retval)
2291                 return retval;
2292
2293         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2294         {
2295                 return ERROR_OK;
2296         }
2297
2298         duration_start_measure(&duration);
2299
2300         while (size > 0)
2301         {
2302                 u32 size_written;
2303                 u32 this_run_size = (size > 560) ? 560 : size;
2304
2305                 retval = target_read_buffer(target, address, this_run_size, buffer);
2306                 if (retval != ERROR_OK)
2307                 {
2308                         break;
2309                 }
2310
2311                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2312                 if (retval != ERROR_OK)
2313                 {
2314                         break;
2315                 }
2316
2317                 size -= this_run_size;
2318                 address += this_run_size;
2319         }
2320
2321         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2322                 return retvaltemp;
2323
2324         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2325                 return retvaltemp;
2326
2327         if (retval==ERROR_OK)
2328         {
2329                 command_print(cmd_ctx, "dumped %lld byte in %s",
2330                                 fileio.size, duration_text);
2331                 free(duration_text);
2332         }
2333
2334         return retval;
2335 }
2336
2337 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2338 {
2339         u8 *buffer;
2340         u32 buf_cnt;
2341         u32 image_size;
2342         int i;
2343         int retval, retvaltemp;
2344         u32 checksum = 0;
2345         u32 mem_checksum = 0;
2346
2347         image_t image;
2348
2349         duration_t duration;
2350         char *duration_text;
2351
2352         target_t *target = get_current_target(cmd_ctx);
2353
2354         if (argc < 1)
2355         {
2356                 return ERROR_COMMAND_SYNTAX_ERROR;
2357         }
2358
2359         if (!target)
2360         {
2361                 LOG_ERROR("no target selected");
2362                 return ERROR_FAIL;
2363         }
2364
2365         duration_start_measure(&duration);
2366
2367         if (argc >= 2)
2368         {
2369                 u32 addr;
2370                 retval = parse_u32(args[1], &addr);
2371                 if (ERROR_OK != retval)
2372                         return ERROR_COMMAND_SYNTAX_ERROR;
2373                 image.base_address = addr;
2374                 image.base_address_set = 1;
2375         }
2376         else
2377         {
2378                 image.base_address_set = 0;
2379                 image.base_address = 0x0;
2380         }
2381
2382         image.start_address_set = 0;
2383
2384         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2385         {
2386                 return retval;
2387         }
2388
2389         image_size = 0x0;
2390         retval=ERROR_OK;
2391         for (i = 0; i < image.num_sections; i++)
2392         {
2393                 buffer = malloc(image.sections[i].size);
2394                 if (buffer == NULL)
2395                 {
2396                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2397                         break;
2398                 }
2399                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2400                 {
2401                         free(buffer);
2402                         break;
2403                 }
2404
2405                 if (verify)
2406                 {
2407                         /* calculate checksum of image */
2408                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2409
2410                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2411                         if( retval != ERROR_OK )
2412                         {
2413                                 free(buffer);
2414                                 break;
2415                         }
2416
2417                         if( checksum != mem_checksum )
2418                         {
2419                                 /* failed crc checksum, fall back to a binary compare */
2420                                 u8 *data;
2421
2422                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2423
2424                                 data = (u8*)malloc(buf_cnt);
2425
2426                                 /* Can we use 32bit word accesses? */
2427                                 int size = 1;
2428                                 int count = buf_cnt;
2429                                 if ((count % 4) == 0)
2430                                 {
2431                                         size *= 4;
2432                                         count /= 4;
2433                                 }
2434                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2435                                 if (retval == ERROR_OK)
2436                                 {
2437                                         u32 t;
2438                                         for (t = 0; t < buf_cnt; t++)
2439                                         {
2440                                                 if (data[t] != buffer[t])
2441                                                 {
2442                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2443                                                         free(data);
2444                                                         free(buffer);
2445                                                         retval=ERROR_FAIL;
2446                                                         goto done;
2447                                                 }
2448                                                 if ((t%16384)==0)
2449                                                 {
2450                                                         keep_alive();
2451                                                 }
2452                                         }
2453                                 }
2454
2455                                 free(data);
2456                         }
2457                 } else
2458                 {
2459                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2460                 }
2461
2462                 free(buffer);
2463                 image_size += buf_cnt;
2464         }
2465 done:
2466
2467         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2468         {
2469                 image_close(&image);
2470                 return retvaltemp;
2471         }
2472
2473         if (retval==ERROR_OK)
2474         {
2475                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2476         }
2477         free(duration_text);
2478
2479         image_close(&image);
2480
2481         return retval;
2482 }
2483
2484 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2485 {
2486         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2487 }
2488
2489 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2490 {
2491         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2492 }
2493
2494 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2495 {
2496         target_t *target = get_current_target(cmd_ctx);
2497         breakpoint_t *breakpoint = target->breakpoints;
2498         while (breakpoint)
2499         {
2500                 if (breakpoint->type == BKPT_SOFT)
2501                 {
2502                         char* buf = buf_to_str(breakpoint->orig_instr,
2503                                         breakpoint->length, 16);
2504                         command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s",
2505                                         breakpoint->address, breakpoint->length,
2506                                         breakpoint->set, buf);
2507                         free(buf);
2508                 }
2509                 else
2510                 {
2511                         command_print(cmd_ctx, "0x%8.8x, 0x%x, %i",
2512                                         breakpoint->address, breakpoint->length, breakpoint->set);
2513                 }
2514
2515                 breakpoint = breakpoint->next;
2516         }
2517         return ERROR_OK;
2518 }
2519
2520 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2521                 u32 addr, u32 length, int hw)
2522 {
2523         target_t *target = get_current_target(cmd_ctx);
2524         int retval = breakpoint_add(target, addr, length, hw);
2525         if (ERROR_OK == retval)
2526                 command_print(cmd_ctx, "breakpoint set at 0x%8.8x", addr);
2527         else
2528                 LOG_ERROR("Failure setting breakpoint");
2529         return retval;
2530 }
2531
2532 static int handle_bp_command(struct command_context_s *cmd_ctx,
2533                 char *cmd, char **args, int argc)
2534 {
2535         if (argc == 0)
2536                 return handle_bp_command_list(cmd_ctx);
2537
2538         if (argc < 2 || argc > 3)
2539         {
2540                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2541                 return ERROR_COMMAND_SYNTAX_ERROR;
2542         }
2543
2544         u32 addr;
2545         int retval = parse_u32(args[0], &addr);
2546         if (ERROR_OK != retval)
2547                 return retval;
2548
2549         u32 length;
2550         retval = parse_u32(args[1], &length);
2551         if (ERROR_OK != retval)
2552                 return retval;
2553
2554         int hw = BKPT_SOFT;
2555         if (argc == 3)
2556         {
2557                 if (strcmp(args[2], "hw") == 0)
2558                         hw = BKPT_HARD;
2559                 else
2560                         return ERROR_COMMAND_SYNTAX_ERROR;
2561         }
2562
2563         return handle_bp_command_set(cmd_ctx, addr, length, hw);
2564 }
2565
2566 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2567 {
2568         if (argc != 1)
2569                 return ERROR_COMMAND_SYNTAX_ERROR;
2570
2571         u32 addr;
2572         int retval = parse_u32(args[0], &addr);
2573         if (ERROR_OK != retval)
2574                 return retval;
2575
2576         target_t *target = get_current_target(cmd_ctx);
2577         breakpoint_remove(target, addr);
2578
2579         return ERROR_OK;
2580 }
2581
2582 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2583 {
2584         target_t *target = get_current_target(cmd_ctx);
2585
2586         if (argc == 0)
2587         {
2588                 watchpoint_t *watchpoint = target->watchpoints;
2589
2590                 while (watchpoint)
2591                 {
2592                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2593                         watchpoint = watchpoint->next;
2594                 }
2595                 return ERROR_OK;
2596         }
2597
2598         enum watchpoint_rw type = WPT_ACCESS;
2599         u32 addr = 0;
2600         u32 length = 0;
2601         u32 data_value = 0x0;
2602         u32 data_mask = 0xffffffff;
2603         int retval;
2604
2605         switch (argc)
2606         {
2607         case 5:
2608                 retval = parse_u32(args[4], &data_mask);
2609                 if (ERROR_OK != retval)
2610                         return retval;
2611                 // fall through
2612         case 4:
2613                 retval = parse_u32(args[3], &data_value);
2614                 if (ERROR_OK != retval)
2615                         return retval;
2616                 // fall through
2617         case 3:
2618                 switch(args[2][0])
2619                 {
2620                 case 'r':
2621                         type = WPT_READ;
2622                         break;
2623                 case 'w':
2624                         type = WPT_WRITE;
2625                         break;
2626                 case 'a':
2627                         type = WPT_ACCESS;
2628                         break;
2629                 default:
2630                         LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]);
2631                         return ERROR_COMMAND_SYNTAX_ERROR;
2632                 }
2633                 // fall through
2634         case 2:
2635                 retval = parse_u32(args[1], &length);
2636                 if (ERROR_OK != retval)
2637                         return retval;
2638                 retval = parse_u32(args[0], &addr);
2639                 if (ERROR_OK != retval)
2640                         return retval;
2641                 break;
2642
2643         default:
2644                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2645                 return ERROR_COMMAND_SYNTAX_ERROR;
2646         }
2647
2648         retval = watchpoint_add(target, addr, length, type,
2649                         data_value, data_mask);
2650         if (ERROR_OK != retval)
2651                 LOG_ERROR("Failure setting watchpoints");
2652
2653         return retval;
2654 }
2655
2656 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2657 {
2658         if (argc != 1)
2659                 return ERROR_COMMAND_SYNTAX_ERROR;
2660
2661         u32 addr;
2662         int retval = parse_u32(args[0], &addr);
2663         if (ERROR_OK != retval)
2664                 return retval;
2665
2666         target_t *target = get_current_target(cmd_ctx);
2667         watchpoint_remove(target, addr);
2668
2669         return ERROR_OK;
2670 }
2671
2672
2673 /**
2674  * Translate a virtual address to a physical address.
2675  *
2676  * The low-level target implementation must have logged a detailed error
2677  * which is forwarded to telnet/GDB session.
2678  */
2679 static int handle_virt2phys_command(command_context_t *cmd_ctx,
2680                 char *cmd, char **args, int argc)
2681 {
2682         if (argc != 1)
2683                 return ERROR_COMMAND_SYNTAX_ERROR;
2684
2685         u32 va;
2686         int retval = parse_u32(args[0], &va);
2687         if (ERROR_OK != retval)
2688                 return retval;
2689         u32 pa;
2690
2691         target_t *target = get_current_target(cmd_ctx);
2692         retval = target->type->virt2phys(target, va, &pa);
2693         if (retval == ERROR_OK)
2694                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2695
2696         return retval;
2697 }
2698
2699 static void writeData(FILE *f, const void *data, size_t len)
2700 {
2701         size_t written = fwrite(data, 1, len, f);
2702         if (written != len)
2703                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2704 }
2705
2706 static void writeLong(FILE *f, int l)
2707 {
2708         int i;
2709         for (i=0; i<4; i++)
2710         {
2711                 char c=(l>>(i*8))&0xff;
2712                 writeData(f, &c, 1);
2713         }
2714
2715 }
2716
2717 static void writeString(FILE *f, char *s)
2718 {
2719         writeData(f, s, strlen(s));
2720 }
2721
2722 /* Dump a gmon.out histogram file. */
2723 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2724 {
2725         u32 i;
2726         FILE *f=fopen(filename, "w");
2727         if (f==NULL)
2728                 return;
2729         writeString(f, "gmon");
2730         writeLong(f, 0x00000001); /* Version */
2731         writeLong(f, 0); /* padding */
2732         writeLong(f, 0); /* padding */
2733         writeLong(f, 0); /* padding */
2734
2735         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2736         writeData(f, &zero, 1);
2737
2738         /* figure out bucket size */
2739         u32 min=samples[0];
2740         u32 max=samples[0];
2741         for (i=0; i<sampleNum; i++)
2742         {
2743                 if (min>samples[i])
2744                 {
2745                         min=samples[i];
2746                 }
2747                 if (max<samples[i])
2748                 {
2749                         max=samples[i];
2750                 }
2751         }
2752
2753         int addressSpace=(max-min+1);
2754
2755         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2756         u32 length = addressSpace;
2757         if (length > maxBuckets)
2758         {
2759                 length=maxBuckets;
2760         }
2761         int *buckets=malloc(sizeof(int)*length);
2762         if (buckets==NULL)
2763         {
2764                 fclose(f);
2765                 return;
2766         }
2767         memset(buckets, 0, sizeof(int)*length);
2768         for (i=0; i<sampleNum;i++)
2769         {
2770                 u32 address=samples[i];
2771                 long long a=address-min;
2772                 long long b=length-1;
2773                 long long c=addressSpace-1;
2774                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2775                 buckets[index]++;
2776         }
2777
2778         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2779         writeLong(f, min);                      /* low_pc */
2780         writeLong(f, max);                      /* high_pc */
2781         writeLong(f, length);           /* # of samples */
2782         writeLong(f, 64000000);         /* 64MHz */
2783         writeString(f, "seconds");
2784         for (i=0; i<(15-strlen("seconds")); i++)
2785                 writeData(f, &zero, 1);
2786         writeString(f, "s");
2787
2788         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2789
2790         char *data=malloc(2*length);
2791         if (data!=NULL)
2792         {
2793                 for (i=0; i<length;i++)
2794                 {
2795                         int val;
2796                         val=buckets[i];
2797                         if (val>65535)
2798                         {
2799                                 val=65535;
2800                         }
2801                         data[i*2]=val&0xff;
2802                         data[i*2+1]=(val>>8)&0xff;
2803                 }
2804                 free(buckets);
2805                 writeData(f, data, length * 2);
2806                 free(data);
2807         } else
2808         {
2809                 free(buckets);
2810         }
2811
2812         fclose(f);
2813 }
2814
2815 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2816 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2817 {
2818         target_t *target = get_current_target(cmd_ctx);
2819         struct timeval timeout, now;
2820
2821         gettimeofday(&timeout, NULL);
2822         if (argc!=2)
2823         {
2824                 return ERROR_COMMAND_SYNTAX_ERROR;
2825         }
2826         unsigned offset;
2827         int retval = parse_uint(args[0], &offset);
2828         if (ERROR_OK != retval)
2829                 return retval;
2830
2831         timeval_add_time(&timeout, offset, 0);
2832
2833         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2834
2835         static const int maxSample=10000;
2836         u32 *samples=malloc(sizeof(u32)*maxSample);
2837         if (samples==NULL)
2838                 return ERROR_OK;
2839
2840         int numSamples=0;
2841         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2842         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2843
2844         for (;;)
2845         {
2846                 target_poll(target);
2847                 if (target->state == TARGET_HALTED)
2848                 {
2849                         u32 t=*((u32 *)reg->value);
2850                         samples[numSamples++]=t;
2851                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2852                         target_poll(target);
2853                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2854                 } else if (target->state == TARGET_RUNNING)
2855                 {
2856                         /* We want to quickly sample the PC. */
2857                         if((retval = target_halt(target)) != ERROR_OK)
2858                         {
2859                                 free(samples);
2860                                 return retval;
2861                         }
2862                 } else
2863                 {
2864                         command_print(cmd_ctx, "Target not halted or running");
2865                         retval=ERROR_OK;
2866                         break;
2867                 }
2868                 if (retval!=ERROR_OK)
2869                 {
2870                         break;
2871                 }
2872
2873                 gettimeofday(&now, NULL);
2874                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2875                 {
2876                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2877                         if((retval = target_poll(target)) != ERROR_OK)
2878                         {
2879                                 free(samples);
2880                                 return retval;
2881                         }
2882                         if (target->state == TARGET_HALTED)
2883                         {
2884                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2885                         }
2886                         if((retval = target_poll(target)) != ERROR_OK)
2887                         {
2888                                 free(samples);
2889                                 return retval;
2890                         }
2891                         writeGmon(samples, numSamples, args[1]);
2892                         command_print(cmd_ctx, "Wrote %s", args[1]);
2893                         break;
2894                 }
2895         }
2896         free(samples);
2897
2898         return ERROR_OK;
2899 }
2900
2901 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2902 {
2903         char *namebuf;
2904         Jim_Obj *nameObjPtr, *valObjPtr;
2905         int result;
2906
2907         namebuf = alloc_printf("%s(%d)", varname, idx);
2908         if (!namebuf)
2909                 return JIM_ERR;
2910
2911         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2912         valObjPtr = Jim_NewIntObj(interp, val);
2913         if (!nameObjPtr || !valObjPtr)
2914         {
2915                 free(namebuf);
2916                 return JIM_ERR;
2917         }
2918
2919         Jim_IncrRefCount(nameObjPtr);
2920         Jim_IncrRefCount(valObjPtr);
2921         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2922         Jim_DecrRefCount(interp, nameObjPtr);
2923         Jim_DecrRefCount(interp, valObjPtr);
2924         free(namebuf);
2925         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2926         return result;
2927 }
2928
2929 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2930 {
2931         command_context_t *context;
2932         target_t *target;
2933
2934         context = Jim_GetAssocData(interp, "context");
2935         if (context == NULL)
2936         {
2937                 LOG_ERROR("mem2array: no command context");
2938                 return JIM_ERR;
2939         }
2940         target = get_current_target(context);
2941         if (target == NULL)
2942         {
2943                 LOG_ERROR("mem2array: no current target");
2944                 return JIM_ERR;
2945         }
2946
2947         return  target_mem2array(interp, target, argc-1, argv+1);
2948 }
2949
2950 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2951 {
2952         long l;
2953         u32 width;
2954         int len;
2955         u32 addr;
2956         u32 count;
2957         u32 v;
2958         const char *varname;
2959         u8 buffer[4096];
2960         int  n, e, retval;
2961         u32 i;
2962
2963         /* argv[1] = name of array to receive the data
2964          * argv[2] = desired width
2965          * argv[3] = memory address
2966          * argv[4] = count of times to read
2967          */
2968         if (argc != 4) {
2969                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2970                 return JIM_ERR;
2971         }
2972         varname = Jim_GetString(argv[0], &len);
2973         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2974
2975         e = Jim_GetLong(interp, argv[1], &l);
2976         width = l;
2977         if (e != JIM_OK) {
2978                 return e;
2979         }
2980
2981         e = Jim_GetLong(interp, argv[2], &l);
2982         addr = l;
2983         if (e != JIM_OK) {
2984                 return e;
2985         }
2986         e = Jim_GetLong(interp, argv[3], &l);
2987         len = l;
2988         if (e != JIM_OK) {
2989                 return e;
2990         }
2991         switch (width) {
2992                 case 8:
2993                         width = 1;
2994                         break;
2995                 case 16:
2996                         width = 2;
2997                         break;
2998                 case 32:
2999                         width = 4;
3000                         break;
3001                 default:
3002                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3003                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3004                         return JIM_ERR;
3005         }
3006         if (len == 0) {
3007                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3008                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3009                 return JIM_ERR;
3010         }
3011         if ((addr + (len * width)) < addr) {
3012                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3013                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3014                 return JIM_ERR;
3015         }
3016         /* absurd transfer size? */
3017         if (len > 65536) {
3018                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3019                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3020                 return JIM_ERR;
3021         }
3022
3023         if ((width == 1) ||
3024                 ((width == 2) && ((addr & 1) == 0)) ||
3025                 ((width == 4) && ((addr & 3) == 0))) {
3026                 /* all is well */
3027         } else {
3028                 char buf[100];
3029                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3030                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
3031                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3032                 return JIM_ERR;
3033         }
3034
3035         /* Transfer loop */
3036
3037         /* index counter */
3038         n = 0;
3039         /* assume ok */
3040         e = JIM_OK;
3041         while (len) {
3042                 /* Slurp... in buffer size chunks */
3043
3044                 count = len; /* in objects.. */
3045                 if (count > (sizeof(buffer)/width)) {
3046                         count = (sizeof(buffer)/width);
3047                 }
3048
3049                 retval = target_read_memory( target, addr, width, count, buffer );
3050                 if (retval != ERROR_OK) {
3051                         /* BOO !*/
3052                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3053                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3054                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3055                         e = JIM_ERR;
3056                         len = 0;
3057                 } else {
3058                         v = 0; /* shut up gcc */
3059                         for (i = 0 ;i < count ;i++, n++) {
3060                                 switch (width) {
3061                                         case 4:
3062                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3063                                                 break;
3064                                         case 2:
3065                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3066                                                 break;
3067                                         case 1:
3068                                                 v = buffer[i] & 0x0ff;
3069                                                 break;
3070                                 }
3071                                 new_int_array_element(interp, varname, n, v);
3072                         }
3073                         len -= count;
3074                 }
3075         }
3076
3077         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3078
3079         return JIM_OK;
3080 }
3081
3082 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
3083 {
3084         char *namebuf;
3085         Jim_Obj *nameObjPtr, *valObjPtr;
3086         int result;
3087         long l;
3088
3089         namebuf = alloc_printf("%s(%d)", varname, idx);
3090         if (!namebuf)
3091                 return JIM_ERR;
3092
3093         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3094         if (!nameObjPtr)
3095         {
3096                 free(namebuf);
3097                 return JIM_ERR;
3098         }
3099
3100         Jim_IncrRefCount(nameObjPtr);
3101         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3102         Jim_DecrRefCount(interp, nameObjPtr);
3103         free(namebuf);
3104         if (valObjPtr == NULL)
3105                 return JIM_ERR;
3106
3107         result = Jim_GetLong(interp, valObjPtr, &l);
3108         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3109         *val = l;
3110         return result;
3111 }
3112
3113 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3114 {
3115         command_context_t *context;
3116         target_t *target;
3117
3118         context = Jim_GetAssocData(interp, "context");
3119         if (context == NULL){
3120                 LOG_ERROR("array2mem: no command context");
3121                 return JIM_ERR;
3122         }
3123         target = get_current_target(context);
3124         if (target == NULL){
3125                 LOG_ERROR("array2mem: no current target");
3126                 return JIM_ERR;
3127         }
3128
3129         return target_array2mem( interp,target, argc-1, argv+1 );
3130 }
3131
3132 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3133 {
3134         long l;
3135         u32 width;
3136         int len;
3137         u32 addr;
3138         u32 count;
3139         u32 v;
3140         const char *varname;
3141         u8 buffer[4096];
3142         int  n, e, retval;
3143         u32 i;
3144
3145         /* argv[1] = name of array to get the data
3146          * argv[2] = desired width
3147          * argv[3] = memory address
3148          * argv[4] = count to write
3149          */
3150         if (argc != 4) {
3151                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3152                 return JIM_ERR;
3153         }
3154         varname = Jim_GetString(argv[0], &len);
3155         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3156
3157         e = Jim_GetLong(interp, argv[1], &l);
3158         width = l;
3159         if (e != JIM_OK) {
3160                 return e;
3161         }
3162
3163         e = Jim_GetLong(interp, argv[2], &l);
3164         addr = l;
3165         if (e != JIM_OK) {
3166                 return e;
3167         }
3168         e = Jim_GetLong(interp, argv[3], &l);
3169         len = l;
3170         if (e != JIM_OK) {
3171                 return e;
3172         }
3173         switch (width) {
3174                 case 8:
3175                         width = 1;
3176                         break;
3177                 case 16:
3178                         width = 2;
3179                         break;
3180                 case 32:
3181                         width = 4;
3182                         break;
3183                 default:
3184                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3185                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3186                         return JIM_ERR;
3187         }
3188         if (len == 0) {
3189                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3190                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3191                 return JIM_ERR;
3192         }
3193         if ((addr + (len * width)) < addr) {
3194                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3195                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3196                 return JIM_ERR;
3197         }
3198         /* absurd transfer size? */
3199         if (len > 65536) {
3200                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3201                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3202                 return JIM_ERR;
3203         }
3204
3205         if ((width == 1) ||
3206                 ((width == 2) && ((addr & 1) == 0)) ||
3207                 ((width == 4) && ((addr & 3) == 0))) {
3208                 /* all is well */
3209         } else {
3210                 char buf[100];
3211                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3212                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3213                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3214                 return JIM_ERR;
3215         }
3216
3217         /* Transfer loop */
3218
3219         /* index counter */
3220         n = 0;
3221         /* assume ok */
3222         e = JIM_OK;
3223         while (len) {
3224                 /* Slurp... in buffer size chunks */
3225
3226                 count = len; /* in objects.. */
3227                 if (count > (sizeof(buffer)/width)) {
3228                         count = (sizeof(buffer)/width);
3229                 }
3230
3231                 v = 0; /* shut up gcc */
3232                 for (i = 0 ;i < count ;i++, n++) {
3233                         get_int_array_element(interp, varname, n, &v);
3234                         switch (width) {
3235                         case 4:
3236                                 target_buffer_set_u32(target, &buffer[i*width], v);
3237                                 break;
3238                         case 2:
3239                                 target_buffer_set_u16(target, &buffer[i*width], v);
3240                                 break;
3241                         case 1:
3242                                 buffer[i] = v & 0x0ff;
3243                                 break;
3244                         }
3245                 }
3246                 len -= count;
3247
3248                 retval = target_write_memory(target, addr, width, count, buffer);
3249                 if (retval != ERROR_OK) {
3250                         /* BOO !*/
3251                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3252                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3253                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3254                         e = JIM_ERR;
3255                         len = 0;
3256                 }
3257         }
3258
3259         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3260
3261         return JIM_OK;
3262 }
3263
3264 void target_all_handle_event( enum target_event e )
3265 {
3266         target_t *target;
3267
3268         LOG_DEBUG( "**all*targets: event: %d, %s",
3269                         e,
3270                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3271
3272         target = all_targets;
3273         while (target){
3274                 target_handle_event( target, e );
3275                 target = target->next;
3276         }
3277 }
3278
3279 void target_handle_event( target_t *target, enum target_event e )
3280 {
3281         target_event_action_t *teap;
3282         int done;
3283
3284         teap = target->event_action;
3285
3286         done = 0;
3287         while( teap ){
3288                 if( teap->event == e ){
3289                         done = 1;
3290                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3291                                            target->target_number,
3292                                            target->cmd_name,
3293                                            target_get_name(target),
3294                                            e,
3295                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3296                                            Jim_GetString( teap->body, NULL ) );
3297                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3298                         {
3299                                 Jim_PrintErrorMessage(interp);
3300                         }
3301                 }
3302                 teap = teap->next;
3303         }
3304         if( !done ){
3305                 LOG_DEBUG( "event: %d %s - no action",
3306                                    e,
3307                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3308         }
3309 }
3310
3311 enum target_cfg_param {
3312         TCFG_TYPE,
3313         TCFG_EVENT,
3314         TCFG_WORK_AREA_VIRT,
3315         TCFG_WORK_AREA_PHYS,
3316         TCFG_WORK_AREA_SIZE,
3317         TCFG_WORK_AREA_BACKUP,
3318         TCFG_ENDIAN,
3319         TCFG_VARIANT,
3320         TCFG_CHAIN_POSITION,
3321 };
3322
3323 static Jim_Nvp nvp_config_opts[] = {
3324         { .name = "-type",             .value = TCFG_TYPE },
3325         { .name = "-event",            .value = TCFG_EVENT },
3326         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3327         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3328         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3329         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3330         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3331         { .name = "-variant",          .value = TCFG_VARIANT },
3332         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3333
3334         { .name = NULL, .value = -1 }
3335 };
3336
3337 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3338 {
3339         Jim_Nvp *n;
3340         Jim_Obj *o;
3341         jim_wide w;
3342         char *cp;
3343         int e;
3344
3345         /* parse config or cget options ... */
3346         while( goi->argc > 0 ){
3347                 Jim_SetEmptyResult( goi->interp );
3348                 /* Jim_GetOpt_Debug( goi ); */
3349
3350                 if( target->type->target_jim_configure ){
3351                         /* target defines a configure function */
3352                         /* target gets first dibs on parameters */
3353                         e = (*(target->type->target_jim_configure))( target, goi );
3354                         if( e == JIM_OK ){
3355                                 /* more? */
3356                                 continue;
3357                         }
3358                         if( e == JIM_ERR ){
3359                                 /* An error */
3360                                 return e;
3361                         }
3362                         /* otherwise we 'continue' below */
3363                 }
3364                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3365                 if( e != JIM_OK ){
3366                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3367                         return e;
3368                 }
3369                 switch( n->value ){
3370                 case TCFG_TYPE:
3371                         /* not setable */
3372                         if( goi->isconfigure ){
3373                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3374                                 return JIM_ERR;
3375                         } else {
3376                         no_params:
3377                                 if( goi->argc != 0 ){
3378                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3379                                         return JIM_ERR;
3380                                 }
3381                         }
3382                         Jim_SetResultString( goi->interp, target_get_name(target), -1 );
3383                         /* loop for more */
3384                         break;
3385                 case TCFG_EVENT:
3386                         if( goi->argc == 0 ){
3387                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3388                                 return JIM_ERR;
3389                         }
3390
3391                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3392                         if( e != JIM_OK ){
3393                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3394                                 return e;
3395                         }
3396
3397                         if( goi->isconfigure ){
3398                                 if( goi->argc != 1 ){
3399                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3400                                         return JIM_ERR;
3401                                 }
3402                         } else {
3403                                 if( goi->argc != 0 ){
3404                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3405                                         return JIM_ERR;
3406                                 }
3407                         }
3408
3409                         {
3410                                 target_event_action_t *teap;
3411
3412                                 teap = target->event_action;
3413                                 /* replace existing? */
3414                                 while( teap ){
3415                                         if( teap->event == (enum target_event)n->value ){
3416                                                 break;
3417                                         }
3418                                         teap = teap->next;
3419                                 }
3420
3421                                 if( goi->isconfigure ){
3422                                         if( teap == NULL ){
3423                                                 /* create new */
3424                                                 teap = calloc( 1, sizeof(*teap) );
3425                                         }
3426                                         teap->event = n->value;
3427                                         Jim_GetOpt_Obj( goi, &o );
3428                                         if( teap->body ){
3429                                                 Jim_DecrRefCount( interp, teap->body );
3430                                         }
3431                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3432                                         /*
3433                                          * FIXME:
3434                                          *     Tcl/TK - "tk events" have a nice feature.
3435                                          *     See the "BIND" command.
3436                                          *    We should support that here.
3437                                          *     You can specify %X and %Y in the event code.
3438                                          *     The idea is: %T - target name.
3439                                          *     The idea is: %N - target number
3440                                          *     The idea is: %E - event name.
3441                                          */
3442                                         Jim_IncrRefCount( teap->body );
3443
3444                                         /* add to head of event list */
3445                                         teap->next = target->event_action;
3446                                         target->event_action = teap;
3447                                         Jim_SetEmptyResult(goi->interp);
3448                                 } else {
3449                                         /* get */
3450                                         if( teap == NULL ){
3451                                                 Jim_SetEmptyResult( goi->interp );
3452                                         } else {
3453                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3454                                         }
3455                                 }
3456                         }
3457                         /* loop for more */
3458                         break;
3459
3460                 case TCFG_WORK_AREA_VIRT:
3461                         if( goi->isconfigure ){
3462                                 target_free_all_working_areas(target);
3463                                 e = Jim_GetOpt_Wide( goi, &w );
3464                                 if( e != JIM_OK ){
3465                                         return e;
3466                                 }
3467                                 target->working_area_virt = w;
3468                         } else {
3469                                 if( goi->argc != 0 ){
3470                                         goto no_params;
3471                                 }
3472                         }
3473                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3474                         /* loop for more */
3475                         break;
3476
3477                 case TCFG_WORK_AREA_PHYS:
3478                         if( goi->isconfigure ){
3479                                 target_free_all_working_areas(target);
3480                                 e = Jim_GetOpt_Wide( goi, &w );
3481                                 if( e != JIM_OK ){
3482                                         return e;
3483                                 }
3484                                 target->working_area_phys = w;
3485                         } else {
3486                                 if( goi->argc != 0 ){
3487                                         goto no_params;
3488                                 }
3489                         }
3490                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3491                         /* loop for more */
3492                         break;
3493
3494                 case TCFG_WORK_AREA_SIZE:
3495                         if( goi->isconfigure ){
3496                                 target_free_all_working_areas(target);
3497                                 e = Jim_GetOpt_Wide( goi, &w );
3498                                 if( e != JIM_OK ){
3499                                         return e;
3500                                 }
3501                                 target->working_area_size = w;
3502                         } else {
3503                                 if( goi->argc != 0 ){
3504                                         goto no_params;
3505                                 }
3506                         }
3507                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3508                         /* loop for more */
3509                         break;
3510
3511                 case TCFG_WORK_AREA_BACKUP:
3512                         if( goi->isconfigure ){
3513                                 target_free_all_working_areas(target);
3514                                 e = Jim_GetOpt_Wide( goi, &w );
3515                                 if( e != JIM_OK ){
3516                                         return e;
3517                                 }
3518                                 /* make this exactly 1 or 0 */
3519                                 target->backup_working_area = (!!w);
3520                         } else {
3521                                 if( goi->argc != 0 ){
3522                                         goto no_params;
3523                                 }
3524                         }
3525                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3526                         /* loop for more e*/
3527                         break;
3528
3529                 case TCFG_ENDIAN:
3530                         if( goi->isconfigure ){
3531                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3532                                 if( e != JIM_OK ){
3533                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3534                                         return e;
3535                                 }
3536                                 target->endianness = n->value;
3537                         } else {
3538                                 if( goi->argc != 0 ){
3539                                         goto no_params;
3540                                 }
3541                         }
3542                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3543                         if( n->name == NULL ){
3544                                 target->endianness = TARGET_LITTLE_ENDIAN;
3545                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3546                         }
3547                         Jim_SetResultString( goi->interp, n->name, -1 );
3548                         /* loop for more */
3549                         break;
3550
3551                 case TCFG_VARIANT:
3552                         if( goi->isconfigure ){
3553                                 if( goi->argc < 1 ){
3554                                         Jim_SetResult_sprintf( goi->interp,
3555                                                                                    "%s ?STRING?",
3556                                                                                    n->name );
3557                                         return JIM_ERR;
3558                                 }
3559                                 if( target->variant ){
3560                                         free((void *)(target->variant));
3561                                 }
3562                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3563                                 target->variant = strdup(cp);
3564                         } else {
3565                                 if( goi->argc != 0 ){
3566                                         goto no_params;
3567                                 }
3568                         }
3569                         Jim_SetResultString( goi->interp, target->variant,-1 );
3570                         /* loop for more */
3571                         break;
3572                 case TCFG_CHAIN_POSITION:
3573                         if( goi->isconfigure ){
3574                                 Jim_Obj *o;
3575                                 jtag_tap_t *tap;
3576                                 target_free_all_working_areas(target);
3577                                 e = Jim_GetOpt_Obj( goi, &o );
3578                                 if( e != JIM_OK ){
3579                                         return e;
3580                                 }
3581                                 tap = jtag_tap_by_jim_obj( goi->interp, o );
3582                                 if( tap == NULL ){
3583                                         return JIM_ERR;
3584                                 }
3585                                 /* make this exactly 1 or 0 */
3586                                 target->tap = tap;
3587                         } else {
3588                                 if( goi->argc != 0 ){
3589                                         goto no_params;
3590                                 }
3591                         }
3592                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3593                         /* loop for more e*/
3594                         break;
3595                 }
3596         } /* while( goi->argc ) */
3597
3598
3599                 /* done - we return */
3600         return JIM_OK;
3601 }
3602
3603 /** this is the 'tcl' handler for the target specific command */
3604 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3605 {
3606         Jim_GetOptInfo goi;
3607         jim_wide a,b,c;
3608         int x,y,z;
3609         u8  target_buf[32];
3610         Jim_Nvp *n;
3611         target_t *target;
3612         struct command_context_s *cmd_ctx;
3613         int e;
3614
3615         enum {
3616                 TS_CMD_CONFIGURE,
3617                 TS_CMD_CGET,
3618
3619                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3620                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3621                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3622                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3623                 TS_CMD_EXAMINE,
3624                 TS_CMD_POLL,
3625                 TS_CMD_RESET,
3626                 TS_CMD_HALT,
3627                 TS_CMD_WAITSTATE,
3628                 TS_CMD_EVENTLIST,
3629                 TS_CMD_CURSTATE,
3630                 TS_CMD_INVOKE_EVENT,
3631         };
3632
3633         static const Jim_Nvp target_options[] = {
3634                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3635                 { .name = "cget", .value = TS_CMD_CGET },
3636                 { .name = "mww", .value = TS_CMD_MWW },
3637                 { .name = "mwh", .value = TS_CMD_MWH },
3638                 { .name = "mwb", .value = TS_CMD_MWB },
3639                 { .name = "mdw", .value = TS_CMD_MDW },
3640                 { .name = "mdh", .value = TS_CMD_MDH },
3641                 { .name = "mdb", .value = TS_CMD_MDB },
3642                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3643                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3644                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3645                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3646
3647                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3648                 { .name = "arp_poll", .value = TS_CMD_POLL },
3649                 { .name = "arp_reset", .value = TS_CMD_RESET },
3650                 { .name = "arp_halt", .value = TS_CMD_HALT },
3651                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3652                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3653
3654                 { .name = NULL, .value = -1 },
3655         };
3656
3657         /* go past the "command" */
3658         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3659
3660         target = Jim_CmdPrivData( goi.interp );
3661         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3662
3663         /* commands here are in an NVP table */
3664         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3665         if( e != JIM_OK ){
3666                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3667                 return e;
3668         }
3669         /* Assume blank result */
3670         Jim_SetEmptyResult( goi.interp );
3671
3672         switch( n->value ){
3673         case TS_CMD_CONFIGURE:
3674                 if( goi.argc < 2 ){
3675                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3676                         return JIM_ERR;
3677                 }
3678                 goi.isconfigure = 1;
3679                 return target_configure( &goi, target );
3680         case TS_CMD_CGET:
3681                 // some things take params
3682                 if( goi.argc < 1 ){
3683                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3684                         return JIM_ERR;
3685                 }
3686                 goi.isconfigure = 0;
3687                 return target_configure( &goi, target );
3688                 break;
3689         case TS_CMD_MWW:
3690         case TS_CMD_MWH:
3691         case TS_CMD_MWB:
3692                 /* argv[0] = cmd
3693                  * argv[1] = address
3694                  * argv[2] = data
3695                  * argv[3] = optional count.
3696                  */
3697
3698                 if( (goi.argc == 3) || (goi.argc == 4) ){
3699                         /* all is well */
3700                 } else {
3701                 mwx_error:
3702                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3703                         return JIM_ERR;
3704                 }
3705
3706                 e = Jim_GetOpt_Wide( &goi, &a );
3707                 if( e != JIM_OK ){
3708                         goto mwx_error;
3709                 }
3710
3711                 e = Jim_GetOpt_Wide( &goi, &b );
3712                 if( e != JIM_OK ){
3713                         goto mwx_error;
3714                 }
3715                 if( goi.argc ){
3716                         e = Jim_GetOpt_Wide( &goi, &c );
3717                         if( e != JIM_OK ){
3718                                 goto mwx_error;
3719                         }
3720                 } else {
3721                         c = 1;
3722                 }
3723
3724                 switch( n->value ){
3725                 case TS_CMD_MWW:
3726                         target_buffer_set_u32( target, target_buf, b );
3727                         b = 4;
3728                         break;
3729                 case TS_CMD_MWH:
3730                         target_buffer_set_u16( target, target_buf, b );
3731                         b = 2;
3732                         break;
3733                 case TS_CMD_MWB:
3734                         target_buffer_set_u8( target, target_buf, b );
3735                         b = 1;
3736                         break;
3737                 }
3738                 for( x = 0 ; x < c ; x++ ){
3739                         e = target_write_memory( target, a, b, 1, target_buf );
3740                         if( e != ERROR_OK ){
3741                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3742                                 return JIM_ERR;
3743                         }
3744                         /* b = width */
3745                         a = a + b;
3746                 }
3747                 return JIM_OK;
3748                 break;
3749
3750                 /* display */
3751         case TS_CMD_MDW:
3752         case TS_CMD_MDH:
3753         case TS_CMD_MDB:
3754                 /* argv[0] = command
3755                  * argv[1] = address
3756                  * argv[2] = optional count
3757                  */
3758                 if( (goi.argc == 2) || (goi.argc == 3) ){
3759                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3760                         return JIM_ERR;
3761                 }
3762                 e = Jim_GetOpt_Wide( &goi, &a );
3763                 if( e != JIM_OK ){
3764                         return JIM_ERR;
3765                 }
3766                 if( goi.argc ){
3767                         e = Jim_GetOpt_Wide( &goi, &c );
3768                         if( e != JIM_OK ){
3769                                 return JIM_ERR;
3770                         }
3771                 } else {
3772                         c = 1;
3773                 }
3774                 b = 1; /* shut up gcc */
3775                 switch( n->value ){
3776                 case TS_CMD_MDW:
3777                         b =  4;
3778                         break;
3779                 case TS_CMD_MDH:
3780                         b = 2;
3781                         break;
3782                 case TS_CMD_MDB:
3783                         b = 1;
3784                         break;
3785                 }
3786
3787                 /* convert to "bytes" */
3788                 c = c * b;
3789                 /* count is now in 'BYTES' */
3790                 while( c > 0 ){
3791                         y = c;
3792                         if( y > 16 ){
3793                                 y = 16;
3794                         }
3795                         e = target_read_memory( target, a, b, y / b, target_buf );
3796                         if( e != ERROR_OK ){
3797                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3798                                 return JIM_ERR;
3799                         }
3800
3801                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3802                         switch( b ){
3803                         case 4:
3804                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3805                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3806                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3807                                 }
3808                                 for( ; (x < 16) ; x += 4 ){
3809                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3810                                 }
3811                                 break;
3812                         case 2:
3813                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3814                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3815                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3816                                 }
3817                                 for( ; (x < 16) ; x += 2 ){
3818                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3819                                 }
3820                                 break;
3821                         case 1:
3822                         default:
3823                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3824                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3825                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3826                                 }
3827                                 for( ; (x < 16) ; x += 1 ){
3828                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3829                                 }
3830                                 break;
3831                         }
3832                         /* ascii-ify the bytes */
3833                         for( x = 0 ; x < y ; x++ ){
3834                                 if( (target_buf[x] >= 0x20) &&
3835                                         (target_buf[x] <= 0x7e) ){
3836                                         /* good */
3837                                 } else {
3838                                         /* smack it */
3839                                         target_buf[x] = '.';
3840                                 }
3841                         }
3842                         /* space pad  */
3843                         while( x < 16 ){
3844                                 target_buf[x] = ' ';
3845                                 x++;
3846                         }
3847                         /* terminate */
3848                         target_buf[16] = 0;
3849                         /* print - with a newline */
3850                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3851                         /* NEXT... */
3852                         c -= 16;
3853                         a += 16;
3854                 }
3855                 return JIM_OK;
3856         case TS_CMD_MEM2ARRAY:
3857                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3858                 break;
3859         case TS_CMD_ARRAY2MEM:
3860                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3861                 break;
3862         case TS_CMD_EXAMINE:
3863                 if( goi.argc ){
3864                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3865                         return JIM_ERR;
3866                 }
3867                 if (!target->tap->enabled)
3868                         goto err_tap_disabled;
3869                 e = target->type->examine( target );
3870                 if( e != ERROR_OK ){
3871                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3872                         return JIM_ERR;
3873                 }
3874                 return JIM_OK;
3875         case TS_CMD_POLL:
3876                 if( goi.argc ){
3877                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3878                         return JIM_ERR;
3879                 }
3880                 if (!target->tap->enabled)
3881                         goto err_tap_disabled;
3882                 if( !(target_was_examined(target)) ){
3883                         e = ERROR_TARGET_NOT_EXAMINED;
3884                 } else {
3885                         e = target->type->poll( target );
3886                 }
3887                 if( e != ERROR_OK ){
3888                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3889                         return JIM_ERR;
3890                 } else {
3891                         return JIM_OK;
3892                 }
3893                 break;
3894         case TS_CMD_RESET:
3895                 if( goi.argc != 2 ){
3896                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3897                         return JIM_ERR;
3898                 }
3899                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3900                 if( e != JIM_OK ){
3901                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3902                         return e;
3903                 }
3904                 /* the halt or not param */
3905                 e = Jim_GetOpt_Wide( &goi, &a);
3906                 if( e != JIM_OK ){
3907                         return e;
3908                 }
3909                 if (!target->tap->enabled)
3910                         goto err_tap_disabled;
3911                 /* determine if we should halt or not. */
3912                 target->reset_halt = !!a;
3913                 /* When this happens - all workareas are invalid. */
3914                 target_free_all_working_areas_restore(target, 0);
3915
3916                 /* do the assert */
3917                 if( n->value == NVP_ASSERT ){
3918                         target->type->assert_reset( target );
3919                 } else {
3920                         target->type->deassert_reset( target );
3921                 }
3922                 return JIM_OK;
3923         case TS_CMD_HALT:
3924                 if( goi.argc ){
3925                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3926                         return JIM_ERR;
3927                 }
3928                 if (!target->tap->enabled)
3929                         goto err_tap_disabled;
3930                 target->type->halt( target );
3931                 return JIM_OK;
3932         case TS_CMD_WAITSTATE:
3933                 /* params:  <name>  statename timeoutmsecs */
3934                 if( goi.argc != 2 ){
3935                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3936                         return JIM_ERR;
3937                 }
3938                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3939                 if( e != JIM_OK ){
3940                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3941                         return e;
3942                 }
3943                 e = Jim_GetOpt_Wide( &goi, &a );
3944                 if( e != JIM_OK ){
3945                         return e;
3946                 }
3947                 if (!target->tap->enabled)
3948                         goto err_tap_disabled;
3949                 e = target_wait_state( target, n->value, a );
3950                 if( e != ERROR_OK ){
3951                         Jim_SetResult_sprintf( goi.interp,
3952                                                                    "target: %s wait %s fails (%d) %s",
3953                                                                    target->cmd_name,
3954                                                                    n->name,
3955                                                                    e, target_strerror_safe(e) );
3956                         return JIM_ERR;
3957                 } else {
3958                         return JIM_OK;
3959                 }
3960         case TS_CMD_EVENTLIST:
3961                 /* List for human, Events defined for this target.
3962                  * scripts/programs should use 'name cget -event NAME'
3963                  */
3964                 {
3965                         target_event_action_t *teap;
3966                         teap = target->event_action;
3967                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3968                                                    target->target_number,
3969                                                    target->cmd_name );
3970                         command_print( cmd_ctx, "%-25s | Body", "Event");
3971                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3972                         while( teap ){
3973                                 command_print( cmd_ctx,
3974                                                            "%-25s | %s",
3975                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3976                                                            Jim_GetString( teap->body, NULL ) );
3977                                 teap = teap->next;
3978                         }
3979                         command_print( cmd_ctx, "***END***");
3980                         return JIM_OK;
3981                 }
3982         case TS_CMD_CURSTATE:
3983                 if( goi.argc != 0 ){
3984                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3985                         return JIM_ERR;
3986                 }
3987                 Jim_SetResultString( goi.interp,
3988                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3989                 return JIM_OK;
3990         case TS_CMD_INVOKE_EVENT:
3991                 if( goi.argc != 1 ){
3992                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3993                         return JIM_ERR;
3994                 }
3995                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3996                 if( e != JIM_OK ){
3997                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3998                         return e;
3999                 }
4000                 target_handle_event( target, n->value );
4001                 return JIM_OK;
4002         }
4003         return JIM_ERR;
4004
4005 err_tap_disabled:
4006         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4007         return JIM_ERR;
4008 }
4009
4010 static int target_create( Jim_GetOptInfo *goi )
4011 {
4012         Jim_Obj *new_cmd;
4013         Jim_Cmd *cmd;
4014         const char *cp;
4015         char *cp2;
4016         int e;
4017         int x;
4018         target_t *target;
4019         struct command_context_s *cmd_ctx;
4020
4021         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4022         if( goi->argc < 3 ){
4023                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4024                 return JIM_ERR;
4025         }
4026
4027         /* COMMAND */
4028         Jim_GetOpt_Obj( goi, &new_cmd );
4029         /* does this command exist? */
4030         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
4031         if( cmd ){
4032                 cp = Jim_GetString( new_cmd, NULL );
4033                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4034                 return JIM_ERR;
4035         }
4036
4037         /* TYPE */
4038         e = Jim_GetOpt_String( goi, &cp2, NULL );
4039         cp = cp2;
4040         /* now does target type exist */
4041         for( x = 0 ; target_types[x] ; x++ ){
4042                 if( 0 == strcmp( cp, target_types[x]->name ) ){
4043                         /* found */
4044                         break;
4045                 }
4046         }
4047         if( target_types[x] == NULL ){
4048                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
4049                 for( x = 0 ; target_types[x] ; x++ ){
4050                         if( target_types[x+1] ){
4051                                 Jim_AppendStrings( goi->interp,
4052                                                                    Jim_GetResult(goi->interp),
4053                                                                    target_types[x]->name,
4054                                                                    ", ", NULL);
4055                         } else {
4056                                 Jim_AppendStrings( goi->interp,
4057                                                                    Jim_GetResult(goi->interp),
4058                                                                    " or ",
4059                                                                    target_types[x]->name,NULL );
4060                         }
4061                 }
4062                 return JIM_ERR;
4063         }
4064
4065         /* Create it */
4066         target = calloc(1,sizeof(target_t));
4067         /* set target number */
4068         target->target_number = new_target_number();
4069
4070         /* allocate memory for each unique target type */
4071         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
4072
4073         memcpy( target->type, target_types[x], sizeof(target_type_t));
4074
4075         /* will be set by "-endian" */
4076         target->endianness = TARGET_ENDIAN_UNKNOWN;
4077
4078         target->working_area        = 0x0;
4079         target->working_area_size   = 0x0;
4080         target->working_areas       = NULL;
4081         target->backup_working_area = 0;
4082
4083         target->state               = TARGET_UNKNOWN;
4084         target->debug_reason        = DBG_REASON_UNDEFINED;
4085         target->reg_cache           = NULL;
4086         target->breakpoints         = NULL;
4087         target->watchpoints         = NULL;
4088         target->next                = NULL;
4089         target->arch_info           = NULL;
4090
4091         target->display             = 1;
4092
4093         /* initialize trace information */
4094         target->trace_info = malloc(sizeof(trace_t));
4095         target->trace_info->num_trace_points         = 0;
4096         target->trace_info->trace_points_size        = 0;
4097         target->trace_info->trace_points             = NULL;
4098         target->trace_info->trace_history_size       = 0;
4099         target->trace_info->trace_history            = NULL;
4100         target->trace_info->trace_history_pos        = 0;
4101         target->trace_info->trace_history_overflowed = 0;
4102
4103         target->dbgmsg          = NULL;
4104         target->dbg_msg_enabled = 0;
4105
4106         target->endianness = TARGET_ENDIAN_UNKNOWN;
4107
4108         /* Do the rest as "configure" options */
4109         goi->isconfigure = 1;
4110         e = target_configure( goi, target);
4111
4112         if (target->tap == NULL)
4113         {
4114                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
4115                 e=JIM_ERR;
4116         }
4117
4118         if( e != JIM_OK ){
4119                 free( target->type );
4120                 free( target );
4121                 return e;
4122         }
4123
4124         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
4125                 /* default endian to little if not specified */
4126                 target->endianness = TARGET_LITTLE_ENDIAN;
4127         }
4128
4129         /* incase variant is not set */
4130         if (!target->variant)
4131                 target->variant = strdup("");
4132
4133         /* create the target specific commands */
4134         if( target->type->register_commands ){
4135                 (*(target->type->register_commands))( cmd_ctx );
4136         }
4137         if( target->type->target_create ){
4138                 (*(target->type->target_create))( target, goi->interp );
4139         }
4140
4141         /* append to end of list */
4142         {
4143                 target_t **tpp;
4144                 tpp = &(all_targets);
4145                 while( *tpp ){
4146                         tpp = &( (*tpp)->next );
4147                 }
4148                 *tpp = target;
4149         }
4150
4151         cp = Jim_GetString( new_cmd, NULL );
4152         target->cmd_name = strdup(cp);
4153
4154         /* now - create the new target name command */
4155         e = Jim_CreateCommand( goi->interp,
4156                                                    /* name */
4157                                                    cp,
4158                                                    tcl_target_func, /* C function */
4159                                                    target, /* private data */
4160                                                    NULL ); /* no del proc */
4161
4162         return e;
4163 }
4164
4165 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
4166 {
4167         int x,r,e;
4168         jim_wide w;
4169         struct command_context_s *cmd_ctx;
4170         target_t *target;
4171         Jim_GetOptInfo goi;
4172         enum tcmd {
4173                 /* TG = target generic */
4174                 TG_CMD_CREATE,
4175                 TG_CMD_TYPES,
4176                 TG_CMD_NAMES,
4177                 TG_CMD_CURRENT,
4178                 TG_CMD_NUMBER,
4179                 TG_CMD_COUNT,
4180         };
4181         const char *target_cmds[] = {
4182                 "create", "types", "names", "current", "number",
4183                 "count",
4184                 NULL /* terminate */
4185         };
4186
4187         LOG_DEBUG("Target command params:");
4188         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4189
4190         cmd_ctx = Jim_GetAssocData( interp, "context" );
4191
4192         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4193
4194         if( goi.argc == 0 ){
4195                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4196                 return JIM_ERR;
4197         }
4198
4199         /* Jim_GetOpt_Debug( &goi ); */
4200         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
4201         if( r != JIM_OK ){
4202                 return r;
4203         }
4204
4205         switch(x){
4206         default:
4207                 Jim_Panic(goi.interp,"Why am I here?");
4208                 return JIM_ERR;
4209         case TG_CMD_CURRENT:
4210                 if( goi.argc != 0 ){
4211                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4212                         return JIM_ERR;
4213                 }
4214                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4215                 return JIM_OK;
4216         case TG_CMD_TYPES:
4217                 if( goi.argc != 0 ){
4218                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4219                         return JIM_ERR;
4220                 }
4221                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4222                 for( x = 0 ; target_types[x] ; x++ ){
4223                         Jim_ListAppendElement( goi.interp,
4224                                                                    Jim_GetResult(goi.interp),
4225                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4226                 }
4227                 return JIM_OK;
4228         case TG_CMD_NAMES:
4229                 if( goi.argc != 0 ){
4230                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4231                         return JIM_ERR;
4232                 }
4233                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4234                 target = all_targets;
4235                 while( target ){
4236                         Jim_ListAppendElement( goi.interp,
4237                                                                    Jim_GetResult(goi.interp),
4238                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4239                         target = target->next;
4240                 }
4241                 return JIM_OK;
4242         case TG_CMD_CREATE:
4243                 if( goi.argc < 3 ){
4244                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4245                         return JIM_ERR;
4246                 }
4247                 return target_create( &goi );
4248                 break;
4249         case TG_CMD_NUMBER:
4250                 if( goi.argc != 1 ){
4251                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4252                         return JIM_ERR;
4253                 }
4254                 e = Jim_GetOpt_Wide( &goi, &w );
4255                 if( e != JIM_OK ){
4256                         return JIM_ERR;
4257                 }
4258                 {
4259                         target_t *t;
4260                         t = get_target_by_num(w);
4261                         if( t == NULL ){
4262                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4263                                 return JIM_ERR;
4264                         }
4265                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4266                         return JIM_OK;
4267                 }
4268         case TG_CMD_COUNT:
4269                 if( goi.argc != 0 ){
4270                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4271                         return JIM_ERR;
4272                 }
4273                 Jim_SetResult( goi.interp,
4274                                            Jim_NewIntObj( goi.interp, max_target_number()));
4275                 return JIM_OK;
4276         }
4277
4278         return JIM_ERR;
4279 }
4280
4281
4282 struct FastLoad
4283 {
4284         u32 address;
4285         u8 *data;
4286         int length;
4287
4288 };
4289
4290 static int fastload_num;
4291 static struct FastLoad *fastload;
4292
4293 static void free_fastload(void)
4294 {
4295         if (fastload!=NULL)
4296         {
4297                 int i;
4298                 for (i=0; i<fastload_num; i++)
4299                 {
4300                         if (fastload[i].data)
4301                                 free(fastload[i].data);
4302                 }
4303                 free(fastload);
4304                 fastload=NULL;
4305         }
4306 }
4307
4308
4309
4310
4311 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4312 {
4313         u8 *buffer;
4314         u32 buf_cnt;
4315         u32 image_size;
4316         u32 min_address=0;
4317         u32 max_address=0xffffffff;
4318         int i;
4319         int retval;
4320
4321         image_t image;
4322
4323         duration_t duration;
4324         char *duration_text;
4325
4326         if ((argc < 1)||(argc > 5))
4327         {
4328                 return ERROR_COMMAND_SYNTAX_ERROR;
4329         }
4330
4331         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4332         if (argc >= 2)
4333         {
4334                 image.base_address_set = 1;
4335                 image.base_address = strtoul(args[1], NULL, 0);
4336         }
4337         else
4338         {
4339                 image.base_address_set = 0;
4340         }
4341
4342
4343         image.start_address_set = 0;
4344
4345         if (argc>=4)
4346         {
4347                 min_address=strtoul(args[3], NULL, 0);
4348         }
4349         if (argc>=5)
4350         {
4351                 max_address=strtoul(args[4], NULL, 0)+min_address;
4352         }
4353
4354         if (min_address>max_address)
4355         {
4356                 return ERROR_COMMAND_SYNTAX_ERROR;
4357         }
4358
4359         duration_start_measure(&duration);
4360
4361         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4362         {
4363                 return ERROR_OK;
4364         }
4365
4366         image_size = 0x0;
4367         retval = ERROR_OK;
4368         fastload_num=image.num_sections;
4369         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4370         if (fastload==NULL)
4371         {
4372                 image_close(&image);
4373                 return ERROR_FAIL;
4374         }
4375         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4376         for (i = 0; i < image.num_sections; i++)
4377         {
4378                 buffer = malloc(image.sections[i].size);
4379                 if (buffer == NULL)
4380                 {
4381                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4382                         break;
4383                 }
4384
4385                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4386                 {
4387                         free(buffer);
4388                         break;
4389                 }
4390
4391                 u32 offset=0;
4392                 u32 length=buf_cnt;
4393
4394
4395                 /* DANGER!!! beware of unsigned comparision here!!! */
4396
4397                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4398                                 (image.sections[i].base_address<max_address))
4399                 {
4400                         if (image.sections[i].base_address<min_address)
4401                         {
4402                                 /* clip addresses below */
4403                                 offset+=min_address-image.sections[i].base_address;
4404                                 length-=offset;
4405                         }
4406
4407                         if (image.sections[i].base_address+buf_cnt>max_address)
4408                         {
4409                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4410                         }
4411
4412                         fastload[i].address=image.sections[i].base_address+offset;
4413                         fastload[i].data=malloc(length);
4414                         if (fastload[i].data==NULL)
4415                         {
4416                                 free(buffer);
4417                                 break;
4418                         }
4419                         memcpy(fastload[i].data, buffer+offset, length);
4420                         fastload[i].length=length;
4421
4422                         image_size += length;
4423                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4424                 }
4425
4426                 free(buffer);
4427         }
4428
4429         duration_stop_measure(&duration, &duration_text);
4430         if (retval==ERROR_OK)
4431         {
4432                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4433                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4434         }
4435         free(duration_text);
4436
4437         image_close(&image);
4438
4439         if (retval!=ERROR_OK)
4440         {
4441                 free_fastload();
4442         }
4443
4444         return retval;
4445 }
4446
4447 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4448 {
4449         if (argc>0)
4450                 return ERROR_COMMAND_SYNTAX_ERROR;
4451         if (fastload==NULL)
4452         {
4453                 LOG_ERROR("No image in memory");
4454                 return ERROR_FAIL;
4455         }
4456         int i;
4457         int ms=timeval_ms();
4458         int size=0;
4459         int retval=ERROR_OK;
4460         for (i=0; i<fastload_num;i++)
4461         {
4462                 target_t *target = get_current_target(cmd_ctx);
4463                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4464                 if (retval==ERROR_OK)
4465                 {
4466                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4467                 }
4468                 size+=fastload[i].length;
4469         }
4470         int after=timeval_ms();
4471         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4472         return retval;
4473 }