]> git.sur5r.net Git - openocd/blob - src/target/target.c
Add -defer-examine option to target create command
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
60
61 static int target_read_buffer_default(struct target *target, uint32_t address,
62                 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, uint32_t address,
64                 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66                 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68                 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71                 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73                 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
76
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type cortexr4_target;
92 extern struct target_type arm11_target;
93 extern struct target_type ls1_sap_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
104 extern struct target_type or1k_target;
105 extern struct target_type quark_x10xx_target;
106 extern struct target_type quark_d20xx_target;
107
108 static struct target_type *target_types[] = {
109         &arm7tdmi_target,
110         &arm9tdmi_target,
111         &arm920t_target,
112         &arm720t_target,
113         &arm966e_target,
114         &arm946e_target,
115         &arm926ejs_target,
116         &fa526_target,
117         &feroceon_target,
118         &dragonite_target,
119         &xscale_target,
120         &cortexm_target,
121         &cortexa_target,
122         &cortexr4_target,
123         &arm11_target,
124         &ls1_sap_target,
125         &mips_m4k_target,
126         &avr_target,
127         &dsp563xx_target,
128         &dsp5680xx_target,
129         &testee_target,
130         &avr32_ap7k_target,
131         &hla_target,
132         &nds32_v2_target,
133         &nds32_v3_target,
134         &nds32_v3m_target,
135         &or1k_target,
136         &quark_x10xx_target,
137         &quark_d20xx_target,
138         NULL,
139 };
140
141 struct target *all_targets;
142 static struct target_event_callback *target_event_callbacks;
143 static struct target_timer_callback *target_timer_callbacks;
144 LIST_HEAD(target_reset_callback_list);
145 LIST_HEAD(target_trace_callback_list);
146 static const int polling_interval = 100;
147
148 static const Jim_Nvp nvp_assert[] = {
149         { .name = "assert", NVP_ASSERT },
150         { .name = "deassert", NVP_DEASSERT },
151         { .name = "T", NVP_ASSERT },
152         { .name = "F", NVP_DEASSERT },
153         { .name = "t", NVP_ASSERT },
154         { .name = "f", NVP_DEASSERT },
155         { .name = NULL, .value = -1 }
156 };
157
158 static const Jim_Nvp nvp_error_target[] = {
159         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
160         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
161         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
162         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
163         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
164         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
165         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
166         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
167         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
168         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
169         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
170         { .value = -1, .name = NULL }
171 };
172
173 static const char *target_strerror_safe(int err)
174 {
175         const Jim_Nvp *n;
176
177         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
178         if (n->name == NULL)
179                 return "unknown";
180         else
181                 return n->name;
182 }
183
184 static const Jim_Nvp nvp_target_event[] = {
185
186         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
187         { .value = TARGET_EVENT_HALTED, .name = "halted" },
188         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
189         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
190         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
191
192         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
193         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
194
195         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
196         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
197         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
198         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
199         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
200         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
201         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
202         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
203         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
204         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
205         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
206         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
207
208         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
209         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
210
211         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
212         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
213
214         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
215         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
216
217         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
218         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
219
220         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
221         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
222
223         { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
224
225         { .name = NULL, .value = -1 }
226 };
227
228 static const Jim_Nvp nvp_target_state[] = {
229         { .name = "unknown", .value = TARGET_UNKNOWN },
230         { .name = "running", .value = TARGET_RUNNING },
231         { .name = "halted",  .value = TARGET_HALTED },
232         { .name = "reset",   .value = TARGET_RESET },
233         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
234         { .name = NULL, .value = -1 },
235 };
236
237 static const Jim_Nvp nvp_target_debug_reason[] = {
238         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
239         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
240         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
241         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
242         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
243         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
244         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
245         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
246         { .name = NULL, .value = -1 },
247 };
248
249 static const Jim_Nvp nvp_target_endian[] = {
250         { .name = "big",    .value = TARGET_BIG_ENDIAN },
251         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
252         { .name = "be",     .value = TARGET_BIG_ENDIAN },
253         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
254         { .name = NULL,     .value = -1 },
255 };
256
257 static const Jim_Nvp nvp_reset_modes[] = {
258         { .name = "unknown", .value = RESET_UNKNOWN },
259         { .name = "run"    , .value = RESET_RUN },
260         { .name = "halt"   , .value = RESET_HALT },
261         { .name = "init"   , .value = RESET_INIT },
262         { .name = NULL     , .value = -1 },
263 };
264
265 const char *debug_reason_name(struct target *t)
266 {
267         const char *cp;
268
269         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
270                         t->debug_reason)->name;
271         if (!cp) {
272                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
273                 cp = "(*BUG*unknown*BUG*)";
274         }
275         return cp;
276 }
277
278 const char *target_state_name(struct target *t)
279 {
280         const char *cp;
281         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
282         if (!cp) {
283                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
284                 cp = "(*BUG*unknown*BUG*)";
285         }
286
287         if (!target_was_examined(t) && t->defer_examine)
288                 cp = "examine deferred";
289
290         return cp;
291 }
292
293 const char *target_event_name(enum target_event event)
294 {
295         const char *cp;
296         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
297         if (!cp) {
298                 LOG_ERROR("Invalid target event: %d", (int)(event));
299                 cp = "(*BUG*unknown*BUG*)";
300         }
301         return cp;
302 }
303
304 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
305 {
306         const char *cp;
307         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
308         if (!cp) {
309                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
310                 cp = "(*BUG*unknown*BUG*)";
311         }
312         return cp;
313 }
314
315 /* determine the number of the new target */
316 static int new_target_number(void)
317 {
318         struct target *t;
319         int x;
320
321         /* number is 0 based */
322         x = -1;
323         t = all_targets;
324         while (t) {
325                 if (x < t->target_number)
326                         x = t->target_number;
327                 t = t->next;
328         }
329         return x + 1;
330 }
331
332 /* read a uint64_t from a buffer in target memory endianness */
333 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
334 {
335         if (target->endianness == TARGET_LITTLE_ENDIAN)
336                 return le_to_h_u64(buffer);
337         else
338                 return be_to_h_u64(buffer);
339 }
340
341 /* read a uint32_t from a buffer in target memory endianness */
342 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
343 {
344         if (target->endianness == TARGET_LITTLE_ENDIAN)
345                 return le_to_h_u32(buffer);
346         else
347                 return be_to_h_u32(buffer);
348 }
349
350 /* read a uint24_t from a buffer in target memory endianness */
351 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
352 {
353         if (target->endianness == TARGET_LITTLE_ENDIAN)
354                 return le_to_h_u24(buffer);
355         else
356                 return be_to_h_u24(buffer);
357 }
358
359 /* read a uint16_t from a buffer in target memory endianness */
360 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
361 {
362         if (target->endianness == TARGET_LITTLE_ENDIAN)
363                 return le_to_h_u16(buffer);
364         else
365                 return be_to_h_u16(buffer);
366 }
367
368 /* read a uint8_t from a buffer in target memory endianness */
369 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
370 {
371         return *buffer & 0x0ff;
372 }
373
374 /* write a uint64_t to a buffer in target memory endianness */
375 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
376 {
377         if (target->endianness == TARGET_LITTLE_ENDIAN)
378                 h_u64_to_le(buffer, value);
379         else
380                 h_u64_to_be(buffer, value);
381 }
382
383 /* write a uint32_t to a buffer in target memory endianness */
384 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
385 {
386         if (target->endianness == TARGET_LITTLE_ENDIAN)
387                 h_u32_to_le(buffer, value);
388         else
389                 h_u32_to_be(buffer, value);
390 }
391
392 /* write a uint24_t to a buffer in target memory endianness */
393 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
394 {
395         if (target->endianness == TARGET_LITTLE_ENDIAN)
396                 h_u24_to_le(buffer, value);
397         else
398                 h_u24_to_be(buffer, value);
399 }
400
401 /* write a uint16_t to a buffer in target memory endianness */
402 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
403 {
404         if (target->endianness == TARGET_LITTLE_ENDIAN)
405                 h_u16_to_le(buffer, value);
406         else
407                 h_u16_to_be(buffer, value);
408 }
409
410 /* write a uint8_t to a buffer in target memory endianness */
411 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
412 {
413         *buffer = value;
414 }
415
416 /* write a uint64_t array to a buffer in target memory endianness */
417 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
418 {
419         uint32_t i;
420         for (i = 0; i < count; i++)
421                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
422 }
423
424 /* write a uint32_t array to a buffer in target memory endianness */
425 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
426 {
427         uint32_t i;
428         for (i = 0; i < count; i++)
429                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
430 }
431
432 /* write a uint16_t array to a buffer in target memory endianness */
433 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
434 {
435         uint32_t i;
436         for (i = 0; i < count; i++)
437                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
438 }
439
440 /* write a uint64_t array to a buffer in target memory endianness */
441 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
442 {
443         uint32_t i;
444         for (i = 0; i < count; i++)
445                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
446 }
447
448 /* write a uint32_t array to a buffer in target memory endianness */
449 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
450 {
451         uint32_t i;
452         for (i = 0; i < count; i++)
453                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
454 }
455
456 /* write a uint16_t array to a buffer in target memory endianness */
457 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
458 {
459         uint32_t i;
460         for (i = 0; i < count; i++)
461                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
462 }
463
464 /* return a pointer to a configured target; id is name or number */
465 struct target *get_target(const char *id)
466 {
467         struct target *target;
468
469         /* try as tcltarget name */
470         for (target = all_targets; target; target = target->next) {
471                 if (target_name(target) == NULL)
472                         continue;
473                 if (strcmp(id, target_name(target)) == 0)
474                         return target;
475         }
476
477         /* It's OK to remove this fallback sometime after August 2010 or so */
478
479         /* no match, try as number */
480         unsigned num;
481         if (parse_uint(id, &num) != ERROR_OK)
482                 return NULL;
483
484         for (target = all_targets; target; target = target->next) {
485                 if (target->target_number == (int)num) {
486                         LOG_WARNING("use '%s' as target identifier, not '%u'",
487                                         target_name(target), num);
488                         return target;
489                 }
490         }
491
492         return NULL;
493 }
494
495 /* returns a pointer to the n-th configured target */
496 struct target *get_target_by_num(int num)
497 {
498         struct target *target = all_targets;
499
500         while (target) {
501                 if (target->target_number == num)
502                         return target;
503                 target = target->next;
504         }
505
506         return NULL;
507 }
508
509 struct target *get_current_target(struct command_context *cmd_ctx)
510 {
511         struct target *target = get_target_by_num(cmd_ctx->current_target);
512
513         if (target == NULL) {
514                 LOG_ERROR("BUG: current_target out of bounds");
515                 exit(-1);
516         }
517
518         return target;
519 }
520
521 int target_poll(struct target *target)
522 {
523         int retval;
524
525         /* We can't poll until after examine */
526         if (!target_was_examined(target)) {
527                 /* Fail silently lest we pollute the log */
528                 return ERROR_FAIL;
529         }
530
531         retval = target->type->poll(target);
532         if (retval != ERROR_OK)
533                 return retval;
534
535         if (target->halt_issued) {
536                 if (target->state == TARGET_HALTED)
537                         target->halt_issued = false;
538                 else {
539                         int64_t t = timeval_ms() - target->halt_issued_time;
540                         if (t > DEFAULT_HALT_TIMEOUT) {
541                                 target->halt_issued = false;
542                                 LOG_INFO("Halt timed out, wake up GDB.");
543                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
544                         }
545                 }
546         }
547
548         return ERROR_OK;
549 }
550
551 int target_halt(struct target *target)
552 {
553         int retval;
554         /* We can't poll until after examine */
555         if (!target_was_examined(target)) {
556                 LOG_ERROR("Target not examined yet");
557                 return ERROR_FAIL;
558         }
559
560         retval = target->type->halt(target);
561         if (retval != ERROR_OK)
562                 return retval;
563
564         target->halt_issued = true;
565         target->halt_issued_time = timeval_ms();
566
567         return ERROR_OK;
568 }
569
570 /**
571  * Make the target (re)start executing using its saved execution
572  * context (possibly with some modifications).
573  *
574  * @param target Which target should start executing.
575  * @param current True to use the target's saved program counter instead
576  *      of the address parameter
577  * @param address Optionally used as the program counter.
578  * @param handle_breakpoints True iff breakpoints at the resumption PC
579  *      should be skipped.  (For example, maybe execution was stopped by
580  *      such a breakpoint, in which case it would be counterprodutive to
581  *      let it re-trigger.
582  * @param debug_execution False if all working areas allocated by OpenOCD
583  *      should be released and/or restored to their original contents.
584  *      (This would for example be true to run some downloaded "helper"
585  *      algorithm code, which resides in one such working buffer and uses
586  *      another for data storage.)
587  *
588  * @todo Resolve the ambiguity about what the "debug_execution" flag
589  * signifies.  For example, Target implementations don't agree on how
590  * it relates to invalidation of the register cache, or to whether
591  * breakpoints and watchpoints should be enabled.  (It would seem wrong
592  * to enable breakpoints when running downloaded "helper" algorithms
593  * (debug_execution true), since the breakpoints would be set to match
594  * target firmware being debugged, not the helper algorithm.... and
595  * enabling them could cause such helpers to malfunction (for example,
596  * by overwriting data with a breakpoint instruction.  On the other
597  * hand the infrastructure for running such helpers might use this
598  * procedure but rely on hardware breakpoint to detect termination.)
599  */
600 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
601 {
602         int retval;
603
604         /* We can't poll until after examine */
605         if (!target_was_examined(target)) {
606                 LOG_ERROR("Target not examined yet");
607                 return ERROR_FAIL;
608         }
609
610         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
611
612         /* note that resume *must* be asynchronous. The CPU can halt before
613          * we poll. The CPU can even halt at the current PC as a result of
614          * a software breakpoint being inserted by (a bug?) the application.
615          */
616         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
617         if (retval != ERROR_OK)
618                 return retval;
619
620         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
621
622         return retval;
623 }
624
625 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
626 {
627         char buf[100];
628         int retval;
629         Jim_Nvp *n;
630         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
631         if (n->name == NULL) {
632                 LOG_ERROR("invalid reset mode");
633                 return ERROR_FAIL;
634         }
635
636         struct target *target;
637         for (target = all_targets; target; target = target->next)
638                 target_call_reset_callbacks(target, reset_mode);
639
640         /* disable polling during reset to make reset event scripts
641          * more predictable, i.e. dr/irscan & pathmove in events will
642          * not have JTAG operations injected into the middle of a sequence.
643          */
644         bool save_poll = jtag_poll_get_enabled();
645
646         jtag_poll_set_enabled(false);
647
648         sprintf(buf, "ocd_process_reset %s", n->name);
649         retval = Jim_Eval(cmd_ctx->interp, buf);
650
651         jtag_poll_set_enabled(save_poll);
652
653         if (retval != JIM_OK) {
654                 Jim_MakeErrorMessage(cmd_ctx->interp);
655                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
656                 return ERROR_FAIL;
657         }
658
659         /* We want any events to be processed before the prompt */
660         retval = target_call_timer_callbacks_now();
661
662         for (target = all_targets; target; target = target->next) {
663                 target->type->check_reset(target);
664                 target->running_alg = false;
665         }
666
667         return retval;
668 }
669
670 static int identity_virt2phys(struct target *target,
671                 uint32_t virtual, uint32_t *physical)
672 {
673         *physical = virtual;
674         return ERROR_OK;
675 }
676
677 static int no_mmu(struct target *target, int *enabled)
678 {
679         *enabled = 0;
680         return ERROR_OK;
681 }
682
683 static int default_examine(struct target *target)
684 {
685         target_set_examined(target);
686         return ERROR_OK;
687 }
688
689 /* no check by default */
690 static int default_check_reset(struct target *target)
691 {
692         return ERROR_OK;
693 }
694
695 int target_examine_one(struct target *target)
696 {
697         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
698
699         int retval = target->type->examine(target);
700         if (retval != ERROR_OK)
701                 return retval;
702
703         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
704
705         return ERROR_OK;
706 }
707
708 static int jtag_enable_callback(enum jtag_event event, void *priv)
709 {
710         struct target *target = priv;
711
712         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
713                 return ERROR_OK;
714
715         jtag_unregister_event_callback(jtag_enable_callback, target);
716
717         return target_examine_one(target);
718 }
719
720 /* Targets that correctly implement init + examine, i.e.
721  * no communication with target during init:
722  *
723  * XScale
724  */
725 int target_examine(void)
726 {
727         int retval = ERROR_OK;
728         struct target *target;
729
730         for (target = all_targets; target; target = target->next) {
731                 /* defer examination, but don't skip it */
732                 if (!target->tap->enabled) {
733                         jtag_register_event_callback(jtag_enable_callback,
734                                         target);
735                         continue;
736                 }
737
738                 if (target->defer_examine)
739                         continue;
740
741                 retval = target_examine_one(target);
742                 if (retval != ERROR_OK)
743                         return retval;
744         }
745         return retval;
746 }
747
748 const char *target_type_name(struct target *target)
749 {
750         return target->type->name;
751 }
752
753 static int target_soft_reset_halt(struct target *target)
754 {
755         if (!target_was_examined(target)) {
756                 LOG_ERROR("Target not examined yet");
757                 return ERROR_FAIL;
758         }
759         if (!target->type->soft_reset_halt) {
760                 LOG_ERROR("Target %s does not support soft_reset_halt",
761                                 target_name(target));
762                 return ERROR_FAIL;
763         }
764         return target->type->soft_reset_halt(target);
765 }
766
767 /**
768  * Downloads a target-specific native code algorithm to the target,
769  * and executes it.  * Note that some targets may need to set up, enable,
770  * and tear down a breakpoint (hard or * soft) to detect algorithm
771  * termination, while others may support  lower overhead schemes where
772  * soft breakpoints embedded in the algorithm automatically terminate the
773  * algorithm.
774  *
775  * @param target used to run the algorithm
776  * @param arch_info target-specific description of the algorithm.
777  */
778 int target_run_algorithm(struct target *target,
779                 int num_mem_params, struct mem_param *mem_params,
780                 int num_reg_params, struct reg_param *reg_param,
781                 uint32_t entry_point, uint32_t exit_point,
782                 int timeout_ms, void *arch_info)
783 {
784         int retval = ERROR_FAIL;
785
786         if (!target_was_examined(target)) {
787                 LOG_ERROR("Target not examined yet");
788                 goto done;
789         }
790         if (!target->type->run_algorithm) {
791                 LOG_ERROR("Target type '%s' does not support %s",
792                                 target_type_name(target), __func__);
793                 goto done;
794         }
795
796         target->running_alg = true;
797         retval = target->type->run_algorithm(target,
798                         num_mem_params, mem_params,
799                         num_reg_params, reg_param,
800                         entry_point, exit_point, timeout_ms, arch_info);
801         target->running_alg = false;
802
803 done:
804         return retval;
805 }
806
807 /**
808  * Downloads a target-specific native code algorithm to the target,
809  * executes and leaves it running.
810  *
811  * @param target used to run the algorithm
812  * @param arch_info target-specific description of the algorithm.
813  */
814 int target_start_algorithm(struct target *target,
815                 int num_mem_params, struct mem_param *mem_params,
816                 int num_reg_params, struct reg_param *reg_params,
817                 uint32_t entry_point, uint32_t exit_point,
818                 void *arch_info)
819 {
820         int retval = ERROR_FAIL;
821
822         if (!target_was_examined(target)) {
823                 LOG_ERROR("Target not examined yet");
824                 goto done;
825         }
826         if (!target->type->start_algorithm) {
827                 LOG_ERROR("Target type '%s' does not support %s",
828                                 target_type_name(target), __func__);
829                 goto done;
830         }
831         if (target->running_alg) {
832                 LOG_ERROR("Target is already running an algorithm");
833                 goto done;
834         }
835
836         target->running_alg = true;
837         retval = target->type->start_algorithm(target,
838                         num_mem_params, mem_params,
839                         num_reg_params, reg_params,
840                         entry_point, exit_point, arch_info);
841
842 done:
843         return retval;
844 }
845
846 /**
847  * Waits for an algorithm started with target_start_algorithm() to complete.
848  *
849  * @param target used to run the algorithm
850  * @param arch_info target-specific description of the algorithm.
851  */
852 int target_wait_algorithm(struct target *target,
853                 int num_mem_params, struct mem_param *mem_params,
854                 int num_reg_params, struct reg_param *reg_params,
855                 uint32_t exit_point, int timeout_ms,
856                 void *arch_info)
857 {
858         int retval = ERROR_FAIL;
859
860         if (!target->type->wait_algorithm) {
861                 LOG_ERROR("Target type '%s' does not support %s",
862                                 target_type_name(target), __func__);
863                 goto done;
864         }
865         if (!target->running_alg) {
866                 LOG_ERROR("Target is not running an algorithm");
867                 goto done;
868         }
869
870         retval = target->type->wait_algorithm(target,
871                         num_mem_params, mem_params,
872                         num_reg_params, reg_params,
873                         exit_point, timeout_ms, arch_info);
874         if (retval != ERROR_TARGET_TIMEOUT)
875                 target->running_alg = false;
876
877 done:
878         return retval;
879 }
880
881 /**
882  * Executes a target-specific native code algorithm in the target.
883  * It differs from target_run_algorithm in that the algorithm is asynchronous.
884  * Because of this it requires an compliant algorithm:
885  * see contrib/loaders/flash/stm32f1x.S for example.
886  *
887  * @param target used to run the algorithm
888  */
889
890 int target_run_flash_async_algorithm(struct target *target,
891                 const uint8_t *buffer, uint32_t count, int block_size,
892                 int num_mem_params, struct mem_param *mem_params,
893                 int num_reg_params, struct reg_param *reg_params,
894                 uint32_t buffer_start, uint32_t buffer_size,
895                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
896 {
897         int retval;
898         int timeout = 0;
899
900         const uint8_t *buffer_orig = buffer;
901
902         /* Set up working area. First word is write pointer, second word is read pointer,
903          * rest is fifo data area. */
904         uint32_t wp_addr = buffer_start;
905         uint32_t rp_addr = buffer_start + 4;
906         uint32_t fifo_start_addr = buffer_start + 8;
907         uint32_t fifo_end_addr = buffer_start + buffer_size;
908
909         uint32_t wp = fifo_start_addr;
910         uint32_t rp = fifo_start_addr;
911
912         /* validate block_size is 2^n */
913         assert(!block_size || !(block_size & (block_size - 1)));
914
915         retval = target_write_u32(target, wp_addr, wp);
916         if (retval != ERROR_OK)
917                 return retval;
918         retval = target_write_u32(target, rp_addr, rp);
919         if (retval != ERROR_OK)
920                 return retval;
921
922         /* Start up algorithm on target and let it idle while writing the first chunk */
923         retval = target_start_algorithm(target, num_mem_params, mem_params,
924                         num_reg_params, reg_params,
925                         entry_point,
926                         exit_point,
927                         arch_info);
928
929         if (retval != ERROR_OK) {
930                 LOG_ERROR("error starting target flash write algorithm");
931                 return retval;
932         }
933
934         while (count > 0) {
935
936                 retval = target_read_u32(target, rp_addr, &rp);
937                 if (retval != ERROR_OK) {
938                         LOG_ERROR("failed to get read pointer");
939                         break;
940                 }
941
942                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
943                         (size_t) (buffer - buffer_orig), count, wp, rp);
944
945                 if (rp == 0) {
946                         LOG_ERROR("flash write algorithm aborted by target");
947                         retval = ERROR_FLASH_OPERATION_FAILED;
948                         break;
949                 }
950
951                 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
952                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
953                         break;
954                 }
955
956                 /* Count the number of bytes available in the fifo without
957                  * crossing the wrap around. Make sure to not fill it completely,
958                  * because that would make wp == rp and that's the empty condition. */
959                 uint32_t thisrun_bytes;
960                 if (rp > wp)
961                         thisrun_bytes = rp - wp - block_size;
962                 else if (rp > fifo_start_addr)
963                         thisrun_bytes = fifo_end_addr - wp;
964                 else
965                         thisrun_bytes = fifo_end_addr - wp - block_size;
966
967                 if (thisrun_bytes == 0) {
968                         /* Throttle polling a bit if transfer is (much) faster than flash
969                          * programming. The exact delay shouldn't matter as long as it's
970                          * less than buffer size / flash speed. This is very unlikely to
971                          * run when using high latency connections such as USB. */
972                         alive_sleep(10);
973
974                         /* to stop an infinite loop on some targets check and increment a timeout
975                          * this issue was observed on a stellaris using the new ICDI interface */
976                         if (timeout++ >= 500) {
977                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
978                                 return ERROR_FLASH_OPERATION_FAILED;
979                         }
980                         continue;
981                 }
982
983                 /* reset our timeout */
984                 timeout = 0;
985
986                 /* Limit to the amount of data we actually want to write */
987                 if (thisrun_bytes > count * block_size)
988                         thisrun_bytes = count * block_size;
989
990                 /* Write data to fifo */
991                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
992                 if (retval != ERROR_OK)
993                         break;
994
995                 /* Update counters and wrap write pointer */
996                 buffer += thisrun_bytes;
997                 count -= thisrun_bytes / block_size;
998                 wp += thisrun_bytes;
999                 if (wp >= fifo_end_addr)
1000                         wp = fifo_start_addr;
1001
1002                 /* Store updated write pointer to target */
1003                 retval = target_write_u32(target, wp_addr, wp);
1004                 if (retval != ERROR_OK)
1005                         break;
1006         }
1007
1008         if (retval != ERROR_OK) {
1009                 /* abort flash write algorithm on target */
1010                 target_write_u32(target, wp_addr, 0);
1011         }
1012
1013         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1014                         num_reg_params, reg_params,
1015                         exit_point,
1016                         10000,
1017                         arch_info);
1018
1019         if (retval2 != ERROR_OK) {
1020                 LOG_ERROR("error waiting for target flash write algorithm");
1021                 retval = retval2;
1022         }
1023
1024         if (retval == ERROR_OK) {
1025                 /* check if algorithm set rp = 0 after fifo writer loop finished */
1026                 retval = target_read_u32(target, rp_addr, &rp);
1027                 if (retval == ERROR_OK && rp == 0) {
1028                         LOG_ERROR("flash write algorithm aborted by target");
1029                         retval = ERROR_FLASH_OPERATION_FAILED;
1030                 }
1031         }
1032
1033         return retval;
1034 }
1035
1036 int target_read_memory(struct target *target,
1037                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1038 {
1039         if (!target_was_examined(target)) {
1040                 LOG_ERROR("Target not examined yet");
1041                 return ERROR_FAIL;
1042         }
1043         if (!target->type->read_memory) {
1044                 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1045                 return ERROR_FAIL;
1046         }
1047         return target->type->read_memory(target, address, size, count, buffer);
1048 }
1049
1050 int target_read_phys_memory(struct target *target,
1051                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1052 {
1053         if (!target_was_examined(target)) {
1054                 LOG_ERROR("Target not examined yet");
1055                 return ERROR_FAIL;
1056         }
1057         if (!target->type->read_phys_memory) {
1058                 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1059                 return ERROR_FAIL;
1060         }
1061         return target->type->read_phys_memory(target, address, size, count, buffer);
1062 }
1063
1064 int target_write_memory(struct target *target,
1065                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1066 {
1067         if (!target_was_examined(target)) {
1068                 LOG_ERROR("Target not examined yet");
1069                 return ERROR_FAIL;
1070         }
1071         if (!target->type->write_memory) {
1072                 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1073                 return ERROR_FAIL;
1074         }
1075         return target->type->write_memory(target, address, size, count, buffer);
1076 }
1077
1078 int target_write_phys_memory(struct target *target,
1079                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1080 {
1081         if (!target_was_examined(target)) {
1082                 LOG_ERROR("Target not examined yet");
1083                 return ERROR_FAIL;
1084         }
1085         if (!target->type->write_phys_memory) {
1086                 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1087                 return ERROR_FAIL;
1088         }
1089         return target->type->write_phys_memory(target, address, size, count, buffer);
1090 }
1091
1092 int target_add_breakpoint(struct target *target,
1093                 struct breakpoint *breakpoint)
1094 {
1095         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1096                 LOG_WARNING("target %s is not halted", target_name(target));
1097                 return ERROR_TARGET_NOT_HALTED;
1098         }
1099         return target->type->add_breakpoint(target, breakpoint);
1100 }
1101
1102 int target_add_context_breakpoint(struct target *target,
1103                 struct breakpoint *breakpoint)
1104 {
1105         if (target->state != TARGET_HALTED) {
1106                 LOG_WARNING("target %s is not halted", target_name(target));
1107                 return ERROR_TARGET_NOT_HALTED;
1108         }
1109         return target->type->add_context_breakpoint(target, breakpoint);
1110 }
1111
1112 int target_add_hybrid_breakpoint(struct target *target,
1113                 struct breakpoint *breakpoint)
1114 {
1115         if (target->state != TARGET_HALTED) {
1116                 LOG_WARNING("target %s is not halted", target_name(target));
1117                 return ERROR_TARGET_NOT_HALTED;
1118         }
1119         return target->type->add_hybrid_breakpoint(target, breakpoint);
1120 }
1121
1122 int target_remove_breakpoint(struct target *target,
1123                 struct breakpoint *breakpoint)
1124 {
1125         return target->type->remove_breakpoint(target, breakpoint);
1126 }
1127
1128 int target_add_watchpoint(struct target *target,
1129                 struct watchpoint *watchpoint)
1130 {
1131         if (target->state != TARGET_HALTED) {
1132                 LOG_WARNING("target %s is not halted", target_name(target));
1133                 return ERROR_TARGET_NOT_HALTED;
1134         }
1135         return target->type->add_watchpoint(target, watchpoint);
1136 }
1137 int target_remove_watchpoint(struct target *target,
1138                 struct watchpoint *watchpoint)
1139 {
1140         return target->type->remove_watchpoint(target, watchpoint);
1141 }
1142 int target_hit_watchpoint(struct target *target,
1143                 struct watchpoint **hit_watchpoint)
1144 {
1145         if (target->state != TARGET_HALTED) {
1146                 LOG_WARNING("target %s is not halted", target->cmd_name);
1147                 return ERROR_TARGET_NOT_HALTED;
1148         }
1149
1150         if (target->type->hit_watchpoint == NULL) {
1151                 /* For backward compatible, if hit_watchpoint is not implemented,
1152                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1153                  * information. */
1154                 return ERROR_FAIL;
1155         }
1156
1157         return target->type->hit_watchpoint(target, hit_watchpoint);
1158 }
1159
1160 int target_get_gdb_reg_list(struct target *target,
1161                 struct reg **reg_list[], int *reg_list_size,
1162                 enum target_register_class reg_class)
1163 {
1164         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1165 }
1166 int target_step(struct target *target,
1167                 int current, uint32_t address, int handle_breakpoints)
1168 {
1169         return target->type->step(target, current, address, handle_breakpoints);
1170 }
1171
1172 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1173 {
1174         if (target->state != TARGET_HALTED) {
1175                 LOG_WARNING("target %s is not halted", target->cmd_name);
1176                 return ERROR_TARGET_NOT_HALTED;
1177         }
1178         return target->type->get_gdb_fileio_info(target, fileio_info);
1179 }
1180
1181 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1182 {
1183         if (target->state != TARGET_HALTED) {
1184                 LOG_WARNING("target %s is not halted", target->cmd_name);
1185                 return ERROR_TARGET_NOT_HALTED;
1186         }
1187         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1188 }
1189
1190 int target_profiling(struct target *target, uint32_t *samples,
1191                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1192 {
1193         if (target->state != TARGET_HALTED) {
1194                 LOG_WARNING("target %s is not halted", target->cmd_name);
1195                 return ERROR_TARGET_NOT_HALTED;
1196         }
1197         return target->type->profiling(target, samples, max_num_samples,
1198                         num_samples, seconds);
1199 }
1200
1201 /**
1202  * Reset the @c examined flag for the given target.
1203  * Pure paranoia -- targets are zeroed on allocation.
1204  */
1205 static void target_reset_examined(struct target *target)
1206 {
1207         target->examined = false;
1208 }
1209
1210 static int handle_target(void *priv);
1211
1212 static int target_init_one(struct command_context *cmd_ctx,
1213                 struct target *target)
1214 {
1215         target_reset_examined(target);
1216
1217         struct target_type *type = target->type;
1218         if (type->examine == NULL)
1219                 type->examine = default_examine;
1220
1221         if (type->check_reset == NULL)
1222                 type->check_reset = default_check_reset;
1223
1224         assert(type->init_target != NULL);
1225
1226         int retval = type->init_target(cmd_ctx, target);
1227         if (ERROR_OK != retval) {
1228                 LOG_ERROR("target '%s' init failed", target_name(target));
1229                 return retval;
1230         }
1231
1232         /* Sanity-check MMU support ... stub in what we must, to help
1233          * implement it in stages, but warn if we need to do so.
1234          */
1235         if (type->mmu) {
1236                 if (type->virt2phys == NULL) {
1237                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1238                         type->virt2phys = identity_virt2phys;
1239                 }
1240         } else {
1241                 /* Make sure no-MMU targets all behave the same:  make no
1242                  * distinction between physical and virtual addresses, and
1243                  * ensure that virt2phys() is always an identity mapping.
1244                  */
1245                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1246                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1247
1248                 type->mmu = no_mmu;
1249                 type->write_phys_memory = type->write_memory;
1250                 type->read_phys_memory = type->read_memory;
1251                 type->virt2phys = identity_virt2phys;
1252         }
1253
1254         if (target->type->read_buffer == NULL)
1255                 target->type->read_buffer = target_read_buffer_default;
1256
1257         if (target->type->write_buffer == NULL)
1258                 target->type->write_buffer = target_write_buffer_default;
1259
1260         if (target->type->get_gdb_fileio_info == NULL)
1261                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1262
1263         if (target->type->gdb_fileio_end == NULL)
1264                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1265
1266         if (target->type->profiling == NULL)
1267                 target->type->profiling = target_profiling_default;
1268
1269         return ERROR_OK;
1270 }
1271
1272 static int target_init(struct command_context *cmd_ctx)
1273 {
1274         struct target *target;
1275         int retval;
1276
1277         for (target = all_targets; target; target = target->next) {
1278                 retval = target_init_one(cmd_ctx, target);
1279                 if (ERROR_OK != retval)
1280                         return retval;
1281         }
1282
1283         if (!all_targets)
1284                 return ERROR_OK;
1285
1286         retval = target_register_user_commands(cmd_ctx);
1287         if (ERROR_OK != retval)
1288                 return retval;
1289
1290         retval = target_register_timer_callback(&handle_target,
1291                         polling_interval, 1, cmd_ctx->interp);
1292         if (ERROR_OK != retval)
1293                 return retval;
1294
1295         return ERROR_OK;
1296 }
1297
1298 COMMAND_HANDLER(handle_target_init_command)
1299 {
1300         int retval;
1301
1302         if (CMD_ARGC != 0)
1303                 return ERROR_COMMAND_SYNTAX_ERROR;
1304
1305         static bool target_initialized;
1306         if (target_initialized) {
1307                 LOG_INFO("'target init' has already been called");
1308                 return ERROR_OK;
1309         }
1310         target_initialized = true;
1311
1312         retval = command_run_line(CMD_CTX, "init_targets");
1313         if (ERROR_OK != retval)
1314                 return retval;
1315
1316         retval = command_run_line(CMD_CTX, "init_target_events");
1317         if (ERROR_OK != retval)
1318                 return retval;
1319
1320         retval = command_run_line(CMD_CTX, "init_board");
1321         if (ERROR_OK != retval)
1322                 return retval;
1323
1324         LOG_DEBUG("Initializing targets...");
1325         return target_init(CMD_CTX);
1326 }
1327
1328 int target_register_event_callback(int (*callback)(struct target *target,
1329                 enum target_event event, void *priv), void *priv)
1330 {
1331         struct target_event_callback **callbacks_p = &target_event_callbacks;
1332
1333         if (callback == NULL)
1334                 return ERROR_COMMAND_SYNTAX_ERROR;
1335
1336         if (*callbacks_p) {
1337                 while ((*callbacks_p)->next)
1338                         callbacks_p = &((*callbacks_p)->next);
1339                 callbacks_p = &((*callbacks_p)->next);
1340         }
1341
1342         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1343         (*callbacks_p)->callback = callback;
1344         (*callbacks_p)->priv = priv;
1345         (*callbacks_p)->next = NULL;
1346
1347         return ERROR_OK;
1348 }
1349
1350 int target_register_reset_callback(int (*callback)(struct target *target,
1351                 enum target_reset_mode reset_mode, void *priv), void *priv)
1352 {
1353         struct target_reset_callback *entry;
1354
1355         if (callback == NULL)
1356                 return ERROR_COMMAND_SYNTAX_ERROR;
1357
1358         entry = malloc(sizeof(struct target_reset_callback));
1359         if (entry == NULL) {
1360                 LOG_ERROR("error allocating buffer for reset callback entry");
1361                 return ERROR_COMMAND_SYNTAX_ERROR;
1362         }
1363
1364         entry->callback = callback;
1365         entry->priv = priv;
1366         list_add(&entry->list, &target_reset_callback_list);
1367
1368
1369         return ERROR_OK;
1370 }
1371
1372 int target_register_trace_callback(int (*callback)(struct target *target,
1373                 size_t len, uint8_t *data, void *priv), void *priv)
1374 {
1375         struct target_trace_callback *entry;
1376
1377         if (callback == NULL)
1378                 return ERROR_COMMAND_SYNTAX_ERROR;
1379
1380         entry = malloc(sizeof(struct target_trace_callback));
1381         if (entry == NULL) {
1382                 LOG_ERROR("error allocating buffer for trace callback entry");
1383                 return ERROR_COMMAND_SYNTAX_ERROR;
1384         }
1385
1386         entry->callback = callback;
1387         entry->priv = priv;
1388         list_add(&entry->list, &target_trace_callback_list);
1389
1390
1391         return ERROR_OK;
1392 }
1393
1394 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1395 {
1396         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1397         struct timeval now;
1398
1399         if (callback == NULL)
1400                 return ERROR_COMMAND_SYNTAX_ERROR;
1401
1402         if (*callbacks_p) {
1403                 while ((*callbacks_p)->next)
1404                         callbacks_p = &((*callbacks_p)->next);
1405                 callbacks_p = &((*callbacks_p)->next);
1406         }
1407
1408         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1409         (*callbacks_p)->callback = callback;
1410         (*callbacks_p)->periodic = periodic;
1411         (*callbacks_p)->time_ms = time_ms;
1412         (*callbacks_p)->removed = false;
1413
1414         gettimeofday(&now, NULL);
1415         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1416         time_ms -= (time_ms % 1000);
1417         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1418         if ((*callbacks_p)->when.tv_usec > 1000000) {
1419                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1420                 (*callbacks_p)->when.tv_sec += 1;
1421         }
1422
1423         (*callbacks_p)->priv = priv;
1424         (*callbacks_p)->next = NULL;
1425
1426         return ERROR_OK;
1427 }
1428
1429 int target_unregister_event_callback(int (*callback)(struct target *target,
1430                 enum target_event event, void *priv), void *priv)
1431 {
1432         struct target_event_callback **p = &target_event_callbacks;
1433         struct target_event_callback *c = target_event_callbacks;
1434
1435         if (callback == NULL)
1436                 return ERROR_COMMAND_SYNTAX_ERROR;
1437
1438         while (c) {
1439                 struct target_event_callback *next = c->next;
1440                 if ((c->callback == callback) && (c->priv == priv)) {
1441                         *p = next;
1442                         free(c);
1443                         return ERROR_OK;
1444                 } else
1445                         p = &(c->next);
1446                 c = next;
1447         }
1448
1449         return ERROR_OK;
1450 }
1451
1452 int target_unregister_reset_callback(int (*callback)(struct target *target,
1453                 enum target_reset_mode reset_mode, void *priv), void *priv)
1454 {
1455         struct target_reset_callback *entry;
1456
1457         if (callback == NULL)
1458                 return ERROR_COMMAND_SYNTAX_ERROR;
1459
1460         list_for_each_entry(entry, &target_reset_callback_list, list) {
1461                 if (entry->callback == callback && entry->priv == priv) {
1462                         list_del(&entry->list);
1463                         free(entry);
1464                         break;
1465                 }
1466         }
1467
1468         return ERROR_OK;
1469 }
1470
1471 int target_unregister_trace_callback(int (*callback)(struct target *target,
1472                 size_t len, uint8_t *data, void *priv), void *priv)
1473 {
1474         struct target_trace_callback *entry;
1475
1476         if (callback == NULL)
1477                 return ERROR_COMMAND_SYNTAX_ERROR;
1478
1479         list_for_each_entry(entry, &target_trace_callback_list, list) {
1480                 if (entry->callback == callback && entry->priv == priv) {
1481                         list_del(&entry->list);
1482                         free(entry);
1483                         break;
1484                 }
1485         }
1486
1487         return ERROR_OK;
1488 }
1489
1490 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1491 {
1492         if (callback == NULL)
1493                 return ERROR_COMMAND_SYNTAX_ERROR;
1494
1495         for (struct target_timer_callback *c = target_timer_callbacks;
1496              c; c = c->next) {
1497                 if ((c->callback == callback) && (c->priv == priv)) {
1498                         c->removed = true;
1499                         return ERROR_OK;
1500                 }
1501         }
1502
1503         return ERROR_FAIL;
1504 }
1505
1506 int target_call_event_callbacks(struct target *target, enum target_event event)
1507 {
1508         struct target_event_callback *callback = target_event_callbacks;
1509         struct target_event_callback *next_callback;
1510
1511         if (event == TARGET_EVENT_HALTED) {
1512                 /* execute early halted first */
1513                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1514         }
1515
1516         LOG_DEBUG("target event %i (%s)", event,
1517                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1518
1519         target_handle_event(target, event);
1520
1521         while (callback) {
1522                 next_callback = callback->next;
1523                 callback->callback(target, event, callback->priv);
1524                 callback = next_callback;
1525         }
1526
1527         return ERROR_OK;
1528 }
1529
1530 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1531 {
1532         struct target_reset_callback *callback;
1533
1534         LOG_DEBUG("target reset %i (%s)", reset_mode,
1535                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1536
1537         list_for_each_entry(callback, &target_reset_callback_list, list)
1538                 callback->callback(target, reset_mode, callback->priv);
1539
1540         return ERROR_OK;
1541 }
1542
1543 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1544 {
1545         struct target_trace_callback *callback;
1546
1547         list_for_each_entry(callback, &target_trace_callback_list, list)
1548                 callback->callback(target, len, data, callback->priv);
1549
1550         return ERROR_OK;
1551 }
1552
1553 static int target_timer_callback_periodic_restart(
1554                 struct target_timer_callback *cb, struct timeval *now)
1555 {
1556         int time_ms = cb->time_ms;
1557         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1558         time_ms -= (time_ms % 1000);
1559         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1560         if (cb->when.tv_usec > 1000000) {
1561                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1562                 cb->when.tv_sec += 1;
1563         }
1564         return ERROR_OK;
1565 }
1566
1567 static int target_call_timer_callback(struct target_timer_callback *cb,
1568                 struct timeval *now)
1569 {
1570         cb->callback(cb->priv);
1571
1572         if (cb->periodic)
1573                 return target_timer_callback_periodic_restart(cb, now);
1574
1575         return target_unregister_timer_callback(cb->callback, cb->priv);
1576 }
1577
1578 static int target_call_timer_callbacks_check_time(int checktime)
1579 {
1580         static bool callback_processing;
1581
1582         /* Do not allow nesting */
1583         if (callback_processing)
1584                 return ERROR_OK;
1585
1586         callback_processing = true;
1587
1588         keep_alive();
1589
1590         struct timeval now;
1591         gettimeofday(&now, NULL);
1592
1593         /* Store an address of the place containing a pointer to the
1594          * next item; initially, that's a standalone "root of the
1595          * list" variable. */
1596         struct target_timer_callback **callback = &target_timer_callbacks;
1597         while (*callback) {
1598                 if ((*callback)->removed) {
1599                         struct target_timer_callback *p = *callback;
1600                         *callback = (*callback)->next;
1601                         free(p);
1602                         continue;
1603                 }
1604
1605                 bool call_it = (*callback)->callback &&
1606                         ((!checktime && (*callback)->periodic) ||
1607                          now.tv_sec > (*callback)->when.tv_sec ||
1608                          (now.tv_sec == (*callback)->when.tv_sec &&
1609                           now.tv_usec >= (*callback)->when.tv_usec));
1610
1611                 if (call_it)
1612                         target_call_timer_callback(*callback, &now);
1613
1614                 callback = &(*callback)->next;
1615         }
1616
1617         callback_processing = false;
1618         return ERROR_OK;
1619 }
1620
1621 int target_call_timer_callbacks(void)
1622 {
1623         return target_call_timer_callbacks_check_time(1);
1624 }
1625
1626 /* invoke periodic callbacks immediately */
1627 int target_call_timer_callbacks_now(void)
1628 {
1629         return target_call_timer_callbacks_check_time(0);
1630 }
1631
1632 /* Prints the working area layout for debug purposes */
1633 static void print_wa_layout(struct target *target)
1634 {
1635         struct working_area *c = target->working_areas;
1636
1637         while (c) {
1638                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1639                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1640                         c->address, c->address + c->size - 1, c->size);
1641                 c = c->next;
1642         }
1643 }
1644
1645 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1646 static void target_split_working_area(struct working_area *area, uint32_t size)
1647 {
1648         assert(area->free); /* Shouldn't split an allocated area */
1649         assert(size <= area->size); /* Caller should guarantee this */
1650
1651         /* Split only if not already the right size */
1652         if (size < area->size) {
1653                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1654
1655                 if (new_wa == NULL)
1656                         return;
1657
1658                 new_wa->next = area->next;
1659                 new_wa->size = area->size - size;
1660                 new_wa->address = area->address + size;
1661                 new_wa->backup = NULL;
1662                 new_wa->user = NULL;
1663                 new_wa->free = true;
1664
1665                 area->next = new_wa;
1666                 area->size = size;
1667
1668                 /* If backup memory was allocated to this area, it has the wrong size
1669                  * now so free it and it will be reallocated if/when needed */
1670                 if (area->backup) {
1671                         free(area->backup);
1672                         area->backup = NULL;
1673                 }
1674         }
1675 }
1676
1677 /* Merge all adjacent free areas into one */
1678 static void target_merge_working_areas(struct target *target)
1679 {
1680         struct working_area *c = target->working_areas;
1681
1682         while (c && c->next) {
1683                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1684
1685                 /* Find two adjacent free areas */
1686                 if (c->free && c->next->free) {
1687                         /* Merge the last into the first */
1688                         c->size += c->next->size;
1689
1690                         /* Remove the last */
1691                         struct working_area *to_be_freed = c->next;
1692                         c->next = c->next->next;
1693                         if (to_be_freed->backup)
1694                                 free(to_be_freed->backup);
1695                         free(to_be_freed);
1696
1697                         /* If backup memory was allocated to the remaining area, it's has
1698                          * the wrong size now */
1699                         if (c->backup) {
1700                                 free(c->backup);
1701                                 c->backup = NULL;
1702                         }
1703                 } else {
1704                         c = c->next;
1705                 }
1706         }
1707 }
1708
1709 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1710 {
1711         /* Reevaluate working area address based on MMU state*/
1712         if (target->working_areas == NULL) {
1713                 int retval;
1714                 int enabled;
1715
1716                 retval = target->type->mmu(target, &enabled);
1717                 if (retval != ERROR_OK)
1718                         return retval;
1719
1720                 if (!enabled) {
1721                         if (target->working_area_phys_spec) {
1722                                 LOG_DEBUG("MMU disabled, using physical "
1723                                         "address for working memory 0x%08"PRIx32,
1724                                         target->working_area_phys);
1725                                 target->working_area = target->working_area_phys;
1726                         } else {
1727                                 LOG_ERROR("No working memory available. "
1728                                         "Specify -work-area-phys to target.");
1729                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1730                         }
1731                 } else {
1732                         if (target->working_area_virt_spec) {
1733                                 LOG_DEBUG("MMU enabled, using virtual "
1734                                         "address for working memory 0x%08"PRIx32,
1735                                         target->working_area_virt);
1736                                 target->working_area = target->working_area_virt;
1737                         } else {
1738                                 LOG_ERROR("No working memory available. "
1739                                         "Specify -work-area-virt to target.");
1740                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1741                         }
1742                 }
1743
1744                 /* Set up initial working area on first call */
1745                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1746                 if (new_wa) {
1747                         new_wa->next = NULL;
1748                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1749                         new_wa->address = target->working_area;
1750                         new_wa->backup = NULL;
1751                         new_wa->user = NULL;
1752                         new_wa->free = true;
1753                 }
1754
1755                 target->working_areas = new_wa;
1756         }
1757
1758         /* only allocate multiples of 4 byte */
1759         if (size % 4)
1760                 size = (size + 3) & (~3UL);
1761
1762         struct working_area *c = target->working_areas;
1763
1764         /* Find the first large enough working area */
1765         while (c) {
1766                 if (c->free && c->size >= size)
1767                         break;
1768                 c = c->next;
1769         }
1770
1771         if (c == NULL)
1772                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1773
1774         /* Split the working area into the requested size */
1775         target_split_working_area(c, size);
1776
1777         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1778
1779         if (target->backup_working_area) {
1780                 if (c->backup == NULL) {
1781                         c->backup = malloc(c->size);
1782                         if (c->backup == NULL)
1783                                 return ERROR_FAIL;
1784                 }
1785
1786                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1787                 if (retval != ERROR_OK)
1788                         return retval;
1789         }
1790
1791         /* mark as used, and return the new (reused) area */
1792         c->free = false;
1793         *area = c;
1794
1795         /* user pointer */
1796         c->user = area;
1797
1798         print_wa_layout(target);
1799
1800         return ERROR_OK;
1801 }
1802
1803 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1804 {
1805         int retval;
1806
1807         retval = target_alloc_working_area_try(target, size, area);
1808         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1809                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1810         return retval;
1811
1812 }
1813
1814 static int target_restore_working_area(struct target *target, struct working_area *area)
1815 {
1816         int retval = ERROR_OK;
1817
1818         if (target->backup_working_area && area->backup != NULL) {
1819                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1820                 if (retval != ERROR_OK)
1821                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1822                                         area->size, area->address);
1823         }
1824
1825         return retval;
1826 }
1827
1828 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1829 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1830 {
1831         int retval = ERROR_OK;
1832
1833         if (area->free)
1834                 return retval;
1835
1836         if (restore) {
1837                 retval = target_restore_working_area(target, area);
1838                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1839                 if (retval != ERROR_OK)
1840                         return retval;
1841         }
1842
1843         area->free = true;
1844
1845         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1846                         area->size, area->address);
1847
1848         /* mark user pointer invalid */
1849         /* TODO: Is this really safe? It points to some previous caller's memory.
1850          * How could we know that the area pointer is still in that place and not
1851          * some other vital data? What's the purpose of this, anyway? */
1852         *area->user = NULL;
1853         area->user = NULL;
1854
1855         target_merge_working_areas(target);
1856
1857         print_wa_layout(target);
1858
1859         return retval;
1860 }
1861
1862 int target_free_working_area(struct target *target, struct working_area *area)
1863 {
1864         return target_free_working_area_restore(target, area, 1);
1865 }
1866
1867 void target_quit(void)
1868 {
1869         struct target_event_callback *pe = target_event_callbacks;
1870         while (pe) {
1871                 struct target_event_callback *t = pe->next;
1872                 free(pe);
1873                 pe = t;
1874         }
1875         target_event_callbacks = NULL;
1876
1877         struct target_timer_callback *pt = target_timer_callbacks;
1878         while (pt) {
1879                 struct target_timer_callback *t = pt->next;
1880                 free(pt);
1881                 pt = t;
1882         }
1883         target_timer_callbacks = NULL;
1884
1885         for (struct target *target = all_targets;
1886              target; target = target->next) {
1887                 if (target->type->deinit_target)
1888                         target->type->deinit_target(target);
1889         }
1890 }
1891
1892 /* free resources and restore memory, if restoring memory fails,
1893  * free up resources anyway
1894  */
1895 static void target_free_all_working_areas_restore(struct target *target, int restore)
1896 {
1897         struct working_area *c = target->working_areas;
1898
1899         LOG_DEBUG("freeing all working areas");
1900
1901         /* Loop through all areas, restoring the allocated ones and marking them as free */
1902         while (c) {
1903                 if (!c->free) {
1904                         if (restore)
1905                                 target_restore_working_area(target, c);
1906                         c->free = true;
1907                         *c->user = NULL; /* Same as above */
1908                         c->user = NULL;
1909                 }
1910                 c = c->next;
1911         }
1912
1913         /* Run a merge pass to combine all areas into one */
1914         target_merge_working_areas(target);
1915
1916         print_wa_layout(target);
1917 }
1918
1919 void target_free_all_working_areas(struct target *target)
1920 {
1921         target_free_all_working_areas_restore(target, 1);
1922 }
1923
1924 /* Find the largest number of bytes that can be allocated */
1925 uint32_t target_get_working_area_avail(struct target *target)
1926 {
1927         struct working_area *c = target->working_areas;
1928         uint32_t max_size = 0;
1929
1930         if (c == NULL)
1931                 return target->working_area_size;
1932
1933         while (c) {
1934                 if (c->free && max_size < c->size)
1935                         max_size = c->size;
1936
1937                 c = c->next;
1938         }
1939
1940         return max_size;
1941 }
1942
1943 int target_arch_state(struct target *target)
1944 {
1945         int retval;
1946         if (target == NULL) {
1947                 LOG_USER("No target has been configured");
1948                 return ERROR_OK;
1949         }
1950
1951         LOG_USER("%s: target state: %s", target_name(target),
1952                  target_state_name(target));
1953
1954         if (target->state != TARGET_HALTED)
1955                 return ERROR_OK;
1956
1957         retval = target->type->arch_state(target);
1958         return retval;
1959 }
1960
1961 static int target_get_gdb_fileio_info_default(struct target *target,
1962                 struct gdb_fileio_info *fileio_info)
1963 {
1964         /* If target does not support semi-hosting function, target
1965            has no need to provide .get_gdb_fileio_info callback.
1966            It just return ERROR_FAIL and gdb_server will return "Txx"
1967            as target halted every time.  */
1968         return ERROR_FAIL;
1969 }
1970
1971 static int target_gdb_fileio_end_default(struct target *target,
1972                 int retcode, int fileio_errno, bool ctrl_c)
1973 {
1974         return ERROR_OK;
1975 }
1976
1977 static int target_profiling_default(struct target *target, uint32_t *samples,
1978                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1979 {
1980         struct timeval timeout, now;
1981
1982         gettimeofday(&timeout, NULL);
1983         timeval_add_time(&timeout, seconds, 0);
1984
1985         LOG_INFO("Starting profiling. Halting and resuming the"
1986                         " target as often as we can...");
1987
1988         uint32_t sample_count = 0;
1989         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1990         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1991
1992         int retval = ERROR_OK;
1993         for (;;) {
1994                 target_poll(target);
1995                 if (target->state == TARGET_HALTED) {
1996                         uint32_t t = buf_get_u32(reg->value, 0, 32);
1997                         samples[sample_count++] = t;
1998                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
1999                         retval = target_resume(target, 1, 0, 0, 0);
2000                         target_poll(target);
2001                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2002                 } else if (target->state == TARGET_RUNNING) {
2003                         /* We want to quickly sample the PC. */
2004                         retval = target_halt(target);
2005                 } else {
2006                         LOG_INFO("Target not halted or running");
2007                         retval = ERROR_OK;
2008                         break;
2009                 }
2010
2011                 if (retval != ERROR_OK)
2012                         break;
2013
2014                 gettimeofday(&now, NULL);
2015                 if ((sample_count >= max_num_samples) ||
2016                         ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
2017                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2018                         break;
2019                 }
2020         }
2021
2022         *num_samples = sample_count;
2023         return retval;
2024 }
2025
2026 /* Single aligned words are guaranteed to use 16 or 32 bit access
2027  * mode respectively, otherwise data is handled as quickly as
2028  * possible
2029  */
2030 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
2031 {
2032         LOG_DEBUG("writing buffer of %" PRIi32 " byte at 0x%8.8" PRIx32,
2033                           size, address);
2034
2035         if (!target_was_examined(target)) {
2036                 LOG_ERROR("Target not examined yet");
2037                 return ERROR_FAIL;
2038         }
2039
2040         if (size == 0)
2041                 return ERROR_OK;
2042
2043         if ((address + size - 1) < address) {
2044                 /* GDB can request this when e.g. PC is 0xfffffffc */
2045                 LOG_ERROR("address + size wrapped (0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2046                                   address,
2047                                   size);
2048                 return ERROR_FAIL;
2049         }
2050
2051         return target->type->write_buffer(target, address, size, buffer);
2052 }
2053
2054 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
2055 {
2056         uint32_t size;
2057
2058         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2059          * will have something to do with the size we leave to it. */
2060         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2061                 if (address & size) {
2062                         int retval = target_write_memory(target, address, size, 1, buffer);
2063                         if (retval != ERROR_OK)
2064                                 return retval;
2065                         address += size;
2066                         count -= size;
2067                         buffer += size;
2068                 }
2069         }
2070
2071         /* Write the data with as large access size as possible. */
2072         for (; size > 0; size /= 2) {
2073                 uint32_t aligned = count - count % size;
2074                 if (aligned > 0) {
2075                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2076                         if (retval != ERROR_OK)
2077                                 return retval;
2078                         address += aligned;
2079                         count -= aligned;
2080                         buffer += aligned;
2081                 }
2082         }
2083
2084         return ERROR_OK;
2085 }
2086
2087 /* Single aligned words are guaranteed to use 16 or 32 bit access
2088  * mode respectively, otherwise data is handled as quickly as
2089  * possible
2090  */
2091 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
2092 {
2093         LOG_DEBUG("reading buffer of %" PRIi32 " byte at 0x%8.8" PRIx32,
2094                           size, address);
2095
2096         if (!target_was_examined(target)) {
2097                 LOG_ERROR("Target not examined yet");
2098                 return ERROR_FAIL;
2099         }
2100
2101         if (size == 0)
2102                 return ERROR_OK;
2103
2104         if ((address + size - 1) < address) {
2105                 /* GDB can request this when e.g. PC is 0xfffffffc */
2106                 LOG_ERROR("address + size wrapped (0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2107                                   address,
2108                                   size);
2109                 return ERROR_FAIL;
2110         }
2111
2112         return target->type->read_buffer(target, address, size, buffer);
2113 }
2114
2115 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2116 {
2117         uint32_t size;
2118
2119         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2120          * will have something to do with the size we leave to it. */
2121         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2122                 if (address & size) {
2123                         int retval = target_read_memory(target, address, size, 1, buffer);
2124                         if (retval != ERROR_OK)
2125                                 return retval;
2126                         address += size;
2127                         count -= size;
2128                         buffer += size;
2129                 }
2130         }
2131
2132         /* Read the data with as large access size as possible. */
2133         for (; size > 0; size /= 2) {
2134                 uint32_t aligned = count - count % size;
2135                 if (aligned > 0) {
2136                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2137                         if (retval != ERROR_OK)
2138                                 return retval;
2139                         address += aligned;
2140                         count -= aligned;
2141                         buffer += aligned;
2142                 }
2143         }
2144
2145         return ERROR_OK;
2146 }
2147
2148 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
2149 {
2150         uint8_t *buffer;
2151         int retval;
2152         uint32_t i;
2153         uint32_t checksum = 0;
2154         if (!target_was_examined(target)) {
2155                 LOG_ERROR("Target not examined yet");
2156                 return ERROR_FAIL;
2157         }
2158
2159         retval = target->type->checksum_memory(target, address, size, &checksum);
2160         if (retval != ERROR_OK) {
2161                 buffer = malloc(size);
2162                 if (buffer == NULL) {
2163                         LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2164                         return ERROR_COMMAND_SYNTAX_ERROR;
2165                 }
2166                 retval = target_read_buffer(target, address, size, buffer);
2167                 if (retval != ERROR_OK) {
2168                         free(buffer);
2169                         return retval;
2170                 }
2171
2172                 /* convert to target endianness */
2173                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2174                         uint32_t target_data;
2175                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2176                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2177                 }
2178
2179                 retval = image_calculate_checksum(buffer, size, &checksum);
2180                 free(buffer);
2181         }
2182
2183         *crc = checksum;
2184
2185         return retval;
2186 }
2187
2188 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank,
2189         uint8_t erased_value)
2190 {
2191         int retval;
2192         if (!target_was_examined(target)) {
2193                 LOG_ERROR("Target not examined yet");
2194                 return ERROR_FAIL;
2195         }
2196
2197         if (target->type->blank_check_memory == 0)
2198                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2199
2200         retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2201
2202         return retval;
2203 }
2204
2205 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2206 {
2207         uint8_t value_buf[8];
2208         if (!target_was_examined(target)) {
2209                 LOG_ERROR("Target not examined yet");
2210                 return ERROR_FAIL;
2211         }
2212
2213         int retval = target_read_memory(target, address, 8, 1, value_buf);
2214
2215         if (retval == ERROR_OK) {
2216                 *value = target_buffer_get_u64(target, value_buf);
2217                 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2218                                   address,
2219                                   *value);
2220         } else {
2221                 *value = 0x0;
2222                 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2223                                   address);
2224         }
2225
2226         return retval;
2227 }
2228
2229 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2230 {
2231         uint8_t value_buf[4];
2232         if (!target_was_examined(target)) {
2233                 LOG_ERROR("Target not examined yet");
2234                 return ERROR_FAIL;
2235         }
2236
2237         int retval = target_read_memory(target, address, 4, 1, value_buf);
2238
2239         if (retval == ERROR_OK) {
2240                 *value = target_buffer_get_u32(target, value_buf);
2241                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2242                                   address,
2243                                   *value);
2244         } else {
2245                 *value = 0x0;
2246                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2247                                   address);
2248         }
2249
2250         return retval;
2251 }
2252
2253 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2254 {
2255         uint8_t value_buf[2];
2256         if (!target_was_examined(target)) {
2257                 LOG_ERROR("Target not examined yet");
2258                 return ERROR_FAIL;
2259         }
2260
2261         int retval = target_read_memory(target, address, 2, 1, value_buf);
2262
2263         if (retval == ERROR_OK) {
2264                 *value = target_buffer_get_u16(target, value_buf);
2265                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4" PRIx16,
2266                                   address,
2267                                   *value);
2268         } else {
2269                 *value = 0x0;
2270                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2271                                   address);
2272         }
2273
2274         return retval;
2275 }
2276
2277 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2278 {
2279         if (!target_was_examined(target)) {
2280                 LOG_ERROR("Target not examined yet");
2281                 return ERROR_FAIL;
2282         }
2283
2284         int retval = target_read_memory(target, address, 1, 1, value);
2285
2286         if (retval == ERROR_OK) {
2287                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2" PRIx8,
2288                                   address,
2289                                   *value);
2290         } else {
2291                 *value = 0x0;
2292                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2293                                   address);
2294         }
2295
2296         return retval;
2297 }
2298
2299 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2300 {
2301         int retval;
2302         uint8_t value_buf[8];
2303         if (!target_was_examined(target)) {
2304                 LOG_ERROR("Target not examined yet");
2305                 return ERROR_FAIL;
2306         }
2307
2308         LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2309                           address,
2310                           value);
2311
2312         target_buffer_set_u64(target, value_buf, value);
2313         retval = target_write_memory(target, address, 8, 1, value_buf);
2314         if (retval != ERROR_OK)
2315                 LOG_DEBUG("failed: %i", retval);
2316
2317         return retval;
2318 }
2319
2320 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2321 {
2322         int retval;
2323         uint8_t value_buf[4];
2324         if (!target_was_examined(target)) {
2325                 LOG_ERROR("Target not examined yet");
2326                 return ERROR_FAIL;
2327         }
2328
2329         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2330                           address,
2331                           value);
2332
2333         target_buffer_set_u32(target, value_buf, value);
2334         retval = target_write_memory(target, address, 4, 1, value_buf);
2335         if (retval != ERROR_OK)
2336                 LOG_DEBUG("failed: %i", retval);
2337
2338         return retval;
2339 }
2340
2341 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2342 {
2343         int retval;
2344         uint8_t value_buf[2];
2345         if (!target_was_examined(target)) {
2346                 LOG_ERROR("Target not examined yet");
2347                 return ERROR_FAIL;
2348         }
2349
2350         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx16,
2351                           address,
2352                           value);
2353
2354         target_buffer_set_u16(target, value_buf, value);
2355         retval = target_write_memory(target, address, 2, 1, value_buf);
2356         if (retval != ERROR_OK)
2357                 LOG_DEBUG("failed: %i", retval);
2358
2359         return retval;
2360 }
2361
2362 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2363 {
2364         int retval;
2365         if (!target_was_examined(target)) {
2366                 LOG_ERROR("Target not examined yet");
2367                 return ERROR_FAIL;
2368         }
2369
2370         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2" PRIx8,
2371                           address, value);
2372
2373         retval = target_write_memory(target, address, 1, 1, &value);
2374         if (retval != ERROR_OK)
2375                 LOG_DEBUG("failed: %i", retval);
2376
2377         return retval;
2378 }
2379
2380 static int find_target(struct command_context *cmd_ctx, const char *name)
2381 {
2382         struct target *target = get_target(name);
2383         if (target == NULL) {
2384                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2385                 return ERROR_FAIL;
2386         }
2387         if (!target->tap->enabled) {
2388                 LOG_USER("Target: TAP %s is disabled, "
2389                          "can't be the current target\n",
2390                          target->tap->dotted_name);
2391                 return ERROR_FAIL;
2392         }
2393
2394         cmd_ctx->current_target = target->target_number;
2395         return ERROR_OK;
2396 }
2397
2398
2399 COMMAND_HANDLER(handle_targets_command)
2400 {
2401         int retval = ERROR_OK;
2402         if (CMD_ARGC == 1) {
2403                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2404                 if (retval == ERROR_OK) {
2405                         /* we're done! */
2406                         return retval;
2407                 }
2408         }
2409
2410         struct target *target = all_targets;
2411         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2412         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2413         while (target) {
2414                 const char *state;
2415                 char marker = ' ';
2416
2417                 if (target->tap->enabled)
2418                         state = target_state_name(target);
2419                 else
2420                         state = "tap-disabled";
2421
2422                 if (CMD_CTX->current_target == target->target_number)
2423                         marker = '*';
2424
2425                 /* keep columns lined up to match the headers above */
2426                 command_print(CMD_CTX,
2427                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2428                                 target->target_number,
2429                                 marker,
2430                                 target_name(target),
2431                                 target_type_name(target),
2432                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2433                                         target->endianness)->name,
2434                                 target->tap->dotted_name,
2435                                 state);
2436                 target = target->next;
2437         }
2438
2439         return retval;
2440 }
2441
2442 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2443
2444 static int powerDropout;
2445 static int srstAsserted;
2446
2447 static int runPowerRestore;
2448 static int runPowerDropout;
2449 static int runSrstAsserted;
2450 static int runSrstDeasserted;
2451
2452 static int sense_handler(void)
2453 {
2454         static int prevSrstAsserted;
2455         static int prevPowerdropout;
2456
2457         int retval = jtag_power_dropout(&powerDropout);
2458         if (retval != ERROR_OK)
2459                 return retval;
2460
2461         int powerRestored;
2462         powerRestored = prevPowerdropout && !powerDropout;
2463         if (powerRestored)
2464                 runPowerRestore = 1;
2465
2466         int64_t current = timeval_ms();
2467         static int64_t lastPower;
2468         bool waitMore = lastPower + 2000 > current;
2469         if (powerDropout && !waitMore) {
2470                 runPowerDropout = 1;
2471                 lastPower = current;
2472         }
2473
2474         retval = jtag_srst_asserted(&srstAsserted);
2475         if (retval != ERROR_OK)
2476                 return retval;
2477
2478         int srstDeasserted;
2479         srstDeasserted = prevSrstAsserted && !srstAsserted;
2480
2481         static int64_t lastSrst;
2482         waitMore = lastSrst + 2000 > current;
2483         if (srstDeasserted && !waitMore) {
2484                 runSrstDeasserted = 1;
2485                 lastSrst = current;
2486         }
2487
2488         if (!prevSrstAsserted && srstAsserted)
2489                 runSrstAsserted = 1;
2490
2491         prevSrstAsserted = srstAsserted;
2492         prevPowerdropout = powerDropout;
2493
2494         if (srstDeasserted || powerRestored) {
2495                 /* Other than logging the event we can't do anything here.
2496                  * Issuing a reset is a particularly bad idea as we might
2497                  * be inside a reset already.
2498                  */
2499         }
2500
2501         return ERROR_OK;
2502 }
2503
2504 /* process target state changes */
2505 static int handle_target(void *priv)
2506 {
2507         Jim_Interp *interp = (Jim_Interp *)priv;
2508         int retval = ERROR_OK;
2509
2510         if (!is_jtag_poll_safe()) {
2511                 /* polling is disabled currently */
2512                 return ERROR_OK;
2513         }
2514
2515         /* we do not want to recurse here... */
2516         static int recursive;
2517         if (!recursive) {
2518                 recursive = 1;
2519                 sense_handler();
2520                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2521                  * We need to avoid an infinite loop/recursion here and we do that by
2522                  * clearing the flags after running these events.
2523                  */
2524                 int did_something = 0;
2525                 if (runSrstAsserted) {
2526                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2527                         Jim_Eval(interp, "srst_asserted");
2528                         did_something = 1;
2529                 }
2530                 if (runSrstDeasserted) {
2531                         Jim_Eval(interp, "srst_deasserted");
2532                         did_something = 1;
2533                 }
2534                 if (runPowerDropout) {
2535                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2536                         Jim_Eval(interp, "power_dropout");
2537                         did_something = 1;
2538                 }
2539                 if (runPowerRestore) {
2540                         Jim_Eval(interp, "power_restore");
2541                         did_something = 1;
2542                 }
2543
2544                 if (did_something) {
2545                         /* clear detect flags */
2546                         sense_handler();
2547                 }
2548
2549                 /* clear action flags */
2550
2551                 runSrstAsserted = 0;
2552                 runSrstDeasserted = 0;
2553                 runPowerRestore = 0;
2554                 runPowerDropout = 0;
2555
2556                 recursive = 0;
2557         }
2558
2559         /* Poll targets for state changes unless that's globally disabled.
2560          * Skip targets that are currently disabled.
2561          */
2562         for (struct target *target = all_targets;
2563                         is_jtag_poll_safe() && target;
2564                         target = target->next) {
2565
2566                 if (!target_was_examined(target))
2567                         continue;
2568
2569                 if (!target->tap->enabled)
2570                         continue;
2571
2572                 if (target->backoff.times > target->backoff.count) {
2573                         /* do not poll this time as we failed previously */
2574                         target->backoff.count++;
2575                         continue;
2576                 }
2577                 target->backoff.count = 0;
2578
2579                 /* only poll target if we've got power and srst isn't asserted */
2580                 if (!powerDropout && !srstAsserted) {
2581                         /* polling may fail silently until the target has been examined */
2582                         retval = target_poll(target);
2583                         if (retval != ERROR_OK) {
2584                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2585                                 if (target->backoff.times * polling_interval < 5000) {
2586                                         target->backoff.times *= 2;
2587                                         target->backoff.times++;
2588                                 }
2589
2590                                 /* Tell GDB to halt the debugger. This allows the user to
2591                                  * run monitor commands to handle the situation.
2592                                  */
2593                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2594                         }
2595                         if (target->backoff.times > 0) {
2596                                 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2597                                 target_reset_examined(target);
2598                                 retval = target_examine_one(target);
2599                                 /* Target examination could have failed due to unstable connection,
2600                                  * but we set the examined flag anyway to repoll it later */
2601                                 if (retval != ERROR_OK) {
2602                                         target->examined = true;
2603                                         LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2604                                                  target->backoff.times * polling_interval);
2605                                         return retval;
2606                                 }
2607                         }
2608
2609                         /* Since we succeeded, we reset backoff count */
2610                         target->backoff.times = 0;
2611                 }
2612         }
2613
2614         return retval;
2615 }
2616
2617 COMMAND_HANDLER(handle_reg_command)
2618 {
2619         struct target *target;
2620         struct reg *reg = NULL;
2621         unsigned count = 0;
2622         char *value;
2623
2624         LOG_DEBUG("-");
2625
2626         target = get_current_target(CMD_CTX);
2627
2628         /* list all available registers for the current target */
2629         if (CMD_ARGC == 0) {
2630                 struct reg_cache *cache = target->reg_cache;
2631
2632                 count = 0;
2633                 while (cache) {
2634                         unsigned i;
2635
2636                         command_print(CMD_CTX, "===== %s", cache->name);
2637
2638                         for (i = 0, reg = cache->reg_list;
2639                                         i < cache->num_regs;
2640                                         i++, reg++, count++) {
2641                                 /* only print cached values if they are valid */
2642                                 if (reg->valid) {
2643                                         value = buf_to_str(reg->value,
2644                                                         reg->size, 16);
2645                                         command_print(CMD_CTX,
2646                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2647                                                         count, reg->name,
2648                                                         reg->size, value,
2649                                                         reg->dirty
2650                                                                 ? " (dirty)"
2651                                                                 : "");
2652                                         free(value);
2653                                 } else {
2654                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2655                                                           count, reg->name,
2656                                                           reg->size) ;
2657                                 }
2658                         }
2659                         cache = cache->next;
2660                 }
2661
2662                 return ERROR_OK;
2663         }
2664
2665         /* access a single register by its ordinal number */
2666         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2667                 unsigned num;
2668                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2669
2670                 struct reg_cache *cache = target->reg_cache;
2671                 count = 0;
2672                 while (cache) {
2673                         unsigned i;
2674                         for (i = 0; i < cache->num_regs; i++) {
2675                                 if (count++ == num) {
2676                                         reg = &cache->reg_list[i];
2677                                         break;
2678                                 }
2679                         }
2680                         if (reg)
2681                                 break;
2682                         cache = cache->next;
2683                 }
2684
2685                 if (!reg) {
2686                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2687                                         "has only %i registers (0 - %i)", num, count, count - 1);
2688                         return ERROR_OK;
2689                 }
2690         } else {
2691                 /* access a single register by its name */
2692                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2693
2694                 if (!reg) {
2695                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2696                         return ERROR_OK;
2697                 }
2698         }
2699
2700         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2701
2702         /* display a register */
2703         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2704                         && (CMD_ARGV[1][0] <= '9')))) {
2705                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2706                         reg->valid = 0;
2707
2708                 if (reg->valid == 0)
2709                         reg->type->get(reg);
2710                 value = buf_to_str(reg->value, reg->size, 16);
2711                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2712                 free(value);
2713                 return ERROR_OK;
2714         }
2715
2716         /* set register value */
2717         if (CMD_ARGC == 2) {
2718                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2719                 if (buf == NULL)
2720                         return ERROR_FAIL;
2721                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2722
2723                 reg->type->set(reg, buf);
2724
2725                 value = buf_to_str(reg->value, reg->size, 16);
2726                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2727                 free(value);
2728
2729                 free(buf);
2730
2731                 return ERROR_OK;
2732         }
2733
2734         return ERROR_COMMAND_SYNTAX_ERROR;
2735 }
2736
2737 COMMAND_HANDLER(handle_poll_command)
2738 {
2739         int retval = ERROR_OK;
2740         struct target *target = get_current_target(CMD_CTX);
2741
2742         if (CMD_ARGC == 0) {
2743                 command_print(CMD_CTX, "background polling: %s",
2744                                 jtag_poll_get_enabled() ? "on" : "off");
2745                 command_print(CMD_CTX, "TAP: %s (%s)",
2746                                 target->tap->dotted_name,
2747                                 target->tap->enabled ? "enabled" : "disabled");
2748                 if (!target->tap->enabled)
2749                         return ERROR_OK;
2750                 retval = target_poll(target);
2751                 if (retval != ERROR_OK)
2752                         return retval;
2753                 retval = target_arch_state(target);
2754                 if (retval != ERROR_OK)
2755                         return retval;
2756         } else if (CMD_ARGC == 1) {
2757                 bool enable;
2758                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2759                 jtag_poll_set_enabled(enable);
2760         } else
2761                 return ERROR_COMMAND_SYNTAX_ERROR;
2762
2763         return retval;
2764 }
2765
2766 COMMAND_HANDLER(handle_wait_halt_command)
2767 {
2768         if (CMD_ARGC > 1)
2769                 return ERROR_COMMAND_SYNTAX_ERROR;
2770
2771         unsigned ms = DEFAULT_HALT_TIMEOUT;
2772         if (1 == CMD_ARGC) {
2773                 int retval = parse_uint(CMD_ARGV[0], &ms);
2774                 if (ERROR_OK != retval)
2775                         return ERROR_COMMAND_SYNTAX_ERROR;
2776         }
2777
2778         struct target *target = get_current_target(CMD_CTX);
2779         return target_wait_state(target, TARGET_HALTED, ms);
2780 }
2781
2782 /* wait for target state to change. The trick here is to have a low
2783  * latency for short waits and not to suck up all the CPU time
2784  * on longer waits.
2785  *
2786  * After 500ms, keep_alive() is invoked
2787  */
2788 int target_wait_state(struct target *target, enum target_state state, int ms)
2789 {
2790         int retval;
2791         int64_t then = 0, cur;
2792         bool once = true;
2793
2794         for (;;) {
2795                 retval = target_poll(target);
2796                 if (retval != ERROR_OK)
2797                         return retval;
2798                 if (target->state == state)
2799                         break;
2800                 cur = timeval_ms();
2801                 if (once) {
2802                         once = false;
2803                         then = timeval_ms();
2804                         LOG_DEBUG("waiting for target %s...",
2805                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2806                 }
2807
2808                 if (cur-then > 500)
2809                         keep_alive();
2810
2811                 if ((cur-then) > ms) {
2812                         LOG_ERROR("timed out while waiting for target %s",
2813                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2814                         return ERROR_FAIL;
2815                 }
2816         }
2817
2818         return ERROR_OK;
2819 }
2820
2821 COMMAND_HANDLER(handle_halt_command)
2822 {
2823         LOG_DEBUG("-");
2824
2825         struct target *target = get_current_target(CMD_CTX);
2826         int retval = target_halt(target);
2827         if (ERROR_OK != retval)
2828                 return retval;
2829
2830         if (CMD_ARGC == 1) {
2831                 unsigned wait_local;
2832                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2833                 if (ERROR_OK != retval)
2834                         return ERROR_COMMAND_SYNTAX_ERROR;
2835                 if (!wait_local)
2836                         return ERROR_OK;
2837         }
2838
2839         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2840 }
2841
2842 COMMAND_HANDLER(handle_soft_reset_halt_command)
2843 {
2844         struct target *target = get_current_target(CMD_CTX);
2845
2846         LOG_USER("requesting target halt and executing a soft reset");
2847
2848         target_soft_reset_halt(target);
2849
2850         return ERROR_OK;
2851 }
2852
2853 COMMAND_HANDLER(handle_reset_command)
2854 {
2855         if (CMD_ARGC > 1)
2856                 return ERROR_COMMAND_SYNTAX_ERROR;
2857
2858         enum target_reset_mode reset_mode = RESET_RUN;
2859         if (CMD_ARGC == 1) {
2860                 const Jim_Nvp *n;
2861                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2862                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2863                         return ERROR_COMMAND_SYNTAX_ERROR;
2864                 reset_mode = n->value;
2865         }
2866
2867         /* reset *all* targets */
2868         return target_process_reset(CMD_CTX, reset_mode);
2869 }
2870
2871
2872 COMMAND_HANDLER(handle_resume_command)
2873 {
2874         int current = 1;
2875         if (CMD_ARGC > 1)
2876                 return ERROR_COMMAND_SYNTAX_ERROR;
2877
2878         struct target *target = get_current_target(CMD_CTX);
2879
2880         /* with no CMD_ARGV, resume from current pc, addr = 0,
2881          * with one arguments, addr = CMD_ARGV[0],
2882          * handle breakpoints, not debugging */
2883         uint32_t addr = 0;
2884         if (CMD_ARGC == 1) {
2885                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2886                 current = 0;
2887         }
2888
2889         return target_resume(target, current, addr, 1, 0);
2890 }
2891
2892 COMMAND_HANDLER(handle_step_command)
2893 {
2894         if (CMD_ARGC > 1)
2895                 return ERROR_COMMAND_SYNTAX_ERROR;
2896
2897         LOG_DEBUG("-");
2898
2899         /* with no CMD_ARGV, step from current pc, addr = 0,
2900          * with one argument addr = CMD_ARGV[0],
2901          * handle breakpoints, debugging */
2902         uint32_t addr = 0;
2903         int current_pc = 1;
2904         if (CMD_ARGC == 1) {
2905                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2906                 current_pc = 0;
2907         }
2908
2909         struct target *target = get_current_target(CMD_CTX);
2910
2911         return target->type->step(target, current_pc, addr, 1);
2912 }
2913
2914 static void handle_md_output(struct command_context *cmd_ctx,
2915                 struct target *target, uint32_t address, unsigned size,
2916                 unsigned count, const uint8_t *buffer)
2917 {
2918         const unsigned line_bytecnt = 32;
2919         unsigned line_modulo = line_bytecnt / size;
2920
2921         char output[line_bytecnt * 4 + 1];
2922         unsigned output_len = 0;
2923
2924         const char *value_fmt;
2925         switch (size) {
2926         case 4:
2927                 value_fmt = "%8.8x ";
2928                 break;
2929         case 2:
2930                 value_fmt = "%4.4x ";
2931                 break;
2932         case 1:
2933                 value_fmt = "%2.2x ";
2934                 break;
2935         default:
2936                 /* "can't happen", caller checked */
2937                 LOG_ERROR("invalid memory read size: %u", size);
2938                 return;
2939         }
2940
2941         for (unsigned i = 0; i < count; i++) {
2942                 if (i % line_modulo == 0) {
2943                         output_len += snprintf(output + output_len,
2944                                         sizeof(output) - output_len,
2945                                         "0x%8.8x: ",
2946                                         (unsigned)(address + (i*size)));
2947                 }
2948
2949                 uint32_t value = 0;
2950                 const uint8_t *value_ptr = buffer + i * size;
2951                 switch (size) {
2952                 case 4:
2953                         value = target_buffer_get_u32(target, value_ptr);
2954                         break;
2955                 case 2:
2956                         value = target_buffer_get_u16(target, value_ptr);
2957                         break;
2958                 case 1:
2959                         value = *value_ptr;
2960                 }
2961                 output_len += snprintf(output + output_len,
2962                                 sizeof(output) - output_len,
2963                                 value_fmt, value);
2964
2965                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2966                         command_print(cmd_ctx, "%s", output);
2967                         output_len = 0;
2968                 }
2969         }
2970 }
2971
2972 COMMAND_HANDLER(handle_md_command)
2973 {
2974         if (CMD_ARGC < 1)
2975                 return ERROR_COMMAND_SYNTAX_ERROR;
2976
2977         unsigned size = 0;
2978         switch (CMD_NAME[2]) {
2979         case 'w':
2980                 size = 4;
2981                 break;
2982         case 'h':
2983                 size = 2;
2984                 break;
2985         case 'b':
2986                 size = 1;
2987                 break;
2988         default:
2989                 return ERROR_COMMAND_SYNTAX_ERROR;
2990         }
2991
2992         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2993         int (*fn)(struct target *target,
2994                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2995         if (physical) {
2996                 CMD_ARGC--;
2997                 CMD_ARGV++;
2998                 fn = target_read_phys_memory;
2999         } else
3000                 fn = target_read_memory;
3001         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3002                 return ERROR_COMMAND_SYNTAX_ERROR;
3003
3004         uint32_t address;
3005         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
3006
3007         unsigned count = 1;
3008         if (CMD_ARGC == 2)
3009                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3010
3011         uint8_t *buffer = calloc(count, size);
3012
3013         struct target *target = get_current_target(CMD_CTX);
3014         int retval = fn(target, address, size, count, buffer);
3015         if (ERROR_OK == retval)
3016                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3017
3018         free(buffer);
3019
3020         return retval;
3021 }
3022
3023 typedef int (*target_write_fn)(struct target *target,
3024                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3025
3026 static int target_fill_mem(struct target *target,
3027                 uint32_t address,
3028                 target_write_fn fn,
3029                 unsigned data_size,
3030                 /* value */
3031                 uint32_t b,
3032                 /* count */
3033                 unsigned c)
3034 {
3035         /* We have to write in reasonably large chunks to be able
3036          * to fill large memory areas with any sane speed */
3037         const unsigned chunk_size = 16384;
3038         uint8_t *target_buf = malloc(chunk_size * data_size);
3039         if (target_buf == NULL) {
3040                 LOG_ERROR("Out of memory");
3041                 return ERROR_FAIL;
3042         }
3043
3044         for (unsigned i = 0; i < chunk_size; i++) {
3045                 switch (data_size) {
3046                 case 4:
3047                         target_buffer_set_u32(target, target_buf + i * data_size, b);
3048                         break;
3049                 case 2:
3050                         target_buffer_set_u16(target, target_buf + i * data_size, b);
3051                         break;
3052                 case 1:
3053                         target_buffer_set_u8(target, target_buf + i * data_size, b);
3054                         break;
3055                 default:
3056                         exit(-1);
3057                 }
3058         }
3059
3060         int retval = ERROR_OK;
3061
3062         for (unsigned x = 0; x < c; x += chunk_size) {
3063                 unsigned current;
3064                 current = c - x;
3065                 if (current > chunk_size)
3066                         current = chunk_size;
3067                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3068                 if (retval != ERROR_OK)
3069                         break;
3070                 /* avoid GDB timeouts */
3071                 keep_alive();
3072         }
3073         free(target_buf);
3074
3075         return retval;
3076 }
3077
3078
3079 COMMAND_HANDLER(handle_mw_command)
3080 {
3081         if (CMD_ARGC < 2)
3082                 return ERROR_COMMAND_SYNTAX_ERROR;
3083         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3084         target_write_fn fn;
3085         if (physical) {
3086                 CMD_ARGC--;
3087                 CMD_ARGV++;
3088                 fn = target_write_phys_memory;
3089         } else
3090                 fn = target_write_memory;
3091         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3092                 return ERROR_COMMAND_SYNTAX_ERROR;
3093
3094         uint32_t address;
3095         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
3096
3097         uint32_t value;
3098         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
3099
3100         unsigned count = 1;
3101         if (CMD_ARGC == 3)
3102                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3103
3104         struct target *target = get_current_target(CMD_CTX);
3105         unsigned wordsize;
3106         switch (CMD_NAME[2]) {
3107                 case 'w':
3108                         wordsize = 4;
3109                         break;
3110                 case 'h':
3111                         wordsize = 2;
3112                         break;
3113                 case 'b':
3114                         wordsize = 1;
3115                         break;
3116                 default:
3117                         return ERROR_COMMAND_SYNTAX_ERROR;
3118         }
3119
3120         return target_fill_mem(target, address, fn, wordsize, value, count);
3121 }
3122
3123 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3124                 uint32_t *min_address, uint32_t *max_address)
3125 {
3126         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3127                 return ERROR_COMMAND_SYNTAX_ERROR;
3128
3129         /* a base address isn't always necessary,
3130          * default to 0x0 (i.e. don't relocate) */
3131         if (CMD_ARGC >= 2) {
3132                 uint32_t addr;
3133                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3134                 image->base_address = addr;
3135                 image->base_address_set = 1;
3136         } else
3137                 image->base_address_set = 0;
3138
3139         image->start_address_set = 0;
3140
3141         if (CMD_ARGC >= 4)
3142                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
3143         if (CMD_ARGC == 5) {
3144                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
3145                 /* use size (given) to find max (required) */
3146                 *max_address += *min_address;
3147         }
3148
3149         if (*min_address > *max_address)
3150                 return ERROR_COMMAND_SYNTAX_ERROR;
3151
3152         return ERROR_OK;
3153 }
3154
3155 COMMAND_HANDLER(handle_load_image_command)
3156 {
3157         uint8_t *buffer;
3158         size_t buf_cnt;
3159         uint32_t image_size;
3160         uint32_t min_address = 0;
3161         uint32_t max_address = 0xffffffff;
3162         int i;
3163         struct image image;
3164
3165         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3166                         &image, &min_address, &max_address);
3167         if (ERROR_OK != retval)
3168                 return retval;
3169
3170         struct target *target = get_current_target(CMD_CTX);
3171
3172         struct duration bench;
3173         duration_start(&bench);
3174
3175         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3176                 return ERROR_FAIL;
3177
3178         image_size = 0x0;
3179         retval = ERROR_OK;
3180         for (i = 0; i < image.num_sections; i++) {
3181                 buffer = malloc(image.sections[i].size);
3182                 if (buffer == NULL) {
3183                         command_print(CMD_CTX,
3184                                                   "error allocating buffer for section (%d bytes)",
3185                                                   (int)(image.sections[i].size));
3186                         retval = ERROR_FAIL;
3187                         break;
3188                 }
3189
3190                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3191                 if (retval != ERROR_OK) {
3192                         free(buffer);
3193                         break;
3194                 }
3195
3196                 uint32_t offset = 0;
3197                 uint32_t length = buf_cnt;
3198
3199                 /* DANGER!!! beware of unsigned comparision here!!! */
3200
3201                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3202                                 (image.sections[i].base_address < max_address)) {
3203
3204                         if (image.sections[i].base_address < min_address) {
3205                                 /* clip addresses below */
3206                                 offset += min_address-image.sections[i].base_address;
3207                                 length -= offset;
3208                         }
3209
3210                         if (image.sections[i].base_address + buf_cnt > max_address)
3211                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3212
3213                         retval = target_write_buffer(target,
3214                                         image.sections[i].base_address + offset, length, buffer + offset);
3215                         if (retval != ERROR_OK) {
3216                                 free(buffer);
3217                                 break;
3218                         }
3219                         image_size += length;
3220                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3221                                         (unsigned int)length,
3222                                         image.sections[i].base_address + offset);
3223                 }
3224
3225                 free(buffer);
3226         }
3227
3228         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3229                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3230                                 "in %fs (%0.3f KiB/s)", image_size,
3231                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3232         }
3233
3234         image_close(&image);
3235
3236         return retval;
3237
3238 }
3239
3240 COMMAND_HANDLER(handle_dump_image_command)
3241 {
3242         struct fileio *fileio;
3243         uint8_t *buffer;
3244         int retval, retvaltemp;
3245         uint32_t address, size;
3246         struct duration bench;
3247         struct target *target = get_current_target(CMD_CTX);
3248
3249         if (CMD_ARGC != 3)
3250                 return ERROR_COMMAND_SYNTAX_ERROR;
3251
3252         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3253         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3254
3255         uint32_t buf_size = (size > 4096) ? 4096 : size;
3256         buffer = malloc(buf_size);
3257         if (!buffer)
3258                 return ERROR_FAIL;
3259
3260         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3261         if (retval != ERROR_OK) {
3262                 free(buffer);
3263                 return retval;
3264         }
3265
3266         duration_start(&bench);
3267
3268         while (size > 0) {
3269                 size_t size_written;
3270                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3271                 retval = target_read_buffer(target, address, this_run_size, buffer);
3272                 if (retval != ERROR_OK)
3273                         break;
3274
3275                 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3276                 if (retval != ERROR_OK)
3277                         break;
3278
3279                 size -= this_run_size;
3280                 address += this_run_size;
3281         }
3282
3283         free(buffer);
3284
3285         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3286                 size_t filesize;
3287                 retval = fileio_size(fileio, &filesize);
3288                 if (retval != ERROR_OK)
3289                         return retval;
3290                 command_print(CMD_CTX,
3291                                 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3292                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3293         }
3294
3295         retvaltemp = fileio_close(fileio);
3296         if (retvaltemp != ERROR_OK)
3297                 return retvaltemp;
3298
3299         return retval;
3300 }
3301
3302 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3303 {
3304         uint8_t *buffer;
3305         size_t buf_cnt;
3306         uint32_t image_size;
3307         int i;
3308         int retval;
3309         uint32_t checksum = 0;
3310         uint32_t mem_checksum = 0;
3311
3312         struct image image;
3313
3314         struct target *target = get_current_target(CMD_CTX);
3315
3316         if (CMD_ARGC < 1)
3317                 return ERROR_COMMAND_SYNTAX_ERROR;
3318
3319         if (!target) {
3320                 LOG_ERROR("no target selected");
3321                 return ERROR_FAIL;
3322         }
3323
3324         struct duration bench;
3325         duration_start(&bench);
3326
3327         if (CMD_ARGC >= 2) {
3328                 uint32_t addr;
3329                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3330                 image.base_address = addr;
3331                 image.base_address_set = 1;
3332         } else {
3333                 image.base_address_set = 0;
3334                 image.base_address = 0x0;
3335         }
3336
3337         image.start_address_set = 0;
3338
3339         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3340         if (retval != ERROR_OK)
3341                 return retval;
3342
3343         image_size = 0x0;
3344         int diffs = 0;
3345         retval = ERROR_OK;
3346         for (i = 0; i < image.num_sections; i++) {
3347                 buffer = malloc(image.sections[i].size);
3348                 if (buffer == NULL) {
3349                         command_print(CMD_CTX,
3350                                         "error allocating buffer for section (%d bytes)",
3351                                         (int)(image.sections[i].size));
3352                         break;
3353                 }
3354                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3355                 if (retval != ERROR_OK) {
3356                         free(buffer);
3357                         break;
3358                 }
3359
3360                 if (verify) {
3361                         /* calculate checksum of image */
3362                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3363                         if (retval != ERROR_OK) {
3364                                 free(buffer);
3365                                 break;
3366                         }
3367
3368                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3369                         if (retval != ERROR_OK) {
3370                                 free(buffer);
3371                                 break;
3372                         }
3373
3374                         if (checksum != mem_checksum) {
3375                                 /* failed crc checksum, fall back to a binary compare */
3376                                 uint8_t *data;
3377
3378                                 if (diffs == 0)
3379                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3380
3381                                 data = malloc(buf_cnt);
3382
3383                                 /* Can we use 32bit word accesses? */
3384                                 int size = 1;
3385                                 int count = buf_cnt;
3386                                 if ((count % 4) == 0) {
3387                                         size *= 4;
3388                                         count /= 4;
3389                                 }
3390                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3391                                 if (retval == ERROR_OK) {
3392                                         uint32_t t;
3393                                         for (t = 0; t < buf_cnt; t++) {
3394                                                 if (data[t] != buffer[t]) {
3395                                                         command_print(CMD_CTX,
3396                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3397                                                                                   diffs,
3398                                                                                   (unsigned)(t + image.sections[i].base_address),
3399                                                                                   data[t],
3400                                                                                   buffer[t]);
3401                                                         if (diffs++ >= 127) {
3402                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3403                                                                 free(data);
3404                                                                 free(buffer);
3405                                                                 goto done;
3406                                                         }
3407                                                 }
3408                                                 keep_alive();
3409                                         }
3410                                 }
3411                                 free(data);
3412                         }
3413                 } else {
3414                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3415                                                   image.sections[i].base_address,
3416                                                   buf_cnt);
3417                 }
3418
3419                 free(buffer);
3420                 image_size += buf_cnt;
3421         }
3422         if (diffs > 0)
3423                 command_print(CMD_CTX, "No more differences found.");
3424 done:
3425         if (diffs > 0)
3426                 retval = ERROR_FAIL;
3427         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3428                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3429                                 "in %fs (%0.3f KiB/s)", image_size,
3430                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3431         }
3432
3433         image_close(&image);
3434
3435         return retval;
3436 }
3437
3438 COMMAND_HANDLER(handle_verify_image_command)
3439 {
3440         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3441 }
3442
3443 COMMAND_HANDLER(handle_test_image_command)
3444 {
3445         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3446 }
3447
3448 static int handle_bp_command_list(struct command_context *cmd_ctx)
3449 {
3450         struct target *target = get_current_target(cmd_ctx);
3451         struct breakpoint *breakpoint = target->breakpoints;
3452         while (breakpoint) {
3453                 if (breakpoint->type == BKPT_SOFT) {
3454                         char *buf = buf_to_str(breakpoint->orig_instr,
3455                                         breakpoint->length, 16);
3456                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3457                                         breakpoint->address,
3458                                         breakpoint->length,
3459                                         breakpoint->set, buf);
3460                         free(buf);
3461                 } else {
3462                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3463                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3464                                                         breakpoint->asid,
3465                                                         breakpoint->length, breakpoint->set);
3466                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3467                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3468                                                         breakpoint->address,
3469                                                         breakpoint->length, breakpoint->set);
3470                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3471                                                         breakpoint->asid);
3472                         } else
3473                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3474                                                         breakpoint->address,
3475                                                         breakpoint->length, breakpoint->set);
3476                 }
3477
3478                 breakpoint = breakpoint->next;
3479         }
3480         return ERROR_OK;
3481 }
3482
3483 static int handle_bp_command_set(struct command_context *cmd_ctx,
3484                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3485 {
3486         struct target *target = get_current_target(cmd_ctx);
3487         int retval;
3488
3489         if (asid == 0) {
3490                 retval = breakpoint_add(target, addr, length, hw);
3491                 if (ERROR_OK == retval)
3492                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3493                 else {
3494                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3495                         return retval;
3496                 }
3497         } else if (addr == 0) {
3498                 if (target->type->add_context_breakpoint == NULL) {
3499                         LOG_WARNING("Context breakpoint not available");
3500                         return ERROR_OK;
3501                 }
3502                 retval = context_breakpoint_add(target, asid, length, hw);
3503                 if (ERROR_OK == retval)
3504                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3505                 else {
3506                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3507                         return retval;
3508                 }
3509         } else {
3510                 if (target->type->add_hybrid_breakpoint == NULL) {
3511                         LOG_WARNING("Hybrid breakpoint not available");
3512                         return ERROR_OK;
3513                 }
3514                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3515                 if (ERROR_OK == retval)
3516                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3517                 else {
3518                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3519                         return retval;
3520                 }
3521         }
3522         return ERROR_OK;
3523 }
3524
3525 COMMAND_HANDLER(handle_bp_command)
3526 {
3527         uint32_t addr;
3528         uint32_t asid;
3529         uint32_t length;
3530         int hw = BKPT_SOFT;
3531
3532         switch (CMD_ARGC) {
3533                 case 0:
3534                         return handle_bp_command_list(CMD_CTX);
3535
3536                 case 2:
3537                         asid = 0;
3538                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3539                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3540                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3541
3542                 case 3:
3543                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3544                                 hw = BKPT_HARD;
3545                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3546
3547                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3548
3549                                 asid = 0;
3550                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3551                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3552                                 hw = BKPT_HARD;
3553                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3554                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3555                                 addr = 0;
3556                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3557                         }
3558
3559                 case 4:
3560                         hw = BKPT_HARD;
3561                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3562                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3563                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3564                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3565
3566                 default:
3567                         return ERROR_COMMAND_SYNTAX_ERROR;
3568         }
3569 }
3570
3571 COMMAND_HANDLER(handle_rbp_command)
3572 {
3573         if (CMD_ARGC != 1)
3574                 return ERROR_COMMAND_SYNTAX_ERROR;
3575
3576         uint32_t addr;
3577         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3578
3579         struct target *target = get_current_target(CMD_CTX);
3580         breakpoint_remove(target, addr);
3581
3582         return ERROR_OK;
3583 }
3584
3585 COMMAND_HANDLER(handle_wp_command)
3586 {
3587         struct target *target = get_current_target(CMD_CTX);
3588
3589         if (CMD_ARGC == 0) {
3590                 struct watchpoint *watchpoint = target->watchpoints;
3591
3592                 while (watchpoint) {
3593                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3594                                         ", len: 0x%8.8" PRIx32
3595                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3596                                         ", mask: 0x%8.8" PRIx32,
3597                                         watchpoint->address,
3598                                         watchpoint->length,
3599                                         (int)watchpoint->rw,
3600                                         watchpoint->value,
3601                                         watchpoint->mask);
3602                         watchpoint = watchpoint->next;
3603                 }
3604                 return ERROR_OK;
3605         }
3606
3607         enum watchpoint_rw type = WPT_ACCESS;
3608         uint32_t addr = 0;
3609         uint32_t length = 0;
3610         uint32_t data_value = 0x0;
3611         uint32_t data_mask = 0xffffffff;
3612
3613         switch (CMD_ARGC) {
3614         case 5:
3615                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3616                 /* fall through */
3617         case 4:
3618                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3619                 /* fall through */
3620         case 3:
3621                 switch (CMD_ARGV[2][0]) {
3622                 case 'r':
3623                         type = WPT_READ;
3624                         break;
3625                 case 'w':
3626                         type = WPT_WRITE;
3627                         break;
3628                 case 'a':
3629                         type = WPT_ACCESS;
3630                         break;
3631                 default:
3632                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3633                         return ERROR_COMMAND_SYNTAX_ERROR;
3634                 }
3635                 /* fall through */
3636         case 2:
3637                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3638                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3639                 break;
3640
3641         default:
3642                 return ERROR_COMMAND_SYNTAX_ERROR;
3643         }
3644
3645         int retval = watchpoint_add(target, addr, length, type,
3646                         data_value, data_mask);
3647         if (ERROR_OK != retval)
3648                 LOG_ERROR("Failure setting watchpoints");
3649
3650         return retval;
3651 }
3652
3653 COMMAND_HANDLER(handle_rwp_command)
3654 {
3655         if (CMD_ARGC != 1)
3656                 return ERROR_COMMAND_SYNTAX_ERROR;
3657
3658         uint32_t addr;
3659         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3660
3661         struct target *target = get_current_target(CMD_CTX);
3662         watchpoint_remove(target, addr);
3663
3664         return ERROR_OK;
3665 }
3666
3667 /**
3668  * Translate a virtual address to a physical address.
3669  *
3670  * The low-level target implementation must have logged a detailed error
3671  * which is forwarded to telnet/GDB session.
3672  */
3673 COMMAND_HANDLER(handle_virt2phys_command)
3674 {
3675         if (CMD_ARGC != 1)
3676                 return ERROR_COMMAND_SYNTAX_ERROR;
3677
3678         uint32_t va;
3679         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3680         uint32_t pa;
3681
3682         struct target *target = get_current_target(CMD_CTX);
3683         int retval = target->type->virt2phys(target, va, &pa);
3684         if (retval == ERROR_OK)
3685                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3686
3687         return retval;
3688 }
3689
3690 static void writeData(FILE *f, const void *data, size_t len)
3691 {
3692         size_t written = fwrite(data, 1, len, f);
3693         if (written != len)
3694                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3695 }
3696
3697 static void writeLong(FILE *f, int l, struct target *target)
3698 {
3699         uint8_t val[4];
3700
3701         target_buffer_set_u32(target, val, l);
3702         writeData(f, val, 4);
3703 }
3704
3705 static void writeString(FILE *f, char *s)
3706 {
3707         writeData(f, s, strlen(s));
3708 }
3709
3710 typedef unsigned char UNIT[2];  /* unit of profiling */
3711
3712 /* Dump a gmon.out histogram file. */
3713 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3714                         uint32_t start_address, uint32_t end_address, struct target *target)
3715 {
3716         uint32_t i;
3717         FILE *f = fopen(filename, "w");
3718         if (f == NULL)
3719                 return;
3720         writeString(f, "gmon");
3721         writeLong(f, 0x00000001, target); /* Version */
3722         writeLong(f, 0, target); /* padding */
3723         writeLong(f, 0, target); /* padding */
3724         writeLong(f, 0, target); /* padding */
3725
3726         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3727         writeData(f, &zero, 1);
3728
3729         /* figure out bucket size */
3730         uint32_t min;
3731         uint32_t max;
3732         if (with_range) {
3733                 min = start_address;
3734                 max = end_address;
3735         } else {
3736                 min = samples[0];
3737                 max = samples[0];
3738                 for (i = 0; i < sampleNum; i++) {
3739                         if (min > samples[i])
3740                                 min = samples[i];
3741                         if (max < samples[i])
3742                                 max = samples[i];
3743                 }
3744
3745                 /* max should be (largest sample + 1)
3746                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3747                 max++;
3748         }
3749
3750         int addressSpace = max - min;
3751         assert(addressSpace >= 2);
3752
3753         /* FIXME: What is the reasonable number of buckets?
3754          * The profiling result will be more accurate if there are enough buckets. */
3755         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3756         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3757         if (numBuckets > maxBuckets)
3758                 numBuckets = maxBuckets;
3759         int *buckets = malloc(sizeof(int) * numBuckets);
3760         if (buckets == NULL) {
3761                 fclose(f);
3762                 return;
3763         }
3764         memset(buckets, 0, sizeof(int) * numBuckets);
3765         for (i = 0; i < sampleNum; i++) {
3766                 uint32_t address = samples[i];
3767
3768                 if ((address < min) || (max <= address))
3769                         continue;
3770
3771                 long long a = address - min;
3772                 long long b = numBuckets;
3773                 long long c = addressSpace;
3774                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3775                 buckets[index_t]++;
3776         }
3777
3778         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3779         writeLong(f, min, target);                      /* low_pc */
3780         writeLong(f, max, target);                      /* high_pc */
3781         writeLong(f, numBuckets, target);       /* # of buckets */
3782         writeLong(f, 100, target);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3783         writeString(f, "seconds");
3784         for (i = 0; i < (15-strlen("seconds")); i++)
3785                 writeData(f, &zero, 1);
3786         writeString(f, "s");
3787
3788         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3789
3790         char *data = malloc(2 * numBuckets);
3791         if (data != NULL) {
3792                 for (i = 0; i < numBuckets; i++) {
3793                         int val;
3794                         val = buckets[i];
3795                         if (val > 65535)
3796                                 val = 65535;
3797                         data[i * 2] = val&0xff;
3798                         data[i * 2 + 1] = (val >> 8) & 0xff;
3799                 }
3800                 free(buckets);
3801                 writeData(f, data, numBuckets * 2);
3802                 free(data);
3803         } else
3804                 free(buckets);
3805
3806         fclose(f);
3807 }
3808
3809 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3810  * which will be used as a random sampling of PC */
3811 COMMAND_HANDLER(handle_profile_command)
3812 {
3813         struct target *target = get_current_target(CMD_CTX);
3814
3815         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3816                 return ERROR_COMMAND_SYNTAX_ERROR;
3817
3818         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3819         uint32_t offset;
3820         uint32_t num_of_samples;
3821         int retval = ERROR_OK;
3822
3823         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3824
3825         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3826         if (samples == NULL) {
3827                 LOG_ERROR("No memory to store samples.");
3828                 return ERROR_FAIL;
3829         }
3830
3831         /**
3832          * Some cores let us sample the PC without the
3833          * annoying halt/resume step; for example, ARMv7 PCSR.
3834          * Provide a way to use that more efficient mechanism.
3835          */
3836         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3837                                 &num_of_samples, offset);
3838         if (retval != ERROR_OK) {
3839                 free(samples);
3840                 return retval;
3841         }
3842
3843         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3844
3845         retval = target_poll(target);
3846         if (retval != ERROR_OK) {
3847                 free(samples);
3848                 return retval;
3849         }
3850         if (target->state == TARGET_RUNNING) {
3851                 retval = target_halt(target);
3852                 if (retval != ERROR_OK) {
3853                         free(samples);
3854                         return retval;
3855                 }
3856         }
3857
3858         retval = target_poll(target);
3859         if (retval != ERROR_OK) {
3860                 free(samples);
3861                 return retval;
3862         }
3863
3864         uint32_t start_address = 0;
3865         uint32_t end_address = 0;
3866         bool with_range = false;
3867         if (CMD_ARGC == 4) {
3868                 with_range = true;
3869                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3870                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3871         }
3872
3873         write_gmon(samples, num_of_samples, CMD_ARGV[1],
3874                    with_range, start_address, end_address, target);
3875         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3876
3877         free(samples);
3878         return retval;
3879 }
3880
3881 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3882 {
3883         char *namebuf;
3884         Jim_Obj *nameObjPtr, *valObjPtr;
3885         int result;
3886
3887         namebuf = alloc_printf("%s(%d)", varname, idx);
3888         if (!namebuf)
3889                 return JIM_ERR;
3890
3891         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3892         valObjPtr = Jim_NewIntObj(interp, val);
3893         if (!nameObjPtr || !valObjPtr) {
3894                 free(namebuf);
3895                 return JIM_ERR;
3896         }
3897
3898         Jim_IncrRefCount(nameObjPtr);
3899         Jim_IncrRefCount(valObjPtr);
3900         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3901         Jim_DecrRefCount(interp, nameObjPtr);
3902         Jim_DecrRefCount(interp, valObjPtr);
3903         free(namebuf);
3904         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3905         return result;
3906 }
3907
3908 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3909 {
3910         struct command_context *context;
3911         struct target *target;
3912
3913         context = current_command_context(interp);
3914         assert(context != NULL);
3915
3916         target = get_current_target(context);
3917         if (target == NULL) {
3918                 LOG_ERROR("mem2array: no current target");
3919                 return JIM_ERR;
3920         }
3921
3922         return target_mem2array(interp, target, argc - 1, argv + 1);
3923 }
3924
3925 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3926 {
3927         long l;
3928         uint32_t width;
3929         int len;
3930         uint32_t addr;
3931         uint32_t count;
3932         uint32_t v;
3933         const char *varname;
3934         const char *phys;
3935         bool is_phys;
3936         int  n, e, retval;
3937         uint32_t i;
3938
3939         /* argv[1] = name of array to receive the data
3940          * argv[2] = desired width
3941          * argv[3] = memory address
3942          * argv[4] = count of times to read
3943          */
3944         if (argc < 4 || argc > 5) {
3945                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
3946                 return JIM_ERR;
3947         }
3948         varname = Jim_GetString(argv[0], &len);
3949         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3950
3951         e = Jim_GetLong(interp, argv[1], &l);
3952         width = l;
3953         if (e != JIM_OK)
3954                 return e;
3955
3956         e = Jim_GetLong(interp, argv[2], &l);
3957         addr = l;
3958         if (e != JIM_OK)
3959                 return e;
3960         e = Jim_GetLong(interp, argv[3], &l);
3961         len = l;
3962         if (e != JIM_OK)
3963                 return e;
3964         is_phys = false;
3965         if (argc > 4) {
3966                 phys = Jim_GetString(argv[4], &n);
3967                 if (!strncmp(phys, "phys", n))
3968                         is_phys = true;
3969                 else
3970                         return JIM_ERR;
3971         }
3972         switch (width) {
3973                 case 8:
3974                         width = 1;
3975                         break;
3976                 case 16:
3977                         width = 2;
3978                         break;
3979                 case 32:
3980                         width = 4;
3981                         break;
3982                 default:
3983                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3984                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3985                         return JIM_ERR;
3986         }
3987         if (len == 0) {
3988                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3989                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3990                 return JIM_ERR;
3991         }
3992         if ((addr + (len * width)) < addr) {
3993                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3994                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3995                 return JIM_ERR;
3996         }
3997         /* absurd transfer size? */
3998         if (len > 65536) {
3999                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4000                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4001                 return JIM_ERR;
4002         }
4003
4004         if ((width == 1) ||
4005                 ((width == 2) && ((addr & 1) == 0)) ||
4006                 ((width == 4) && ((addr & 3) == 0))) {
4007                 /* all is well */
4008         } else {
4009                 char buf[100];
4010                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4011                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4012                                 addr,
4013                                 width);
4014                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4015                 return JIM_ERR;
4016         }
4017
4018         /* Transfer loop */
4019
4020         /* index counter */
4021         n = 0;
4022
4023         size_t buffersize = 4096;
4024         uint8_t *buffer = malloc(buffersize);
4025         if (buffer == NULL)
4026                 return JIM_ERR;
4027
4028         /* assume ok */
4029         e = JIM_OK;
4030         while (len) {
4031                 /* Slurp... in buffer size chunks */
4032
4033                 count = len; /* in objects.. */
4034                 if (count > (buffersize / width))
4035                         count = (buffersize / width);
4036
4037                 if (is_phys)
4038                         retval = target_read_phys_memory(target, addr, width, count, buffer);
4039                 else
4040                         retval = target_read_memory(target, addr, width, count, buffer);
4041                 if (retval != ERROR_OK) {
4042                         /* BOO !*/
4043                         LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4044                                           addr,
4045                                           width,
4046                                           count);
4047                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4048                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4049                         e = JIM_ERR;
4050                         break;
4051                 } else {
4052                         v = 0; /* shut up gcc */
4053                         for (i = 0; i < count ; i++, n++) {
4054                                 switch (width) {
4055                                         case 4:
4056                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
4057                                                 break;
4058                                         case 2:
4059                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
4060                                                 break;
4061                                         case 1:
4062                                                 v = buffer[i] & 0x0ff;
4063                                                 break;
4064                                 }
4065                                 new_int_array_element(interp, varname, n, v);
4066                         }
4067                         len -= count;
4068                         addr += count * width;
4069                 }
4070         }
4071
4072         free(buffer);
4073
4074         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4075
4076         return e;
4077 }
4078
4079 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4080 {
4081         char *namebuf;
4082         Jim_Obj *nameObjPtr, *valObjPtr;
4083         int result;
4084         long l;
4085
4086         namebuf = alloc_printf("%s(%d)", varname, idx);
4087         if (!namebuf)
4088                 return JIM_ERR;
4089
4090         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4091         if (!nameObjPtr) {
4092                 free(namebuf);
4093                 return JIM_ERR;
4094         }
4095
4096         Jim_IncrRefCount(nameObjPtr);
4097         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4098         Jim_DecrRefCount(interp, nameObjPtr);
4099         free(namebuf);
4100         if (valObjPtr == NULL)
4101                 return JIM_ERR;
4102
4103         result = Jim_GetLong(interp, valObjPtr, &l);
4104         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4105         *val = l;
4106         return result;
4107 }
4108
4109 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4110 {
4111         struct command_context *context;
4112         struct target *target;
4113
4114         context = current_command_context(interp);
4115         assert(context != NULL);
4116
4117         target = get_current_target(context);
4118         if (target == NULL) {
4119                 LOG_ERROR("array2mem: no current target");
4120                 return JIM_ERR;
4121         }
4122
4123         return target_array2mem(interp, target, argc-1, argv + 1);
4124 }
4125
4126 static int target_array2mem(Jim_Interp *interp, struct target *target,
4127                 int argc, Jim_Obj *const *argv)
4128 {
4129         long l;
4130         uint32_t width;
4131         int len;
4132         uint32_t addr;
4133         uint32_t count;
4134         uint32_t v;
4135         const char *varname;
4136         const char *phys;
4137         bool is_phys;
4138         int  n, e, retval;
4139         uint32_t i;
4140
4141         /* argv[1] = name of array to get the data
4142          * argv[2] = desired width
4143          * argv[3] = memory address
4144          * argv[4] = count to write
4145          */
4146         if (argc < 4 || argc > 5) {
4147                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4148                 return JIM_ERR;
4149         }
4150         varname = Jim_GetString(argv[0], &len);
4151         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4152
4153         e = Jim_GetLong(interp, argv[1], &l);
4154         width = l;
4155         if (e != JIM_OK)
4156                 return e;
4157
4158         e = Jim_GetLong(interp, argv[2], &l);
4159         addr = l;
4160         if (e != JIM_OK)
4161                 return e;
4162         e = Jim_GetLong(interp, argv[3], &l);
4163         len = l;
4164         if (e != JIM_OK)
4165                 return e;
4166         is_phys = false;
4167         if (argc > 4) {
4168                 phys = Jim_GetString(argv[4], &n);
4169                 if (!strncmp(phys, "phys", n))
4170                         is_phys = true;
4171                 else
4172                         return JIM_ERR;
4173         }
4174         switch (width) {
4175                 case 8:
4176                         width = 1;
4177                         break;
4178                 case 16:
4179                         width = 2;
4180                         break;
4181                 case 32:
4182                         width = 4;
4183                         break;
4184                 default:
4185                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4186                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4187                                         "Invalid width param, must be 8/16/32", NULL);
4188                         return JIM_ERR;
4189         }
4190         if (len == 0) {
4191                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4192                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4193                                 "array2mem: zero width read?", NULL);
4194                 return JIM_ERR;
4195         }
4196         if ((addr + (len * width)) < addr) {
4197                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4198                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4199                                 "array2mem: addr + len - wraps to zero?", NULL);
4200                 return JIM_ERR;
4201         }
4202         /* absurd transfer size? */
4203         if (len > 65536) {
4204                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4205                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4206                                 "array2mem: absurd > 64K item request", NULL);
4207                 return JIM_ERR;
4208         }
4209
4210         if ((width == 1) ||
4211                 ((width == 2) && ((addr & 1) == 0)) ||
4212                 ((width == 4) && ((addr & 3) == 0))) {
4213                 /* all is well */
4214         } else {
4215                 char buf[100];
4216                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4217                 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4218                                 addr,
4219                                 width);
4220                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4221                 return JIM_ERR;
4222         }
4223
4224         /* Transfer loop */
4225
4226         /* index counter */
4227         n = 0;
4228         /* assume ok */
4229         e = JIM_OK;
4230
4231         size_t buffersize = 4096;
4232         uint8_t *buffer = malloc(buffersize);
4233         if (buffer == NULL)
4234                 return JIM_ERR;
4235
4236         while (len) {
4237                 /* Slurp... in buffer size chunks */
4238
4239                 count = len; /* in objects.. */
4240                 if (count > (buffersize / width))
4241                         count = (buffersize / width);
4242
4243                 v = 0; /* shut up gcc */
4244                 for (i = 0; i < count; i++, n++) {
4245                         get_int_array_element(interp, varname, n, &v);
4246                         switch (width) {
4247                         case 4:
4248                                 target_buffer_set_u32(target, &buffer[i * width], v);
4249                                 break;
4250                         case 2:
4251                                 target_buffer_set_u16(target, &buffer[i * width], v);
4252                                 break;
4253                         case 1:
4254                                 buffer[i] = v & 0x0ff;
4255                                 break;
4256                         }
4257                 }
4258                 len -= count;
4259
4260                 if (is_phys)
4261                         retval = target_write_phys_memory(target, addr, width, count, buffer);
4262                 else
4263                         retval = target_write_memory(target, addr, width, count, buffer);
4264                 if (retval != ERROR_OK) {
4265                         /* BOO !*/
4266                         LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4267                                           addr,
4268                                           width,
4269                                           count);
4270                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4271                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4272                         e = JIM_ERR;
4273                         break;
4274                 }
4275                 addr += count * width;
4276         }
4277
4278         free(buffer);
4279
4280         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4281
4282         return e;
4283 }
4284
4285 /* FIX? should we propagate errors here rather than printing them
4286  * and continuing?
4287  */
4288 void target_handle_event(struct target *target, enum target_event e)
4289 {
4290         struct target_event_action *teap;
4291
4292         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4293                 if (teap->event == e) {
4294                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4295                                            target->target_number,
4296                                            target_name(target),
4297                                            target_type_name(target),
4298                                            e,
4299                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4300                                            Jim_GetString(teap->body, NULL));
4301                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4302                                 Jim_MakeErrorMessage(teap->interp);
4303                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4304                         }
4305                 }
4306         }
4307 }
4308
4309 /**
4310  * Returns true only if the target has a handler for the specified event.
4311  */
4312 bool target_has_event_action(struct target *target, enum target_event event)
4313 {
4314         struct target_event_action *teap;
4315
4316         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4317                 if (teap->event == event)
4318                         return true;
4319         }
4320         return false;
4321 }
4322
4323 enum target_cfg_param {
4324         TCFG_TYPE,
4325         TCFG_EVENT,
4326         TCFG_WORK_AREA_VIRT,
4327         TCFG_WORK_AREA_PHYS,
4328         TCFG_WORK_AREA_SIZE,
4329         TCFG_WORK_AREA_BACKUP,
4330         TCFG_ENDIAN,
4331         TCFG_COREID,
4332         TCFG_CHAIN_POSITION,
4333         TCFG_DBGBASE,
4334         TCFG_RTOS,
4335         TCFG_DEFER_EXAMINE,
4336 };
4337
4338 static Jim_Nvp nvp_config_opts[] = {
4339         { .name = "-type",             .value = TCFG_TYPE },
4340         { .name = "-event",            .value = TCFG_EVENT },
4341         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4342         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4343         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4344         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4345         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4346         { .name = "-coreid",           .value = TCFG_COREID },
4347         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4348         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4349         { .name = "-rtos",             .value = TCFG_RTOS },
4350         { .name = "-defer-examine",    .value = TCFG_DEFER_EXAMINE },
4351         { .name = NULL, .value = -1 }
4352 };
4353
4354 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4355 {
4356         Jim_Nvp *n;
4357         Jim_Obj *o;
4358         jim_wide w;
4359         int e;
4360
4361         /* parse config or cget options ... */
4362         while (goi->argc > 0) {
4363                 Jim_SetEmptyResult(goi->interp);
4364                 /* Jim_GetOpt_Debug(goi); */
4365
4366                 if (target->type->target_jim_configure) {
4367                         /* target defines a configure function */
4368                         /* target gets first dibs on parameters */
4369                         e = (*(target->type->target_jim_configure))(target, goi);
4370                         if (e == JIM_OK) {
4371                                 /* more? */
4372                                 continue;
4373                         }
4374                         if (e == JIM_ERR) {
4375                                 /* An error */
4376                                 return e;
4377                         }
4378                         /* otherwise we 'continue' below */
4379                 }
4380                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4381                 if (e != JIM_OK) {
4382                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4383                         return e;
4384                 }
4385                 switch (n->value) {
4386                 case TCFG_TYPE:
4387                         /* not setable */
4388                         if (goi->isconfigure) {
4389                                 Jim_SetResultFormatted(goi->interp,
4390                                                 "not settable: %s", n->name);
4391                                 return JIM_ERR;
4392                         } else {
4393 no_params:
4394                                 if (goi->argc != 0) {
4395                                         Jim_WrongNumArgs(goi->interp,
4396                                                         goi->argc, goi->argv,
4397                                                         "NO PARAMS");
4398                                         return JIM_ERR;
4399                                 }
4400                         }
4401                         Jim_SetResultString(goi->interp,
4402                                         target_type_name(target), -1);
4403                         /* loop for more */
4404                         break;
4405                 case TCFG_EVENT:
4406                         if (goi->argc == 0) {
4407                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4408                                 return JIM_ERR;
4409                         }
4410
4411                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4412                         if (e != JIM_OK) {
4413                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4414                                 return e;
4415                         }
4416
4417                         if (goi->isconfigure) {
4418                                 if (goi->argc != 1) {
4419                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4420                                         return JIM_ERR;
4421                                 }
4422                         } else {
4423                                 if (goi->argc != 0) {
4424                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4425                                         return JIM_ERR;
4426                                 }
4427                         }
4428
4429                         {
4430                                 struct target_event_action *teap;
4431
4432                                 teap = target->event_action;
4433                                 /* replace existing? */
4434                                 while (teap) {
4435                                         if (teap->event == (enum target_event)n->value)
4436                                                 break;
4437                                         teap = teap->next;
4438                                 }
4439
4440                                 if (goi->isconfigure) {
4441                                         bool replace = true;
4442                                         if (teap == NULL) {
4443                                                 /* create new */
4444                                                 teap = calloc(1, sizeof(*teap));
4445                                                 replace = false;
4446                                         }
4447                                         teap->event = n->value;
4448                                         teap->interp = goi->interp;
4449                                         Jim_GetOpt_Obj(goi, &o);
4450                                         if (teap->body)
4451                                                 Jim_DecrRefCount(teap->interp, teap->body);
4452                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4453                                         /*
4454                                          * FIXME:
4455                                          *     Tcl/TK - "tk events" have a nice feature.
4456                                          *     See the "BIND" command.
4457                                          *    We should support that here.
4458                                          *     You can specify %X and %Y in the event code.
4459                                          *     The idea is: %T - target name.
4460                                          *     The idea is: %N - target number
4461                                          *     The idea is: %E - event name.
4462                                          */
4463                                         Jim_IncrRefCount(teap->body);
4464
4465                                         if (!replace) {
4466                                                 /* add to head of event list */
4467                                                 teap->next = target->event_action;
4468                                                 target->event_action = teap;
4469                                         }
4470                                         Jim_SetEmptyResult(goi->interp);
4471                                 } else {
4472                                         /* get */
4473                                         if (teap == NULL)
4474                                                 Jim_SetEmptyResult(goi->interp);
4475                                         else
4476                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4477                                 }
4478                         }
4479                         /* loop for more */
4480                         break;
4481
4482                 case TCFG_WORK_AREA_VIRT:
4483                         if (goi->isconfigure) {
4484                                 target_free_all_working_areas(target);
4485                                 e = Jim_GetOpt_Wide(goi, &w);
4486                                 if (e != JIM_OK)
4487                                         return e;
4488                                 target->working_area_virt = w;
4489                                 target->working_area_virt_spec = true;
4490                         } else {
4491                                 if (goi->argc != 0)
4492                                         goto no_params;
4493                         }
4494                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4495                         /* loop for more */
4496                         break;
4497
4498                 case TCFG_WORK_AREA_PHYS:
4499                         if (goi->isconfigure) {
4500                                 target_free_all_working_areas(target);
4501                                 e = Jim_GetOpt_Wide(goi, &w);
4502                                 if (e != JIM_OK)
4503                                         return e;
4504                                 target->working_area_phys = w;
4505                                 target->working_area_phys_spec = true;
4506                         } else {
4507                                 if (goi->argc != 0)
4508                                         goto no_params;
4509                         }
4510                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4511                         /* loop for more */
4512                         break;
4513
4514                 case TCFG_WORK_AREA_SIZE:
4515                         if (goi->isconfigure) {
4516                                 target_free_all_working_areas(target);
4517                                 e = Jim_GetOpt_Wide(goi, &w);
4518                                 if (e != JIM_OK)
4519                                         return e;
4520                                 target->working_area_size = w;
4521                         } else {
4522                                 if (goi->argc != 0)
4523                                         goto no_params;
4524                         }
4525                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4526                         /* loop for more */
4527                         break;
4528
4529                 case TCFG_WORK_AREA_BACKUP:
4530                         if (goi->isconfigure) {
4531                                 target_free_all_working_areas(target);
4532                                 e = Jim_GetOpt_Wide(goi, &w);
4533                                 if (e != JIM_OK)
4534                                         return e;
4535                                 /* make this exactly 1 or 0 */
4536                                 target->backup_working_area = (!!w);
4537                         } else {
4538                                 if (goi->argc != 0)
4539                                         goto no_params;
4540                         }
4541                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4542                         /* loop for more e*/
4543                         break;
4544
4545
4546                 case TCFG_ENDIAN:
4547                         if (goi->isconfigure) {
4548                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4549                                 if (e != JIM_OK) {
4550                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4551                                         return e;
4552                                 }
4553                                 target->endianness = n->value;
4554                         } else {
4555                                 if (goi->argc != 0)
4556                                         goto no_params;
4557                         }
4558                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4559                         if (n->name == NULL) {
4560                                 target->endianness = TARGET_LITTLE_ENDIAN;
4561                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4562                         }
4563                         Jim_SetResultString(goi->interp, n->name, -1);
4564                         /* loop for more */
4565                         break;
4566
4567                 case TCFG_COREID:
4568                         if (goi->isconfigure) {
4569                                 e = Jim_GetOpt_Wide(goi, &w);
4570                                 if (e != JIM_OK)
4571                                         return e;
4572                                 target->coreid = (int32_t)w;
4573                         } else {
4574                                 if (goi->argc != 0)
4575                                         goto no_params;
4576                         }
4577                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4578                         /* loop for more */
4579                         break;
4580
4581                 case TCFG_CHAIN_POSITION:
4582                         if (goi->isconfigure) {
4583                                 Jim_Obj *o_t;
4584                                 struct jtag_tap *tap;
4585                                 target_free_all_working_areas(target);
4586                                 e = Jim_GetOpt_Obj(goi, &o_t);
4587                                 if (e != JIM_OK)
4588                                         return e;
4589                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4590                                 if (tap == NULL)
4591                                         return JIM_ERR;
4592                                 /* make this exactly 1 or 0 */
4593                                 target->tap = tap;
4594                         } else {
4595                                 if (goi->argc != 0)
4596                                         goto no_params;
4597                         }
4598                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4599                         /* loop for more e*/
4600                         break;
4601                 case TCFG_DBGBASE:
4602                         if (goi->isconfigure) {
4603                                 e = Jim_GetOpt_Wide(goi, &w);
4604                                 if (e != JIM_OK)
4605                                         return e;
4606                                 target->dbgbase = (uint32_t)w;
4607                                 target->dbgbase_set = true;
4608                         } else {
4609                                 if (goi->argc != 0)
4610                                         goto no_params;
4611                         }
4612                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4613                         /* loop for more */
4614                         break;
4615
4616                 case TCFG_RTOS:
4617                         /* RTOS */
4618                         {
4619                                 int result = rtos_create(goi, target);
4620                                 if (result != JIM_OK)
4621                                         return result;
4622                         }
4623                         /* loop for more */
4624                         break;
4625
4626                 case TCFG_DEFER_EXAMINE:
4627                         /* DEFER_EXAMINE */
4628                         target->defer_examine = true;
4629                         /* loop for more */
4630                         break;
4631
4632                 }
4633         } /* while (goi->argc) */
4634
4635
4636                 /* done - we return */
4637         return JIM_OK;
4638 }
4639
4640 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4641 {
4642         Jim_GetOptInfo goi;
4643
4644         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4645         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4646         if (goi.argc < 1) {
4647                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4648                                  "missing: -option ...");
4649                 return JIM_ERR;
4650         }
4651         struct target *target = Jim_CmdPrivData(goi.interp);
4652         return target_configure(&goi, target);
4653 }
4654
4655 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4656 {
4657         const char *cmd_name = Jim_GetString(argv[0], NULL);
4658
4659         Jim_GetOptInfo goi;
4660         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4661
4662         if (goi.argc < 2 || goi.argc > 4) {
4663                 Jim_SetResultFormatted(goi.interp,
4664                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4665                 return JIM_ERR;
4666         }
4667
4668         target_write_fn fn;
4669         fn = target_write_memory;
4670
4671         int e;
4672         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4673                 /* consume it */
4674                 struct Jim_Obj *obj;
4675                 e = Jim_GetOpt_Obj(&goi, &obj);
4676                 if (e != JIM_OK)
4677                         return e;
4678
4679                 fn = target_write_phys_memory;
4680         }
4681
4682         jim_wide a;
4683         e = Jim_GetOpt_Wide(&goi, &a);
4684         if (e != JIM_OK)
4685                 return e;
4686
4687         jim_wide b;
4688         e = Jim_GetOpt_Wide(&goi, &b);
4689         if (e != JIM_OK)
4690                 return e;
4691
4692         jim_wide c = 1;
4693         if (goi.argc == 1) {
4694                 e = Jim_GetOpt_Wide(&goi, &c);
4695                 if (e != JIM_OK)
4696                         return e;
4697         }
4698
4699         /* all args must be consumed */
4700         if (goi.argc != 0)
4701                 return JIM_ERR;
4702
4703         struct target *target = Jim_CmdPrivData(goi.interp);
4704         unsigned data_size;
4705         if (strcasecmp(cmd_name, "mww") == 0)
4706                 data_size = 4;
4707         else if (strcasecmp(cmd_name, "mwh") == 0)
4708                 data_size = 2;
4709         else if (strcasecmp(cmd_name, "mwb") == 0)
4710                 data_size = 1;
4711         else {
4712                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4713                 return JIM_ERR;
4714         }
4715
4716         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4717 }
4718
4719 /**
4720 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4721 *
4722 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4723 *         mdh [phys] <address> [<count>] - for 16 bit reads
4724 *         mdb [phys] <address> [<count>] - for  8 bit reads
4725 *
4726 *  Count defaults to 1.
4727 *
4728 *  Calls target_read_memory or target_read_phys_memory depending on
4729 *  the presence of the "phys" argument
4730 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4731 *  to int representation in base16.
4732 *  Also outputs read data in a human readable form using command_print
4733 *
4734 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4735 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4736 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4737 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4738 *  on success, with [<count>] number of elements.
4739 *
4740 *  In case of little endian target:
4741 *      Example1: "mdw 0x00000000"  returns "10123456"
4742 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4743 *      Example3: "mdb 0x00000000" returns "56"
4744 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4745 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4746 **/
4747 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4748 {
4749         const char *cmd_name = Jim_GetString(argv[0], NULL);
4750
4751         Jim_GetOptInfo goi;
4752         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4753
4754         if ((goi.argc < 1) || (goi.argc > 3)) {
4755                 Jim_SetResultFormatted(goi.interp,
4756                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4757                 return JIM_ERR;
4758         }
4759
4760         int (*fn)(struct target *target,
4761                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4762         fn = target_read_memory;
4763
4764         int e;
4765         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4766                 /* consume it */
4767                 struct Jim_Obj *obj;
4768                 e = Jim_GetOpt_Obj(&goi, &obj);
4769                 if (e != JIM_OK)
4770                         return e;
4771
4772                 fn = target_read_phys_memory;
4773         }
4774
4775         /* Read address parameter */
4776         jim_wide addr;
4777         e = Jim_GetOpt_Wide(&goi, &addr);
4778         if (e != JIM_OK)
4779                 return JIM_ERR;
4780
4781         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4782         jim_wide count;
4783         if (goi.argc == 1) {
4784                 e = Jim_GetOpt_Wide(&goi, &count);
4785                 if (e != JIM_OK)
4786                         return JIM_ERR;
4787         } else
4788                 count = 1;
4789
4790         /* all args must be consumed */
4791         if (goi.argc != 0)
4792                 return JIM_ERR;
4793
4794         jim_wide dwidth = 1; /* shut up gcc */
4795         if (strcasecmp(cmd_name, "mdw") == 0)
4796                 dwidth = 4;
4797         else if (strcasecmp(cmd_name, "mdh") == 0)
4798                 dwidth = 2;
4799         else if (strcasecmp(cmd_name, "mdb") == 0)
4800                 dwidth = 1;
4801         else {
4802                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4803                 return JIM_ERR;
4804         }
4805
4806         /* convert count to "bytes" */
4807         int bytes = count * dwidth;
4808
4809         struct target *target = Jim_CmdPrivData(goi.interp);
4810         uint8_t  target_buf[32];
4811         jim_wide x, y, z;
4812         while (bytes > 0) {
4813                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4814
4815                 /* Try to read out next block */
4816                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4817
4818                 if (e != ERROR_OK) {
4819                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4820                         return JIM_ERR;
4821                 }
4822
4823                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4824                 switch (dwidth) {
4825                 case 4:
4826                         for (x = 0; x < 16 && x < y; x += 4) {
4827                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4828                                 command_print_sameline(NULL, "%08x ", (int)(z));
4829                         }
4830                         for (; (x < 16) ; x += 4)
4831                                 command_print_sameline(NULL, "         ");
4832                         break;
4833                 case 2:
4834                         for (x = 0; x < 16 && x < y; x += 2) {
4835                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4836                                 command_print_sameline(NULL, "%04x ", (int)(z));
4837                         }
4838                         for (; (x < 16) ; x += 2)
4839                                 command_print_sameline(NULL, "     ");
4840                         break;
4841                 case 1:
4842                 default:
4843                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4844                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4845                                 command_print_sameline(NULL, "%02x ", (int)(z));
4846                         }
4847                         for (; (x < 16) ; x += 1)
4848                                 command_print_sameline(NULL, "   ");
4849                         break;
4850                 }
4851                 /* ascii-ify the bytes */
4852                 for (x = 0 ; x < y ; x++) {
4853                         if ((target_buf[x] >= 0x20) &&
4854                                 (target_buf[x] <= 0x7e)) {
4855                                 /* good */
4856                         } else {
4857                                 /* smack it */
4858                                 target_buf[x] = '.';
4859                         }
4860                 }
4861                 /* space pad  */
4862                 while (x < 16) {
4863                         target_buf[x] = ' ';
4864                         x++;
4865                 }
4866                 /* terminate */
4867                 target_buf[16] = 0;
4868                 /* print - with a newline */
4869                 command_print_sameline(NULL, "%s\n", target_buf);
4870                 /* NEXT... */
4871                 bytes -= 16;
4872                 addr += 16;
4873         }
4874         return JIM_OK;
4875 }
4876
4877 static int jim_target_mem2array(Jim_Interp *interp,
4878                 int argc, Jim_Obj *const *argv)
4879 {
4880         struct target *target = Jim_CmdPrivData(interp);
4881         return target_mem2array(interp, target, argc - 1, argv + 1);
4882 }
4883
4884 static int jim_target_array2mem(Jim_Interp *interp,
4885                 int argc, Jim_Obj *const *argv)
4886 {
4887         struct target *target = Jim_CmdPrivData(interp);
4888         return target_array2mem(interp, target, argc - 1, argv + 1);
4889 }
4890
4891 static int jim_target_tap_disabled(Jim_Interp *interp)
4892 {
4893         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4894         return JIM_ERR;
4895 }
4896
4897 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4898 {
4899         bool allow_defer = false;
4900
4901         Jim_GetOptInfo goi;
4902         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4903         if (goi.argc > 1) {
4904                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4905                 Jim_SetResultFormatted(goi.interp,
4906                                 "usage: %s ['allow-defer']", cmd_name);
4907                 return JIM_ERR;
4908         }
4909         if (goi.argc > 0 &&
4910             strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
4911                 /* consume it */
4912                 struct Jim_Obj *obj;
4913                 int e = Jim_GetOpt_Obj(&goi, &obj);
4914                 if (e != JIM_OK)
4915                         return e;
4916                 allow_defer = true;
4917         }
4918
4919         struct target *target = Jim_CmdPrivData(interp);
4920         if (!target->tap->enabled)
4921                 return jim_target_tap_disabled(interp);
4922
4923         if (allow_defer && target->defer_examine) {
4924                 LOG_INFO("Deferring arp_examine of %s", target_name(target));
4925                 LOG_INFO("Use arp_examine command to examine it manually!");
4926                 return JIM_OK;
4927         }
4928
4929         int e = target->type->examine(target);
4930         if (e != ERROR_OK)
4931                 return JIM_ERR;
4932         return JIM_OK;
4933 }
4934
4935 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4936 {
4937         struct target *target = Jim_CmdPrivData(interp);
4938
4939         Jim_SetResultBool(interp, target_was_examined(target));
4940         return JIM_OK;
4941 }
4942
4943 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4944 {
4945         struct target *target = Jim_CmdPrivData(interp);
4946
4947         Jim_SetResultBool(interp, target->defer_examine);
4948         return JIM_OK;
4949 }
4950
4951 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4952 {
4953         if (argc != 1) {
4954                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4955                 return JIM_ERR;
4956         }
4957         struct target *target = Jim_CmdPrivData(interp);
4958
4959         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4960                 return JIM_ERR;
4961
4962         return JIM_OK;
4963 }
4964
4965 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4966 {
4967         if (argc != 1) {
4968                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4969                 return JIM_ERR;
4970         }
4971         struct target *target = Jim_CmdPrivData(interp);
4972         if (!target->tap->enabled)
4973                 return jim_target_tap_disabled(interp);
4974
4975         int e;
4976         if (!(target_was_examined(target)))
4977                 e = ERROR_TARGET_NOT_EXAMINED;
4978         else
4979                 e = target->type->poll(target);
4980         if (e != ERROR_OK)
4981                 return JIM_ERR;
4982         return JIM_OK;
4983 }
4984
4985 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4986 {
4987         Jim_GetOptInfo goi;
4988         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4989
4990         if (goi.argc != 2) {
4991                 Jim_WrongNumArgs(interp, 0, argv,
4992                                 "([tT]|[fF]|assert|deassert) BOOL");
4993                 return JIM_ERR;
4994         }
4995
4996         Jim_Nvp *n;
4997         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4998         if (e != JIM_OK) {
4999                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5000                 return e;
5001         }
5002         /* the halt or not param */
5003         jim_wide a;
5004         e = Jim_GetOpt_Wide(&goi, &a);
5005         if (e != JIM_OK)
5006                 return e;
5007
5008         struct target *target = Jim_CmdPrivData(goi.interp);
5009         if (!target->tap->enabled)
5010                 return jim_target_tap_disabled(interp);
5011
5012         if (!target->type->assert_reset || !target->type->deassert_reset) {
5013                 Jim_SetResultFormatted(interp,
5014                                 "No target-specific reset for %s",
5015                                 target_name(target));
5016                 return JIM_ERR;
5017         }
5018
5019         if (target->defer_examine)
5020                 target_reset_examined(target);
5021
5022         /* determine if we should halt or not. */
5023         target->reset_halt = !!a;
5024         /* When this happens - all workareas are invalid. */
5025         target_free_all_working_areas_restore(target, 0);
5026
5027         /* do the assert */
5028         if (n->value == NVP_ASSERT)
5029                 e = target->type->assert_reset(target);
5030         else
5031                 e = target->type->deassert_reset(target);
5032         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5033 }
5034
5035 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5036 {
5037         if (argc != 1) {
5038                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5039                 return JIM_ERR;
5040         }
5041         struct target *target = Jim_CmdPrivData(interp);
5042         if (!target->tap->enabled)
5043                 return jim_target_tap_disabled(interp);
5044         int e = target->type->halt(target);
5045         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5046 }
5047
5048 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5049 {
5050         Jim_GetOptInfo goi;
5051         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5052
5053         /* params:  <name>  statename timeoutmsecs */
5054         if (goi.argc != 2) {
5055                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5056                 Jim_SetResultFormatted(goi.interp,
5057                                 "%s <state_name> <timeout_in_msec>", cmd_name);
5058                 return JIM_ERR;
5059         }
5060
5061         Jim_Nvp *n;
5062         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5063         if (e != JIM_OK) {
5064                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5065                 return e;
5066         }
5067         jim_wide a;
5068         e = Jim_GetOpt_Wide(&goi, &a);
5069         if (e != JIM_OK)
5070                 return e;
5071         struct target *target = Jim_CmdPrivData(interp);
5072         if (!target->tap->enabled)
5073                 return jim_target_tap_disabled(interp);
5074
5075         e = target_wait_state(target, n->value, a);
5076         if (e != ERROR_OK) {
5077                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5078                 Jim_SetResultFormatted(goi.interp,
5079                                 "target: %s wait %s fails (%#s) %s",
5080                                 target_name(target), n->name,
5081                                 eObj, target_strerror_safe(e));
5082                 Jim_FreeNewObj(interp, eObj);
5083                 return JIM_ERR;
5084         }
5085         return JIM_OK;
5086 }
5087 /* List for human, Events defined for this target.
5088  * scripts/programs should use 'name cget -event NAME'
5089  */
5090 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5091 {
5092         struct command_context *cmd_ctx = current_command_context(interp);
5093         assert(cmd_ctx != NULL);
5094
5095         struct target *target = Jim_CmdPrivData(interp);
5096         struct target_event_action *teap = target->event_action;
5097         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5098                                    target->target_number,
5099                                    target_name(target));
5100         command_print(cmd_ctx, "%-25s | Body", "Event");
5101         command_print(cmd_ctx, "------------------------- | "
5102                         "----------------------------------------");
5103         while (teap) {
5104                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5105                 command_print(cmd_ctx, "%-25s | %s",
5106                                 opt->name, Jim_GetString(teap->body, NULL));
5107                 teap = teap->next;
5108         }
5109         command_print(cmd_ctx, "***END***");
5110         return JIM_OK;
5111 }
5112 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5113 {
5114         if (argc != 1) {
5115                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5116                 return JIM_ERR;
5117         }
5118         struct target *target = Jim_CmdPrivData(interp);
5119         Jim_SetResultString(interp, target_state_name(target), -1);
5120         return JIM_OK;
5121 }
5122 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5123 {
5124         Jim_GetOptInfo goi;
5125         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5126         if (goi.argc != 1) {
5127                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5128                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5129                 return JIM_ERR;
5130         }
5131         Jim_Nvp *n;
5132         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5133         if (e != JIM_OK) {
5134                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5135                 return e;
5136         }
5137         struct target *target = Jim_CmdPrivData(interp);
5138         target_handle_event(target, n->value);
5139         return JIM_OK;
5140 }
5141
5142 static const struct command_registration target_instance_command_handlers[] = {
5143         {
5144                 .name = "configure",
5145                 .mode = COMMAND_CONFIG,
5146                 .jim_handler = jim_target_configure,
5147                 .help  = "configure a new target for use",
5148                 .usage = "[target_attribute ...]",
5149         },
5150         {
5151                 .name = "cget",
5152                 .mode = COMMAND_ANY,
5153                 .jim_handler = jim_target_configure,
5154                 .help  = "returns the specified target attribute",
5155                 .usage = "target_attribute",
5156         },
5157         {
5158                 .name = "mww",
5159                 .mode = COMMAND_EXEC,
5160                 .jim_handler = jim_target_mw,
5161                 .help = "Write 32-bit word(s) to target memory",
5162                 .usage = "address data [count]",
5163         },
5164         {
5165                 .name = "mwh",
5166                 .mode = COMMAND_EXEC,
5167                 .jim_handler = jim_target_mw,
5168                 .help = "Write 16-bit half-word(s) to target memory",
5169                 .usage = "address data [count]",
5170         },
5171         {
5172                 .name = "mwb",
5173                 .mode = COMMAND_EXEC,
5174                 .jim_handler = jim_target_mw,
5175                 .help = "Write byte(s) to target memory",
5176                 .usage = "address data [count]",
5177         },
5178         {
5179                 .name = "mdw",
5180                 .mode = COMMAND_EXEC,
5181                 .jim_handler = jim_target_md,
5182                 .help = "Display target memory as 32-bit words",
5183                 .usage = "address [count]",
5184         },
5185         {
5186                 .name = "mdh",
5187                 .mode = COMMAND_EXEC,
5188                 .jim_handler = jim_target_md,
5189                 .help = "Display target memory as 16-bit half-words",
5190                 .usage = "address [count]",
5191         },
5192         {
5193                 .name = "mdb",
5194                 .mode = COMMAND_EXEC,
5195                 .jim_handler = jim_target_md,
5196                 .help = "Display target memory as 8-bit bytes",
5197                 .usage = "address [count]",
5198         },
5199         {
5200                 .name = "array2mem",
5201                 .mode = COMMAND_EXEC,
5202                 .jim_handler = jim_target_array2mem,
5203                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5204                         "to target memory",
5205                 .usage = "arrayname bitwidth address count",
5206         },
5207         {
5208                 .name = "mem2array",
5209                 .mode = COMMAND_EXEC,
5210                 .jim_handler = jim_target_mem2array,
5211                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5212                         "from target memory",
5213                 .usage = "arrayname bitwidth address count",
5214         },
5215         {
5216                 .name = "eventlist",
5217                 .mode = COMMAND_EXEC,
5218                 .jim_handler = jim_target_event_list,
5219                 .help = "displays a table of events defined for this target",
5220         },
5221         {
5222                 .name = "curstate",
5223                 .mode = COMMAND_EXEC,
5224                 .jim_handler = jim_target_current_state,
5225                 .help = "displays the current state of this target",
5226         },
5227         {
5228                 .name = "arp_examine",
5229                 .mode = COMMAND_EXEC,
5230                 .jim_handler = jim_target_examine,
5231                 .help = "used internally for reset processing",
5232                 .usage = "arp_examine ['allow-defer']",
5233         },
5234         {
5235                 .name = "was_examined",
5236                 .mode = COMMAND_EXEC,
5237                 .jim_handler = jim_target_was_examined,
5238                 .help = "used internally for reset processing",
5239                 .usage = "was_examined",
5240         },
5241         {
5242                 .name = "examine_deferred",
5243                 .mode = COMMAND_EXEC,
5244                 .jim_handler = jim_target_examine_deferred,
5245                 .help = "used internally for reset processing",
5246                 .usage = "examine_deferred",
5247         },
5248         {
5249                 .name = "arp_halt_gdb",
5250                 .mode = COMMAND_EXEC,
5251                 .jim_handler = jim_target_halt_gdb,
5252                 .help = "used internally for reset processing to halt GDB",
5253         },
5254         {
5255                 .name = "arp_poll",
5256                 .mode = COMMAND_EXEC,
5257                 .jim_handler = jim_target_poll,
5258                 .help = "used internally for reset processing",
5259         },
5260         {
5261                 .name = "arp_reset",
5262                 .mode = COMMAND_EXEC,
5263                 .jim_handler = jim_target_reset,
5264                 .help = "used internally for reset processing",
5265         },
5266         {
5267                 .name = "arp_halt",
5268                 .mode = COMMAND_EXEC,
5269                 .jim_handler = jim_target_halt,
5270                 .help = "used internally for reset processing",
5271         },
5272         {
5273                 .name = "arp_waitstate",
5274                 .mode = COMMAND_EXEC,
5275                 .jim_handler = jim_target_wait_state,
5276                 .help = "used internally for reset processing",
5277         },
5278         {
5279                 .name = "invoke-event",
5280                 .mode = COMMAND_EXEC,
5281                 .jim_handler = jim_target_invoke_event,
5282                 .help = "invoke handler for specified event",
5283                 .usage = "event_name",
5284         },
5285         COMMAND_REGISTRATION_DONE
5286 };
5287
5288 static int target_create(Jim_GetOptInfo *goi)
5289 {
5290         Jim_Obj *new_cmd;
5291         Jim_Cmd *cmd;
5292         const char *cp;
5293         int e;
5294         int x;
5295         struct target *target;
5296         struct command_context *cmd_ctx;
5297
5298         cmd_ctx = current_command_context(goi->interp);
5299         assert(cmd_ctx != NULL);
5300
5301         if (goi->argc < 3) {
5302                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5303                 return JIM_ERR;
5304         }
5305
5306         /* COMMAND */
5307         Jim_GetOpt_Obj(goi, &new_cmd);
5308         /* does this command exist? */
5309         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5310         if (cmd) {
5311                 cp = Jim_GetString(new_cmd, NULL);
5312                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5313                 return JIM_ERR;
5314         }
5315
5316         /* TYPE */
5317         e = Jim_GetOpt_String(goi, &cp, NULL);
5318         if (e != JIM_OK)
5319                 return e;
5320         struct transport *tr = get_current_transport();
5321         if (tr->override_target) {
5322                 e = tr->override_target(&cp);
5323                 if (e != ERROR_OK) {
5324                         LOG_ERROR("The selected transport doesn't support this target");
5325                         return JIM_ERR;
5326                 }
5327                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5328         }
5329         /* now does target type exist */
5330         for (x = 0 ; target_types[x] ; x++) {
5331                 if (0 == strcmp(cp, target_types[x]->name)) {
5332                         /* found */
5333                         break;
5334                 }
5335
5336                 /* check for deprecated name */
5337                 if (target_types[x]->deprecated_name) {
5338                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5339                                 /* found */
5340                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5341                                 break;
5342                         }
5343                 }
5344         }
5345         if (target_types[x] == NULL) {
5346                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5347                 for (x = 0 ; target_types[x] ; x++) {
5348                         if (target_types[x + 1]) {
5349                                 Jim_AppendStrings(goi->interp,
5350                                                                    Jim_GetResult(goi->interp),
5351                                                                    target_types[x]->name,
5352                                                                    ", ", NULL);
5353                         } else {
5354                                 Jim_AppendStrings(goi->interp,
5355                                                                    Jim_GetResult(goi->interp),
5356                                                                    " or ",
5357                                                                    target_types[x]->name, NULL);
5358                         }
5359                 }
5360                 return JIM_ERR;
5361         }
5362
5363         /* Create it */
5364         target = calloc(1, sizeof(struct target));
5365         /* set target number */
5366         target->target_number = new_target_number();
5367         cmd_ctx->current_target = target->target_number;
5368
5369         /* allocate memory for each unique target type */
5370         target->type = calloc(1, sizeof(struct target_type));
5371
5372         memcpy(target->type, target_types[x], sizeof(struct target_type));
5373
5374         /* will be set by "-endian" */
5375         target->endianness = TARGET_ENDIAN_UNKNOWN;
5376
5377         /* default to first core, override with -coreid */
5378         target->coreid = 0;
5379
5380         target->working_area        = 0x0;
5381         target->working_area_size   = 0x0;
5382         target->working_areas       = NULL;
5383         target->backup_working_area = 0;
5384
5385         target->state               = TARGET_UNKNOWN;
5386         target->debug_reason        = DBG_REASON_UNDEFINED;
5387         target->reg_cache           = NULL;
5388         target->breakpoints         = NULL;
5389         target->watchpoints         = NULL;
5390         target->next                = NULL;
5391         target->arch_info           = NULL;
5392
5393         target->display             = 1;
5394
5395         target->halt_issued                     = false;
5396
5397         /* initialize trace information */
5398         target->trace_info = malloc(sizeof(struct trace));
5399         target->trace_info->num_trace_points         = 0;
5400         target->trace_info->trace_points_size        = 0;
5401         target->trace_info->trace_points             = NULL;
5402         target->trace_info->trace_history_size       = 0;
5403         target->trace_info->trace_history            = NULL;
5404         target->trace_info->trace_history_pos        = 0;
5405         target->trace_info->trace_history_overflowed = 0;
5406
5407         target->dbgmsg          = NULL;
5408         target->dbg_msg_enabled = 0;
5409
5410         target->endianness = TARGET_ENDIAN_UNKNOWN;
5411
5412         target->rtos = NULL;
5413         target->rtos_auto_detect = false;
5414
5415         /* Do the rest as "configure" options */
5416         goi->isconfigure = 1;
5417         e = target_configure(goi, target);
5418
5419         if (target->tap == NULL) {
5420                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5421                 e = JIM_ERR;
5422         }
5423
5424         if (e != JIM_OK) {
5425                 free(target->type);
5426                 free(target);
5427                 return e;
5428         }
5429
5430         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5431                 /* default endian to little if not specified */
5432                 target->endianness = TARGET_LITTLE_ENDIAN;
5433         }
5434
5435         cp = Jim_GetString(new_cmd, NULL);
5436         target->cmd_name = strdup(cp);
5437
5438         /* create the target specific commands */
5439         if (target->type->commands) {
5440                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5441                 if (ERROR_OK != e)
5442                         LOG_ERROR("unable to register '%s' commands", cp);
5443         }
5444         if (target->type->target_create)
5445                 (*(target->type->target_create))(target, goi->interp);
5446
5447         /* append to end of list */
5448         {
5449                 struct target **tpp;
5450                 tpp = &(all_targets);
5451                 while (*tpp)
5452                         tpp = &((*tpp)->next);
5453                 *tpp = target;
5454         }
5455
5456         /* now - create the new target name command */
5457         const struct command_registration target_subcommands[] = {
5458                 {
5459                         .chain = target_instance_command_handlers,
5460                 },
5461                 {
5462                         .chain = target->type->commands,
5463                 },
5464                 COMMAND_REGISTRATION_DONE
5465         };
5466         const struct command_registration target_commands[] = {
5467                 {
5468                         .name = cp,
5469                         .mode = COMMAND_ANY,
5470                         .help = "target command group",
5471                         .usage = "",
5472                         .chain = target_subcommands,
5473                 },
5474                 COMMAND_REGISTRATION_DONE
5475         };
5476         e = register_commands(cmd_ctx, NULL, target_commands);
5477         if (ERROR_OK != e)
5478                 return JIM_ERR;
5479
5480         struct command *c = command_find_in_context(cmd_ctx, cp);
5481         assert(c);
5482         command_set_handler_data(c, target);
5483
5484         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5485 }
5486
5487 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5488 {
5489         if (argc != 1) {
5490                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5491                 return JIM_ERR;
5492         }
5493         struct command_context *cmd_ctx = current_command_context(interp);
5494         assert(cmd_ctx != NULL);
5495
5496         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5497         return JIM_OK;
5498 }
5499
5500 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5501 {
5502         if (argc != 1) {
5503                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5504                 return JIM_ERR;
5505         }
5506         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5507         for (unsigned x = 0; NULL != target_types[x]; x++) {
5508                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5509                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5510         }
5511         return JIM_OK;
5512 }
5513
5514 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5515 {
5516         if (argc != 1) {
5517                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5518                 return JIM_ERR;
5519         }
5520         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5521         struct target *target = all_targets;
5522         while (target) {
5523                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5524                         Jim_NewStringObj(interp, target_name(target), -1));
5525                 target = target->next;
5526         }
5527         return JIM_OK;
5528 }
5529
5530 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5531 {
5532         int i;
5533         const char *targetname;
5534         int retval, len;
5535         struct target *target = (struct target *) NULL;
5536         struct target_list *head, *curr, *new;
5537         curr = (struct target_list *) NULL;
5538         head = (struct target_list *) NULL;
5539
5540         retval = 0;
5541         LOG_DEBUG("%d", argc);
5542         /* argv[1] = target to associate in smp
5543          * argv[2] = target to assoicate in smp
5544          * argv[3] ...
5545          */
5546
5547         for (i = 1; i < argc; i++) {
5548
5549                 targetname = Jim_GetString(argv[i], &len);
5550                 target = get_target(targetname);
5551                 LOG_DEBUG("%s ", targetname);
5552                 if (target) {
5553                         new = malloc(sizeof(struct target_list));
5554                         new->target = target;
5555                         new->next = (struct target_list *)NULL;
5556                         if (head == (struct target_list *)NULL) {
5557                                 head = new;
5558                                 curr = head;
5559                         } else {
5560                                 curr->next = new;
5561                                 curr = new;
5562                         }
5563                 }
5564         }
5565         /*  now parse the list of cpu and put the target in smp mode*/
5566         curr = head;
5567
5568         while (curr != (struct target_list *)NULL) {
5569                 target = curr->target;
5570                 target->smp = 1;
5571                 target->head = head;
5572                 curr = curr->next;
5573         }
5574
5575         if (target && target->rtos)
5576                 retval = rtos_smp_init(head->target);
5577
5578         return retval;
5579 }
5580
5581
5582 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5583 {
5584         Jim_GetOptInfo goi;
5585         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5586         if (goi.argc < 3) {
5587                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5588                         "<name> <target_type> [<target_options> ...]");
5589                 return JIM_ERR;
5590         }
5591         return target_create(&goi);
5592 }
5593
5594 static const struct command_registration target_subcommand_handlers[] = {
5595         {
5596                 .name = "init",
5597                 .mode = COMMAND_CONFIG,
5598                 .handler = handle_target_init_command,
5599                 .help = "initialize targets",
5600         },
5601         {
5602                 .name = "create",
5603                 /* REVISIT this should be COMMAND_CONFIG ... */
5604                 .mode = COMMAND_ANY,
5605                 .jim_handler = jim_target_create,
5606                 .usage = "name type '-chain-position' name [options ...]",
5607                 .help = "Creates and selects a new target",
5608         },
5609         {
5610                 .name = "current",
5611                 .mode = COMMAND_ANY,
5612                 .jim_handler = jim_target_current,
5613                 .help = "Returns the currently selected target",
5614         },
5615         {
5616                 .name = "types",
5617                 .mode = COMMAND_ANY,
5618                 .jim_handler = jim_target_types,
5619                 .help = "Returns the available target types as "
5620                                 "a list of strings",
5621         },
5622         {
5623                 .name = "names",
5624                 .mode = COMMAND_ANY,
5625                 .jim_handler = jim_target_names,
5626                 .help = "Returns the names of all targets as a list of strings",
5627         },
5628         {
5629                 .name = "smp",
5630                 .mode = COMMAND_ANY,
5631                 .jim_handler = jim_target_smp,
5632                 .usage = "targetname1 targetname2 ...",
5633                 .help = "gather several target in a smp list"
5634         },
5635
5636         COMMAND_REGISTRATION_DONE
5637 };
5638
5639 struct FastLoad {
5640         uint32_t address;
5641         uint8_t *data;
5642         int length;
5643
5644 };
5645
5646 static int fastload_num;
5647 static struct FastLoad *fastload;
5648
5649 static void free_fastload(void)
5650 {
5651         if (fastload != NULL) {
5652                 int i;
5653                 for (i = 0; i < fastload_num; i++) {
5654                         if (fastload[i].data)
5655                                 free(fastload[i].data);
5656                 }
5657                 free(fastload);
5658                 fastload = NULL;
5659         }
5660 }
5661
5662 COMMAND_HANDLER(handle_fast_load_image_command)
5663 {
5664         uint8_t *buffer;
5665         size_t buf_cnt;
5666         uint32_t image_size;
5667         uint32_t min_address = 0;
5668         uint32_t max_address = 0xffffffff;
5669         int i;
5670
5671         struct image image;
5672
5673         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5674                         &image, &min_address, &max_address);
5675         if (ERROR_OK != retval)
5676                 return retval;
5677
5678         struct duration bench;
5679         duration_start(&bench);
5680
5681         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5682         if (retval != ERROR_OK)
5683                 return retval;
5684
5685         image_size = 0x0;
5686         retval = ERROR_OK;
5687         fastload_num = image.num_sections;
5688         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5689         if (fastload == NULL) {
5690                 command_print(CMD_CTX, "out of memory");
5691                 image_close(&image);
5692                 return ERROR_FAIL;
5693         }
5694         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5695         for (i = 0; i < image.num_sections; i++) {
5696                 buffer = malloc(image.sections[i].size);
5697                 if (buffer == NULL) {
5698                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5699                                                   (int)(image.sections[i].size));
5700                         retval = ERROR_FAIL;
5701                         break;
5702                 }
5703
5704                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5705                 if (retval != ERROR_OK) {
5706                         free(buffer);
5707                         break;
5708                 }
5709
5710                 uint32_t offset = 0;
5711                 uint32_t length = buf_cnt;
5712
5713                 /* DANGER!!! beware of unsigned comparision here!!! */
5714
5715                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5716                                 (image.sections[i].base_address < max_address)) {
5717                         if (image.sections[i].base_address < min_address) {
5718                                 /* clip addresses below */
5719                                 offset += min_address-image.sections[i].base_address;
5720                                 length -= offset;
5721                         }
5722
5723                         if (image.sections[i].base_address + buf_cnt > max_address)
5724                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5725
5726                         fastload[i].address = image.sections[i].base_address + offset;
5727                         fastload[i].data = malloc(length);
5728                         if (fastload[i].data == NULL) {
5729                                 free(buffer);
5730                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5731                                                           length);
5732                                 retval = ERROR_FAIL;
5733                                 break;
5734                         }
5735                         memcpy(fastload[i].data, buffer + offset, length);
5736                         fastload[i].length = length;
5737
5738                         image_size += length;
5739                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5740                                                   (unsigned int)length,
5741                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5742                 }
5743
5744                 free(buffer);
5745         }
5746
5747         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5748                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5749                                 "in %fs (%0.3f KiB/s)", image_size,
5750                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5751
5752                 command_print(CMD_CTX,
5753                                 "WARNING: image has not been loaded to target!"
5754                                 "You can issue a 'fast_load' to finish loading.");
5755         }
5756
5757         image_close(&image);
5758
5759         if (retval != ERROR_OK)
5760                 free_fastload();
5761
5762         return retval;
5763 }
5764
5765 COMMAND_HANDLER(handle_fast_load_command)
5766 {
5767         if (CMD_ARGC > 0)
5768                 return ERROR_COMMAND_SYNTAX_ERROR;
5769         if (fastload == NULL) {
5770                 LOG_ERROR("No image in memory");
5771                 return ERROR_FAIL;
5772         }
5773         int i;
5774         int64_t ms = timeval_ms();
5775         int size = 0;
5776         int retval = ERROR_OK;
5777         for (i = 0; i < fastload_num; i++) {
5778                 struct target *target = get_current_target(CMD_CTX);
5779                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5780                                           (unsigned int)(fastload[i].address),
5781                                           (unsigned int)(fastload[i].length));
5782                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5783                 if (retval != ERROR_OK)
5784                         break;
5785                 size += fastload[i].length;
5786         }
5787         if (retval == ERROR_OK) {
5788                 int64_t after = timeval_ms();
5789                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5790         }
5791         return retval;
5792 }
5793
5794 static const struct command_registration target_command_handlers[] = {
5795         {
5796                 .name = "targets",
5797                 .handler = handle_targets_command,
5798                 .mode = COMMAND_ANY,
5799                 .help = "change current default target (one parameter) "
5800                         "or prints table of all targets (no parameters)",
5801                 .usage = "[target]",
5802         },
5803         {
5804                 .name = "target",
5805                 .mode = COMMAND_CONFIG,
5806                 .help = "configure target",
5807
5808                 .chain = target_subcommand_handlers,
5809         },
5810         COMMAND_REGISTRATION_DONE
5811 };
5812
5813 int target_register_commands(struct command_context *cmd_ctx)
5814 {
5815         return register_commands(cmd_ctx, NULL, target_command_handlers);
5816 }
5817
5818 static bool target_reset_nag = true;
5819
5820 bool get_target_reset_nag(void)
5821 {
5822         return target_reset_nag;
5823 }
5824
5825 COMMAND_HANDLER(handle_target_reset_nag)
5826 {
5827         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5828                         &target_reset_nag, "Nag after each reset about options to improve "
5829                         "performance");
5830 }
5831
5832 COMMAND_HANDLER(handle_ps_command)
5833 {
5834         struct target *target = get_current_target(CMD_CTX);
5835         char *display;
5836         if (target->state != TARGET_HALTED) {
5837                 LOG_INFO("target not halted !!");
5838                 return ERROR_OK;
5839         }
5840
5841         if ((target->rtos) && (target->rtos->type)
5842                         && (target->rtos->type->ps_command)) {
5843                 display = target->rtos->type->ps_command(target);
5844                 command_print(CMD_CTX, "%s", display);
5845                 free(display);
5846                 return ERROR_OK;
5847         } else {
5848                 LOG_INFO("failed");
5849                 return ERROR_TARGET_FAILURE;
5850         }
5851 }
5852
5853 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5854 {
5855         if (text != NULL)
5856                 command_print_sameline(cmd_ctx, "%s", text);
5857         for (int i = 0; i < size; i++)
5858                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5859         command_print(cmd_ctx, " ");
5860 }
5861
5862 COMMAND_HANDLER(handle_test_mem_access_command)
5863 {
5864         struct target *target = get_current_target(CMD_CTX);
5865         uint32_t test_size;
5866         int retval = ERROR_OK;
5867
5868         if (target->state != TARGET_HALTED) {
5869                 LOG_INFO("target not halted !!");
5870                 return ERROR_FAIL;
5871         }
5872
5873         if (CMD_ARGC != 1)
5874                 return ERROR_COMMAND_SYNTAX_ERROR;
5875
5876         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5877
5878         /* Test reads */
5879         size_t num_bytes = test_size + 4;
5880
5881         struct working_area *wa = NULL;
5882         retval = target_alloc_working_area(target, num_bytes, &wa);
5883         if (retval != ERROR_OK) {
5884                 LOG_ERROR("Not enough working area");
5885                 return ERROR_FAIL;
5886         }
5887
5888         uint8_t *test_pattern = malloc(num_bytes);
5889
5890         for (size_t i = 0; i < num_bytes; i++)
5891                 test_pattern[i] = rand();
5892
5893         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5894         if (retval != ERROR_OK) {
5895                 LOG_ERROR("Test pattern write failed");
5896                 goto out;
5897         }
5898
5899         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5900                 for (int size = 1; size <= 4; size *= 2) {
5901                         for (int offset = 0; offset < 4; offset++) {
5902                                 uint32_t count = test_size / size;
5903                                 size_t host_bufsiz = (count + 2) * size + host_offset;
5904                                 uint8_t *read_ref = malloc(host_bufsiz);
5905                                 uint8_t *read_buf = malloc(host_bufsiz);
5906
5907                                 for (size_t i = 0; i < host_bufsiz; i++) {
5908                                         read_ref[i] = rand();
5909                                         read_buf[i] = read_ref[i];
5910                                 }
5911                                 command_print_sameline(CMD_CTX,
5912                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
5913                                                 size, offset, host_offset ? "un" : "");
5914
5915                                 struct duration bench;
5916                                 duration_start(&bench);
5917
5918                                 retval = target_read_memory(target, wa->address + offset, size, count,
5919                                                 read_buf + size + host_offset);
5920
5921                                 duration_measure(&bench);
5922
5923                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5924                                         command_print(CMD_CTX, "Unsupported alignment");
5925                                         goto next;
5926                                 } else if (retval != ERROR_OK) {
5927                                         command_print(CMD_CTX, "Memory read failed");
5928                                         goto next;
5929                                 }
5930
5931                                 /* replay on host */
5932                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
5933
5934                                 /* check result */
5935                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
5936                                 if (result == 0) {
5937                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5938                                                         duration_elapsed(&bench),
5939                                                         duration_kbps(&bench, count * size));
5940                                 } else {
5941                                         command_print(CMD_CTX, "Compare failed");
5942                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
5943                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
5944                                 }
5945 next:
5946                                 free(read_ref);
5947                                 free(read_buf);
5948                         }
5949                 }
5950         }
5951
5952 out:
5953         free(test_pattern);
5954
5955         if (wa != NULL)
5956                 target_free_working_area(target, wa);
5957
5958         /* Test writes */
5959         num_bytes = test_size + 4 + 4 + 4;
5960
5961         retval = target_alloc_working_area(target, num_bytes, &wa);
5962         if (retval != ERROR_OK) {
5963                 LOG_ERROR("Not enough working area");
5964                 return ERROR_FAIL;
5965         }
5966
5967         test_pattern = malloc(num_bytes);
5968
5969         for (size_t i = 0; i < num_bytes; i++)
5970                 test_pattern[i] = rand();
5971
5972         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5973                 for (int size = 1; size <= 4; size *= 2) {
5974                         for (int offset = 0; offset < 4; offset++) {
5975                                 uint32_t count = test_size / size;
5976                                 size_t host_bufsiz = count * size + host_offset;
5977                                 uint8_t *read_ref = malloc(num_bytes);
5978                                 uint8_t *read_buf = malloc(num_bytes);
5979                                 uint8_t *write_buf = malloc(host_bufsiz);
5980
5981                                 for (size_t i = 0; i < host_bufsiz; i++)
5982                                         write_buf[i] = rand();
5983                                 command_print_sameline(CMD_CTX,
5984                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
5985                                                 size, offset, host_offset ? "un" : "");
5986
5987                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5988                                 if (retval != ERROR_OK) {
5989                                         command_print(CMD_CTX, "Test pattern write failed");
5990                                         goto nextw;
5991                                 }
5992
5993                                 /* replay on host */
5994                                 memcpy(read_ref, test_pattern, num_bytes);
5995                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
5996
5997                                 struct duration bench;
5998                                 duration_start(&bench);
5999
6000                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
6001                                                 write_buf + host_offset);
6002
6003                                 duration_measure(&bench);
6004
6005                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6006                                         command_print(CMD_CTX, "Unsupported alignment");
6007                                         goto nextw;
6008                                 } else if (retval != ERROR_OK) {
6009                                         command_print(CMD_CTX, "Memory write failed");
6010                                         goto nextw;
6011                                 }
6012
6013                                 /* read back */
6014                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6015                                 if (retval != ERROR_OK) {
6016                                         command_print(CMD_CTX, "Test pattern write failed");
6017                                         goto nextw;
6018                                 }
6019
6020                                 /* check result */
6021                                 int result = memcmp(read_ref, read_buf, num_bytes);
6022                                 if (result == 0) {
6023                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6024                                                         duration_elapsed(&bench),
6025                                                         duration_kbps(&bench, count * size));
6026                                 } else {
6027                                         command_print(CMD_CTX, "Compare failed");
6028                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6029                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6030                                 }
6031 nextw:
6032                                 free(read_ref);
6033                                 free(read_buf);
6034                         }
6035                 }
6036         }
6037
6038         free(test_pattern);
6039
6040         if (wa != NULL)
6041                 target_free_working_area(target, wa);
6042         return retval;
6043 }
6044
6045 static const struct command_registration target_exec_command_handlers[] = {
6046         {
6047                 .name = "fast_load_image",
6048                 .handler = handle_fast_load_image_command,
6049                 .mode = COMMAND_ANY,
6050                 .help = "Load image into server memory for later use by "
6051                         "fast_load; primarily for profiling",
6052                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6053                         "[min_address [max_length]]",
6054         },
6055         {
6056                 .name = "fast_load",
6057                 .handler = handle_fast_load_command,
6058                 .mode = COMMAND_EXEC,
6059                 .help = "loads active fast load image to current target "
6060                         "- mainly for profiling purposes",
6061                 .usage = "",
6062         },
6063         {
6064                 .name = "profile",
6065                 .handler = handle_profile_command,
6066                 .mode = COMMAND_EXEC,
6067                 .usage = "seconds filename [start end]",
6068                 .help = "profiling samples the CPU PC",
6069         },
6070         /** @todo don't register virt2phys() unless target supports it */
6071         {
6072                 .name = "virt2phys",
6073                 .handler = handle_virt2phys_command,
6074                 .mode = COMMAND_ANY,
6075                 .help = "translate a virtual address into a physical address",
6076                 .usage = "virtual_address",
6077         },
6078         {
6079                 .name = "reg",
6080                 .handler = handle_reg_command,
6081                 .mode = COMMAND_EXEC,
6082                 .help = "display (reread from target with \"force\") or set a register; "
6083                         "with no arguments, displays all registers and their values",
6084                 .usage = "[(register_number|register_name) [(value|'force')]]",
6085         },
6086         {
6087                 .name = "poll",
6088                 .handler = handle_poll_command,
6089                 .mode = COMMAND_EXEC,
6090                 .help = "poll target state; or reconfigure background polling",
6091                 .usage = "['on'|'off']",
6092         },
6093         {
6094                 .name = "wait_halt",
6095                 .handler = handle_wait_halt_command,
6096                 .mode = COMMAND_EXEC,
6097                 .help = "wait up to the specified number of milliseconds "
6098                         "(default 5000) for a previously requested halt",
6099                 .usage = "[milliseconds]",
6100         },
6101         {
6102                 .name = "halt",
6103                 .handler = handle_halt_command,
6104                 .mode = COMMAND_EXEC,
6105                 .help = "request target to halt, then wait up to the specified"
6106                         "number of milliseconds (default 5000) for it to complete",
6107                 .usage = "[milliseconds]",
6108         },
6109         {
6110                 .name = "resume",
6111                 .handler = handle_resume_command,
6112                 .mode = COMMAND_EXEC,
6113                 .help = "resume target execution from current PC or address",
6114                 .usage = "[address]",
6115         },
6116         {
6117                 .name = "reset",
6118                 .handler = handle_reset_command,
6119                 .mode = COMMAND_EXEC,
6120                 .usage = "[run|halt|init]",
6121                 .help = "Reset all targets into the specified mode."
6122                         "Default reset mode is run, if not given.",
6123         },
6124         {
6125                 .name = "soft_reset_halt",
6126                 .handler = handle_soft_reset_halt_command,
6127                 .mode = COMMAND_EXEC,
6128                 .usage = "",
6129                 .help = "halt the target and do a soft reset",
6130         },
6131         {
6132                 .name = "step",
6133                 .handler = handle_step_command,
6134                 .mode = COMMAND_EXEC,
6135                 .help = "step one instruction from current PC or address",
6136                 .usage = "[address]",
6137         },
6138         {
6139                 .name = "mdw",
6140                 .handler = handle_md_command,
6141                 .mode = COMMAND_EXEC,
6142                 .help = "display memory words",
6143                 .usage = "['phys'] address [count]",
6144         },
6145         {
6146                 .name = "mdh",
6147                 .handler = handle_md_command,
6148                 .mode = COMMAND_EXEC,
6149                 .help = "display memory half-words",
6150                 .usage = "['phys'] address [count]",
6151         },
6152         {
6153                 .name = "mdb",
6154                 .handler = handle_md_command,
6155                 .mode = COMMAND_EXEC,
6156                 .help = "display memory bytes",
6157                 .usage = "['phys'] address [count]",
6158         },
6159         {
6160                 .name = "mww",
6161                 .handler = handle_mw_command,
6162                 .mode = COMMAND_EXEC,
6163                 .help = "write memory word",
6164                 .usage = "['phys'] address value [count]",
6165         },
6166         {
6167                 .name = "mwh",
6168                 .handler = handle_mw_command,
6169                 .mode = COMMAND_EXEC,
6170                 .help = "write memory half-word",
6171                 .usage = "['phys'] address value [count]",
6172         },
6173         {
6174                 .name = "mwb",
6175                 .handler = handle_mw_command,
6176                 .mode = COMMAND_EXEC,
6177                 .help = "write memory byte",
6178                 .usage = "['phys'] address value [count]",
6179         },
6180         {
6181                 .name = "bp",
6182                 .handler = handle_bp_command,
6183                 .mode = COMMAND_EXEC,
6184                 .help = "list or set hardware or software breakpoint",
6185                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6186         },
6187         {
6188                 .name = "rbp",
6189                 .handler = handle_rbp_command,
6190                 .mode = COMMAND_EXEC,
6191                 .help = "remove breakpoint",
6192                 .usage = "address",
6193         },
6194         {
6195                 .name = "wp",
6196                 .handler = handle_wp_command,
6197                 .mode = COMMAND_EXEC,
6198                 .help = "list (no params) or create watchpoints",
6199                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6200         },
6201         {
6202                 .name = "rwp",
6203                 .handler = handle_rwp_command,
6204                 .mode = COMMAND_EXEC,
6205                 .help = "remove watchpoint",
6206                 .usage = "address",
6207         },
6208         {
6209                 .name = "load_image",
6210                 .handler = handle_load_image_command,
6211                 .mode = COMMAND_EXEC,
6212                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6213                         "[min_address] [max_length]",
6214         },
6215         {
6216                 .name = "dump_image",
6217                 .handler = handle_dump_image_command,
6218                 .mode = COMMAND_EXEC,
6219                 .usage = "filename address size",
6220         },
6221         {
6222                 .name = "verify_image",
6223                 .handler = handle_verify_image_command,
6224                 .mode = COMMAND_EXEC,
6225                 .usage = "filename [offset [type]]",
6226         },
6227         {
6228                 .name = "test_image",
6229                 .handler = handle_test_image_command,
6230                 .mode = COMMAND_EXEC,
6231                 .usage = "filename [offset [type]]",
6232         },
6233         {
6234                 .name = "mem2array",
6235                 .mode = COMMAND_EXEC,
6236                 .jim_handler = jim_mem2array,
6237                 .help = "read 8/16/32 bit memory and return as a TCL array "
6238                         "for script processing",
6239                 .usage = "arrayname bitwidth address count",
6240         },
6241         {
6242                 .name = "array2mem",
6243                 .mode = COMMAND_EXEC,
6244                 .jim_handler = jim_array2mem,
6245                 .help = "convert a TCL array to memory locations "
6246                         "and write the 8/16/32 bit values",
6247                 .usage = "arrayname bitwidth address count",
6248         },
6249         {
6250                 .name = "reset_nag",
6251                 .handler = handle_target_reset_nag,
6252                 .mode = COMMAND_ANY,
6253                 .help = "Nag after each reset about options that could have been "
6254                                 "enabled to improve performance. ",
6255                 .usage = "['enable'|'disable']",
6256         },
6257         {
6258                 .name = "ps",
6259                 .handler = handle_ps_command,
6260                 .mode = COMMAND_EXEC,
6261                 .help = "list all tasks ",
6262                 .usage = " ",
6263         },
6264         {
6265                 .name = "test_mem_access",
6266                 .handler = handle_test_mem_access_command,
6267                 .mode = COMMAND_EXEC,
6268                 .help = "Test the target's memory access functions",
6269                 .usage = "size",
6270         },
6271
6272         COMMAND_REGISTRATION_DONE
6273 };
6274 static int target_register_user_commands(struct command_context *cmd_ctx)
6275 {
6276         int retval = ERROR_OK;
6277         retval = target_request_register_commands(cmd_ctx);
6278         if (retval != ERROR_OK)
6279                 return retval;
6280
6281         retval = trace_register_commands(cmd_ctx);
6282         if (retval != ERROR_OK)
6283                 return retval;
6284
6285
6286         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6287 }