]> git.sur5r.net Git - openocd/blob - src/target/target.c
target read/write is no longer attempted for target_xxx() functions when the target...
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52
53 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55
56 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59
60 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
79
80 /* targets
81  */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 static int target_continous_poll = 1;
135
136 /* read a u32 from a buffer in target memory endianness */
137 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
138 {
139         if (target->endianness == TARGET_LITTLE_ENDIAN)
140                 return le_to_h_u32(buffer);
141         else
142                 return be_to_h_u32(buffer);
143 }
144
145 /* read a u16 from a buffer in target memory endianness */
146 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
147 {
148         if (target->endianness == TARGET_LITTLE_ENDIAN)
149                 return le_to_h_u16(buffer);
150         else
151                 return be_to_h_u16(buffer);
152 }
153
154 /* write a u32 to a buffer in target memory endianness */
155 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
156 {
157         if (target->endianness == TARGET_LITTLE_ENDIAN)
158                 h_u32_to_le(buffer, value);
159         else
160                 h_u32_to_be(buffer, value);
161 }
162
163 /* write a u16 to a buffer in target memory endianness */
164 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
165 {
166         if (target->endianness == TARGET_LITTLE_ENDIAN)
167                 h_u16_to_le(buffer, value);
168         else
169                 h_u16_to_be(buffer, value);
170 }
171
172 /* returns a pointer to the n-th configured target */
173 target_t* get_target_by_num(int num)
174 {
175         target_t *target = targets;
176         int i = 0;
177
178         while (target)
179         {
180                 if (num == i)
181                         return target;
182                 target = target->next;
183                 i++;
184         }
185
186         return NULL;
187 }
188
189 int get_num_by_target(target_t *query_target)
190 {
191         target_t *target = targets;
192         int i = 0;      
193         
194         while (target)
195         {
196                 if (target == query_target)
197                         return i;
198                 target = target->next;
199                 i++;
200         }
201         
202         return -1;
203 }
204
205 target_t* get_current_target(command_context_t *cmd_ctx)
206 {
207         target_t *target = get_target_by_num(cmd_ctx->current_target);
208         
209         if (target == NULL)
210         {
211                 LOG_ERROR("BUG: current_target out of bounds");
212                 exit(-1);
213         }
214         
215         return target;
216 }
217
218 /* Process target initialization, when target entered debug out of reset
219  * the handler is unregistered at the end of this function, so it's only called once
220  */
221 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
222 {
223         FILE *script;
224         struct command_context_s *cmd_ctx = priv;
225         
226         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
227         {
228                 target_unregister_event_callback(target_init_handler, priv);
229
230                 script = open_file_from_path(target->reset_script, "r");
231                 if (!script)
232                 {
233                         LOG_ERROR("couldn't open script file %s", target->reset_script);
234                                 return ERROR_OK;
235                 }
236
237                 LOG_INFO("executing reset script '%s'", target->reset_script);
238                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
239                 fclose(script);
240
241                 jtag_execute_queue();
242         }
243         
244         return ERROR_OK;
245 }
246
247 int target_run_and_halt_handler(void *priv)
248 {
249         target_t *target = priv;
250         
251         target_halt(target);
252         
253         return ERROR_OK;
254 }
255
256 int target_poll(struct target_s *target)
257 {
258         /* We can't poll until after examine */
259         if (!target->type->examined)
260         {
261                 /* Fail silently lest we pollute the log */
262                 return ERROR_FAIL;
263         }
264         return target->type->poll(target);
265 }
266
267 int target_halt(struct target_s *target)
268 {
269         /* We can't poll until after examine */
270         if (!target->type->examined)
271         {
272                 LOG_ERROR("Target not examined yet");
273                 return ERROR_FAIL;
274         }
275         return target->type->halt(target);
276 }
277
278 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
279 {
280         /* We can't poll until after examine */
281         if (!target->type->examined)
282         {
283                 LOG_ERROR("Target not examined yet");
284                 return ERROR_FAIL;
285         }
286         return target->type->resume(target, current, address, handle_breakpoints, debug_execution);
287 }
288
289
290 int target_process_reset(struct command_context_s *cmd_ctx)
291 {
292         int retval = ERROR_OK;
293         target_t *target;
294         struct timeval timeout, now;
295
296         jtag->speed(jtag_speed);
297
298         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
299                 return retval;
300         
301         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
302                 return retval;
303         
304         /* prepare reset_halt where necessary */
305         target = targets;
306         while (target)
307         {
308                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
309                 {
310                         switch (target->reset_mode)
311                         {
312                                 case RESET_HALT:
313                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
314                                         target->reset_mode = RESET_RUN_AND_HALT;
315                                         break;
316                                 case RESET_INIT:
317                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
318                                         target->reset_mode = RESET_RUN_AND_INIT;
319                                         break;
320                                 default:
321                                         break;
322                         } 
323                 }
324                 target = target->next;
325         }
326         
327         target = targets;
328         while (target)
329         {
330                 /* we have no idea what state the target is in, so we
331                  * have to drop working areas
332                  */
333                 target_free_all_working_areas_restore(target, 0);
334                 target->type->assert_reset(target);
335                 target = target->next;
336         }
337         if ((retval = jtag_execute_queue()) != ERROR_OK)
338         {
339                 LOG_WARNING("JTAG communication failed asserting reset.");
340                 retval = ERROR_OK;
341         }
342         
343         /* request target halt if necessary, and schedule further action */
344         target = targets;
345         while (target)
346         {
347                 switch (target->reset_mode)
348                 {
349                         case RESET_RUN:
350                                 /* nothing to do if target just wants to be run */
351                                 break;
352                         case RESET_RUN_AND_HALT:
353                                 /* schedule halt */
354                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
355                                 break;
356                         case RESET_RUN_AND_INIT:
357                                 /* schedule halt */
358                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
359                                 target_register_event_callback(target_init_handler, cmd_ctx);
360                                 break;
361                         case RESET_HALT:
362                                 target_halt(target);
363                                 break;
364                         case RESET_INIT:
365                                 target_halt(target);
366                                 target_register_event_callback(target_init_handler, cmd_ctx);
367                                 break;
368                         default:
369                                 LOG_ERROR("BUG: unknown target->reset_mode");
370                 }
371                 target = target->next;
372         }
373         
374         if ((retval = jtag_execute_queue()) != ERROR_OK)
375         {
376                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
377                 retval = ERROR_OK;              
378         }
379         
380         target = targets;
381         while (target)
382         {
383                 target->type->deassert_reset(target);
384                 target = target->next;
385         }
386         
387         if ((retval = jtag_execute_queue()) != ERROR_OK)
388         {
389                 LOG_WARNING("JTAG communication failed while deasserting reset.");
390                 retval = ERROR_OK;
391         }
392         
393         LOG_DEBUG("Waiting for halted stated as approperiate");
394         
395         /* Wait for reset to complete, maximum 5 seconds. */    
396         gettimeofday(&timeout, NULL);
397         timeval_add_time(&timeout, 5, 0);
398         for(;;)
399         {
400                 gettimeofday(&now, NULL);
401                 
402                 target_call_timer_callbacks_now();
403                 
404                 target = targets;
405                 while (target)
406                 {
407                         LOG_DEBUG("Polling target");
408                         target_poll(target);
409                         if ((target->reset_mode == RESET_RUN_AND_INIT) || 
410                                         (target->reset_mode == RESET_RUN_AND_HALT) ||
411                                         (target->reset_mode == RESET_HALT) ||
412                                         (target->reset_mode == RESET_INIT))
413                         {
414                                 if (target->state != TARGET_HALTED)
415                                 {
416                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
417                                         {
418                                                 LOG_USER("Timed out waiting for halt after reset");
419                                                 goto done;
420                                         }
421                                         /* this will send alive messages on e.g. GDB remote protocol. */
422                                         usleep(500*1000); 
423                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
424                                         goto again;
425                                 }
426                         }
427                         target = target->next;
428                 }
429                 /* All targets we're waiting for are halted */
430                 break;
431                 
432                 again:;
433         }
434         done:
435         
436         
437         /* We want any events to be processed before the prompt */
438         target_call_timer_callbacks_now();
439
440         /* if we timed out we need to unregister these handlers */
441         target = targets;
442         while (target)
443         {
444                 target_unregister_timer_callback(target_run_and_halt_handler, target);
445                 target = target->next;
446         }
447         target_unregister_event_callback(target_init_handler, cmd_ctx);
448                                 
449         
450         jtag->speed(jtag_speed_post_reset);
451         
452         return retval;
453 }
454
455 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
456 {
457         *physical = virtual;
458         return ERROR_OK;
459 }
460
461 static int default_mmu(struct target_s *target, int *enabled)
462 {
463         *enabled = 0;
464         return ERROR_OK;
465 }
466
467 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
468 {
469         target->type->examined = 1;
470         return ERROR_OK;
471 }
472
473
474 /* Targets that correctly implement init+examine, i.e.
475  * no communication with target during init:
476  * 
477  * XScale 
478  */
479 int target_examine(struct command_context_s *cmd_ctx)
480 {
481         int retval = ERROR_OK;
482         target_t *target = targets;
483         while (target)
484         {
485                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
486                         return retval;
487                 target = target->next;
488         }
489         return retval;
490 }
491
492
493 int target_init(struct command_context_s *cmd_ctx)
494 {
495         target_t *target = targets;
496         
497         while (target)
498         {
499                 target->type->examined = 0;
500                 if (target->type->examine == NULL)
501                 {
502                         target->type->examine = default_examine;
503                 }
504                 
505                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
506                 {
507                         LOG_ERROR("target '%s' init failed", target->type->name);
508                         exit(-1);
509                 }
510                 
511                 /* Set up default functions if none are provided by target */
512                 if (target->type->virt2phys == NULL)
513                 {
514                         target->type->virt2phys = default_virt2phys;
515                 }
516                 if (target->type->mmu == NULL)
517                 {
518                         target->type->mmu = default_mmu;
519                 }
520                 target = target->next;
521         }
522         
523         if (targets)
524         {
525                 target_register_user_commands(cmd_ctx);
526                 target_register_timer_callback(handle_target, 100, 1, NULL);
527         }
528                 
529         return ERROR_OK;
530 }
531
532 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
533 {
534         target_event_callback_t **callbacks_p = &target_event_callbacks;
535         
536         if (callback == NULL)
537         {
538                 return ERROR_INVALID_ARGUMENTS;
539         }
540         
541         if (*callbacks_p)
542         {
543                 while ((*callbacks_p)->next)
544                         callbacks_p = &((*callbacks_p)->next);
545                 callbacks_p = &((*callbacks_p)->next);
546         }
547         
548         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
549         (*callbacks_p)->callback = callback;
550         (*callbacks_p)->priv = priv;
551         (*callbacks_p)->next = NULL;
552         
553         return ERROR_OK;
554 }
555
556 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
557 {
558         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
559         struct timeval now;
560         
561         if (callback == NULL)
562         {
563                 return ERROR_INVALID_ARGUMENTS;
564         }
565         
566         if (*callbacks_p)
567         {
568                 while ((*callbacks_p)->next)
569                         callbacks_p = &((*callbacks_p)->next);
570                 callbacks_p = &((*callbacks_p)->next);
571         }
572         
573         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
574         (*callbacks_p)->callback = callback;
575         (*callbacks_p)->periodic = periodic;
576         (*callbacks_p)->time_ms = time_ms;
577         
578         gettimeofday(&now, NULL);
579         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
580         time_ms -= (time_ms % 1000);
581         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
582         if ((*callbacks_p)->when.tv_usec > 1000000)
583         {
584                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
585                 (*callbacks_p)->when.tv_sec += 1;
586         }
587         
588         (*callbacks_p)->priv = priv;
589         (*callbacks_p)->next = NULL;
590         
591         return ERROR_OK;
592 }
593
594 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
595 {
596         target_event_callback_t **p = &target_event_callbacks;
597         target_event_callback_t *c = target_event_callbacks;
598         
599         if (callback == NULL)
600         {
601                 return ERROR_INVALID_ARGUMENTS;
602         }
603                 
604         while (c)
605         {
606                 target_event_callback_t *next = c->next;
607                 if ((c->callback == callback) && (c->priv == priv))
608                 {
609                         *p = next;
610                         free(c);
611                         return ERROR_OK;
612                 }
613                 else
614                         p = &(c->next);
615                 c = next;
616         }
617         
618         return ERROR_OK;
619 }
620
621 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
622 {
623         target_timer_callback_t **p = &target_timer_callbacks;
624         target_timer_callback_t *c = target_timer_callbacks;
625         
626         if (callback == NULL)
627         {
628                 return ERROR_INVALID_ARGUMENTS;
629         }
630                 
631         while (c)
632         {
633                 target_timer_callback_t *next = c->next;
634                 if ((c->callback == callback) && (c->priv == priv))
635                 {
636                         *p = next;
637                         free(c);
638                         return ERROR_OK;
639                 }
640                 else
641                         p = &(c->next);
642                 c = next;
643         }
644         
645         return ERROR_OK;
646 }
647
648 int target_call_event_callbacks(target_t *target, enum target_event event)
649 {
650         target_event_callback_t *callback = target_event_callbacks;
651         target_event_callback_t *next_callback;
652         
653         LOG_DEBUG("target event %i", event);
654         
655         while (callback)
656         {
657                 next_callback = callback->next;
658                 callback->callback(target, event, callback->priv);
659                 callback = next_callback;
660         }
661         
662         return ERROR_OK;
663 }
664
665 static int target_call_timer_callbacks_check_time(int checktime)
666 {
667         target_timer_callback_t *callback = target_timer_callbacks;
668         target_timer_callback_t *next_callback;
669         struct timeval now;
670
671         gettimeofday(&now, NULL);
672         
673         while (callback)
674         {
675                 next_callback = callback->next;
676                 
677                 if ((!checktime&&callback->periodic)||
678                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
679                                                 || (now.tv_sec > callback->when.tv_sec)))
680                 {
681                         callback->callback(callback->priv);
682                         if (callback->periodic)
683                         {
684                                 int time_ms = callback->time_ms;
685                                 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
686                                 time_ms -= (time_ms % 1000);
687                                 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
688                                 if (callback->when.tv_usec > 1000000)
689                                 {
690                                         callback->when.tv_usec = callback->when.tv_usec - 1000000;
691                                         callback->when.tv_sec += 1;
692                                 }
693                         }
694                         else
695                                 target_unregister_timer_callback(callback->callback, callback->priv);
696                 }
697                         
698                 callback = next_callback;
699         }
700         
701         return ERROR_OK;
702 }
703
704 int target_call_timer_callbacks()
705 {
706         return target_call_timer_callbacks_check_time(1);
707 }
708
709 /* invoke periodic callbacks immediately */
710 int target_call_timer_callbacks_now()
711 {
712         return target_call_timer_callbacks(0);
713 }
714
715
716 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
717 {
718         working_area_t *c = target->working_areas;
719         working_area_t *new_wa = NULL;
720         
721         /* Reevaluate working area address based on MMU state*/
722         if (target->working_areas == NULL)
723         {
724                 int retval;
725                 int enabled;
726                 retval = target->type->mmu(target, &enabled);
727                 if (retval != ERROR_OK)
728                 {
729                         return retval;
730                 }
731                 if (enabled)
732                 {
733                         target->working_area = target->working_area_virt;
734                 }
735                 else
736                 {
737                         target->working_area = target->working_area_phys;
738                 }
739         }
740         
741         /* only allocate multiples of 4 byte */
742         if (size % 4)
743         {
744                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
745                 size = CEIL(size, 4);
746         }
747         
748         /* see if there's already a matching working area */
749         while (c)
750         {
751                 if ((c->free) && (c->size == size))
752                 {
753                         new_wa = c;
754                         break;
755                 }
756                 c = c->next;
757         }
758         
759         /* if not, allocate a new one */
760         if (!new_wa)
761         {
762                 working_area_t **p = &target->working_areas;
763                 u32 first_free = target->working_area;
764                 u32 free_size = target->working_area_size;
765                 
766                 LOG_DEBUG("allocating new working area");
767                 
768                 c = target->working_areas;
769                 while (c)
770                 {
771                         first_free += c->size;
772                         free_size -= c->size;
773                         p = &c->next;
774                         c = c->next;
775                 }
776                 
777                 if (free_size < size)
778                 {
779                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
780                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
781                 }
782                 
783                 new_wa = malloc(sizeof(working_area_t));
784                 new_wa->next = NULL;
785                 new_wa->size = size;
786                 new_wa->address = first_free;
787                 
788                 if (target->backup_working_area)
789                 {
790                         new_wa->backup = malloc(new_wa->size);
791                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
792                 }
793                 else
794                 {
795                         new_wa->backup = NULL;
796                 }
797                 
798                 /* put new entry in list */
799                 *p = new_wa;
800         }
801         
802         /* mark as used, and return the new (reused) area */
803         new_wa->free = 0;
804         *area = new_wa;
805         
806         /* user pointer */
807         new_wa->user = area;
808         
809         return ERROR_OK;
810 }
811
812 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
813 {
814         if (area->free)
815                 return ERROR_OK;
816         
817         if (restore&&target->backup_working_area)
818                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
819         
820         area->free = 1;
821         
822         /* mark user pointer invalid */
823         *area->user = NULL;
824         area->user = NULL;
825         
826         return ERROR_OK;
827 }
828
829 int target_free_working_area(struct target_s *target, working_area_t *area)
830 {
831         return target_free_working_area_restore(target, area, 1);
832 }
833
834 int target_free_all_working_areas_restore(struct target_s *target, int restore)
835 {
836         working_area_t *c = target->working_areas;
837
838         while (c)
839         {
840                 working_area_t *next = c->next;
841                 target_free_working_area_restore(target, c, restore);
842                 
843                 if (c->backup)
844                         free(c->backup);
845                 
846                 free(c);
847                 
848                 c = next;
849         }
850         
851         target->working_areas = NULL;
852         
853         return ERROR_OK;
854 }
855
856 int target_free_all_working_areas(struct target_s *target)
857 {
858         return target_free_all_working_areas_restore(target, 1); 
859 }
860
861 int target_register_commands(struct command_context_s *cmd_ctx)
862 {
863         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
864         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
865         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
866         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
867         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
868         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
869         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
870
871         return ERROR_OK;
872 }
873
874 int target_arch_state(struct target_s *target)
875 {
876         int retval;
877         if (target==NULL)
878         {
879                 LOG_USER("No target has been configured");
880                 return ERROR_OK;
881         }
882         
883         LOG_USER("target state: %s", target_state_strings[target->state]);
884         
885         if (target->state!=TARGET_HALTED)
886                 return ERROR_OK;
887         
888         retval=target->type->arch_state(target);
889         return retval;
890 }
891
892 /* Single aligned words are guaranteed to use 16 or 32 bit access 
893  * mode respectively, otherwise data is handled as quickly as 
894  * possible
895  */
896 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
897 {
898         int retval;
899         if (!target->type->examined)
900         {
901                 LOG_ERROR("Target not examined yet");
902                 return ERROR_FAIL;
903         }
904         
905         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
906         
907         if (((address % 2) == 0) && (size == 2))
908         {
909                 return target->type->write_memory(target, address, 2, 1, buffer);
910         }
911         
912         /* handle unaligned head bytes */
913         if (address % 4)
914         {
915                 int unaligned = 4 - (address % 4);
916                 
917                 if (unaligned > size)
918                         unaligned = size;
919
920                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
921                         return retval;
922                 
923                 buffer += unaligned;
924                 address += unaligned;
925                 size -= unaligned;
926         }
927                 
928         /* handle aligned words */
929         if (size >= 4)
930         {
931                 int aligned = size - (size % 4);
932         
933                 /* use bulk writes above a certain limit. This may have to be changed */
934                 if (aligned > 128)
935                 {
936                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
937                                 return retval;
938                 }
939                 else
940                 {
941                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
942                                 return retval;
943                 }
944                 
945                 buffer += aligned;
946                 address += aligned;
947                 size -= aligned;
948         }
949         
950         /* handle tail writes of less than 4 bytes */
951         if (size > 0)
952         {
953                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
954                         return retval;
955         }
956         
957         return ERROR_OK;
958 }
959
960
961 /* Single aligned words are guaranteed to use 16 or 32 bit access 
962  * mode respectively, otherwise data is handled as quickly as 
963  * possible
964  */
965 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
966 {
967         int retval;
968         if (!target->type->examined)
969         {
970                 LOG_ERROR("Target not examined yet");
971                 return ERROR_FAIL;
972         }
973
974         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
975         
976         if (((address % 2) == 0) && (size == 2))
977         {
978                 return target->type->read_memory(target, address, 2, 1, buffer);
979         }
980         
981         /* handle unaligned head bytes */
982         if (address % 4)
983         {
984                 int unaligned = 4 - (address % 4);
985                 
986                 if (unaligned > size)
987                         unaligned = size;
988
989                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
990                         return retval;
991                 
992                 buffer += unaligned;
993                 address += unaligned;
994                 size -= unaligned;
995         }
996                 
997         /* handle aligned words */
998         if (size >= 4)
999         {
1000                 int aligned = size - (size % 4);
1001         
1002                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1003                         return retval;
1004                 
1005                 buffer += aligned;
1006                 address += aligned;
1007                 size -= aligned;
1008         }
1009         
1010         /* handle tail writes of less than 4 bytes */
1011         if (size > 0)
1012         {
1013                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1014                         return retval;
1015         }
1016         
1017         return ERROR_OK;
1018 }
1019
1020 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1021 {
1022         u8 *buffer;
1023         int retval;
1024         int i;
1025         u32 checksum = 0;
1026         if (!target->type->examined)
1027         {
1028                 LOG_ERROR("Target not examined yet");
1029                 return ERROR_FAIL;
1030         }
1031         
1032         if ((retval = target->type->checksum_memory(target, address,
1033                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1034         {
1035                 buffer = malloc(size);
1036                 if (buffer == NULL)
1037                 {
1038                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1039                         return ERROR_INVALID_ARGUMENTS;
1040                 }
1041                 retval = target_read_buffer(target, address, size, buffer);
1042                 if (retval != ERROR_OK)
1043                 {
1044                         free(buffer);
1045                         return retval;
1046                 }
1047
1048                 /* convert to target endianess */
1049                 for (i = 0; i < (size/sizeof(u32)); i++)
1050                 {
1051                         u32 target_data;
1052                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1053                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1054                 }
1055
1056                 retval = image_calculate_checksum( buffer, size, &checksum );
1057                 free(buffer);
1058         }
1059         
1060         *crc = checksum;
1061         
1062         return retval;
1063 }
1064
1065 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1066 {
1067         u8 value_buf[4];
1068         if (!target->type->examined)
1069         {
1070                 LOG_ERROR("Target not examined yet");
1071                 return ERROR_FAIL;
1072         }
1073
1074         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1075         
1076         if (retval == ERROR_OK)
1077         {
1078                 *value = target_buffer_get_u32(target, value_buf);
1079                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1080         }
1081         else
1082         {
1083                 *value = 0x0;
1084                 LOG_DEBUG("address: 0x%8.8x failed", address);
1085         }
1086         
1087         return retval;
1088 }
1089
1090 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1091 {
1092         u8 value_buf[2];
1093         if (!target->type->examined)
1094         {
1095                 LOG_ERROR("Target not examined yet");
1096                 return ERROR_FAIL;
1097         }
1098
1099         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1100         
1101         if (retval == ERROR_OK)
1102         {
1103                 *value = target_buffer_get_u16(target, value_buf);
1104                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1105         }
1106         else
1107         {
1108                 *value = 0x0;
1109                 LOG_DEBUG("address: 0x%8.8x failed", address);
1110         }
1111         
1112         return retval;
1113 }
1114
1115 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1116 {
1117         int retval = target->type->read_memory(target, address, 1, 1, value);
1118         if (!target->type->examined)
1119         {
1120                 LOG_ERROR("Target not examined yet");
1121                 return ERROR_FAIL;
1122         }
1123
1124         if (retval == ERROR_OK)
1125         {
1126                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1127         }
1128         else
1129         {
1130                 *value = 0x0;
1131                 LOG_DEBUG("address: 0x%8.8x failed", address);
1132         }
1133         
1134         return retval;
1135 }
1136
1137 int target_write_u32(struct target_s *target, u32 address, u32 value)
1138 {
1139         int retval;
1140         u8 value_buf[4];
1141         if (!target->type->examined)
1142         {
1143                 LOG_ERROR("Target not examined yet");
1144                 return ERROR_FAIL;
1145         }
1146
1147         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1148
1149         target_buffer_set_u32(target, value_buf, value);        
1150         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1151         {
1152                 LOG_DEBUG("failed: %i", retval);
1153         }
1154         
1155         return retval;
1156 }
1157
1158 int target_write_u16(struct target_s *target, u32 address, u16 value)
1159 {
1160         int retval;
1161         u8 value_buf[2];
1162         if (!target->type->examined)
1163         {
1164                 LOG_ERROR("Target not examined yet");
1165                 return ERROR_FAIL;
1166         }
1167
1168         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1169
1170         target_buffer_set_u16(target, value_buf, value);        
1171         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1172         {
1173                 LOG_DEBUG("failed: %i", retval);
1174         }
1175         
1176         return retval;
1177 }
1178
1179 int target_write_u8(struct target_s *target, u32 address, u8 value)
1180 {
1181         int retval;
1182         if (!target->type->examined)
1183         {
1184                 LOG_ERROR("Target not examined yet");
1185                 return ERROR_FAIL;
1186         }
1187
1188         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1189
1190         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1191         {
1192                 LOG_DEBUG("failed: %i", retval);
1193         }
1194         
1195         return retval;
1196 }
1197
1198 int target_register_user_commands(struct command_context_s *cmd_ctx)
1199 {
1200         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1201         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1202         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1203         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1204         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1205         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1206         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1207         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1208
1209         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1210         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1211         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1212         
1213         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1214         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1215         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1216         
1217         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1218         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1219         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1220         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1221         
1222         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1223         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1224         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1225         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1226         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1227         
1228         target_request_register_commands(cmd_ctx);
1229         trace_register_commands(cmd_ctx);
1230         
1231         return ERROR_OK;
1232 }
1233
1234 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1235 {
1236         target_t *target = targets;
1237         int count = 0;
1238         
1239         if (argc == 1)
1240         {
1241                 int num = strtoul(args[0], NULL, 0);
1242                 
1243                 while (target)
1244                 {
1245                         count++;
1246                         target = target->next;
1247                 }
1248                 
1249                 if (num < count)
1250                         cmd_ctx->current_target = num;
1251                 else
1252                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1253                         
1254                 return ERROR_OK;
1255         }
1256                 
1257         while (target)
1258         {
1259                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1260                 target = target->next;
1261         }
1262         
1263         return ERROR_OK;
1264 }
1265
1266 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1267 {
1268         int i;
1269         int found = 0;
1270         
1271         if (argc < 3)
1272         {
1273                 return ERROR_COMMAND_SYNTAX_ERROR;
1274         }
1275         
1276         /* search for the specified target */
1277         if (args[0] && (args[0][0] != 0))
1278         {
1279                 for (i = 0; target_types[i]; i++)
1280                 {
1281                         if (strcmp(args[0], target_types[i]->name) == 0)
1282                         {
1283                                 target_t **last_target_p = &targets;
1284                                 
1285                                 /* register target specific commands */
1286                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1287                                 {
1288                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1289                                         exit(-1);
1290                                 }
1291
1292                                 if (*last_target_p)
1293                                 {
1294                                         while ((*last_target_p)->next)
1295                                                 last_target_p = &((*last_target_p)->next);
1296                                         last_target_p = &((*last_target_p)->next);
1297                                 }
1298
1299                                 *last_target_p = malloc(sizeof(target_t));
1300                                 
1301                                 (*last_target_p)->type = target_types[i];
1302                                 
1303                                 if (strcmp(args[1], "big") == 0)
1304                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1305                                 else if (strcmp(args[1], "little") == 0)
1306                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1307                                 else
1308                                 {
1309                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1310                                         return ERROR_COMMAND_SYNTAX_ERROR;
1311                                 }
1312                                 
1313                                 /* what to do on a target reset */
1314                                 (*last_target_p)->reset_mode = RESET_INIT; /* default */
1315                                 if (strcmp(args[2], "reset_halt") == 0)
1316                                         (*last_target_p)->reset_mode = RESET_HALT;
1317                                 else if (strcmp(args[2], "reset_run") == 0)
1318                                         (*last_target_p)->reset_mode = RESET_RUN;
1319                                 else if (strcmp(args[2], "reset_init") == 0)
1320                                         (*last_target_p)->reset_mode = RESET_INIT;
1321                                 else if (strcmp(args[2], "run_and_halt") == 0)
1322                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1323                                 else if (strcmp(args[2], "run_and_init") == 0)
1324                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1325                                 else
1326                                 {
1327                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1328                                         args--;
1329                                         argc++;
1330                                 }
1331                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1332                                 
1333                                 (*last_target_p)->reset_script = NULL;
1334                                 (*last_target_p)->post_halt_script = NULL;
1335                                 (*last_target_p)->pre_resume_script = NULL;
1336                                 (*last_target_p)->gdb_program_script = NULL;
1337                                 
1338                                 (*last_target_p)->working_area = 0x0;
1339                                 (*last_target_p)->working_area_size = 0x0;
1340                                 (*last_target_p)->working_areas = NULL;
1341                                 (*last_target_p)->backup_working_area = 0;
1342                                 
1343                                 (*last_target_p)->state = TARGET_UNKNOWN;
1344                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1345                                 (*last_target_p)->reg_cache = NULL;
1346                                 (*last_target_p)->breakpoints = NULL;
1347                                 (*last_target_p)->watchpoints = NULL;
1348                                 (*last_target_p)->next = NULL;
1349                                 (*last_target_p)->arch_info = NULL;
1350                                 
1351                                 /* initialize trace information */
1352                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1353                                 (*last_target_p)->trace_info->num_trace_points = 0;
1354                                 (*last_target_p)->trace_info->trace_points_size = 0;
1355                                 (*last_target_p)->trace_info->trace_points = NULL;
1356                                 (*last_target_p)->trace_info->trace_history_size = 0;
1357                                 (*last_target_p)->trace_info->trace_history = NULL;
1358                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1359                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1360                                 
1361                                 (*last_target_p)->dbgmsg = NULL;
1362                                 (*last_target_p)->dbg_msg_enabled = 0;
1363                                                                 
1364                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1365                                 
1366                                 found = 1;
1367                                 break;
1368                         }
1369                 }
1370         }
1371         
1372         /* no matching target found */
1373         if (!found)
1374         {
1375                 LOG_ERROR("target '%s' not found", args[0]);
1376                 return ERROR_COMMAND_SYNTAX_ERROR;
1377         }
1378
1379         return ERROR_OK;
1380 }
1381
1382 /* usage: target_script <target#> <event> <script_file> */
1383 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1384 {
1385         target_t *target = NULL;
1386         
1387         if (argc < 3)
1388         {
1389                 LOG_ERROR("incomplete target_script command");
1390                 return ERROR_COMMAND_SYNTAX_ERROR;
1391         }
1392         
1393         target = get_target_by_num(strtoul(args[0], NULL, 0));
1394         
1395         if (!target)
1396         {
1397                 return ERROR_COMMAND_SYNTAX_ERROR;
1398         }
1399         
1400         if (strcmp(args[1], "reset") == 0)
1401         {
1402                 if (target->reset_script)
1403                         free(target->reset_script);
1404                 target->reset_script = strdup(args[2]);
1405         }
1406         else if (strcmp(args[1], "post_halt") == 0)
1407         {
1408                 if (target->post_halt_script)
1409                         free(target->post_halt_script);
1410                 target->post_halt_script = strdup(args[2]);
1411         }
1412         else if (strcmp(args[1], "pre_resume") == 0)
1413         {
1414                 if (target->pre_resume_script)
1415                         free(target->pre_resume_script);
1416                 target->pre_resume_script = strdup(args[2]);
1417         }
1418         else if (strcmp(args[1], "gdb_program_config") == 0)
1419         {
1420                 if (target->gdb_program_script)
1421                         free(target->gdb_program_script);
1422                 target->gdb_program_script = strdup(args[2]);
1423         }
1424         else
1425         {
1426                 LOG_ERROR("unknown event type: '%s", args[1]);
1427                 return ERROR_COMMAND_SYNTAX_ERROR;
1428         }
1429         
1430         return ERROR_OK;
1431 }
1432
1433 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1434 {
1435         target_t *target = NULL;
1436         
1437         if (argc < 2)
1438         {
1439                 return ERROR_COMMAND_SYNTAX_ERROR;
1440         }
1441         
1442         target = get_target_by_num(strtoul(args[0], NULL, 0));
1443         if (!target)
1444         {
1445                 return ERROR_COMMAND_SYNTAX_ERROR;
1446         }
1447         
1448         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1449         
1450         return ERROR_OK;
1451 }
1452
1453 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1454 {
1455         target_t *target = NULL;
1456         
1457         if ((argc < 4) || (argc > 5))
1458         {
1459                 return ERROR_COMMAND_SYNTAX_ERROR;
1460         }
1461         
1462         target = get_target_by_num(strtoul(args[0], NULL, 0));
1463         if (!target)
1464         {
1465                 return ERROR_COMMAND_SYNTAX_ERROR;
1466         }
1467         target_free_all_working_areas(target);
1468         
1469         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1470         if (argc == 5)
1471         {
1472                 target->working_area_virt = strtoul(args[4], NULL, 0);
1473         }
1474         target->working_area_size = strtoul(args[2], NULL, 0);
1475         
1476         if (strcmp(args[3], "backup") == 0)
1477         {
1478                 target->backup_working_area = 1;
1479         }
1480         else if (strcmp(args[3], "nobackup") == 0)
1481         {
1482                 target->backup_working_area = 0;
1483         }
1484         else
1485         {
1486                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1487                 return ERROR_COMMAND_SYNTAX_ERROR;
1488         }
1489         
1490         return ERROR_OK;
1491 }
1492
1493
1494 /* process target state changes */
1495 int handle_target(void *priv)
1496 {
1497         target_t *target = targets;
1498         
1499         while (target)
1500         {
1501                 if (target_continous_poll)
1502                 {
1503                         /* polling may fail silently until the target has been examined */
1504                         target_poll(target);
1505                 }
1506         
1507                 target = target->next;
1508         }
1509         
1510         return ERROR_OK;
1511 }
1512
1513 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1514 {
1515         target_t *target;
1516         reg_t *reg = NULL;
1517         int count = 0;
1518         char *value;
1519         
1520         LOG_DEBUG("-");
1521         
1522         target = get_current_target(cmd_ctx);
1523         
1524         /* list all available registers for the current target */
1525         if (argc == 0)
1526         {
1527                 reg_cache_t *cache = target->reg_cache;
1528                 
1529                 count = 0;
1530                 while(cache)
1531                 {
1532                         int i;
1533                         for (i = 0; i < cache->num_regs; i++)
1534                         {
1535                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1536                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1537                                 free(value);
1538                         }
1539                         cache = cache->next;
1540                 }
1541                 
1542                 return ERROR_OK;
1543         }
1544         
1545         /* access a single register by its ordinal number */
1546         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1547         {
1548                 int num = strtoul(args[0], NULL, 0);
1549                 reg_cache_t *cache = target->reg_cache;
1550                 
1551                 count = 0;
1552                 while(cache)
1553                 {
1554                         int i;
1555                         for (i = 0; i < cache->num_regs; i++)
1556                         {
1557                                 if (count++ == num)
1558                                 {
1559                                         reg = &cache->reg_list[i];
1560                                         break;
1561                                 }
1562                         }
1563                         if (reg)
1564                                 break;
1565                         cache = cache->next;
1566                 }
1567                 
1568                 if (!reg)
1569                 {
1570                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1571                         return ERROR_OK;
1572                 }
1573         } else /* access a single register by its name */
1574         {
1575                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1576                 
1577                 if (!reg)
1578                 {
1579                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1580                         return ERROR_OK;
1581                 }
1582         }
1583
1584         /* display a register */
1585         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1586         {
1587                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1588                         reg->valid = 0;
1589                 
1590                 if (reg->valid == 0)
1591                 {
1592                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1593                         if (arch_type == NULL)
1594                         {
1595                                 LOG_ERROR("BUG: encountered unregistered arch type");
1596                                 return ERROR_OK;
1597                         }
1598                         arch_type->get(reg);
1599                 }
1600                 value = buf_to_str(reg->value, reg->size, 16);
1601                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1602                 free(value);
1603                 return ERROR_OK;
1604         }
1605         
1606         /* set register value */
1607         if (argc == 2)
1608         {
1609                 u8 *buf = malloc(CEIL(reg->size, 8));
1610                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1611
1612                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1613                 if (arch_type == NULL)
1614                 {
1615                         LOG_ERROR("BUG: encountered unregistered arch type");
1616                         return ERROR_OK;
1617                 }
1618                 
1619                 arch_type->set(reg, buf);
1620                 
1621                 value = buf_to_str(reg->value, reg->size, 16);
1622                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1623                 free(value);
1624                 
1625                 free(buf);
1626                 
1627                 return ERROR_OK;
1628         }
1629         
1630         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1631         
1632         return ERROR_OK;
1633 }
1634
1635 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1636
1637 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1638 {
1639         target_t *target = get_current_target(cmd_ctx);
1640
1641         if (argc == 0)
1642         {
1643                 target_poll(target);
1644                 target_arch_state(target);
1645         }
1646         else
1647         {
1648                 if (strcmp(args[0], "on") == 0)
1649                 {
1650                         target_continous_poll = 1;
1651                 }
1652                 else if (strcmp(args[0], "off") == 0)
1653                 {
1654                         target_continous_poll = 0;
1655                 }
1656                 else
1657                 {
1658                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1659                 }
1660         }
1661         
1662         
1663         return ERROR_OK;
1664 }
1665
1666 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1667 {
1668         int ms = 5000;
1669         
1670         if (argc > 0)
1671         {
1672                 char *end;
1673
1674                 ms = strtoul(args[0], &end, 0) * 1000;
1675                 if (*end)
1676                 {
1677                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1678                         return ERROR_OK;
1679                 }
1680         }
1681
1682         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1683 }
1684
1685 static void target_process_events(struct command_context_s *cmd_ctx)
1686 {
1687         target_t *target = get_current_target(cmd_ctx);
1688         target_poll(target);
1689         target_call_timer_callbacks_now();
1690 }
1691
1692 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1693 {
1694         int retval;
1695         struct timeval timeout, now;
1696         int once=1;
1697         gettimeofday(&timeout, NULL);
1698         timeval_add_time(&timeout, 0, ms * 1000);
1699         
1700         target_t *target = get_current_target(cmd_ctx);
1701         for (;;)
1702         {
1703                 if ((retval=target_poll(target))!=ERROR_OK)
1704                         return retval;
1705                 target_call_timer_callbacks_now();
1706                 if (target->state == state)
1707                 {
1708                         break;
1709                 }
1710                 if (once)
1711                 {
1712                         once=0;
1713                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1714                 }
1715                 
1716                 gettimeofday(&now, NULL);
1717                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1718                 {
1719                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1720                         break;
1721                 }
1722         }
1723         
1724         return ERROR_OK;
1725 }
1726
1727 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1728 {
1729         int retval;
1730         target_t *target = get_current_target(cmd_ctx);
1731
1732         LOG_DEBUG("-");
1733
1734         if ((retval = target_halt(target)) != ERROR_OK)
1735         {
1736                 return retval;
1737         }
1738         
1739         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1740 }
1741
1742                 
1743 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1744 {
1745         target_t *target = get_current_target(cmd_ctx);
1746         
1747         LOG_USER("requesting target halt and executing a soft reset");
1748         
1749         target->type->soft_reset_halt(target);
1750         
1751         return ERROR_OK;
1752 }
1753
1754 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1755 {
1756         target_t *target = get_current_target(cmd_ctx);
1757         enum target_reset_mode reset_mode = target->reset_mode;
1758         enum target_reset_mode save = target->reset_mode;
1759         
1760         LOG_DEBUG("-");
1761         
1762         if (argc >= 1)
1763         {
1764                 if (strcmp("run", args[0]) == 0)
1765                         reset_mode = RESET_RUN;
1766                 else if (strcmp("halt", args[0]) == 0)
1767                         reset_mode = RESET_HALT;
1768                 else if (strcmp("init", args[0]) == 0)
1769                         reset_mode = RESET_INIT;
1770                 else if (strcmp("run_and_halt", args[0]) == 0)
1771                 {
1772                         reset_mode = RESET_RUN_AND_HALT;
1773                         if (argc >= 2)
1774                         {
1775                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1776                         }
1777                 }
1778                 else if (strcmp("run_and_init", args[0]) == 0)
1779                 {
1780                         reset_mode = RESET_RUN_AND_INIT;
1781                         if (argc >= 2)
1782                         {
1783                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1784                         }
1785                 }
1786                 else
1787                 {
1788                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1789                         return ERROR_OK;
1790                 }
1791         }
1792         
1793         /* temporarily modify mode of current reset target */
1794         target->reset_mode = reset_mode;
1795
1796         /* reset *all* targets */
1797         target_process_reset(cmd_ctx);
1798         
1799         /* Restore default reset mode for this target */
1800     target->reset_mode = save;
1801         
1802         return ERROR_OK;
1803 }
1804
1805 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1806 {
1807         int retval;
1808         target_t *target = get_current_target(cmd_ctx);
1809         
1810         if (argc == 0)
1811                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1812         else if (argc == 1)
1813                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1814         else
1815         {
1816                 return ERROR_COMMAND_SYNTAX_ERROR;
1817         }
1818
1819         target_process_events(cmd_ctx);
1820         
1821         return retval;
1822 }
1823
1824 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1825 {
1826         target_t *target = get_current_target(cmd_ctx);
1827         
1828         LOG_DEBUG("-");
1829         
1830         if (argc == 0)
1831                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1832
1833         if (argc == 1)
1834                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1835         
1836         return ERROR_OK;
1837 }
1838
1839 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1840 {
1841         const int line_bytecnt = 32;
1842         int count = 1;
1843         int size = 4;
1844         u32 address = 0;
1845         int line_modulo;
1846         int i;
1847
1848         char output[128];
1849         int output_len;
1850
1851         int retval;
1852
1853         u8 *buffer;
1854         target_t *target = get_current_target(cmd_ctx);
1855
1856         if (argc < 1)
1857                 return ERROR_OK;
1858
1859         if (argc == 2)
1860                 count = strtoul(args[1], NULL, 0);
1861
1862         address = strtoul(args[0], NULL, 0);
1863         
1864
1865         switch (cmd[2])
1866         {
1867                 case 'w':
1868                         size = 4; line_modulo = line_bytecnt / 4;
1869                         break;
1870                 case 'h':
1871                         size = 2; line_modulo = line_bytecnt / 2;
1872                         break;
1873                 case 'b':
1874                         size = 1; line_modulo = line_bytecnt / 1;
1875                         break;
1876                 default:
1877                         return ERROR_OK;
1878         }
1879
1880         buffer = calloc(count, size);
1881         retval  = target->type->read_memory(target, address, size, count, buffer);
1882         if (retval == ERROR_OK)
1883         {
1884                 output_len = 0;
1885         
1886                 for (i = 0; i < count; i++)
1887                 {
1888                         if (i%line_modulo == 0)
1889                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1890                         
1891                         switch (size)
1892                         {
1893                                 case 4:
1894                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1895                                         break;
1896                                 case 2:
1897                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1898                                         break;
1899                                 case 1:
1900                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1901                                         break;
1902                         }
1903         
1904                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1905                         {
1906                                 command_print(cmd_ctx, output);
1907                                 output_len = 0;
1908                         }
1909                 }
1910         } else
1911         {
1912                 LOG_ERROR("Failure examining memory");
1913         }
1914
1915         free(buffer);
1916         
1917         return ERROR_OK;
1918 }
1919
1920 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1921 {
1922         u32 address = 0;
1923         u32 value = 0;
1924         int count = 1;
1925         int i;
1926         int wordsize;
1927         target_t *target = get_current_target(cmd_ctx);
1928         u8 value_buf[4];
1929
1930          if ((argc < 2) || (argc > 3))
1931                 return ERROR_COMMAND_SYNTAX_ERROR;
1932
1933         address = strtoul(args[0], NULL, 0);
1934         value = strtoul(args[1], NULL, 0);
1935         if (argc == 3)
1936                 count = strtoul(args[2], NULL, 0);
1937
1938
1939         switch (cmd[2])
1940         {
1941                 case 'w':
1942                         wordsize = 4;
1943                         target_buffer_set_u32(target, value_buf, value);
1944                         break;
1945                 case 'h':
1946                         wordsize = 2;
1947                         target_buffer_set_u16(target, value_buf, value);
1948                         break;
1949                 case 'b':
1950                         wordsize = 1;
1951                         value_buf[0] = value;
1952                         break;
1953                 default:
1954                         return ERROR_COMMAND_SYNTAX_ERROR;
1955         }
1956         for (i=0; i<count; i++)
1957         {
1958                 int retval;
1959                 switch (wordsize)
1960                 {
1961                         case 4:
1962                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
1963                                 break;
1964                         case 2:
1965                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
1966                                 break;
1967                         case 1:
1968                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
1969                         break;
1970                         default:
1971                         return ERROR_OK;
1972                 }
1973                 if (retval!=ERROR_OK)
1974                 {
1975                         return retval;
1976                 }
1977         }
1978
1979         return ERROR_OK;
1980
1981 }
1982
1983 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1984 {
1985         u8 *buffer;
1986         u32 buf_cnt;
1987         u32 image_size;
1988         int i;
1989         int retval;
1990
1991         image_t image;  
1992         
1993         duration_t duration;
1994         char *duration_text;
1995         
1996         target_t *target = get_current_target(cmd_ctx);
1997
1998         if (argc < 1)
1999         {
2000                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
2001                 return ERROR_OK;
2002         }
2003         
2004         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2005         if (argc >= 2)
2006         {
2007                 image.base_address_set = 1;
2008                 image.base_address = strtoul(args[1], NULL, 0);
2009         }
2010         else
2011         {
2012                 image.base_address_set = 0;
2013         }
2014         
2015         image.start_address_set = 0;
2016
2017         duration_start_measure(&duration);
2018         
2019         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2020         {
2021                 return ERROR_OK;
2022         }
2023         
2024         image_size = 0x0;
2025         retval = ERROR_OK;
2026         for (i = 0; i < image.num_sections; i++)
2027         {
2028                 buffer = malloc(image.sections[i].size);
2029                 if (buffer == NULL)
2030                 {
2031                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2032                         break;
2033                 }
2034                 
2035                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2036                 {
2037                         free(buffer);
2038                         break;
2039                 }
2040                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
2041                 {
2042                         free(buffer);
2043                         break;
2044                 }
2045                 image_size += buf_cnt;
2046                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
2047                 
2048                 free(buffer);
2049         }
2050
2051         duration_stop_measure(&duration, &duration_text);
2052         if (retval==ERROR_OK)
2053         {
2054                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2055         }
2056         free(duration_text);
2057         
2058         image_close(&image);
2059
2060         return retval;
2061
2062 }
2063
2064 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2065 {
2066         fileio_t fileio;
2067         
2068         u32 address;
2069         u32 size;
2070         u8 buffer[560];
2071         int retval=ERROR_OK;
2072         
2073         duration_t duration;
2074         char *duration_text;
2075         
2076         target_t *target = get_current_target(cmd_ctx);
2077
2078         if (argc != 3)
2079         {
2080                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2081                 return ERROR_OK;
2082         }
2083
2084         address = strtoul(args[1], NULL, 0);
2085         size = strtoul(args[2], NULL, 0);
2086
2087         if ((address & 3) || (size & 3))
2088         {
2089                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2090                 return ERROR_OK;
2091         }
2092         
2093         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2094         {
2095                 return ERROR_OK;
2096         }
2097         
2098         duration_start_measure(&duration);
2099         
2100         while (size > 0)
2101         {
2102                 u32 size_written;
2103                 u32 this_run_size = (size > 560) ? 560 : size;
2104                 
2105                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2106                 if (retval != ERROR_OK)
2107                 {
2108                         break;
2109                 }
2110                 
2111                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2112                 if (retval != ERROR_OK)
2113                 {
2114                         break;
2115                 }
2116                 
2117                 size -= this_run_size;
2118                 address += this_run_size;
2119         }
2120
2121         fileio_close(&fileio);
2122
2123         duration_stop_measure(&duration, &duration_text);
2124         if (retval==ERROR_OK)
2125         {
2126                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2127         }
2128         free(duration_text);
2129         
2130         return ERROR_OK;
2131 }
2132
2133 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2134 {
2135         u8 *buffer;
2136         u32 buf_cnt;
2137         u32 image_size;
2138         int i;
2139         int retval;
2140         u32 checksum = 0;
2141         u32 mem_checksum = 0;
2142
2143         image_t image;  
2144         
2145         duration_t duration;
2146         char *duration_text;
2147         
2148         target_t *target = get_current_target(cmd_ctx);
2149         
2150         if (argc < 1)
2151         {
2152                 return ERROR_COMMAND_SYNTAX_ERROR;
2153         }
2154         
2155         if (!target)
2156         {
2157                 LOG_ERROR("no target selected");
2158                 return ERROR_FAIL;
2159         }
2160         
2161         duration_start_measure(&duration);
2162         
2163         if (argc >= 2)
2164         {
2165                 image.base_address_set = 1;
2166                 image.base_address = strtoul(args[1], NULL, 0);
2167         }
2168         else
2169         {
2170                 image.base_address_set = 0;
2171                 image.base_address = 0x0;
2172         }
2173
2174         image.start_address_set = 0;
2175
2176         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2177         {
2178                 return retval;
2179         }
2180         
2181         image_size = 0x0;
2182         retval=ERROR_OK;
2183         for (i = 0; i < image.num_sections; i++)
2184         {
2185                 buffer = malloc(image.sections[i].size);
2186                 if (buffer == NULL)
2187                 {
2188                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2189                         break;
2190                 }
2191                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2192                 {
2193                         free(buffer);
2194                         break;
2195                 }
2196                 
2197                 /* calculate checksum of image */
2198                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2199                 
2200                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2201                 if( retval != ERROR_OK )
2202                 {
2203                         free(buffer);
2204                         break;
2205                 }
2206                 
2207                 if( checksum != mem_checksum )
2208                 {
2209                         /* failed crc checksum, fall back to a binary compare */
2210                         u8 *data;
2211                         
2212                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2213                         
2214                         data = (u8*)malloc(buf_cnt);
2215                         
2216                         /* Can we use 32bit word accesses? */
2217                         int size = 1;
2218                         int count = buf_cnt;
2219                         if ((count % 4) == 0)
2220                         {
2221                                 size *= 4;
2222                                 count /= 4;
2223                         }
2224                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2225                         if (retval == ERROR_OK)
2226                         {
2227                                 int t;
2228                                 for (t = 0; t < buf_cnt; t++)
2229                                 {
2230                                         if (data[t] != buffer[t])
2231                                         {
2232                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2233                                                 free(data);
2234                                                 free(buffer);
2235                                                 retval=ERROR_FAIL;
2236                                                 goto done;
2237                                         }
2238                                 }
2239                         }
2240                         
2241                         free(data);
2242                 }
2243                 
2244                 free(buffer);
2245                 image_size += buf_cnt;
2246         }
2247 done:   
2248         duration_stop_measure(&duration, &duration_text);
2249         if (retval==ERROR_OK)
2250         {
2251                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2252         }
2253         free(duration_text);
2254         
2255         image_close(&image);
2256         
2257         return retval;
2258 }
2259
2260 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2261 {
2262         int retval;
2263         target_t *target = get_current_target(cmd_ctx);
2264
2265         if (argc == 0)
2266         {
2267                 breakpoint_t *breakpoint = target->breakpoints;
2268
2269                 while (breakpoint)
2270                 {
2271                         if (breakpoint->type == BKPT_SOFT)
2272                         {
2273                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2274                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2275                                 free(buf);
2276                         }
2277                         else
2278                         {
2279                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2280                         }
2281                         breakpoint = breakpoint->next;
2282                 }
2283         }
2284         else if (argc >= 2)
2285         {
2286                 int hw = BKPT_SOFT;
2287                 u32 length = 0;
2288
2289                 length = strtoul(args[1], NULL, 0);
2290                 
2291                 if (argc >= 3)
2292                         if (strcmp(args[2], "hw") == 0)
2293                                 hw = BKPT_HARD;
2294
2295                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2296                 {
2297                         LOG_ERROR("Failure setting breakpoints");
2298                 }
2299                 else
2300                 {
2301                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2302                 }
2303         }
2304         else
2305         {
2306                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2307         }
2308
2309         return ERROR_OK;
2310 }
2311
2312 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2313 {
2314         target_t *target = get_current_target(cmd_ctx);
2315
2316         if (argc > 0)
2317                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2318
2319         return ERROR_OK;
2320 }
2321
2322 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2323 {
2324         target_t *target = get_current_target(cmd_ctx);
2325         int retval;
2326
2327         if (argc == 0)
2328         {
2329                 watchpoint_t *watchpoint = target->watchpoints;
2330
2331                 while (watchpoint)
2332                 {
2333                         command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2334                         watchpoint = watchpoint->next;
2335                 }
2336         } 
2337         else if (argc >= 2)
2338         {
2339                 enum watchpoint_rw type = WPT_ACCESS;
2340                 u32 data_value = 0x0;
2341                 u32 data_mask = 0xffffffff;
2342                 
2343                 if (argc >= 3)
2344                 {
2345                         switch(args[2][0])
2346                         {
2347                                 case 'r':
2348                                         type = WPT_READ;
2349                                         break;
2350                                 case 'w':
2351                                         type = WPT_WRITE;
2352                                         break;
2353                                 case 'a':
2354                                         type = WPT_ACCESS;
2355                                         break;
2356                                 default:
2357                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2358                                         return ERROR_OK;
2359                         }
2360                 }
2361                 if (argc >= 4)
2362                 {
2363                         data_value = strtoul(args[3], NULL, 0);
2364                 }
2365                 if (argc >= 5)
2366                 {
2367                         data_mask = strtoul(args[4], NULL, 0);
2368                 }
2369                 
2370                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2371                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2372                 {
2373                         LOG_ERROR("Failure setting breakpoints");
2374                 }
2375         }
2376         else
2377         {
2378                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2379         }
2380                 
2381         return ERROR_OK;
2382 }
2383
2384 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2385 {
2386         target_t *target = get_current_target(cmd_ctx);
2387
2388         if (argc > 0)
2389                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2390         
2391         return ERROR_OK;
2392 }
2393
2394 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2395 {
2396         int retval;
2397         target_t *target = get_current_target(cmd_ctx);
2398         u32 va;
2399         u32 pa;
2400
2401         if (argc != 1)
2402         {
2403                 return ERROR_COMMAND_SYNTAX_ERROR;
2404         }
2405         va = strtoul(args[0], NULL, 0);
2406
2407         retval = target->type->virt2phys(target, va, &pa);
2408         if (retval == ERROR_OK)
2409         {
2410                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2411         }
2412         else
2413         {
2414                 /* lower levels will have logged a detailed error which is 
2415                  * forwarded to telnet/GDB session.  
2416                  */
2417         }
2418         return retval;
2419 }
2420 static void writeLong(FILE *f, int l)
2421 {
2422         int i;
2423         for (i=0; i<4; i++)
2424         {
2425                 char c=(l>>(i*8))&0xff;
2426                 fwrite(&c, 1, 1, f); 
2427         }
2428         
2429 }
2430 static void writeString(FILE *f, char *s)
2431 {
2432         fwrite(s, 1, strlen(s), f); 
2433 }
2434
2435
2436
2437 // Dump a gmon.out histogram file.
2438 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2439 {
2440         int i;
2441         FILE *f=fopen(filename, "w");
2442         if (f==NULL)
2443                 return;
2444         fwrite("gmon", 1, 4, f);
2445         writeLong(f, 0x00000001); // Version
2446         writeLong(f, 0); // padding
2447         writeLong(f, 0); // padding
2448         writeLong(f, 0); // padding
2449                                 
2450         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2451
2452         // figure out bucket size
2453         u32 min=samples[0];
2454         u32 max=samples[0];
2455         for (i=0; i<sampleNum; i++)
2456         {
2457                 if (min>samples[i])
2458                 {
2459                         min=samples[i];
2460                 }
2461                 if (max<samples[i])
2462                 {
2463                         max=samples[i];
2464                 }
2465         }
2466
2467         int addressSpace=(max-min+1);
2468         
2469         static int const maxBuckets=256*1024; // maximum buckets.
2470         int length=addressSpace;
2471         if (length > maxBuckets)
2472         {
2473                 length=maxBuckets; 
2474         }
2475         int *buckets=malloc(sizeof(int)*length);
2476         if (buckets==NULL)
2477         {
2478                 fclose(f);
2479                 return;
2480         }
2481         memset(buckets, 0, sizeof(int)*length);
2482         for (i=0; i<sampleNum;i++)
2483         {
2484                 u32 address=samples[i];
2485                 long long a=address-min;
2486                 long long b=length-1;
2487                 long long c=addressSpace-1;
2488                 int index=(a*b)/c; // danger!!!! int32 overflows 
2489                 buckets[index]++;
2490         }
2491         
2492         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2493         writeLong(f, min);                                      // low_pc
2494         writeLong(f, max);              // high_pc
2495         writeLong(f, length);           // # of samples
2496         writeLong(f, 64000000);                         // 64MHz
2497         writeString(f, "seconds");
2498         for (i=0; i<(15-strlen("seconds")); i++)
2499         {
2500                 fwrite("", 1, 1, f);  // padding
2501         }
2502         writeString(f, "s");
2503                 
2504 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2505         
2506         char *data=malloc(2*length);
2507         if (data!=NULL)
2508         {
2509                 for (i=0; i<length;i++)
2510                 {
2511                         int val;
2512                         val=buckets[i];
2513                         if (val>65535)
2514                         {
2515                                 val=65535;
2516                         }
2517                         data[i*2]=val&0xff;
2518                         data[i*2+1]=(val>>8)&0xff;
2519                 }
2520                 free(buckets);
2521                 fwrite(data, 1, length*2, f);
2522                 free(data);
2523         } else
2524         {
2525                 free(buckets);
2526         }
2527
2528         fclose(f);
2529 }
2530
2531 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2532 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2533 {
2534         target_t *target = get_current_target(cmd_ctx);
2535         struct timeval timeout, now;
2536         
2537         gettimeofday(&timeout, NULL);
2538         if (argc!=2)
2539         {
2540                 return ERROR_COMMAND_SYNTAX_ERROR;
2541         }
2542         char *end;
2543         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2544         if (*end) 
2545         {
2546                 return ERROR_OK;
2547         }
2548         
2549         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2550
2551         static const int maxSample=10000;
2552         u32 *samples=malloc(sizeof(u32)*maxSample);
2553         if (samples==NULL)
2554                 return ERROR_OK;
2555         
2556         int numSamples=0;
2557         int retval=ERROR_OK;
2558         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2559         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2560         
2561         for (;;)
2562         {
2563                 target_poll(target);
2564                 if (target->state == TARGET_HALTED)
2565                 {
2566                         u32 t=*((u32 *)reg->value);
2567                         samples[numSamples++]=t;
2568                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2569                         target_poll(target);
2570                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2571                 } else if (target->state == TARGET_RUNNING)
2572                 {
2573                         // We want to quickly sample the PC.
2574                         target_halt(target);
2575                 } else
2576                 {
2577                         command_print(cmd_ctx, "Target not halted or running");
2578                         retval=ERROR_OK;
2579                         break;
2580                 }
2581                 if (retval!=ERROR_OK)
2582                 {
2583                         break;
2584                 }
2585                 
2586                 gettimeofday(&now, NULL);
2587                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2588                 {
2589                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2590                         target_poll(target);
2591                         if (target->state == TARGET_HALTED)
2592                         {
2593                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2594                         }
2595                         target_poll(target);
2596                         writeGmon(samples, numSamples, args[1]);
2597                         command_print(cmd_ctx, "Wrote %s", args[1]);
2598                         break;
2599                 }
2600         }
2601         free(samples);
2602         
2603         return ERROR_OK;
2604 }
2605