]> git.sur5r.net Git - openocd/blob - src/target/target.c
Michael Fischer spotted a problem in the reset routines for srst_pulls_trst. It is...
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52
53 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55
56 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59
60 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
79
80 /* targets
81  */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 static int target_continous_poll = 1;
135
136 /* read a u32 from a buffer in target memory endianness */
137 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
138 {
139         if (target->endianness == TARGET_LITTLE_ENDIAN)
140                 return le_to_h_u32(buffer);
141         else
142                 return be_to_h_u32(buffer);
143 }
144
145 /* read a u16 from a buffer in target memory endianness */
146 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
147 {
148         if (target->endianness == TARGET_LITTLE_ENDIAN)
149                 return le_to_h_u16(buffer);
150         else
151                 return be_to_h_u16(buffer);
152 }
153
154 /* write a u32 to a buffer in target memory endianness */
155 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
156 {
157         if (target->endianness == TARGET_LITTLE_ENDIAN)
158                 h_u32_to_le(buffer, value);
159         else
160                 h_u32_to_be(buffer, value);
161 }
162
163 /* write a u16 to a buffer in target memory endianness */
164 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
165 {
166         if (target->endianness == TARGET_LITTLE_ENDIAN)
167                 h_u16_to_le(buffer, value);
168         else
169                 h_u16_to_be(buffer, value);
170 }
171
172 /* returns a pointer to the n-th configured target */
173 target_t* get_target_by_num(int num)
174 {
175         target_t *target = targets;
176         int i = 0;
177
178         while (target)
179         {
180                 if (num == i)
181                         return target;
182                 target = target->next;
183                 i++;
184         }
185
186         return NULL;
187 }
188
189 int get_num_by_target(target_t *query_target)
190 {
191         target_t *target = targets;
192         int i = 0;      
193         
194         while (target)
195         {
196                 if (target == query_target)
197                         return i;
198                 target = target->next;
199                 i++;
200         }
201         
202         return -1;
203 }
204
205 target_t* get_current_target(command_context_t *cmd_ctx)
206 {
207         target_t *target = get_target_by_num(cmd_ctx->current_target);
208         
209         if (target == NULL)
210         {
211                 LOG_ERROR("BUG: current_target out of bounds");
212                 exit(-1);
213         }
214         
215         return target;
216 }
217
218 /* Process target initialization, when target entered debug out of reset
219  * the handler is unregistered at the end of this function, so it's only called once
220  */
221 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
222 {
223         FILE *script;
224         struct command_context_s *cmd_ctx = priv;
225         
226         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
227         {
228                 target_unregister_event_callback(target_init_handler, priv);
229
230                 script = open_file_from_path(target->reset_script, "r");
231                 if (!script)
232                 {
233                         LOG_ERROR("couldn't open script file %s", target->reset_script);
234                                 return ERROR_OK;
235                 }
236
237                 LOG_INFO("executing reset script '%s'", target->reset_script);
238                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
239                 fclose(script);
240
241                 jtag_execute_queue();
242         }
243         
244         return ERROR_OK;
245 }
246
247 int target_run_and_halt_handler(void *priv)
248 {
249         target_t *target = priv;
250         
251         target_halt(target);
252         
253         return ERROR_OK;
254 }
255
256 int target_poll(struct target_s *target)
257 {
258         /* We can't poll until after examine */
259         if (!target->type->examined)
260         {
261                 /* Fail silently lest we pollute the log */
262                 return ERROR_FAIL;
263         }
264         return target->type->poll(target);
265 }
266
267 int target_halt(struct target_s *target)
268 {
269         /* We can't poll until after examine */
270         if (!target->type->examined)
271         {
272                 LOG_ERROR("Target not examined yet");
273                 return ERROR_FAIL;
274         }
275         return target->type->halt(target);
276 }
277
278 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
279 {
280         /* We can't poll until after examine */
281         if (!target->type->examined)
282         {
283                 LOG_ERROR("Target not examined yet");
284                 return ERROR_FAIL;
285         }
286         return target->type->resume(target, current, address, handle_breakpoints, debug_execution);
287 }
288
289
290 int target_process_reset(struct command_context_s *cmd_ctx)
291 {
292         int retval = ERROR_OK;
293         target_t *target;
294         struct timeval timeout, now;
295
296         jtag->speed(jtag_speed);
297
298         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
299                 return retval;
300         
301         /* First time this is executed after launching OpenOCD, it will read out 
302          * the type of CPU, etc. and init Embedded ICE registers in host
303          * memory. 
304          * 
305          * It will also set up ICE registers in the target.
306          * 
307          * However, if we assert TRST later, we need to set up the registers again. 
308          * 
309          * For the "reset halt/init" case we must only set up the registers here.
310          */
311         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
312                 return retval;
313         
314         /* prepare reset_halt where necessary */
315         target = targets;
316         while (target)
317         {
318                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
319                 {
320                         switch (target->reset_mode)
321                         {
322                                 case RESET_HALT:
323                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
324                                         target->reset_mode = RESET_RUN_AND_HALT;
325                                         break;
326                                 case RESET_INIT:
327                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
328                                         target->reset_mode = RESET_RUN_AND_INIT;
329                                         break;
330                                 default:
331                                         break;
332                         } 
333                 }
334                 target = target->next;
335         }
336         
337         target = targets;
338         while (target)
339         {
340                 /* we have no idea what state the target is in, so we
341                  * have to drop working areas
342                  */
343                 target_free_all_working_areas_restore(target, 0);
344                 target->type->assert_reset(target);
345                 target = target->next;
346         }
347         if ((retval = jtag_execute_queue()) != ERROR_OK)
348         {
349                 LOG_WARNING("JTAG communication failed asserting reset.");
350                 retval = ERROR_OK;
351         }
352         
353         /* request target halt if necessary, and schedule further action */
354         target = targets;
355         while (target)
356         {
357                 switch (target->reset_mode)
358                 {
359                         case RESET_RUN:
360                                 /* nothing to do if target just wants to be run */
361                                 break;
362                         case RESET_RUN_AND_HALT:
363                                 /* schedule halt */
364                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
365                                 break;
366                         case RESET_RUN_AND_INIT:
367                                 /* schedule halt */
368                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
369                                 target_register_event_callback(target_init_handler, cmd_ctx);
370                                 break;
371                         case RESET_HALT:
372                                 target_halt(target);
373                                 break;
374                         case RESET_INIT:
375                                 target_halt(target);
376                                 target_register_event_callback(target_init_handler, cmd_ctx);
377                                 break;
378                         default:
379                                 LOG_ERROR("BUG: unknown target->reset_mode");
380                 }
381                 target = target->next;
382         }
383         
384         if ((retval = jtag_execute_queue()) != ERROR_OK)
385         {
386                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
387                 retval = ERROR_OK;              
388         }
389         
390         target = targets;
391         while (target)
392         {
393                 target->type->deassert_reset(target);
394                 target = target->next;
395         }
396         
397         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
398         {
399                 /* If TRST was asserted we need to set up registers again */
400                 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
401                         return retval;
402         }
403         
404         if ((retval = jtag_execute_queue()) != ERROR_OK)
405         {
406                 LOG_WARNING("JTAG communication failed while deasserting reset.");
407                 retval = ERROR_OK;
408         }
409         
410         LOG_DEBUG("Waiting for halted stated as approperiate");
411         
412         /* Wait for reset to complete, maximum 5 seconds. */    
413         gettimeofday(&timeout, NULL);
414         timeval_add_time(&timeout, 5, 0);
415         for(;;)
416         {
417                 gettimeofday(&now, NULL);
418                 
419                 target_call_timer_callbacks_now();
420                 
421                 target = targets;
422                 while (target)
423                 {
424                         LOG_DEBUG("Polling target");
425                         target_poll(target);
426                         if ((target->reset_mode == RESET_RUN_AND_INIT) || 
427                                         (target->reset_mode == RESET_RUN_AND_HALT) ||
428                                         (target->reset_mode == RESET_HALT) ||
429                                         (target->reset_mode == RESET_INIT))
430                         {
431                                 if (target->state != TARGET_HALTED)
432                                 {
433                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
434                                         {
435                                                 LOG_USER("Timed out waiting for halt after reset");
436                                                 goto done;
437                                         }
438                                         /* this will send alive messages on e.g. GDB remote protocol. */
439                                         usleep(500*1000); 
440                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
441                                         goto again;
442                                 }
443                         }
444                         target = target->next;
445                 }
446                 /* All targets we're waiting for are halted */
447                 break;
448                 
449                 again:;
450         }
451         done:
452         
453         
454         /* We want any events to be processed before the prompt */
455         target_call_timer_callbacks_now();
456
457         /* if we timed out we need to unregister these handlers */
458         target = targets;
459         while (target)
460         {
461                 target_unregister_timer_callback(target_run_and_halt_handler, target);
462                 target = target->next;
463         }
464         target_unregister_event_callback(target_init_handler, cmd_ctx);
465                                 
466         
467         jtag->speed(jtag_speed_post_reset);
468         
469         return retval;
470 }
471
472 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
473 {
474         *physical = virtual;
475         return ERROR_OK;
476 }
477
478 static int default_mmu(struct target_s *target, int *enabled)
479 {
480         *enabled = 0;
481         return ERROR_OK;
482 }
483
484 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
485 {
486         target->type->examined = 1;
487         return ERROR_OK;
488 }
489
490
491 /* Targets that correctly implement init+examine, i.e.
492  * no communication with target during init:
493  * 
494  * XScale 
495  */
496 int target_examine(struct command_context_s *cmd_ctx)
497 {
498         int retval = ERROR_OK;
499         target_t *target = targets;
500         while (target)
501         {
502                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
503                         return retval;
504                 target = target->next;
505         }
506         return retval;
507 }
508
509 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
510 {
511         if (!target->type->examined)
512         {
513                 LOG_ERROR("Target not examined yet");
514                 return ERROR_FAIL;
515         }
516         return target->type->write_memory_imp(target, address, size, count, buffer);
517 }
518
519 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
520 {
521         if (!target->type->examined)
522         {
523                 LOG_ERROR("Target not examined yet");
524                 return ERROR_FAIL;
525         }
526         return target->type->read_memory_imp(target, address, size, count, buffer);
527 }
528
529 static int target_soft_reset_halt_imp(struct target_s *target)
530 {
531         if (!target->type->examined)
532         {
533                 LOG_ERROR("Target not examined yet");
534                 return ERROR_FAIL;
535         }
536         return target->type->soft_reset_halt_imp(target);
537 }
538
539 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
540 {
541         if (!target->type->examined)
542         {
543                 LOG_ERROR("Target not examined yet");
544                 return ERROR_FAIL;
545         }
546         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
547 }
548
549 int target_init(struct command_context_s *cmd_ctx)
550 {
551         target_t *target = targets;
552         
553         while (target)
554         {
555                 target->type->examined = 0;
556                 if (target->type->examine == NULL)
557                 {
558                         target->type->examine = default_examine;
559                 }
560                 
561                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
562                 {
563                         LOG_ERROR("target '%s' init failed", target->type->name);
564                         exit(-1);
565                 }
566                 
567                 /* Set up default functions if none are provided by target */
568                 if (target->type->virt2phys == NULL)
569                 {
570                         target->type->virt2phys = default_virt2phys;
571                 }
572                 target->type->virt2phys = default_virt2phys;
573                 /* a non-invasive way(in terms of patches) to add some code that
574                  * runs before the type->write/read_memory implementation
575                  */
576                 target->type->write_memory_imp = target->type->write_memory;
577                 target->type->write_memory = target_write_memory_imp;
578                 target->type->read_memory_imp = target->type->read_memory;
579                 target->type->read_memory = target_read_memory_imp;
580                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
581                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
582                 target->type->run_algorithm_imp = target->type->run_algorithm;
583                 target->type->run_algorithm = target_run_algorithm_imp;
584
585                 
586                 if (target->type->mmu == NULL)
587                 {
588                         target->type->mmu = default_mmu;
589                 }
590                 target = target->next;
591         }
592         
593         if (targets)
594         {
595                 target_register_user_commands(cmd_ctx);
596                 target_register_timer_callback(handle_target, 100, 1, NULL);
597         }
598                 
599         return ERROR_OK;
600 }
601
602 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
603 {
604         target_event_callback_t **callbacks_p = &target_event_callbacks;
605         
606         if (callback == NULL)
607         {
608                 return ERROR_INVALID_ARGUMENTS;
609         }
610         
611         if (*callbacks_p)
612         {
613                 while ((*callbacks_p)->next)
614                         callbacks_p = &((*callbacks_p)->next);
615                 callbacks_p = &((*callbacks_p)->next);
616         }
617         
618         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
619         (*callbacks_p)->callback = callback;
620         (*callbacks_p)->priv = priv;
621         (*callbacks_p)->next = NULL;
622         
623         return ERROR_OK;
624 }
625
626 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
627 {
628         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
629         struct timeval now;
630         
631         if (callback == NULL)
632         {
633                 return ERROR_INVALID_ARGUMENTS;
634         }
635         
636         if (*callbacks_p)
637         {
638                 while ((*callbacks_p)->next)
639                         callbacks_p = &((*callbacks_p)->next);
640                 callbacks_p = &((*callbacks_p)->next);
641         }
642         
643         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
644         (*callbacks_p)->callback = callback;
645         (*callbacks_p)->periodic = periodic;
646         (*callbacks_p)->time_ms = time_ms;
647         
648         gettimeofday(&now, NULL);
649         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
650         time_ms -= (time_ms % 1000);
651         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
652         if ((*callbacks_p)->when.tv_usec > 1000000)
653         {
654                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
655                 (*callbacks_p)->when.tv_sec += 1;
656         }
657         
658         (*callbacks_p)->priv = priv;
659         (*callbacks_p)->next = NULL;
660         
661         return ERROR_OK;
662 }
663
664 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
665 {
666         target_event_callback_t **p = &target_event_callbacks;
667         target_event_callback_t *c = target_event_callbacks;
668         
669         if (callback == NULL)
670         {
671                 return ERROR_INVALID_ARGUMENTS;
672         }
673                 
674         while (c)
675         {
676                 target_event_callback_t *next = c->next;
677                 if ((c->callback == callback) && (c->priv == priv))
678                 {
679                         *p = next;
680                         free(c);
681                         return ERROR_OK;
682                 }
683                 else
684                         p = &(c->next);
685                 c = next;
686         }
687         
688         return ERROR_OK;
689 }
690
691 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
692 {
693         target_timer_callback_t **p = &target_timer_callbacks;
694         target_timer_callback_t *c = target_timer_callbacks;
695         
696         if (callback == NULL)
697         {
698                 return ERROR_INVALID_ARGUMENTS;
699         }
700                 
701         while (c)
702         {
703                 target_timer_callback_t *next = c->next;
704                 if ((c->callback == callback) && (c->priv == priv))
705                 {
706                         *p = next;
707                         free(c);
708                         return ERROR_OK;
709                 }
710                 else
711                         p = &(c->next);
712                 c = next;
713         }
714         
715         return ERROR_OK;
716 }
717
718 int target_call_event_callbacks(target_t *target, enum target_event event)
719 {
720         target_event_callback_t *callback = target_event_callbacks;
721         target_event_callback_t *next_callback;
722         
723         LOG_DEBUG("target event %i", event);
724         
725         while (callback)
726         {
727                 next_callback = callback->next;
728                 callback->callback(target, event, callback->priv);
729                 callback = next_callback;
730         }
731         
732         return ERROR_OK;
733 }
734
735 static int target_call_timer_callbacks_check_time(int checktime)
736 {
737         target_timer_callback_t *callback = target_timer_callbacks;
738         target_timer_callback_t *next_callback;
739         struct timeval now;
740
741         gettimeofday(&now, NULL);
742         
743         while (callback)
744         {
745                 next_callback = callback->next;
746                 
747                 if ((!checktime&&callback->periodic)||
748                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
749                                                 || (now.tv_sec > callback->when.tv_sec)))
750                 {
751                         callback->callback(callback->priv);
752                         if (callback->periodic)
753                         {
754                                 int time_ms = callback->time_ms;
755                                 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
756                                 time_ms -= (time_ms % 1000);
757                                 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
758                                 if (callback->when.tv_usec > 1000000)
759                                 {
760                                         callback->when.tv_usec = callback->when.tv_usec - 1000000;
761                                         callback->when.tv_sec += 1;
762                                 }
763                         }
764                         else
765                                 target_unregister_timer_callback(callback->callback, callback->priv);
766                 }
767                         
768                 callback = next_callback;
769         }
770         
771         return ERROR_OK;
772 }
773
774 int target_call_timer_callbacks()
775 {
776         return target_call_timer_callbacks_check_time(1);
777 }
778
779 /* invoke periodic callbacks immediately */
780 int target_call_timer_callbacks_now()
781 {
782         return target_call_timer_callbacks(0);
783 }
784
785
786 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
787 {
788         working_area_t *c = target->working_areas;
789         working_area_t *new_wa = NULL;
790         
791         /* Reevaluate working area address based on MMU state*/
792         if (target->working_areas == NULL)
793         {
794                 int retval;
795                 int enabled;
796                 retval = target->type->mmu(target, &enabled);
797                 if (retval != ERROR_OK)
798                 {
799                         return retval;
800                 }
801                 if (enabled)
802                 {
803                         target->working_area = target->working_area_virt;
804                 }
805                 else
806                 {
807                         target->working_area = target->working_area_phys;
808                 }
809         }
810         
811         /* only allocate multiples of 4 byte */
812         if (size % 4)
813         {
814                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
815                 size = CEIL(size, 4);
816         }
817         
818         /* see if there's already a matching working area */
819         while (c)
820         {
821                 if ((c->free) && (c->size == size))
822                 {
823                         new_wa = c;
824                         break;
825                 }
826                 c = c->next;
827         }
828         
829         /* if not, allocate a new one */
830         if (!new_wa)
831         {
832                 working_area_t **p = &target->working_areas;
833                 u32 first_free = target->working_area;
834                 u32 free_size = target->working_area_size;
835                 
836                 LOG_DEBUG("allocating new working area");
837                 
838                 c = target->working_areas;
839                 while (c)
840                 {
841                         first_free += c->size;
842                         free_size -= c->size;
843                         p = &c->next;
844                         c = c->next;
845                 }
846                 
847                 if (free_size < size)
848                 {
849                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
850                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
851                 }
852                 
853                 new_wa = malloc(sizeof(working_area_t));
854                 new_wa->next = NULL;
855                 new_wa->size = size;
856                 new_wa->address = first_free;
857                 
858                 if (target->backup_working_area)
859                 {
860                         new_wa->backup = malloc(new_wa->size);
861                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
862                 }
863                 else
864                 {
865                         new_wa->backup = NULL;
866                 }
867                 
868                 /* put new entry in list */
869                 *p = new_wa;
870         }
871         
872         /* mark as used, and return the new (reused) area */
873         new_wa->free = 0;
874         *area = new_wa;
875         
876         /* user pointer */
877         new_wa->user = area;
878         
879         return ERROR_OK;
880 }
881
882 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
883 {
884         if (area->free)
885                 return ERROR_OK;
886         
887         if (restore&&target->backup_working_area)
888                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
889         
890         area->free = 1;
891         
892         /* mark user pointer invalid */
893         *area->user = NULL;
894         area->user = NULL;
895         
896         return ERROR_OK;
897 }
898
899 int target_free_working_area(struct target_s *target, working_area_t *area)
900 {
901         return target_free_working_area_restore(target, area, 1);
902 }
903
904 int target_free_all_working_areas_restore(struct target_s *target, int restore)
905 {
906         working_area_t *c = target->working_areas;
907
908         while (c)
909         {
910                 working_area_t *next = c->next;
911                 target_free_working_area_restore(target, c, restore);
912                 
913                 if (c->backup)
914                         free(c->backup);
915                 
916                 free(c);
917                 
918                 c = next;
919         }
920         
921         target->working_areas = NULL;
922         
923         return ERROR_OK;
924 }
925
926 int target_free_all_working_areas(struct target_s *target)
927 {
928         return target_free_all_working_areas_restore(target, 1); 
929 }
930
931 int target_register_commands(struct command_context_s *cmd_ctx)
932 {
933         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
934         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
935         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
936         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
937         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
938         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
939         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
940
941         return ERROR_OK;
942 }
943
944 int target_arch_state(struct target_s *target)
945 {
946         int retval;
947         if (target==NULL)
948         {
949                 LOG_USER("No target has been configured");
950                 return ERROR_OK;
951         }
952         
953         LOG_USER("target state: %s", target_state_strings[target->state]);
954         
955         if (target->state!=TARGET_HALTED)
956                 return ERROR_OK;
957         
958         retval=target->type->arch_state(target);
959         return retval;
960 }
961
962 /* Single aligned words are guaranteed to use 16 or 32 bit access 
963  * mode respectively, otherwise data is handled as quickly as 
964  * possible
965  */
966 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
967 {
968         int retval;
969         if (!target->type->examined)
970         {
971                 LOG_ERROR("Target not examined yet");
972                 return ERROR_FAIL;
973         }
974         
975         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
976         
977         if (((address % 2) == 0) && (size == 2))
978         {
979                 return target->type->write_memory(target, address, 2, 1, buffer);
980         }
981         
982         /* handle unaligned head bytes */
983         if (address % 4)
984         {
985                 int unaligned = 4 - (address % 4);
986                 
987                 if (unaligned > size)
988                         unaligned = size;
989
990                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
991                         return retval;
992                 
993                 buffer += unaligned;
994                 address += unaligned;
995                 size -= unaligned;
996         }
997                 
998         /* handle aligned words */
999         if (size >= 4)
1000         {
1001                 int aligned = size - (size % 4);
1002         
1003                 /* use bulk writes above a certain limit. This may have to be changed */
1004                 if (aligned > 128)
1005                 {
1006                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1007                                 return retval;
1008                 }
1009                 else
1010                 {
1011                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1012                                 return retval;
1013                 }
1014                 
1015                 buffer += aligned;
1016                 address += aligned;
1017                 size -= aligned;
1018         }
1019         
1020         /* handle tail writes of less than 4 bytes */
1021         if (size > 0)
1022         {
1023                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1024                         return retval;
1025         }
1026         
1027         return ERROR_OK;
1028 }
1029
1030
1031 /* Single aligned words are guaranteed to use 16 or 32 bit access 
1032  * mode respectively, otherwise data is handled as quickly as 
1033  * possible
1034  */
1035 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1036 {
1037         int retval;
1038         if (!target->type->examined)
1039         {
1040                 LOG_ERROR("Target not examined yet");
1041                 return ERROR_FAIL;
1042         }
1043
1044         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1045         
1046         if (((address % 2) == 0) && (size == 2))
1047         {
1048                 return target->type->read_memory(target, address, 2, 1, buffer);
1049         }
1050         
1051         /* handle unaligned head bytes */
1052         if (address % 4)
1053         {
1054                 int unaligned = 4 - (address % 4);
1055                 
1056                 if (unaligned > size)
1057                         unaligned = size;
1058
1059                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1060                         return retval;
1061                 
1062                 buffer += unaligned;
1063                 address += unaligned;
1064                 size -= unaligned;
1065         }
1066                 
1067         /* handle aligned words */
1068         if (size >= 4)
1069         {
1070                 int aligned = size - (size % 4);
1071         
1072                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1073                         return retval;
1074                 
1075                 buffer += aligned;
1076                 address += aligned;
1077                 size -= aligned;
1078         }
1079         
1080         /* handle tail writes of less than 4 bytes */
1081         if (size > 0)
1082         {
1083                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1084                         return retval;
1085         }
1086         
1087         return ERROR_OK;
1088 }
1089
1090 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1091 {
1092         u8 *buffer;
1093         int retval;
1094         int i;
1095         u32 checksum = 0;
1096         if (!target->type->examined)
1097         {
1098                 LOG_ERROR("Target not examined yet");
1099                 return ERROR_FAIL;
1100         }
1101         
1102         if ((retval = target->type->checksum_memory(target, address,
1103                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1104         {
1105                 buffer = malloc(size);
1106                 if (buffer == NULL)
1107                 {
1108                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1109                         return ERROR_INVALID_ARGUMENTS;
1110                 }
1111                 retval = target_read_buffer(target, address, size, buffer);
1112                 if (retval != ERROR_OK)
1113                 {
1114                         free(buffer);
1115                         return retval;
1116                 }
1117
1118                 /* convert to target endianess */
1119                 for (i = 0; i < (size/sizeof(u32)); i++)
1120                 {
1121                         u32 target_data;
1122                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1123                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1124                 }
1125
1126                 retval = image_calculate_checksum( buffer, size, &checksum );
1127                 free(buffer);
1128         }
1129         
1130         *crc = checksum;
1131         
1132         return retval;
1133 }
1134
1135 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1136 {
1137         u8 value_buf[4];
1138         if (!target->type->examined)
1139         {
1140                 LOG_ERROR("Target not examined yet");
1141                 return ERROR_FAIL;
1142         }
1143
1144         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1145         
1146         if (retval == ERROR_OK)
1147         {
1148                 *value = target_buffer_get_u32(target, value_buf);
1149                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1150         }
1151         else
1152         {
1153                 *value = 0x0;
1154                 LOG_DEBUG("address: 0x%8.8x failed", address);
1155         }
1156         
1157         return retval;
1158 }
1159
1160 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1161 {
1162         u8 value_buf[2];
1163         if (!target->type->examined)
1164         {
1165                 LOG_ERROR("Target not examined yet");
1166                 return ERROR_FAIL;
1167         }
1168
1169         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1170         
1171         if (retval == ERROR_OK)
1172         {
1173                 *value = target_buffer_get_u16(target, value_buf);
1174                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1175         }
1176         else
1177         {
1178                 *value = 0x0;
1179                 LOG_DEBUG("address: 0x%8.8x failed", address);
1180         }
1181         
1182         return retval;
1183 }
1184
1185 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1186 {
1187         int retval = target->type->read_memory(target, address, 1, 1, value);
1188         if (!target->type->examined)
1189         {
1190                 LOG_ERROR("Target not examined yet");
1191                 return ERROR_FAIL;
1192         }
1193
1194         if (retval == ERROR_OK)
1195         {
1196                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1197         }
1198         else
1199         {
1200                 *value = 0x0;
1201                 LOG_DEBUG("address: 0x%8.8x failed", address);
1202         }
1203         
1204         return retval;
1205 }
1206
1207 int target_write_u32(struct target_s *target, u32 address, u32 value)
1208 {
1209         int retval;
1210         u8 value_buf[4];
1211         if (!target->type->examined)
1212         {
1213                 LOG_ERROR("Target not examined yet");
1214                 return ERROR_FAIL;
1215         }
1216
1217         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1218
1219         target_buffer_set_u32(target, value_buf, value);        
1220         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1221         {
1222                 LOG_DEBUG("failed: %i", retval);
1223         }
1224         
1225         return retval;
1226 }
1227
1228 int target_write_u16(struct target_s *target, u32 address, u16 value)
1229 {
1230         int retval;
1231         u8 value_buf[2];
1232         if (!target->type->examined)
1233         {
1234                 LOG_ERROR("Target not examined yet");
1235                 return ERROR_FAIL;
1236         }
1237
1238         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1239
1240         target_buffer_set_u16(target, value_buf, value);        
1241         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1242         {
1243                 LOG_DEBUG("failed: %i", retval);
1244         }
1245         
1246         return retval;
1247 }
1248
1249 int target_write_u8(struct target_s *target, u32 address, u8 value)
1250 {
1251         int retval;
1252         if (!target->type->examined)
1253         {
1254                 LOG_ERROR("Target not examined yet");
1255                 return ERROR_FAIL;
1256         }
1257
1258         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1259
1260         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1261         {
1262                 LOG_DEBUG("failed: %i", retval);
1263         }
1264         
1265         return retval;
1266 }
1267
1268 int target_register_user_commands(struct command_context_s *cmd_ctx)
1269 {
1270         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1271         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1272         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1273         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1274         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1275         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1276         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1277         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1278
1279         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1280         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1281         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1282         
1283         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1284         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1285         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1286         
1287         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1288         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1289         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1290         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1291         
1292         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1293         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1294         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1295         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1296         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1297         
1298         target_request_register_commands(cmd_ctx);
1299         trace_register_commands(cmd_ctx);
1300         
1301         return ERROR_OK;
1302 }
1303
1304 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1305 {
1306         target_t *target = targets;
1307         int count = 0;
1308         
1309         if (argc == 1)
1310         {
1311                 int num = strtoul(args[0], NULL, 0);
1312                 
1313                 while (target)
1314                 {
1315                         count++;
1316                         target = target->next;
1317                 }
1318                 
1319                 if (num < count)
1320                         cmd_ctx->current_target = num;
1321                 else
1322                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1323                         
1324                 return ERROR_OK;
1325         }
1326                 
1327         while (target)
1328         {
1329                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1330                 target = target->next;
1331         }
1332         
1333         return ERROR_OK;
1334 }
1335
1336 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1337 {
1338         int i;
1339         int found = 0;
1340         
1341         if (argc < 3)
1342         {
1343                 return ERROR_COMMAND_SYNTAX_ERROR;
1344         }
1345         
1346         /* search for the specified target */
1347         if (args[0] && (args[0][0] != 0))
1348         {
1349                 for (i = 0; target_types[i]; i++)
1350                 {
1351                         if (strcmp(args[0], target_types[i]->name) == 0)
1352                         {
1353                                 target_t **last_target_p = &targets;
1354                                 
1355                                 /* register target specific commands */
1356                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1357                                 {
1358                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1359                                         exit(-1);
1360                                 }
1361
1362                                 if (*last_target_p)
1363                                 {
1364                                         while ((*last_target_p)->next)
1365                                                 last_target_p = &((*last_target_p)->next);
1366                                         last_target_p = &((*last_target_p)->next);
1367                                 }
1368
1369                                 *last_target_p = malloc(sizeof(target_t));
1370                                 
1371                                 (*last_target_p)->type = target_types[i];
1372                                 
1373                                 if (strcmp(args[1], "big") == 0)
1374                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1375                                 else if (strcmp(args[1], "little") == 0)
1376                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1377                                 else
1378                                 {
1379                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1380                                         return ERROR_COMMAND_SYNTAX_ERROR;
1381                                 }
1382                                 
1383                                 /* what to do on a target reset */
1384                                 (*last_target_p)->reset_mode = RESET_INIT; /* default */
1385                                 if (strcmp(args[2], "reset_halt") == 0)
1386                                         (*last_target_p)->reset_mode = RESET_HALT;
1387                                 else if (strcmp(args[2], "reset_run") == 0)
1388                                         (*last_target_p)->reset_mode = RESET_RUN;
1389                                 else if (strcmp(args[2], "reset_init") == 0)
1390                                         (*last_target_p)->reset_mode = RESET_INIT;
1391                                 else if (strcmp(args[2], "run_and_halt") == 0)
1392                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1393                                 else if (strcmp(args[2], "run_and_init") == 0)
1394                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1395                                 else
1396                                 {
1397                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1398                                         args--;
1399                                         argc++;
1400                                 }
1401                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1402                                 
1403                                 (*last_target_p)->reset_script = NULL;
1404                                 (*last_target_p)->post_halt_script = NULL;
1405                                 (*last_target_p)->pre_resume_script = NULL;
1406                                 (*last_target_p)->gdb_program_script = NULL;
1407                                 
1408                                 (*last_target_p)->working_area = 0x0;
1409                                 (*last_target_p)->working_area_size = 0x0;
1410                                 (*last_target_p)->working_areas = NULL;
1411                                 (*last_target_p)->backup_working_area = 0;
1412                                 
1413                                 (*last_target_p)->state = TARGET_UNKNOWN;
1414                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1415                                 (*last_target_p)->reg_cache = NULL;
1416                                 (*last_target_p)->breakpoints = NULL;
1417                                 (*last_target_p)->watchpoints = NULL;
1418                                 (*last_target_p)->next = NULL;
1419                                 (*last_target_p)->arch_info = NULL;
1420                                 
1421                                 /* initialize trace information */
1422                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1423                                 (*last_target_p)->trace_info->num_trace_points = 0;
1424                                 (*last_target_p)->trace_info->trace_points_size = 0;
1425                                 (*last_target_p)->trace_info->trace_points = NULL;
1426                                 (*last_target_p)->trace_info->trace_history_size = 0;
1427                                 (*last_target_p)->trace_info->trace_history = NULL;
1428                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1429                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1430                                 
1431                                 (*last_target_p)->dbgmsg = NULL;
1432                                 (*last_target_p)->dbg_msg_enabled = 0;
1433                                                                 
1434                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1435                                 
1436                                 found = 1;
1437                                 break;
1438                         }
1439                 }
1440         }
1441         
1442         /* no matching target found */
1443         if (!found)
1444         {
1445                 LOG_ERROR("target '%s' not found", args[0]);
1446                 return ERROR_COMMAND_SYNTAX_ERROR;
1447         }
1448
1449         return ERROR_OK;
1450 }
1451
1452 /* usage: target_script <target#> <event> <script_file> */
1453 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1454 {
1455         target_t *target = NULL;
1456         
1457         if (argc < 3)
1458         {
1459                 LOG_ERROR("incomplete target_script command");
1460                 return ERROR_COMMAND_SYNTAX_ERROR;
1461         }
1462         
1463         target = get_target_by_num(strtoul(args[0], NULL, 0));
1464         
1465         if (!target)
1466         {
1467                 return ERROR_COMMAND_SYNTAX_ERROR;
1468         }
1469         
1470         if (strcmp(args[1], "reset") == 0)
1471         {
1472                 if (target->reset_script)
1473                         free(target->reset_script);
1474                 target->reset_script = strdup(args[2]);
1475         }
1476         else if (strcmp(args[1], "post_halt") == 0)
1477         {
1478                 if (target->post_halt_script)
1479                         free(target->post_halt_script);
1480                 target->post_halt_script = strdup(args[2]);
1481         }
1482         else if (strcmp(args[1], "pre_resume") == 0)
1483         {
1484                 if (target->pre_resume_script)
1485                         free(target->pre_resume_script);
1486                 target->pre_resume_script = strdup(args[2]);
1487         }
1488         else if (strcmp(args[1], "gdb_program_config") == 0)
1489         {
1490                 if (target->gdb_program_script)
1491                         free(target->gdb_program_script);
1492                 target->gdb_program_script = strdup(args[2]);
1493         }
1494         else
1495         {
1496                 LOG_ERROR("unknown event type: '%s", args[1]);
1497                 return ERROR_COMMAND_SYNTAX_ERROR;
1498         }
1499         
1500         return ERROR_OK;
1501 }
1502
1503 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1504 {
1505         target_t *target = NULL;
1506         
1507         if (argc < 2)
1508         {
1509                 return ERROR_COMMAND_SYNTAX_ERROR;
1510         }
1511         
1512         target = get_target_by_num(strtoul(args[0], NULL, 0));
1513         if (!target)
1514         {
1515                 return ERROR_COMMAND_SYNTAX_ERROR;
1516         }
1517         
1518         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1519         
1520         return ERROR_OK;
1521 }
1522
1523 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1524 {
1525         target_t *target = NULL;
1526         
1527         if ((argc < 4) || (argc > 5))
1528         {
1529                 return ERROR_COMMAND_SYNTAX_ERROR;
1530         }
1531         
1532         target = get_target_by_num(strtoul(args[0], NULL, 0));
1533         if (!target)
1534         {
1535                 return ERROR_COMMAND_SYNTAX_ERROR;
1536         }
1537         target_free_all_working_areas(target);
1538         
1539         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1540         if (argc == 5)
1541         {
1542                 target->working_area_virt = strtoul(args[4], NULL, 0);
1543         }
1544         target->working_area_size = strtoul(args[2], NULL, 0);
1545         
1546         if (strcmp(args[3], "backup") == 0)
1547         {
1548                 target->backup_working_area = 1;
1549         }
1550         else if (strcmp(args[3], "nobackup") == 0)
1551         {
1552                 target->backup_working_area = 0;
1553         }
1554         else
1555         {
1556                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1557                 return ERROR_COMMAND_SYNTAX_ERROR;
1558         }
1559         
1560         return ERROR_OK;
1561 }
1562
1563
1564 /* process target state changes */
1565 int handle_target(void *priv)
1566 {
1567         target_t *target = targets;
1568         
1569         while (target)
1570         {
1571                 if (target_continous_poll)
1572                 {
1573                         /* polling may fail silently until the target has been examined */
1574                         target_poll(target);
1575                 }
1576         
1577                 target = target->next;
1578         }
1579         
1580         return ERROR_OK;
1581 }
1582
1583 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1584 {
1585         target_t *target;
1586         reg_t *reg = NULL;
1587         int count = 0;
1588         char *value;
1589         
1590         LOG_DEBUG("-");
1591         
1592         target = get_current_target(cmd_ctx);
1593         
1594         /* list all available registers for the current target */
1595         if (argc == 0)
1596         {
1597                 reg_cache_t *cache = target->reg_cache;
1598                 
1599                 count = 0;
1600                 while(cache)
1601                 {
1602                         int i;
1603                         for (i = 0; i < cache->num_regs; i++)
1604                         {
1605                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1606                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1607                                 free(value);
1608                         }
1609                         cache = cache->next;
1610                 }
1611                 
1612                 return ERROR_OK;
1613         }
1614         
1615         /* access a single register by its ordinal number */
1616         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1617         {
1618                 int num = strtoul(args[0], NULL, 0);
1619                 reg_cache_t *cache = target->reg_cache;
1620                 
1621                 count = 0;
1622                 while(cache)
1623                 {
1624                         int i;
1625                         for (i = 0; i < cache->num_regs; i++)
1626                         {
1627                                 if (count++ == num)
1628                                 {
1629                                         reg = &cache->reg_list[i];
1630                                         break;
1631                                 }
1632                         }
1633                         if (reg)
1634                                 break;
1635                         cache = cache->next;
1636                 }
1637                 
1638                 if (!reg)
1639                 {
1640                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1641                         return ERROR_OK;
1642                 }
1643         } else /* access a single register by its name */
1644         {
1645                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1646                 
1647                 if (!reg)
1648                 {
1649                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1650                         return ERROR_OK;
1651                 }
1652         }
1653
1654         /* display a register */
1655         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1656         {
1657                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1658                         reg->valid = 0;
1659                 
1660                 if (reg->valid == 0)
1661                 {
1662                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1663                         if (arch_type == NULL)
1664                         {
1665                                 LOG_ERROR("BUG: encountered unregistered arch type");
1666                                 return ERROR_OK;
1667                         }
1668                         arch_type->get(reg);
1669                 }
1670                 value = buf_to_str(reg->value, reg->size, 16);
1671                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1672                 free(value);
1673                 return ERROR_OK;
1674         }
1675         
1676         /* set register value */
1677         if (argc == 2)
1678         {
1679                 u8 *buf = malloc(CEIL(reg->size, 8));
1680                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1681
1682                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1683                 if (arch_type == NULL)
1684                 {
1685                         LOG_ERROR("BUG: encountered unregistered arch type");
1686                         return ERROR_OK;
1687                 }
1688                 
1689                 arch_type->set(reg, buf);
1690                 
1691                 value = buf_to_str(reg->value, reg->size, 16);
1692                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1693                 free(value);
1694                 
1695                 free(buf);
1696                 
1697                 return ERROR_OK;
1698         }
1699         
1700         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1701         
1702         return ERROR_OK;
1703 }
1704
1705 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1706
1707 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1708 {
1709         target_t *target = get_current_target(cmd_ctx);
1710
1711         if (argc == 0)
1712         {
1713                 target_poll(target);
1714                 target_arch_state(target);
1715         }
1716         else
1717         {
1718                 if (strcmp(args[0], "on") == 0)
1719                 {
1720                         target_continous_poll = 1;
1721                 }
1722                 else if (strcmp(args[0], "off") == 0)
1723                 {
1724                         target_continous_poll = 0;
1725                 }
1726                 else
1727                 {
1728                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1729                 }
1730         }
1731         
1732         
1733         return ERROR_OK;
1734 }
1735
1736 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1737 {
1738         int ms = 5000;
1739         
1740         if (argc > 0)
1741         {
1742                 char *end;
1743
1744                 ms = strtoul(args[0], &end, 0) * 1000;
1745                 if (*end)
1746                 {
1747                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1748                         return ERROR_OK;
1749                 }
1750         }
1751
1752         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1753 }
1754
1755 static void target_process_events(struct command_context_s *cmd_ctx)
1756 {
1757         target_t *target = get_current_target(cmd_ctx);
1758         target_poll(target);
1759         target_call_timer_callbacks_now();
1760 }
1761
1762 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1763 {
1764         int retval;
1765         struct timeval timeout, now;
1766         int once=1;
1767         gettimeofday(&timeout, NULL);
1768         timeval_add_time(&timeout, 0, ms * 1000);
1769         
1770         target_t *target = get_current_target(cmd_ctx);
1771         for (;;)
1772         {
1773                 if ((retval=target_poll(target))!=ERROR_OK)
1774                         return retval;
1775                 target_call_timer_callbacks_now();
1776                 if (target->state == state)
1777                 {
1778                         break;
1779                 }
1780                 if (once)
1781                 {
1782                         once=0;
1783                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1784                 }
1785                 
1786                 gettimeofday(&now, NULL);
1787                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1788                 {
1789                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1790                         break;
1791                 }
1792         }
1793         
1794         return ERROR_OK;
1795 }
1796
1797 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1798 {
1799         int retval;
1800         target_t *target = get_current_target(cmd_ctx);
1801
1802         LOG_DEBUG("-");
1803
1804         if ((retval = target_halt(target)) != ERROR_OK)
1805         {
1806                 return retval;
1807         }
1808         
1809         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1810 }
1811
1812                 
1813 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1814 {
1815         target_t *target = get_current_target(cmd_ctx);
1816         
1817         LOG_USER("requesting target halt and executing a soft reset");
1818         
1819         target->type->soft_reset_halt(target);
1820         
1821         return ERROR_OK;
1822 }
1823
1824 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1825 {
1826         target_t *target = get_current_target(cmd_ctx);
1827         enum target_reset_mode reset_mode = target->reset_mode;
1828         enum target_reset_mode save = target->reset_mode;
1829         
1830         LOG_DEBUG("-");
1831         
1832         if (argc >= 1)
1833         {
1834                 if (strcmp("run", args[0]) == 0)
1835                         reset_mode = RESET_RUN;
1836                 else if (strcmp("halt", args[0]) == 0)
1837                         reset_mode = RESET_HALT;
1838                 else if (strcmp("init", args[0]) == 0)
1839                         reset_mode = RESET_INIT;
1840                 else if (strcmp("run_and_halt", args[0]) == 0)
1841                 {
1842                         reset_mode = RESET_RUN_AND_HALT;
1843                         if (argc >= 2)
1844                         {
1845                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1846                         }
1847                 }
1848                 else if (strcmp("run_and_init", args[0]) == 0)
1849                 {
1850                         reset_mode = RESET_RUN_AND_INIT;
1851                         if (argc >= 2)
1852                         {
1853                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1854                         }
1855                 }
1856                 else
1857                 {
1858                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1859                         return ERROR_OK;
1860                 }
1861         }
1862         
1863         /* temporarily modify mode of current reset target */
1864         target->reset_mode = reset_mode;
1865
1866         /* reset *all* targets */
1867         target_process_reset(cmd_ctx);
1868         
1869         /* Restore default reset mode for this target */
1870     target->reset_mode = save;
1871         
1872         return ERROR_OK;
1873 }
1874
1875 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1876 {
1877         int retval;
1878         target_t *target = get_current_target(cmd_ctx);
1879         
1880         if (argc == 0)
1881                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1882         else if (argc == 1)
1883                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1884         else
1885         {
1886                 return ERROR_COMMAND_SYNTAX_ERROR;
1887         }
1888
1889         target_process_events(cmd_ctx);
1890         
1891         return retval;
1892 }
1893
1894 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1895 {
1896         target_t *target = get_current_target(cmd_ctx);
1897         
1898         LOG_DEBUG("-");
1899         
1900         if (argc == 0)
1901                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1902
1903         if (argc == 1)
1904                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1905         
1906         return ERROR_OK;
1907 }
1908
1909 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1910 {
1911         const int line_bytecnt = 32;
1912         int count = 1;
1913         int size = 4;
1914         u32 address = 0;
1915         int line_modulo;
1916         int i;
1917
1918         char output[128];
1919         int output_len;
1920
1921         int retval;
1922
1923         u8 *buffer;
1924         target_t *target = get_current_target(cmd_ctx);
1925
1926         if (argc < 1)
1927                 return ERROR_OK;
1928
1929         if (argc == 2)
1930                 count = strtoul(args[1], NULL, 0);
1931
1932         address = strtoul(args[0], NULL, 0);
1933         
1934
1935         switch (cmd[2])
1936         {
1937                 case 'w':
1938                         size = 4; line_modulo = line_bytecnt / 4;
1939                         break;
1940                 case 'h':
1941                         size = 2; line_modulo = line_bytecnt / 2;
1942                         break;
1943                 case 'b':
1944                         size = 1; line_modulo = line_bytecnt / 1;
1945                         break;
1946                 default:
1947                         return ERROR_OK;
1948         }
1949
1950         buffer = calloc(count, size);
1951         retval  = target->type->read_memory(target, address, size, count, buffer);
1952         if (retval == ERROR_OK)
1953         {
1954                 output_len = 0;
1955         
1956                 for (i = 0; i < count; i++)
1957                 {
1958                         if (i%line_modulo == 0)
1959                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1960                         
1961                         switch (size)
1962                         {
1963                                 case 4:
1964                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1965                                         break;
1966                                 case 2:
1967                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1968                                         break;
1969                                 case 1:
1970                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1971                                         break;
1972                         }
1973         
1974                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1975                         {
1976                                 command_print(cmd_ctx, output);
1977                                 output_len = 0;
1978                         }
1979                 }
1980         } else
1981         {
1982                 LOG_ERROR("Failure examining memory");
1983         }
1984
1985         free(buffer);
1986         
1987         return ERROR_OK;
1988 }
1989
1990 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1991 {
1992         u32 address = 0;
1993         u32 value = 0;
1994         int count = 1;
1995         int i;
1996         int wordsize;
1997         target_t *target = get_current_target(cmd_ctx);
1998         u8 value_buf[4];
1999
2000          if ((argc < 2) || (argc > 3))
2001                 return ERROR_COMMAND_SYNTAX_ERROR;
2002
2003         address = strtoul(args[0], NULL, 0);
2004         value = strtoul(args[1], NULL, 0);
2005         if (argc == 3)
2006                 count = strtoul(args[2], NULL, 0);
2007
2008
2009         switch (cmd[2])
2010         {
2011                 case 'w':
2012                         wordsize = 4;
2013                         target_buffer_set_u32(target, value_buf, value);
2014                         break;
2015                 case 'h':
2016                         wordsize = 2;
2017                         target_buffer_set_u16(target, value_buf, value);
2018                         break;
2019                 case 'b':
2020                         wordsize = 1;
2021                         value_buf[0] = value;
2022                         break;
2023                 default:
2024                         return ERROR_COMMAND_SYNTAX_ERROR;
2025         }
2026         for (i=0; i<count; i++)
2027         {
2028                 int retval;
2029                 switch (wordsize)
2030                 {
2031                         case 4:
2032                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
2033                                 break;
2034                         case 2:
2035                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
2036                                 break;
2037                         case 1:
2038                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
2039                         break;
2040                         default:
2041                         return ERROR_OK;
2042                 }
2043                 if (retval!=ERROR_OK)
2044                 {
2045                         return retval;
2046                 }
2047         }
2048
2049         return ERROR_OK;
2050
2051 }
2052
2053 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2054 {
2055         u8 *buffer;
2056         u32 buf_cnt;
2057         u32 image_size;
2058         int i;
2059         int retval;
2060
2061         image_t image;  
2062         
2063         duration_t duration;
2064         char *duration_text;
2065         
2066         target_t *target = get_current_target(cmd_ctx);
2067
2068         if (argc < 1)
2069         {
2070                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
2071                 return ERROR_OK;
2072         }
2073         
2074         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2075         if (argc >= 2)
2076         {
2077                 image.base_address_set = 1;
2078                 image.base_address = strtoul(args[1], NULL, 0);
2079         }
2080         else
2081         {
2082                 image.base_address_set = 0;
2083         }
2084         
2085         image.start_address_set = 0;
2086
2087         duration_start_measure(&duration);
2088         
2089         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2090         {
2091                 return ERROR_OK;
2092         }
2093         
2094         image_size = 0x0;
2095         retval = ERROR_OK;
2096         for (i = 0; i < image.num_sections; i++)
2097         {
2098                 buffer = malloc(image.sections[i].size);
2099                 if (buffer == NULL)
2100                 {
2101                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2102                         break;
2103                 }
2104                 
2105                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2106                 {
2107                         free(buffer);
2108                         break;
2109                 }
2110                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
2111                 {
2112                         free(buffer);
2113                         break;
2114                 }
2115                 image_size += buf_cnt;
2116                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
2117                 
2118                 free(buffer);
2119         }
2120
2121         duration_stop_measure(&duration, &duration_text);
2122         if (retval==ERROR_OK)
2123         {
2124                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2125         }
2126         free(duration_text);
2127         
2128         image_close(&image);
2129
2130         return retval;
2131
2132 }
2133
2134 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2135 {
2136         fileio_t fileio;
2137         
2138         u32 address;
2139         u32 size;
2140         u8 buffer[560];
2141         int retval=ERROR_OK;
2142         
2143         duration_t duration;
2144         char *duration_text;
2145         
2146         target_t *target = get_current_target(cmd_ctx);
2147
2148         if (argc != 3)
2149         {
2150                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2151                 return ERROR_OK;
2152         }
2153
2154         address = strtoul(args[1], NULL, 0);
2155         size = strtoul(args[2], NULL, 0);
2156
2157         if ((address & 3) || (size & 3))
2158         {
2159                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2160                 return ERROR_OK;
2161         }
2162         
2163         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2164         {
2165                 return ERROR_OK;
2166         }
2167         
2168         duration_start_measure(&duration);
2169         
2170         while (size > 0)
2171         {
2172                 u32 size_written;
2173                 u32 this_run_size = (size > 560) ? 560 : size;
2174                 
2175                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2176                 if (retval != ERROR_OK)
2177                 {
2178                         break;
2179                 }
2180                 
2181                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2182                 if (retval != ERROR_OK)
2183                 {
2184                         break;
2185                 }
2186                 
2187                 size -= this_run_size;
2188                 address += this_run_size;
2189         }
2190
2191         fileio_close(&fileio);
2192
2193         duration_stop_measure(&duration, &duration_text);
2194         if (retval==ERROR_OK)
2195         {
2196                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2197         }
2198         free(duration_text);
2199         
2200         return ERROR_OK;
2201 }
2202
2203 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2204 {
2205         u8 *buffer;
2206         u32 buf_cnt;
2207         u32 image_size;
2208         int i;
2209         int retval;
2210         u32 checksum = 0;
2211         u32 mem_checksum = 0;
2212
2213         image_t image;  
2214         
2215         duration_t duration;
2216         char *duration_text;
2217         
2218         target_t *target = get_current_target(cmd_ctx);
2219         
2220         if (argc < 1)
2221         {
2222                 return ERROR_COMMAND_SYNTAX_ERROR;
2223         }
2224         
2225         if (!target)
2226         {
2227                 LOG_ERROR("no target selected");
2228                 return ERROR_FAIL;
2229         }
2230         
2231         duration_start_measure(&duration);
2232         
2233         if (argc >= 2)
2234         {
2235                 image.base_address_set = 1;
2236                 image.base_address = strtoul(args[1], NULL, 0);
2237         }
2238         else
2239         {
2240                 image.base_address_set = 0;
2241                 image.base_address = 0x0;
2242         }
2243
2244         image.start_address_set = 0;
2245
2246         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2247         {
2248                 return retval;
2249         }
2250         
2251         image_size = 0x0;
2252         retval=ERROR_OK;
2253         for (i = 0; i < image.num_sections; i++)
2254         {
2255                 buffer = malloc(image.sections[i].size);
2256                 if (buffer == NULL)
2257                 {
2258                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2259                         break;
2260                 }
2261                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2262                 {
2263                         free(buffer);
2264                         break;
2265                 }
2266                 
2267                 /* calculate checksum of image */
2268                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2269                 
2270                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2271                 if( retval != ERROR_OK )
2272                 {
2273                         free(buffer);
2274                         break;
2275                 }
2276                 
2277                 if( checksum != mem_checksum )
2278                 {
2279                         /* failed crc checksum, fall back to a binary compare */
2280                         u8 *data;
2281                         
2282                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2283                         
2284                         data = (u8*)malloc(buf_cnt);
2285                         
2286                         /* Can we use 32bit word accesses? */
2287                         int size = 1;
2288                         int count = buf_cnt;
2289                         if ((count % 4) == 0)
2290                         {
2291                                 size *= 4;
2292                                 count /= 4;
2293                         }
2294                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2295                         if (retval == ERROR_OK)
2296                         {
2297                                 int t;
2298                                 for (t = 0; t < buf_cnt; t++)
2299                                 {
2300                                         if (data[t] != buffer[t])
2301                                         {
2302                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2303                                                 free(data);
2304                                                 free(buffer);
2305                                                 retval=ERROR_FAIL;
2306                                                 goto done;
2307                                         }
2308                                 }
2309                         }
2310                         
2311                         free(data);
2312                 }
2313                 
2314                 free(buffer);
2315                 image_size += buf_cnt;
2316         }
2317 done:   
2318         duration_stop_measure(&duration, &duration_text);
2319         if (retval==ERROR_OK)
2320         {
2321                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2322         }
2323         free(duration_text);
2324         
2325         image_close(&image);
2326         
2327         return retval;
2328 }
2329
2330 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2331 {
2332         int retval;
2333         target_t *target = get_current_target(cmd_ctx);
2334
2335         if (argc == 0)
2336         {
2337                 breakpoint_t *breakpoint = target->breakpoints;
2338
2339                 while (breakpoint)
2340                 {
2341                         if (breakpoint->type == BKPT_SOFT)
2342                         {
2343                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2344                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2345                                 free(buf);
2346                         }
2347                         else
2348                         {
2349                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2350                         }
2351                         breakpoint = breakpoint->next;
2352                 }
2353         }
2354         else if (argc >= 2)
2355         {
2356                 int hw = BKPT_SOFT;
2357                 u32 length = 0;
2358
2359                 length = strtoul(args[1], NULL, 0);
2360                 
2361                 if (argc >= 3)
2362                         if (strcmp(args[2], "hw") == 0)
2363                                 hw = BKPT_HARD;
2364
2365                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2366                 {
2367                         LOG_ERROR("Failure setting breakpoints");
2368                 }
2369                 else
2370                 {
2371                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2372                 }
2373         }
2374         else
2375         {
2376                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2377         }
2378
2379         return ERROR_OK;
2380 }
2381
2382 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2383 {
2384         target_t *target = get_current_target(cmd_ctx);
2385
2386         if (argc > 0)
2387                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2388
2389         return ERROR_OK;
2390 }
2391
2392 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2393 {
2394         target_t *target = get_current_target(cmd_ctx);
2395         int retval;
2396
2397         if (argc == 0)
2398         {
2399                 watchpoint_t *watchpoint = target->watchpoints;
2400
2401                 while (watchpoint)
2402                 {
2403                         command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2404                         watchpoint = watchpoint->next;
2405                 }
2406         } 
2407         else if (argc >= 2)
2408         {
2409                 enum watchpoint_rw type = WPT_ACCESS;
2410                 u32 data_value = 0x0;
2411                 u32 data_mask = 0xffffffff;
2412                 
2413                 if (argc >= 3)
2414                 {
2415                         switch(args[2][0])
2416                         {
2417                                 case 'r':
2418                                         type = WPT_READ;
2419                                         break;
2420                                 case 'w':
2421                                         type = WPT_WRITE;
2422                                         break;
2423                                 case 'a':
2424                                         type = WPT_ACCESS;
2425                                         break;
2426                                 default:
2427                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2428                                         return ERROR_OK;
2429                         }
2430                 }
2431                 if (argc >= 4)
2432                 {
2433                         data_value = strtoul(args[3], NULL, 0);
2434                 }
2435                 if (argc >= 5)
2436                 {
2437                         data_mask = strtoul(args[4], NULL, 0);
2438                 }
2439                 
2440                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2441                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2442                 {
2443                         LOG_ERROR("Failure setting breakpoints");
2444                 }
2445         }
2446         else
2447         {
2448                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2449         }
2450                 
2451         return ERROR_OK;
2452 }
2453
2454 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2455 {
2456         target_t *target = get_current_target(cmd_ctx);
2457
2458         if (argc > 0)
2459                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2460         
2461         return ERROR_OK;
2462 }
2463
2464 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2465 {
2466         int retval;
2467         target_t *target = get_current_target(cmd_ctx);
2468         u32 va;
2469         u32 pa;
2470
2471         if (argc != 1)
2472         {
2473                 return ERROR_COMMAND_SYNTAX_ERROR;
2474         }
2475         va = strtoul(args[0], NULL, 0);
2476
2477         retval = target->type->virt2phys(target, va, &pa);
2478         if (retval == ERROR_OK)
2479         {
2480                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2481         }
2482         else
2483         {
2484                 /* lower levels will have logged a detailed error which is 
2485                  * forwarded to telnet/GDB session.  
2486                  */
2487         }
2488         return retval;
2489 }
2490 static void writeLong(FILE *f, int l)
2491 {
2492         int i;
2493         for (i=0; i<4; i++)
2494         {
2495                 char c=(l>>(i*8))&0xff;
2496                 fwrite(&c, 1, 1, f); 
2497         }
2498         
2499 }
2500 static void writeString(FILE *f, char *s)
2501 {
2502         fwrite(s, 1, strlen(s), f); 
2503 }
2504
2505
2506
2507 // Dump a gmon.out histogram file.
2508 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2509 {
2510         int i;
2511         FILE *f=fopen(filename, "w");
2512         if (f==NULL)
2513                 return;
2514         fwrite("gmon", 1, 4, f);
2515         writeLong(f, 0x00000001); // Version
2516         writeLong(f, 0); // padding
2517         writeLong(f, 0); // padding
2518         writeLong(f, 0); // padding
2519                                 
2520         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2521
2522         // figure out bucket size
2523         u32 min=samples[0];
2524         u32 max=samples[0];
2525         for (i=0; i<sampleNum; i++)
2526         {
2527                 if (min>samples[i])
2528                 {
2529                         min=samples[i];
2530                 }
2531                 if (max<samples[i])
2532                 {
2533                         max=samples[i];
2534                 }
2535         }
2536
2537         int addressSpace=(max-min+1);
2538         
2539         static int const maxBuckets=256*1024; // maximum buckets.
2540         int length=addressSpace;
2541         if (length > maxBuckets)
2542         {
2543                 length=maxBuckets; 
2544         }
2545         int *buckets=malloc(sizeof(int)*length);
2546         if (buckets==NULL)
2547         {
2548                 fclose(f);
2549                 return;
2550         }
2551         memset(buckets, 0, sizeof(int)*length);
2552         for (i=0; i<sampleNum;i++)
2553         {
2554                 u32 address=samples[i];
2555                 long long a=address-min;
2556                 long long b=length-1;
2557                 long long c=addressSpace-1;
2558                 int index=(a*b)/c; // danger!!!! int32 overflows 
2559                 buckets[index]++;
2560         }
2561         
2562         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2563         writeLong(f, min);                                      // low_pc
2564         writeLong(f, max);              // high_pc
2565         writeLong(f, length);           // # of samples
2566         writeLong(f, 64000000);                         // 64MHz
2567         writeString(f, "seconds");
2568         for (i=0; i<(15-strlen("seconds")); i++)
2569         {
2570                 fwrite("", 1, 1, f);  // padding
2571         }
2572         writeString(f, "s");
2573                 
2574 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2575         
2576         char *data=malloc(2*length);
2577         if (data!=NULL)
2578         {
2579                 for (i=0; i<length;i++)
2580                 {
2581                         int val;
2582                         val=buckets[i];
2583                         if (val>65535)
2584                         {
2585                                 val=65535;
2586                         }
2587                         data[i*2]=val&0xff;
2588                         data[i*2+1]=(val>>8)&0xff;
2589                 }
2590                 free(buckets);
2591                 fwrite(data, 1, length*2, f);
2592                 free(data);
2593         } else
2594         {
2595                 free(buckets);
2596         }
2597
2598         fclose(f);
2599 }
2600
2601 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2602 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2603 {
2604         target_t *target = get_current_target(cmd_ctx);
2605         struct timeval timeout, now;
2606         
2607         gettimeofday(&timeout, NULL);
2608         if (argc!=2)
2609         {
2610                 return ERROR_COMMAND_SYNTAX_ERROR;
2611         }
2612         char *end;
2613         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2614         if (*end) 
2615         {
2616                 return ERROR_OK;
2617         }
2618         
2619         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2620
2621         static const int maxSample=10000;
2622         u32 *samples=malloc(sizeof(u32)*maxSample);
2623         if (samples==NULL)
2624                 return ERROR_OK;
2625         
2626         int numSamples=0;
2627         int retval=ERROR_OK;
2628         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2629         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2630         
2631         for (;;)
2632         {
2633                 target_poll(target);
2634                 if (target->state == TARGET_HALTED)
2635                 {
2636                         u32 t=*((u32 *)reg->value);
2637                         samples[numSamples++]=t;
2638                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2639                         target_poll(target);
2640                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2641                 } else if (target->state == TARGET_RUNNING)
2642                 {
2643                         // We want to quickly sample the PC.
2644                         target_halt(target);
2645                 } else
2646                 {
2647                         command_print(cmd_ctx, "Target not halted or running");
2648                         retval=ERROR_OK;
2649                         break;
2650                 }
2651                 if (retval!=ERROR_OK)
2652                 {
2653                         break;
2654                 }
2655                 
2656                 gettimeofday(&now, NULL);
2657                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2658                 {
2659                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2660                         target_poll(target);
2661                         if (target->state == TARGET_HALTED)
2662                         {
2663                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2664                         }
2665                         target_poll(target);
2666                         writeGmon(samples, numSamples, args[1]);
2667                         command_print(cmd_ctx, "Wrote %s", args[1]);
2668                         break;
2669                 }
2670         }
2671         free(samples);
2672         
2673         return ERROR_OK;
2674 }
2675