]> git.sur5r.net Git - openocd/blob - src/target/target.c
- fix read/write size for small unaligned accesses (thanks Michael Bruck)
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55
56 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59
60 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
78
79 /* targets
80  */
81 extern target_type_t arm7tdmi_target;
82 extern target_type_t arm720t_target;
83 extern target_type_t arm9tdmi_target;
84 extern target_type_t arm920t_target;
85 extern target_type_t arm966e_target;
86 extern target_type_t arm926ejs_target;
87 extern target_type_t feroceon_target;
88 extern target_type_t xscale_target;
89 extern target_type_t cortexm3_target;
90
91 target_type_t *target_types[] =
92 {
93         &arm7tdmi_target,
94         &arm9tdmi_target,
95         &arm920t_target,
96         &arm720t_target,
97         &arm966e_target,
98         &arm926ejs_target,
99         &feroceon_target,
100         &xscale_target,
101         &cortexm3_target,
102         NULL,
103 };
104
105 target_t *targets = NULL;
106 target_event_callback_t *target_event_callbacks = NULL;
107 target_timer_callback_t *target_timer_callbacks = NULL;
108
109 char *target_state_strings[] =
110 {
111         "unknown",
112         "running",
113         "halted",
114         "reset",
115         "debug_running",
116 };
117
118 char *target_debug_reason_strings[] =
119 {
120         "debug request", "breakpoint", "watchpoint",
121         "watchpoint and breakpoint", "single step",
122         "target not halted"
123 };
124
125 char *target_endianess_strings[] =
126 {
127         "big endian",
128         "little endian",
129 };
130
131 enum daemon_startup_mode startup_mode = DAEMON_ATTACH;
132
133 static int target_continous_poll = 1;
134
135 /* read a u32 from a buffer in target memory endianness */
136 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
137 {
138         if (target->endianness == TARGET_LITTLE_ENDIAN)
139                 return le_to_h_u32(buffer);
140         else
141                 return be_to_h_u32(buffer);
142 }
143
144 /* read a u16 from a buffer in target memory endianness */
145 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
146 {
147         if (target->endianness == TARGET_LITTLE_ENDIAN)
148                 return le_to_h_u16(buffer);
149         else
150                 return be_to_h_u16(buffer);
151 }
152
153 /* write a u32 to a buffer in target memory endianness */
154 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
155 {
156         if (target->endianness == TARGET_LITTLE_ENDIAN)
157                 h_u32_to_le(buffer, value);
158         else
159                 h_u32_to_be(buffer, value);
160 }
161
162 /* write a u16 to a buffer in target memory endianness */
163 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
164 {
165         if (target->endianness == TARGET_LITTLE_ENDIAN)
166                 h_u16_to_le(buffer, value);
167         else
168                 h_u16_to_be(buffer, value);
169 }
170
171 /* returns a pointer to the n-th configured target */
172 target_t* get_target_by_num(int num)
173 {
174         target_t *target = targets;
175         int i = 0;
176
177         while (target)
178         {
179                 if (num == i)
180                         return target;
181                 target = target->next;
182                 i++;
183         }
184
185         return NULL;
186 }
187
188 int get_num_by_target(target_t *query_target)
189 {
190         target_t *target = targets;
191         int i = 0;      
192         
193         while (target)
194         {
195                 if (target == query_target)
196                         return i;
197                 target = target->next;
198                 i++;
199         }
200         
201         return -1;
202 }
203
204 target_t* get_current_target(command_context_t *cmd_ctx)
205 {
206         target_t *target = get_target_by_num(cmd_ctx->current_target);
207         
208         if (target == NULL)
209         {
210                 ERROR("BUG: current_target out of bounds");
211                 exit(-1);
212         }
213         
214         return target;
215 }
216
217 /* Process target initialization, when target entered debug out of reset
218  * the handler is unregistered at the end of this function, so it's only called once
219  */
220 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
221 {
222         FILE *script;
223         struct command_context_s *cmd_ctx = priv;
224         
225         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
226         {
227                 target_unregister_event_callback(target_init_handler, priv);
228
229                 script = open_file_from_path(cmd_ctx, target->reset_script, "r");
230                 if (!script)
231                 {
232                         ERROR("couldn't open script file %s", target->reset_script);
233                                 return ERROR_OK;
234                 }
235
236                 INFO("executing reset script '%s'", target->reset_script);
237                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
238                 fclose(script);
239
240                 jtag_execute_queue();
241         }
242         
243         return ERROR_OK;
244 }
245
246 int target_run_and_halt_handler(void *priv)
247 {
248         target_t *target = priv;
249         
250         target->type->halt(target);
251         
252         return ERROR_OK;
253 }
254
255 int target_process_reset(struct command_context_s *cmd_ctx)
256 {
257         int retval = ERROR_OK;
258         target_t *target;
259         struct timeval timeout, now;
260         
261         /* prepare reset_halt where necessary */
262         target = targets;
263         while (target)
264         {
265                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
266                 {
267                         switch (target->reset_mode)
268                         {
269                                 case RESET_HALT:
270                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to RESET_RUN_AND_HALT");
271                                         target->reset_mode = RESET_RUN_AND_HALT;
272                                         break;
273                                 case RESET_INIT:
274                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to RESET_RUN_AND_INIT");
275                                         target->reset_mode = RESET_RUN_AND_INIT;
276                                         break;
277                                 default:
278                                         break;
279                         } 
280                 }
281                 switch (target->reset_mode)
282                 {
283                         case RESET_HALT:
284                         case RESET_INIT:
285                                 target->type->prepare_reset_halt(target);
286                                 break;
287                         default:
288                                 break;
289                 }
290                 target = target->next;
291         }
292         
293         target = targets;
294         while (target)
295         {
296                 target->type->assert_reset(target);
297                 target = target->next;
298         }
299         jtag_execute_queue();
300         
301         /* request target halt if necessary, and schedule further action */
302         target = targets;
303         while (target)
304         {
305                 switch (target->reset_mode)
306                 {
307                         case RESET_RUN:
308                                 /* nothing to do if target just wants to be run */
309                                 break;
310                         case RESET_RUN_AND_HALT:
311                                 /* schedule halt */
312                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
313                                 break;
314                         case RESET_RUN_AND_INIT:
315                                 /* schedule halt */
316                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
317                                 target_register_event_callback(target_init_handler, cmd_ctx);
318                                 break;
319                         case RESET_HALT:
320                                 target->type->halt(target);
321                                 break;
322                         case RESET_INIT:
323                                 target->type->halt(target);
324                                 target_register_event_callback(target_init_handler, cmd_ctx);
325                                 break;
326                         default:
327                                 ERROR("BUG: unknown target->reset_mode");
328                 }
329                 target = target->next;
330         }
331         
332         target = targets;
333         while (target)
334         {
335                 target->type->deassert_reset(target);
336                 target = target->next;
337         }
338         jtag_execute_queue();
339
340         /* Wait for reset to complete, maximum 5 seconds. */    
341         gettimeofday(&timeout, NULL);
342         timeval_add_time(&timeout, 5, 0);
343         for(;;)
344         {
345                 gettimeofday(&now, NULL);
346                 
347                 target_call_timer_callbacks();
348                 
349                 target = targets;
350                 while (target)
351                 {
352                         target->type->poll(target);
353                         if ((target->reset_mode == RESET_RUN_AND_INIT) || (target->reset_mode == RESET_RUN_AND_HALT))
354                         {
355                                 if (target->state != TARGET_HALTED)
356                                 {
357                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
358                                         {
359                                                 command_print(cmd_ctx, "Timed out waiting for reset");
360                                                 goto done;
361                                         }
362                                         usleep(100*1000); /* Do not eat all cpu */
363                                         goto again;
364                                 }
365                         }
366                         target = target->next;
367                 }
368                 /* All targets we're waiting for are halted */
369                 break;
370                 
371                 again:;
372         }
373         done:
374         
375         
376         /* We want any events to be processed before the prompt */
377         target_call_timer_callbacks();
378         
379         return retval;
380 }
381
382 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
383 {
384         *physical = virtual;
385         return ERROR_OK;
386 }
387
388 static int default_mmu(struct target_s *target, int *enabled)
389 {
390         USER("No MMU present");
391         *enabled = 0;
392         return ERROR_OK;
393 }
394
395 int target_init(struct command_context_s *cmd_ctx)
396 {
397         target_t *target = targets;
398         
399         while (target)
400         {
401                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
402                 {
403                         ERROR("target '%s' init failed", target->type->name);
404                         exit(-1);
405                 }
406                 
407                 /* Set up default functions if none are provided by target */
408                 if (target->type->virt2phys == NULL)
409                 {
410                         target->type->virt2phys = default_virt2phys;
411                 }
412                 if (target->type->mmu == NULL)
413                 {
414                         target->type->mmu = default_mmu;
415                 }
416                 target = target->next;
417         }
418         
419         if (targets)
420         {
421                 target_register_user_commands(cmd_ctx);
422                 target_register_timer_callback(handle_target, 100, 1, NULL);
423         }
424                 
425         return ERROR_OK;
426 }
427
428 int target_init_reset(struct command_context_s *cmd_ctx)
429 {
430         if (startup_mode == DAEMON_RESET)
431                 target_process_reset(cmd_ctx);
432         
433         return ERROR_OK;
434 }
435
436 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
437 {
438         target_event_callback_t **callbacks_p = &target_event_callbacks;
439         
440         if (callback == NULL)
441         {
442                 return ERROR_INVALID_ARGUMENTS;
443         }
444         
445         if (*callbacks_p)
446         {
447                 while ((*callbacks_p)->next)
448                         callbacks_p = &((*callbacks_p)->next);
449                 callbacks_p = &((*callbacks_p)->next);
450         }
451         
452         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
453         (*callbacks_p)->callback = callback;
454         (*callbacks_p)->priv = priv;
455         (*callbacks_p)->next = NULL;
456         
457         return ERROR_OK;
458 }
459
460 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
461 {
462         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
463         struct timeval now;
464         
465         if (callback == NULL)
466         {
467                 return ERROR_INVALID_ARGUMENTS;
468         }
469         
470         if (*callbacks_p)
471         {
472                 while ((*callbacks_p)->next)
473                         callbacks_p = &((*callbacks_p)->next);
474                 callbacks_p = &((*callbacks_p)->next);
475         }
476         
477         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
478         (*callbacks_p)->callback = callback;
479         (*callbacks_p)->periodic = periodic;
480         (*callbacks_p)->time_ms = time_ms;
481         
482         gettimeofday(&now, NULL);
483         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
484         time_ms -= (time_ms % 1000);
485         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
486         if ((*callbacks_p)->when.tv_usec > 1000000)
487         {
488                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
489                 (*callbacks_p)->when.tv_sec += 1;
490         }
491         
492         (*callbacks_p)->priv = priv;
493         (*callbacks_p)->next = NULL;
494         
495         return ERROR_OK;
496 }
497
498 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
499 {
500         target_event_callback_t **p = &target_event_callbacks;
501         target_event_callback_t *c = target_event_callbacks;
502         
503         if (callback == NULL)
504         {
505                 return ERROR_INVALID_ARGUMENTS;
506         }
507                 
508         while (c)
509         {
510                 target_event_callback_t *next = c->next;
511                 if ((c->callback == callback) && (c->priv == priv))
512                 {
513                         *p = next;
514                         free(c);
515                         return ERROR_OK;
516                 }
517                 else
518                         p = &(c->next);
519                 c = next;
520         }
521         
522         return ERROR_OK;
523 }
524
525 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
526 {
527         target_timer_callback_t **p = &target_timer_callbacks;
528         target_timer_callback_t *c = target_timer_callbacks;
529         
530         if (callback == NULL)
531         {
532                 return ERROR_INVALID_ARGUMENTS;
533         }
534                 
535         while (c)
536         {
537                 target_timer_callback_t *next = c->next;
538                 if ((c->callback == callback) && (c->priv == priv))
539                 {
540                         *p = next;
541                         free(c);
542                         return ERROR_OK;
543                 }
544                 else
545                         p = &(c->next);
546                 c = next;
547         }
548         
549         return ERROR_OK;
550 }
551
552 int target_call_event_callbacks(target_t *target, enum target_event event)
553 {
554         target_event_callback_t *callback = target_event_callbacks;
555         target_event_callback_t *next_callback;
556         
557         DEBUG("target event %i", event);
558         
559         while (callback)
560         {
561                 next_callback = callback->next;
562                 callback->callback(target, event, callback->priv);
563                 callback = next_callback;
564         }
565         
566         return ERROR_OK;
567 }
568
569 int target_call_timer_callbacks()
570 {
571         target_timer_callback_t *callback = target_timer_callbacks;
572         target_timer_callback_t *next_callback;
573         struct timeval now;
574
575         gettimeofday(&now, NULL);
576         
577         while (callback)
578         {
579                 next_callback = callback->next;
580                 
581                 if (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
582                         || (now.tv_sec > callback->when.tv_sec))
583                 {
584                         callback->callback(callback->priv);
585                         if (callback->periodic)
586                         {
587                                 int time_ms = callback->time_ms;
588                                 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
589                                 time_ms -= (time_ms % 1000);
590                                 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
591                                 if (callback->when.tv_usec > 1000000)
592                                 {
593                                         callback->when.tv_usec = callback->when.tv_usec - 1000000;
594                                         callback->when.tv_sec += 1;
595                                 }
596                         }
597                         else
598                                 target_unregister_timer_callback(callback->callback, callback->priv);
599                 }
600                         
601                 callback = next_callback;
602         }
603         
604         return ERROR_OK;
605 }
606
607 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
608 {
609         working_area_t *c = target->working_areas;
610         working_area_t *new_wa = NULL;
611         
612         /* Reevaluate working area address based on MMU state*/
613         if (target->working_areas == NULL)
614         {
615                 int retval;
616                 int enabled;
617                 retval = target->type->mmu(target, &enabled);
618                 if (retval != ERROR_OK)
619                 {
620                         return retval;
621                 }
622                 if (enabled)
623                 {
624                         target->working_area = target->working_area_virt;
625                 }
626                 else
627                 {
628                         target->working_area = target->working_area_phys;
629                 }
630         }
631         
632         /* only allocate multiples of 4 byte */
633         if (size % 4)
634         {
635                 ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
636                 size = CEIL(size, 4);
637         }
638         
639         /* see if there's already a matching working area */
640         while (c)
641         {
642                 if ((c->free) && (c->size == size))
643                 {
644                         new_wa = c;
645                         break;
646                 }
647                 c = c->next;
648         }
649         
650         /* if not, allocate a new one */
651         if (!new_wa)
652         {
653                 working_area_t **p = &target->working_areas;
654                 u32 first_free = target->working_area;
655                 u32 free_size = target->working_area_size;
656                 
657                 DEBUG("allocating new working area");
658                 
659                 c = target->working_areas;
660                 while (c)
661                 {
662                         first_free += c->size;
663                         free_size -= c->size;
664                         p = &c->next;
665                         c = c->next;
666                 }
667                 
668                 if (free_size < size)
669                 {
670                         WARNING("not enough working area available(requested %d, free %d)", size, free_size);
671                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
672                 }
673                 
674                 new_wa = malloc(sizeof(working_area_t));
675                 new_wa->next = NULL;
676                 new_wa->size = size;
677                 new_wa->address = first_free;
678                 
679                 if (target->backup_working_area)
680                 {
681                         new_wa->backup = malloc(new_wa->size);
682                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
683                 }
684                 else
685                 {
686                         new_wa->backup = NULL;
687                 }
688                 
689                 /* put new entry in list */
690                 *p = new_wa;
691         }
692         
693         /* mark as used, and return the new (reused) area */
694         new_wa->free = 0;
695         *area = new_wa;
696         
697         /* user pointer */
698         new_wa->user = area;
699         
700         return ERROR_OK;
701 }
702
703 int target_free_working_area(struct target_s *target, working_area_t *area)
704 {
705         if (area->free)
706                 return ERROR_OK;
707         
708         if (target->backup_working_area)
709                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
710         
711         area->free = 1;
712         
713         /* mark user pointer invalid */
714         *area->user = NULL;
715         area->user = NULL;
716         
717         return ERROR_OK;
718 }
719
720 int target_free_all_working_areas(struct target_s *target)
721 {
722         working_area_t *c = target->working_areas;
723
724         while (c)
725         {
726                 working_area_t *next = c->next;
727                 target_free_working_area(target, c);
728                 
729                 if (c->backup)
730                         free(c->backup);
731                 
732                 free(c);
733                 
734                 c = next;
735         }
736         
737         target->working_areas = NULL;
738         
739         return ERROR_OK;
740 }
741
742 int target_register_commands(struct command_context_s *cmd_ctx)
743 {
744         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, NULL);
745         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
746         register_command(cmd_ctx, NULL, "daemon_startup", handle_daemon_startup_command, COMMAND_CONFIG, NULL);
747         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
748         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, NULL);
749         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
750         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
751
752         return ERROR_OK;
753 }
754
755 /* Single aligned words are guaranteed to use 16 or 32 bit access 
756  * mode respectively, otherwise data is handled as quickly as 
757  * possible
758  */
759 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
760 {
761         int retval;
762         
763         DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
764         
765         if (((address % 2) == 0) && (size == 2))
766         {
767                 return target->type->write_memory(target, address, 2, 1, buffer);
768         }
769         
770         /* handle unaligned head bytes */
771         if (address % 4)
772         {
773                 int unaligned = 4 - (address % 4);
774                 
775                 if (unaligned > size)
776                         unaligned = size;
777
778                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
779                         return retval;
780                 
781                 buffer += unaligned;
782                 address += unaligned;
783                 size -= unaligned;
784         }
785                 
786         /* handle aligned words */
787         if (size >= 4)
788         {
789                 int aligned = size - (size % 4);
790         
791                 /* use bulk writes above a certain limit. This may have to be changed */
792                 if (aligned > 128)
793                 {
794                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
795                                 return retval;
796                 }
797                 else
798                 {
799                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
800                                 return retval;
801                 }
802                 
803                 buffer += aligned;
804                 address += aligned;
805                 size -= aligned;
806         }
807         
808         /* handle tail writes of less than 4 bytes */
809         if (size > 0)
810         {
811                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
812                         return retval;
813         }
814         
815         return ERROR_OK;
816 }
817
818
819 /* Single aligned words are guaranteed to use 16 or 32 bit access 
820  * mode respectively, otherwise data is handled as quickly as 
821  * possible
822  */
823 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
824 {
825         int retval;
826         
827         DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
828         
829         if (((address % 2) == 0) && (size == 2))
830         {
831                 return target->type->read_memory(target, address, 2, 1, buffer);
832         }
833         
834         /* handle unaligned head bytes */
835         if (address % 4)
836         {
837                 int unaligned = 4 - (address % 4);
838                 
839                 if (unaligned > size)
840                         unaligned = size;
841
842                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
843                         return retval;
844                 
845                 buffer += unaligned;
846                 address += unaligned;
847                 size -= unaligned;
848         }
849                 
850         /* handle aligned words */
851         if (size >= 4)
852         {
853                 int aligned = size - (size % 4);
854         
855                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
856                         return retval;
857                 
858                 buffer += aligned;
859                 address += aligned;
860                 size -= aligned;
861         }
862         
863         /* handle tail writes of less than 4 bytes */
864         if (size > 0)
865         {
866                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
867                         return retval;
868         }
869         
870         return ERROR_OK;
871 }
872
873 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
874 {
875         u8 *buffer;
876         int retval;
877         int i;
878         u32 checksum = 0;
879         
880         if ((retval = target->type->checksum_memory(target, address,
881                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
882         {
883                 buffer = malloc(size);
884                 if (buffer == NULL)
885                 {
886                         ERROR("error allocating buffer for section (%d bytes)", size);
887                         return ERROR_INVALID_ARGUMENTS;
888                 }
889                 retval = target_read_buffer(target, address, size, buffer);
890                 if (retval != ERROR_OK)
891                 {
892                         free(buffer);
893                         return retval;
894                 }
895
896                 /* convert to target endianess */
897                 for (i = 0; i < (size/sizeof(u32)); i++)
898                 {
899                         u32 target_data;
900                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
901                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
902                 }
903
904                 retval = image_calculate_checksum( buffer, size, &checksum );
905                 free(buffer);
906         }
907         
908         *crc = checksum;
909         
910         return retval;
911 }
912
913 int target_read_u32(struct target_s *target, u32 address, u32 *value)
914 {
915         u8 value_buf[4];
916
917         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
918         
919         if (retval == ERROR_OK)
920         {
921                 *value = target_buffer_get_u32(target, value_buf);
922                 DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
923         }
924         else
925         {
926                 *value = 0x0;
927                 DEBUG("address: 0x%8.8x failed", address);
928         }
929         
930         return retval;
931 }
932
933 int target_read_u16(struct target_s *target, u32 address, u16 *value)
934 {
935         u8 value_buf[2];
936         
937         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
938         
939         if (retval == ERROR_OK)
940         {
941                 *value = target_buffer_get_u16(target, value_buf);
942                 DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
943         }
944         else
945         {
946                 *value = 0x0;
947                 DEBUG("address: 0x%8.8x failed", address);
948         }
949         
950         return retval;
951 }
952
953 int target_read_u8(struct target_s *target, u32 address, u8 *value)
954 {
955         int retval = target->type->read_memory(target, address, 1, 1, value);
956
957         if (retval == ERROR_OK)
958         {
959                 DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
960         }
961         else
962         {
963                 *value = 0x0;
964                 DEBUG("address: 0x%8.8x failed", address);
965         }
966         
967         return retval;
968 }
969
970 int target_write_u32(struct target_s *target, u32 address, u32 value)
971 {
972         int retval;
973         u8 value_buf[4];
974
975         DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
976
977         target_buffer_set_u32(target, value_buf, value);        
978         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
979         {
980                 DEBUG("failed: %i", retval);
981         }
982         
983         return retval;
984 }
985
986 int target_write_u16(struct target_s *target, u32 address, u16 value)
987 {
988         int retval;
989         u8 value_buf[2];
990         
991         DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
992
993         target_buffer_set_u16(target, value_buf, value);        
994         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
995         {
996                 DEBUG("failed: %i", retval);
997         }
998         
999         return retval;
1000 }
1001
1002 int target_write_u8(struct target_s *target, u32 address, u8 value)
1003 {
1004         int retval;
1005         
1006         DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1007
1008         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1009         {
1010                 DEBUG("failed: %i", retval);
1011         }
1012         
1013         return retval;
1014 }
1015
1016 int target_register_user_commands(struct command_context_s *cmd_ctx)
1017 {
1018         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1019         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1020         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1021         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1022         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1023         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1024         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1025         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1026
1027         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1028         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1029         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1030         
1031         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value>");
1032         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value>");
1033         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value>");
1034         
1035         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1036         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1037         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1038         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1039         
1040         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1041         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1042         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1043         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1044         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1045         
1046         target_request_register_commands(cmd_ctx);
1047         trace_register_commands(cmd_ctx);
1048         
1049         return ERROR_OK;
1050 }
1051
1052 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1053 {
1054         target_t *target = targets;
1055         int count = 0;
1056         
1057         if (argc == 1)
1058         {
1059                 int num = strtoul(args[0], NULL, 0);
1060                 
1061                 while (target)
1062                 {
1063                         count++;
1064                         target = target->next;
1065                 }
1066                 
1067                 if (num < count)
1068                         cmd_ctx->current_target = num;
1069                 else
1070                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1071                         
1072                 return ERROR_OK;
1073         }
1074                 
1075         while (target)
1076         {
1077                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1078                 target = target->next;
1079         }
1080         
1081         return ERROR_OK;
1082 }
1083
1084 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1085 {
1086         int i;
1087         int found = 0;
1088         
1089         if (argc < 3)
1090         {
1091                 ERROR("target command requires at least three arguments: <type> <endianess> <reset_mode>");
1092                 exit(-1);
1093         }
1094         
1095         /* search for the specified target */
1096         if (args[0] && (args[0][0] != 0))
1097         {
1098                 for (i = 0; target_types[i]; i++)
1099                 {
1100                         if (strcmp(args[0], target_types[i]->name) == 0)
1101                         {
1102                                 target_t **last_target_p = &targets;
1103                                 
1104                                 /* register target specific commands */
1105                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1106                                 {
1107                                         ERROR("couldn't register '%s' commands", args[0]);
1108                                         exit(-1);
1109                                 }
1110
1111                                 if (*last_target_p)
1112                                 {
1113                                         while ((*last_target_p)->next)
1114                                                 last_target_p = &((*last_target_p)->next);
1115                                         last_target_p = &((*last_target_p)->next);
1116                                 }
1117
1118                                 *last_target_p = malloc(sizeof(target_t));
1119                                 
1120                                 (*last_target_p)->type = target_types[i];
1121                                 
1122                                 if (strcmp(args[1], "big") == 0)
1123                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1124                                 else if (strcmp(args[1], "little") == 0)
1125                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1126                                 else
1127                                 {
1128                                         ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1129                                         exit(-1);
1130                                 }
1131                                 
1132                                 /* what to do on a target reset */
1133                                 if (strcmp(args[2], "reset_halt") == 0)
1134                                         (*last_target_p)->reset_mode = RESET_HALT;
1135                                 else if (strcmp(args[2], "reset_run") == 0)
1136                                         (*last_target_p)->reset_mode = RESET_RUN;
1137                                 else if (strcmp(args[2], "reset_init") == 0)
1138                                         (*last_target_p)->reset_mode = RESET_INIT;
1139                                 else if (strcmp(args[2], "run_and_halt") == 0)
1140                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1141                                 else if (strcmp(args[2], "run_and_init") == 0)
1142                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1143                                 else
1144                                 {
1145                                         ERROR("unknown target startup mode %s", args[2]);
1146                                         exit(-1);
1147                                 }
1148                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1149                                 
1150                                 (*last_target_p)->reset_script = NULL;
1151                                 (*last_target_p)->post_halt_script = NULL;
1152                                 (*last_target_p)->pre_resume_script = NULL;
1153                                 (*last_target_p)->gdb_program_script = NULL;
1154                                 
1155                                 (*last_target_p)->working_area = 0x0;
1156                                 (*last_target_p)->working_area_size = 0x0;
1157                                 (*last_target_p)->working_areas = NULL;
1158                                 (*last_target_p)->backup_working_area = 0;
1159                                 
1160                                 (*last_target_p)->state = TARGET_UNKNOWN;
1161                                 (*last_target_p)->reg_cache = NULL;
1162                                 (*last_target_p)->breakpoints = NULL;
1163                                 (*last_target_p)->watchpoints = NULL;
1164                                 (*last_target_p)->next = NULL;
1165                                 (*last_target_p)->arch_info = NULL;
1166                                 
1167                                 /* initialize trace information */
1168                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1169                                 (*last_target_p)->trace_info->num_trace_points = 0;
1170                                 (*last_target_p)->trace_info->trace_points_size = 0;
1171                                 (*last_target_p)->trace_info->trace_points = NULL;
1172                                 (*last_target_p)->trace_info->trace_history_size = 0;
1173                                 (*last_target_p)->trace_info->trace_history = NULL;
1174                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1175                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1176                                 
1177                                 (*last_target_p)->dbgmsg = NULL;
1178                                 (*last_target_p)->dbg_msg_enabled = 0;
1179                                                                 
1180                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1181                                 
1182                                 found = 1;
1183                                 break;
1184                         }
1185                 }
1186         }
1187         
1188         /* no matching target found */
1189         if (!found)
1190         {
1191                 ERROR("target '%s' not found", args[0]);
1192                 exit(-1);
1193         }
1194
1195         return ERROR_OK;
1196 }
1197
1198 /* usage: target_script <target#> <event> <script_file> */
1199 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1200 {
1201         target_t *target = NULL;
1202         
1203         if (argc < 3)
1204         {
1205                 ERROR("incomplete target_script command");
1206                 exit(-1);
1207         }
1208         
1209         target = get_target_by_num(strtoul(args[0], NULL, 0));
1210         
1211         if (!target)
1212         {
1213                 ERROR("target number '%s' not defined", args[0]);
1214                 exit(-1);
1215         }
1216         
1217         if (strcmp(args[1], "reset") == 0)
1218         {
1219                 if (target->reset_script)
1220                         free(target->reset_script);
1221                 target->reset_script = strdup(args[2]);
1222         }
1223         else if (strcmp(args[1], "post_halt") == 0)
1224         {
1225                 if (target->post_halt_script)
1226                         free(target->post_halt_script);
1227                 target->post_halt_script = strdup(args[2]);
1228         }
1229         else if (strcmp(args[1], "pre_resume") == 0)
1230         {
1231                 if (target->pre_resume_script)
1232                         free(target->pre_resume_script);
1233                 target->pre_resume_script = strdup(args[2]);
1234         }
1235         else if (strcmp(args[1], "gdb_program_config") == 0)
1236         {
1237                 if (target->gdb_program_script)
1238                         free(target->gdb_program_script);
1239                 target->gdb_program_script = strdup(args[2]);
1240         }
1241         else
1242         {
1243                 ERROR("unknown event type: '%s", args[1]);
1244                 exit(-1);       
1245         }
1246         
1247         return ERROR_OK;
1248 }
1249
1250 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1251 {
1252         target_t *target = NULL;
1253         
1254         if (argc < 2)
1255         {
1256                 ERROR("incomplete run_and_halt_time command");
1257                 exit(-1);
1258         }
1259         
1260         target = get_target_by_num(strtoul(args[0], NULL, 0));
1261         
1262         if (!target)
1263         {
1264                 ERROR("target number '%s' not defined", args[0]);
1265                 exit(-1);
1266         }
1267         
1268         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1269         
1270         return ERROR_OK;
1271 }
1272
1273 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1274 {
1275         target_t *target = NULL;
1276         
1277         if ((argc < 4) || (argc > 5))
1278         {
1279                 return ERROR_COMMAND_SYNTAX_ERROR;
1280         }
1281         
1282         target = get_target_by_num(strtoul(args[0], NULL, 0));
1283         
1284         if (!target)
1285         {
1286                 ERROR("target number '%s' not defined", args[0]);
1287                 exit(-1);
1288         }
1289         target_free_all_working_areas(target);
1290         
1291         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1292         if (argc == 5)
1293         {
1294                 target->working_area_virt = strtoul(args[4], NULL, 0);
1295         }
1296         target->working_area_size = strtoul(args[2], NULL, 0);
1297         
1298         if (strcmp(args[3], "backup") == 0)
1299         {
1300                 target->backup_working_area = 1;
1301         }
1302         else if (strcmp(args[3], "nobackup") == 0)
1303         {
1304                 target->backup_working_area = 0;
1305         }
1306         else
1307         {
1308                 ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1309                 return ERROR_COMMAND_SYNTAX_ERROR;
1310         }
1311         
1312         return ERROR_OK;
1313 }
1314
1315
1316 /* process target state changes */
1317 int handle_target(void *priv)
1318 {
1319         int retval;
1320         target_t *target = targets;
1321         
1322         while (target)
1323         {
1324                 /* only poll if target isn't already halted */
1325                 if (target->state != TARGET_HALTED)
1326                 {
1327                         if (target_continous_poll)
1328                                 if ((retval = target->type->poll(target)) < 0)
1329                                 {
1330                                         ERROR("couldn't poll target. It's due for a reset.");
1331                                 }
1332                 }
1333         
1334                 target = target->next;
1335         }
1336         
1337         return ERROR_OK;
1338 }
1339
1340 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1341 {
1342         target_t *target;
1343         reg_t *reg = NULL;
1344         int count = 0;
1345         char *value;
1346         
1347         DEBUG("-");
1348         
1349         target = get_current_target(cmd_ctx);
1350         
1351         /* list all available registers for the current target */
1352         if (argc == 0)
1353         {
1354                 reg_cache_t *cache = target->reg_cache;
1355                 
1356                 count = 0;
1357                 while(cache)
1358                 {
1359                         int i;
1360                         for (i = 0; i < cache->num_regs; i++)
1361                         {
1362                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1363                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1364                                 free(value);
1365                         }
1366                         cache = cache->next;
1367                 }
1368                 
1369                 return ERROR_OK;
1370         }
1371         
1372         /* access a single register by its ordinal number */
1373         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1374         {
1375                 int num = strtoul(args[0], NULL, 0);
1376                 reg_cache_t *cache = target->reg_cache;
1377                 
1378                 count = 0;
1379                 while(cache)
1380                 {
1381                         int i;
1382                         for (i = 0; i < cache->num_regs; i++)
1383                         {
1384                                 if (count++ == num)
1385                                 {
1386                                         reg = &cache->reg_list[i];
1387                                         break;
1388                                 }
1389                         }
1390                         if (reg)
1391                                 break;
1392                         cache = cache->next;
1393                 }
1394                 
1395                 if (!reg)
1396                 {
1397                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1398                         return ERROR_OK;
1399                 }
1400         } else /* access a single register by its name */
1401         {
1402                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1403                 
1404                 if (!reg)
1405                 {
1406                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1407                         return ERROR_OK;
1408                 }
1409         }
1410
1411         /* display a register */
1412         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1413         {
1414                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1415                         reg->valid = 0;
1416                 
1417                 if (reg->valid == 0)
1418                 {
1419                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1420                         if (arch_type == NULL)
1421                         {
1422                                 ERROR("BUG: encountered unregistered arch type");
1423                                 return ERROR_OK;
1424                         }
1425                         arch_type->get(reg);
1426                 }
1427                 value = buf_to_str(reg->value, reg->size, 16);
1428                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1429                 free(value);
1430                 return ERROR_OK;
1431         }
1432         
1433         /* set register value */
1434         if (argc == 2)
1435         {
1436                 u8 *buf = malloc(CEIL(reg->size, 8));
1437                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1438
1439                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1440                 if (arch_type == NULL)
1441                 {
1442                         ERROR("BUG: encountered unregistered arch type");
1443                         return ERROR_OK;
1444                 }
1445                 
1446                 arch_type->set(reg, buf);
1447                 
1448                 value = buf_to_str(reg->value, reg->size, 16);
1449                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1450                 free(value);
1451                 
1452                 free(buf);
1453                 
1454                 return ERROR_OK;
1455         }
1456         
1457         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1458         
1459         return ERROR_OK;
1460 }
1461
1462 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1463
1464 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1465 {
1466         target_t *target = get_current_target(cmd_ctx);
1467         char buffer[512];
1468
1469         if (argc == 0)
1470         {
1471                 command_print(cmd_ctx, "target state: %s", target_state_strings[target->type->poll(target)]);
1472                 if (target->state == TARGET_HALTED)
1473                 {
1474                         target->type->arch_state(target, buffer, 512);
1475                         buffer[511] = 0;
1476                         command_print(cmd_ctx, "%s", buffer);
1477                 }
1478         }
1479         else
1480         {
1481                 if (strcmp(args[0], "on") == 0)
1482                 {
1483                         target_continous_poll = 1;
1484                 }
1485                 else if (strcmp(args[0], "off") == 0)
1486                 {
1487                         target_continous_poll = 0;
1488                 }
1489                 else
1490                 {
1491                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1492                 }
1493         }
1494         
1495         
1496         return ERROR_OK;
1497 }
1498
1499 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1500 {
1501         int ms = 5000;
1502         
1503         if (argc > 0)
1504         {
1505                 char *end;
1506
1507                 ms = strtoul(args[0], &end, 0) * 1000;
1508                 if (*end)
1509                 {
1510                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1511                         return ERROR_OK;
1512                 }
1513         }
1514
1515         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1516 }
1517
1518 static void target_process_events(struct command_context_s *cmd_ctx)
1519 {
1520         target_t *target = get_current_target(cmd_ctx);
1521         target->type->poll(target);
1522         target_call_timer_callbacks();
1523 }
1524
1525 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1526 {
1527         struct timeval timeout, now;
1528         
1529         gettimeofday(&timeout, NULL);
1530         timeval_add_time(&timeout, 0, ms * 1000);
1531         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1532         
1533         target_t *target = get_current_target(cmd_ctx);
1534         while (target->type->poll(target))
1535         {
1536                 target_call_timer_callbacks();
1537                 if (target->state == state)
1538                 {
1539                         command_print(cmd_ctx, "target %s", target_state_strings[state]);
1540                         break;
1541                 }
1542                 
1543                 gettimeofday(&now, NULL);
1544                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1545                 {
1546                         command_print(cmd_ctx, "timed out while waiting for target %s", target_state_strings[state]);
1547                         ERROR("timed out while waiting for target %s", target_state_strings[state]);
1548                         break;
1549                 }
1550         }
1551         
1552         return ERROR_OK;
1553 }
1554
1555 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1556 {
1557         int retval;
1558         target_t *target = get_current_target(cmd_ctx);
1559
1560         DEBUG("-");
1561         
1562         command_print(cmd_ctx, "requesting target halt...");
1563
1564         if ((retval = target->type->halt(target)) != ERROR_OK)
1565         {       
1566                 switch (retval)
1567                 {
1568                         case ERROR_TARGET_ALREADY_HALTED:
1569                                 command_print(cmd_ctx, "target already halted");
1570                                 break;
1571                         case ERROR_TARGET_TIMEOUT:
1572                                 command_print(cmd_ctx, "target timed out... shutting down");
1573                                 return retval;
1574                         default:
1575                                 command_print(cmd_ctx, "unknown error... shutting down");
1576                                 return retval;
1577                 }
1578         }
1579         
1580         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1581 }
1582
1583 /* what to do on daemon startup */
1584 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1585 {
1586         if (argc == 1)
1587         {
1588                 if (strcmp(args[0], "attach") == 0)
1589                 {
1590                         startup_mode = DAEMON_ATTACH;
1591                         return ERROR_OK;
1592                 }
1593                 else if (strcmp(args[0], "reset") == 0)
1594                 {
1595                         startup_mode = DAEMON_RESET;
1596                         return ERROR_OK;
1597                 }
1598         }
1599         
1600         WARNING("invalid daemon_startup configuration directive: %s", args[0]);
1601         return ERROR_OK;
1602
1603 }
1604                 
1605 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1606 {
1607         target_t *target = get_current_target(cmd_ctx);
1608         int retval;
1609         
1610         command_print(cmd_ctx, "requesting target halt and executing a soft reset");
1611         
1612         if ((retval = target->type->soft_reset_halt(target)) != ERROR_OK)
1613         {       
1614                 switch (retval)
1615                 {
1616                         case ERROR_TARGET_TIMEOUT:
1617                                 command_print(cmd_ctx, "target timed out... shutting down");
1618                                 exit(-1);
1619                         default:
1620                                 command_print(cmd_ctx, "unknown error... shutting down");
1621                                 exit(-1);
1622                 }
1623         }
1624         
1625         return ERROR_OK;
1626 }
1627
1628 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1629 {
1630         target_t *target = get_current_target(cmd_ctx);
1631         enum target_reset_mode reset_mode = target->reset_mode;
1632         enum target_reset_mode save = target->reset_mode;
1633         
1634         DEBUG("-");
1635         
1636         if (argc >= 1)
1637         {
1638                 if (strcmp("run", args[0]) == 0)
1639                         reset_mode = RESET_RUN;
1640                 else if (strcmp("halt", args[0]) == 0)
1641                         reset_mode = RESET_HALT;
1642                 else if (strcmp("init", args[0]) == 0)
1643                         reset_mode = RESET_INIT;
1644                 else if (strcmp("run_and_halt", args[0]) == 0)
1645                 {
1646                         reset_mode = RESET_RUN_AND_HALT;
1647                         if (argc >= 2)
1648                         {
1649                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1650                         }
1651                 }
1652                 else if (strcmp("run_and_init", args[0]) == 0)
1653                 {
1654                         reset_mode = RESET_RUN_AND_INIT;
1655                         if (argc >= 2)
1656                         {
1657                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1658                         }
1659                 }
1660                 else
1661                 {
1662                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1663                         return ERROR_OK;
1664                 }
1665         }
1666         
1667         /* temporarily modify mode of current reset target */
1668         target->reset_mode = reset_mode;
1669
1670         /* reset *all* targets */
1671         target_process_reset(cmd_ctx);
1672         
1673         /* Restore default reset mode for this target */
1674     target->reset_mode = save;
1675         
1676         return ERROR_OK;
1677 }
1678
1679 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1680 {
1681         int retval;
1682         target_t *target = get_current_target(cmd_ctx);
1683         
1684         DEBUG("-");
1685         
1686         if (argc == 0)
1687                 retval = target->type->resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1688         else if (argc == 1)
1689                 retval = target->type->resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1690         else
1691         {
1692                 command_print(cmd_ctx, "usage: resume [address]");
1693                 return ERROR_OK;
1694         }
1695         
1696         if (retval != ERROR_OK)
1697         {       
1698                 switch (retval)
1699                 {
1700                         case ERROR_TARGET_NOT_HALTED:
1701                                 command_print(cmd_ctx, "target not halted");
1702                                 break;
1703                         default:
1704                                 command_print(cmd_ctx, "unknown error... shutting down");
1705                                 exit(-1);
1706                 }
1707         }
1708
1709         target_process_events(cmd_ctx);
1710         
1711         return ERROR_OK;
1712 }
1713
1714 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1715 {
1716         target_t *target = get_current_target(cmd_ctx);
1717         
1718         DEBUG("-");
1719         
1720         if (argc == 0)
1721                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1722
1723         if (argc == 1)
1724                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1725         
1726         return ERROR_OK;
1727 }
1728
1729 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1730 {
1731         const int line_bytecnt = 32;
1732         int count = 1;
1733         int size = 4;
1734         u32 address = 0;
1735         int line_modulo;
1736         int i;
1737
1738         char output[128];
1739         int output_len;
1740
1741         int retval;
1742
1743         u8 *buffer;
1744         target_t *target = get_current_target(cmd_ctx);
1745
1746         if (argc < 1)
1747                 return ERROR_OK;
1748
1749         if (argc == 2)
1750                 count = strtoul(args[1], NULL, 0);
1751
1752         address = strtoul(args[0], NULL, 0);
1753         
1754
1755         switch (cmd[2])
1756         {
1757                 case 'w':
1758                         size = 4; line_modulo = line_bytecnt / 4;
1759                         break;
1760                 case 'h':
1761                         size = 2; line_modulo = line_bytecnt / 2;
1762                         break;
1763                 case 'b':
1764                         size = 1; line_modulo = line_bytecnt / 1;
1765                         break;
1766                 default:
1767                         return ERROR_OK;
1768         }
1769
1770         buffer = calloc(count, size);
1771         retval  = target->type->read_memory(target, address, size, count, buffer);
1772         if (retval != ERROR_OK)
1773         {
1774                 switch (retval)
1775                 {
1776                         case ERROR_TARGET_UNALIGNED_ACCESS:
1777                                 command_print(cmd_ctx, "error: address not aligned");
1778                                 break;
1779                         case ERROR_TARGET_NOT_HALTED:
1780                                 command_print(cmd_ctx, "error: target must be halted for memory accesses");
1781                                 break;                  
1782                         case ERROR_TARGET_DATA_ABORT:
1783                                 command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted");
1784                                 break;
1785                         default:
1786                                 command_print(cmd_ctx, "error: unknown error");
1787                                 break;
1788                 }
1789                 return ERROR_OK;
1790         }
1791
1792         output_len = 0;
1793
1794         for (i = 0; i < count; i++)
1795         {
1796                 if (i%line_modulo == 0)
1797                         output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1798                 
1799                 switch (size)
1800                 {
1801                         case 4:
1802                                 output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1803                                 break;
1804                         case 2:
1805                                 output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1806                                 break;
1807                         case 1:
1808                                 output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1809                                 break;
1810                 }
1811
1812                 if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1813                 {
1814                         command_print(cmd_ctx, output);
1815                         output_len = 0;
1816                 }
1817         }
1818
1819         free(buffer);
1820         
1821         return ERROR_OK;
1822 }
1823
1824 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1825 {
1826         u32 address = 0;
1827         u32 value = 0;
1828         int retval;
1829         target_t *target = get_current_target(cmd_ctx);
1830         u8 value_buf[4];
1831
1832         if (argc < 2)
1833                 return ERROR_OK;
1834
1835         address = strtoul(args[0], NULL, 0);
1836         value = strtoul(args[1], NULL, 0);
1837
1838         switch (cmd[2])
1839         {
1840                 case 'w':
1841                         target_buffer_set_u32(target, value_buf, value);
1842                         retval = target->type->write_memory(target, address, 4, 1, value_buf);
1843                         break;
1844                 case 'h':
1845                         target_buffer_set_u16(target, value_buf, value);
1846                         retval = target->type->write_memory(target, address, 2, 1, value_buf);
1847                         break;
1848                 case 'b':
1849                         value_buf[0] = value;
1850                         retval = target->type->write_memory(target, address, 1, 1, value_buf);
1851                         break;
1852                 default:
1853                         return ERROR_OK;
1854         }
1855
1856         switch (retval)
1857         {
1858                 case ERROR_TARGET_UNALIGNED_ACCESS:
1859                         command_print(cmd_ctx, "error: address not aligned");
1860                         break;
1861                 case ERROR_TARGET_DATA_ABORT:
1862                         command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted");
1863                         break;
1864                 case ERROR_TARGET_NOT_HALTED:
1865                         command_print(cmd_ctx, "error: target must be halted for memory accesses");
1866                         break;
1867                 case ERROR_OK:
1868                         break;
1869                 default:
1870                         command_print(cmd_ctx, "error: unknown error");
1871                         break;
1872         }
1873
1874         return ERROR_OK;
1875
1876 }
1877
1878 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1879 {
1880         u8 *buffer;
1881         u32 buf_cnt;
1882         u32 image_size;
1883         int i;
1884         int retval;
1885
1886         image_t image;  
1887         
1888         duration_t duration;
1889         char *duration_text;
1890         
1891         target_t *target = get_current_target(cmd_ctx);
1892
1893         if (argc < 1)
1894         {
1895                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
1896                 return ERROR_OK;
1897         }
1898         
1899         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
1900         if (argc >= 2)
1901         {
1902                 image.base_address_set = 1;
1903                 image.base_address = strtoul(args[1], NULL, 0);
1904         }
1905         else
1906         {
1907                 image.base_address_set = 0;
1908         }
1909         
1910         image.start_address_set = 0;
1911
1912         duration_start_measure(&duration);
1913         
1914         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
1915         {
1916                 command_print(cmd_ctx, "load_image error: %s", image.error_str);
1917                 return ERROR_OK;
1918         }
1919         
1920         image_size = 0x0;
1921         for (i = 0; i < image.num_sections; i++)
1922         {
1923                 buffer = malloc(image.sections[i].size);
1924                 if (buffer == NULL)
1925                 {
1926                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
1927                         break;
1928                 }
1929                 
1930                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
1931                 {
1932                         ERROR("image_read_section failed with error code: %i", retval);
1933                         command_print(cmd_ctx, "image reading failed, download aborted");
1934                         free(buffer);
1935                         image_close(&image);
1936                         return ERROR_OK;
1937                 }
1938                 target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer);
1939                 image_size += buf_cnt;
1940                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
1941                 
1942                 free(buffer);
1943         }
1944
1945         duration_stop_measure(&duration, &duration_text);
1946         command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
1947         free(duration_text);
1948         
1949         image_close(&image);
1950
1951         return ERROR_OK;
1952
1953 }
1954
1955 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1956 {
1957         fileio_t fileio;
1958         
1959         u32 address;
1960         u32 size;
1961         u8 buffer[560];
1962         int retval;
1963         
1964         duration_t duration;
1965         char *duration_text;
1966         
1967         target_t *target = get_current_target(cmd_ctx);
1968
1969         if (argc != 3)
1970         {
1971                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
1972                 return ERROR_OK;
1973         }
1974
1975         address = strtoul(args[1], NULL, 0);
1976         size = strtoul(args[2], NULL, 0);
1977
1978         if ((address & 3) || (size & 3))
1979         {
1980                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
1981                 return ERROR_OK;
1982         }
1983         
1984         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
1985         {
1986                 command_print(cmd_ctx, "dump_image error: %s", fileio.error_str);
1987                 return ERROR_OK;
1988         }
1989         
1990         duration_start_measure(&duration);
1991         
1992         while (size > 0)
1993         {
1994                 u32 size_written;
1995                 u32 this_run_size = (size > 560) ? 560 : size;
1996                 
1997                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
1998                 if (retval != ERROR_OK)
1999                 {
2000                         command_print(cmd_ctx, "Reading memory failed %d", retval);
2001                         break;
2002                 }
2003                 
2004                 fileio_write(&fileio, this_run_size, buffer, &size_written);
2005                 
2006                 size -= this_run_size;
2007                 address += this_run_size;
2008         }
2009
2010         fileio_close(&fileio);
2011
2012         duration_stop_measure(&duration, &duration_text);
2013         command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2014         free(duration_text);
2015         
2016         return ERROR_OK;
2017 }
2018
2019 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2020 {
2021         u8 *buffer;
2022         u32 buf_cnt;
2023         u32 image_size;
2024         int i;
2025         int retval;
2026         u32 checksum = 0;
2027         u32 mem_checksum = 0;
2028
2029         image_t image;  
2030         
2031         duration_t duration;
2032         char *duration_text;
2033         
2034         target_t *target = get_current_target(cmd_ctx);
2035         
2036         if (argc < 1)
2037         {
2038                 command_print(cmd_ctx, "usage: verify_image <file> [offset] [type]");
2039                 return ERROR_OK;
2040         }
2041         
2042         if (!target)
2043         {
2044                 ERROR("no target selected");
2045                 return ERROR_OK;
2046         }
2047         
2048         duration_start_measure(&duration);
2049         
2050         if (argc >= 2)
2051         {
2052                 image.base_address_set = 1;
2053                 image.base_address = strtoul(args[1], NULL, 0);
2054         }
2055         else
2056         {
2057                 image.base_address_set = 0;
2058                 image.base_address = 0x0;
2059         }
2060
2061         image.start_address_set = 0;
2062
2063         if (image_open(&image, args[0], (argc == 3) ? args[2] : NULL) != ERROR_OK)
2064         {
2065                 command_print(cmd_ctx, "verify_image error: %s", image.error_str);
2066                 return ERROR_OK;
2067         }
2068         
2069         image_size = 0x0;
2070         for (i = 0; i < image.num_sections; i++)
2071         {
2072                 buffer = malloc(image.sections[i].size);
2073                 if (buffer == NULL)
2074                 {
2075                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2076                         break;
2077                 }
2078                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2079                 {
2080                         ERROR("image_read_section failed with error code: %i", retval);
2081                         command_print(cmd_ctx, "image reading failed, verify aborted");
2082                         free(buffer);
2083                         image_close(&image);
2084                         return ERROR_OK;
2085                 }
2086                 
2087                 /* calculate checksum of image */
2088                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2089                 
2090                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2091                 
2092                 if( retval != ERROR_OK )
2093                 {
2094                         command_print(cmd_ctx, "could not calculate checksum, verify aborted");
2095                         free(buffer);
2096                         image_close(&image);
2097                         return ERROR_OK;
2098                 }
2099                 
2100                 if( checksum != mem_checksum )
2101                 {
2102                         /* failed crc checksum, fall back to a binary compare */
2103                         u8 *data;
2104                         
2105                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2106                         
2107                         data = (u8*)malloc(buf_cnt);
2108                         
2109                         /* Can we use 32bit word accesses? */
2110                         int size = 1;
2111                         int count = buf_cnt;
2112                         if ((count % 4) == 0)
2113                         {
2114                                 size *= 4;
2115                                 count /= 4;
2116                         }
2117                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2118         
2119                         if (retval == ERROR_OK)
2120                         {
2121                                 int t;
2122                                 for (t = 0; t < buf_cnt; t++)
2123                                 {
2124                                         if (data[t] != buffer[t])
2125                                         {
2126                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2127                                                 free(data);
2128                                                 free(buffer);
2129                                                 image_close(&image);
2130                                                 return ERROR_OK;
2131                                         }
2132                                 }
2133                         }
2134                         
2135                         free(data);
2136                 }
2137                 
2138                 free(buffer);
2139                 image_size += buf_cnt;
2140         }
2141         
2142         duration_stop_measure(&duration, &duration_text);
2143         command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2144         free(duration_text);
2145         
2146         image_close(&image);
2147         
2148         return ERROR_OK;
2149 }
2150
2151 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2152 {
2153         int retval;
2154         target_t *target = get_current_target(cmd_ctx);
2155
2156         if (argc == 0)
2157         {
2158                 breakpoint_t *breakpoint = target->breakpoints;
2159
2160                 while (breakpoint)
2161                 {
2162                         if (breakpoint->type == BKPT_SOFT)
2163                         {
2164                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2165                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2166                                 free(buf);
2167                         }
2168                         else
2169                         {
2170                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2171                         }
2172                         breakpoint = breakpoint->next;
2173                 }
2174         }
2175         else if (argc >= 2)
2176         {
2177                 int hw = BKPT_SOFT;
2178                 u32 length = 0;
2179
2180                 length = strtoul(args[1], NULL, 0);
2181                 
2182                 if (argc >= 3)
2183                         if (strcmp(args[2], "hw") == 0)
2184                                 hw = BKPT_HARD;
2185
2186                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2187                 {
2188                         switch (retval)
2189                         {
2190                                 case ERROR_TARGET_NOT_HALTED:
2191                                         command_print(cmd_ctx, "target must be halted to set breakpoints");
2192                                         break;
2193                                 case ERROR_TARGET_RESOURCE_NOT_AVAILABLE:
2194                                         command_print(cmd_ctx, "no more breakpoints available");
2195                                         break;
2196                                 default:
2197                                         command_print(cmd_ctx, "unknown error, breakpoint not set");
2198                                         break;
2199                         }
2200                 }
2201                 else
2202                 {
2203                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2204                 }
2205         }
2206         else
2207         {
2208                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2209         }
2210
2211         return ERROR_OK;
2212 }
2213
2214 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2215 {
2216         target_t *target = get_current_target(cmd_ctx);
2217
2218         if (argc > 0)
2219                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2220
2221         return ERROR_OK;
2222 }
2223
2224 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2225 {
2226         target_t *target = get_current_target(cmd_ctx);
2227         int retval;
2228
2229         if (argc == 0)
2230         {
2231                 watchpoint_t *watchpoint = target->watchpoints;
2232
2233                 while (watchpoint)
2234                 {
2235                         command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2236                         watchpoint = watchpoint->next;
2237                 }
2238         } 
2239         else if (argc >= 2)
2240         {
2241                 enum watchpoint_rw type = WPT_ACCESS;
2242                 u32 data_value = 0x0;
2243                 u32 data_mask = 0xffffffff;
2244                 
2245                 if (argc >= 3)
2246                 {
2247                         switch(args[2][0])
2248                         {
2249                                 case 'r':
2250                                         type = WPT_READ;
2251                                         break;
2252                                 case 'w':
2253                                         type = WPT_WRITE;
2254                                         break;
2255                                 case 'a':
2256                                         type = WPT_ACCESS;
2257                                         break;
2258                                 default:
2259                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2260                                         return ERROR_OK;
2261                         }
2262                 }
2263                 if (argc >= 4)
2264                 {
2265                         data_value = strtoul(args[3], NULL, 0);
2266                 }
2267                 if (argc >= 5)
2268                 {
2269                         data_mask = strtoul(args[4], NULL, 0);
2270                 }
2271                 
2272                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2273                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2274                 {
2275                         switch (retval)
2276                         {
2277                                 case ERROR_TARGET_NOT_HALTED:
2278                                         command_print(cmd_ctx, "target must be halted to set watchpoints");
2279                                         break;
2280                                 case ERROR_TARGET_RESOURCE_NOT_AVAILABLE:
2281                                         command_print(cmd_ctx, "no more watchpoints available");
2282                                         break;
2283                                 default:
2284                                         command_print(cmd_ctx, "unknown error, watchpoint not set");
2285                                         break;
2286                         }       
2287                 }
2288         }
2289         else
2290         {
2291                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2292         }
2293                 
2294         return ERROR_OK;
2295 }
2296
2297 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2298 {
2299         target_t *target = get_current_target(cmd_ctx);
2300
2301         if (argc > 0)
2302                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2303         
2304         return ERROR_OK;
2305 }
2306
2307 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2308 {
2309         int retval;
2310         target_t *target = get_current_target(cmd_ctx);
2311         u32 va;
2312         u32 pa;
2313
2314         if (argc != 1)
2315         {
2316                 return ERROR_COMMAND_SYNTAX_ERROR;
2317         }
2318         va = strtoul(args[0], NULL, 0);
2319
2320         retval = target->type->virt2phys(target, va, &pa);
2321         if (retval == ERROR_OK)
2322         {
2323                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2324         }
2325         else
2326         {
2327                 /* lower levels will have logged a detailed error which is 
2328                  * forwarded to telnet/GDB session.  
2329                  */
2330         }
2331         return retval;
2332 }