]> git.sur5r.net Git - openocd/blob - src/target/target.c
wait up to 1 second for halted state upon reset init/halt.
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                      *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   This program is free software; you can redistribute it and/or modify  *
9  *   it under the terms of the GNU General Public License as published by  *
10  *   the Free Software Foundation; either version 2 of the License, or     *
11  *   (at your option) any later version.                                   *
12  *                                                                         *
13  *   This program is distributed in the hope that it will be useful,       *
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
16  *   GNU General Public License for more details.                          *
17  *                                                                         *
18  *   You should have received a copy of the GNU General Public License     *
19  *   along with this program; if not, write to the                         *
20  *   Free Software Foundation, Inc.,                                       *
21  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
22  ***************************************************************************/
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "replacements.h"
28 #include "target.h"
29 #include "target_request.h"
30
31 #include "log.h"
32 #include "configuration.h"
33 #include "binarybuffer.h"
34 #include "jtag.h"
35
36 #include <string.h>
37 #include <stdlib.h>
38 #include <inttypes.h>
39
40 #include <sys/types.h>
41 #include <sys/stat.h>
42 #include <unistd.h>
43 #include <errno.h>
44
45 #include <sys/time.h>
46 #include <time.h>
47
48 #include <time_support.h>
49
50 #include <fileio.h>
51 #include <image.h>
52
53 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
54
55 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57
58 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59
60 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
79 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
80 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
81
82
83 /* targets */
84 extern target_type_t arm7tdmi_target;
85 extern target_type_t arm720t_target;
86 extern target_type_t arm9tdmi_target;
87 extern target_type_t arm920t_target;
88 extern target_type_t arm966e_target;
89 extern target_type_t arm926ejs_target;
90 extern target_type_t feroceon_target;
91 extern target_type_t xscale_target;
92 extern target_type_t cortexm3_target;
93 extern target_type_t arm11_target;
94 extern target_type_t mips_m4k_target;
95
96 target_type_t *target_types[] =
97 {
98         &arm7tdmi_target,
99         &arm9tdmi_target,
100         &arm920t_target,
101         &arm720t_target,
102         &arm966e_target,
103         &arm926ejs_target,
104         &feroceon_target,
105         &xscale_target,
106         &cortexm3_target,
107         &arm11_target,
108         &mips_m4k_target,
109         NULL,
110 };
111
112 target_t *targets = NULL;
113 target_event_callback_t *target_event_callbacks = NULL;
114 target_timer_callback_t *target_timer_callbacks = NULL;
115
116 char *target_state_strings[] =
117 {
118         "unknown",
119         "running",
120         "halted",
121         "reset",
122         "debug_running",
123 };
124
125 char *target_debug_reason_strings[] =
126 {
127         "debug request", "breakpoint", "watchpoint",
128         "watchpoint and breakpoint", "single step",
129         "target not halted", "undefined"
130 };
131
132 char *target_endianess_strings[] =
133 {
134         "big endian",
135         "little endian",
136 };
137
138 static int target_continous_poll = 1;
139
140 /* read a u32 from a buffer in target memory endianness */
141 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
142 {
143         if (target->endianness == TARGET_LITTLE_ENDIAN)
144                 return le_to_h_u32(buffer);
145         else
146                 return be_to_h_u32(buffer);
147 }
148
149 /* read a u16 from a buffer in target memory endianness */
150 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
151 {
152         if (target->endianness == TARGET_LITTLE_ENDIAN)
153                 return le_to_h_u16(buffer);
154         else
155                 return be_to_h_u16(buffer);
156 }
157
158 /* write a u32 to a buffer in target memory endianness */
159 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
160 {
161         if (target->endianness == TARGET_LITTLE_ENDIAN)
162                 h_u32_to_le(buffer, value);
163         else
164                 h_u32_to_be(buffer, value);
165 }
166
167 /* write a u16 to a buffer in target memory endianness */
168 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
169 {
170         if (target->endianness == TARGET_LITTLE_ENDIAN)
171                 h_u16_to_le(buffer, value);
172         else
173                 h_u16_to_be(buffer, value);
174 }
175
176 /* returns a pointer to the n-th configured target */
177 target_t* get_target_by_num(int num)
178 {
179         target_t *target = targets;
180         int i = 0;
181
182         while (target)
183         {
184                 if (num == i)
185                         return target;
186                 target = target->next;
187                 i++;
188         }
189
190         return NULL;
191 }
192
193 int get_num_by_target(target_t *query_target)
194 {
195         target_t *target = targets;
196         int i = 0;
197
198         while (target)
199         {
200                 if (target == query_target)
201                         return i;
202                 target = target->next;
203                 i++;
204         }
205
206         return -1;
207 }
208
209 target_t* get_current_target(command_context_t *cmd_ctx)
210 {
211         target_t *target = get_target_by_num(cmd_ctx->current_target);
212
213         if (target == NULL)
214         {
215                 LOG_ERROR("BUG: current_target out of bounds");
216                 exit(-1);
217         }
218
219         return target;
220 }
221
222
223 int target_poll(struct target_s *target)
224 {
225         /* We can't poll until after examine */
226         if (!target->type->examined)
227         {
228                 /* Fail silently lest we pollute the log */
229                 return ERROR_FAIL;
230         }
231         return target->type->poll(target);
232 }
233
234 int target_halt(struct target_s *target)
235 {
236         /* We can't poll until after examine */
237         if (!target->type->examined)
238         {
239                 LOG_ERROR("Target not examined yet");
240                 return ERROR_FAIL;
241         }
242         return target->type->halt(target);
243 }
244
245 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
246 {
247         int retval;
248
249         /* We can't poll until after examine */
250         if (!target->type->examined)
251         {
252                 LOG_ERROR("Target not examined yet");
253                 return ERROR_FAIL;
254         }
255
256         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
257          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
258          * the application.
259          */
260         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
261                 return retval;
262
263         return retval;
264 }
265
266 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
267 {
268         int retval = ERROR_OK;
269         target_t *target;
270
271         target = targets;
272         while (target)
273         {
274                 target_invoke_script(cmd_ctx, target, "pre_reset");
275                 target = target->next;
276         }
277
278         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
279                 return retval;
280
281         keep_alive(); /* we might be running on a very slow JTAG clk */
282
283         /* First time this is executed after launching OpenOCD, it will read out
284          * the type of CPU, etc. and init Embedded ICE registers in host
285          * memory.
286          *
287          * It will also set up ICE registers in the target.
288          *
289          * However, if we assert TRST later, we need to set up the registers again.
290          *
291          * For the "reset halt/init" case we must only set up the registers here.
292          */
293         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
294                 return retval;
295
296         keep_alive(); /* we might be running on a very slow JTAG clk */
297
298         target = targets;
299         while (target)
300         {
301                 /* we have no idea what state the target is in, so we
302                  * have to drop working areas
303                  */
304                 target_free_all_working_areas_restore(target, 0);
305                 target->reset_halt=((reset_mode==RESET_HALT)||(reset_mode==RESET_INIT));
306                 target->type->assert_reset(target);
307                 target = target->next;
308         }
309         if ((retval = jtag_execute_queue()) != ERROR_OK)
310         {
311                 LOG_WARNING("JTAG communication failed asserting reset.");
312                 retval = ERROR_OK;
313         }
314
315         /* request target halt if necessary, and schedule further action */
316         target = targets;
317         while (target)
318         {
319                 if (reset_mode!=RESET_RUN)
320                 {
321                         if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
322                                 target_halt(target);
323                 }
324                 target = target->next;
325         }
326
327         if ((retval = jtag_execute_queue()) != ERROR_OK)
328         {
329                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
330                 retval = ERROR_OK;
331         }
332
333         target = targets;
334         while (target)
335         {
336                 target->type->deassert_reset(target);
337                 /* We can fail to bring the target into the halted state  */
338                 if (target->reset_halt)
339                 {
340                         /* wait up to 1 second for halt. */
341                         target_wait_state(target, TARGET_HALTED, 1000);
342                         if (target->state != TARGET_HALTED)
343                         {
344                                 LOG_WARNING("Failed to reset target into halted mode - issuing halt");
345                                 target->type->halt(target);
346                         }
347                 }
348
349                 target = target->next;
350         }
351
352         if ((retval = jtag_execute_queue()) != ERROR_OK)
353         {
354                 LOG_WARNING("JTAG communication failed while deasserting reset.");
355                 retval = ERROR_OK;
356         }
357
358         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
359         {
360                 /* If TRST was asserted we need to set up registers again */
361                 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
362                         return retval;
363         }
364
365         LOG_DEBUG("Waiting for halted stated as appropriate");
366
367         if ((reset_mode == RESET_HALT) || (reset_mode == RESET_INIT))
368         {
369                 target = targets;
370                 while (target)
371                 {
372                         /* Wait for reset to complete, maximum 5 seconds. */
373                         if (((retval=target_wait_state(target, TARGET_HALTED, 5000)))==ERROR_OK)
374                         {
375                                 if (reset_mode == RESET_INIT)
376                                         target_invoke_script(cmd_ctx, target, "post_reset");
377                         }
378                         target = target->next;
379                 }
380         }
381
382         /* We want any events to be processed before the prompt */
383         target_call_timer_callbacks_now();
384
385         return retval;
386 }
387
388 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
389 {
390         *physical = virtual;
391         return ERROR_OK;
392 }
393
394 static int default_mmu(struct target_s *target, int *enabled)
395 {
396         *enabled = 0;
397         return ERROR_OK;
398 }
399
400 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
401 {
402         target->type->examined = 1;
403         return ERROR_OK;
404 }
405
406
407 /* Targets that correctly implement init+examine, i.e.
408  * no communication with target during init:
409  *
410  * XScale
411  */
412 int target_examine(struct command_context_s *cmd_ctx)
413 {
414         int retval = ERROR_OK;
415         target_t *target = targets;
416         while (target)
417         {
418                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
419                         return retval;
420                 target = target->next;
421         }
422         return retval;
423 }
424
425 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
426 {
427         if (!target->type->examined)
428         {
429                 LOG_ERROR("Target not examined yet");
430                 return ERROR_FAIL;
431         }
432         return target->type->write_memory_imp(target, address, size, count, buffer);
433 }
434
435 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
436 {
437         if (!target->type->examined)
438         {
439                 LOG_ERROR("Target not examined yet");
440                 return ERROR_FAIL;
441         }
442         return target->type->read_memory_imp(target, address, size, count, buffer);
443 }
444
445 static int target_soft_reset_halt_imp(struct target_s *target)
446 {
447         if (!target->type->examined)
448         {
449                 LOG_ERROR("Target not examined yet");
450                 return ERROR_FAIL;
451         }
452         return target->type->soft_reset_halt_imp(target);
453 }
454
455 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
456 {
457         if (!target->type->examined)
458         {
459                 LOG_ERROR("Target not examined yet");
460                 return ERROR_FAIL;
461         }
462         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
463 }
464
465 int target_init(struct command_context_s *cmd_ctx)
466 {
467         target_t *target = targets;
468
469         while (target)
470         {
471                 target->type->examined = 0;
472                 if (target->type->examine == NULL)
473                 {
474                         target->type->examine = default_examine;
475                 }
476
477                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
478                 {
479                         LOG_ERROR("target '%s' init failed", target->type->name);
480                         exit(-1);
481                 }
482
483                 /* Set up default functions if none are provided by target */
484                 if (target->type->virt2phys == NULL)
485                 {
486                         target->type->virt2phys = default_virt2phys;
487                 }
488                 target->type->virt2phys = default_virt2phys;
489                 /* a non-invasive way(in terms of patches) to add some code that
490                  * runs before the type->write/read_memory implementation
491                  */
492                 target->type->write_memory_imp = target->type->write_memory;
493                 target->type->write_memory = target_write_memory_imp;
494                 target->type->read_memory_imp = target->type->read_memory;
495                 target->type->read_memory = target_read_memory_imp;
496                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
497                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
498                 target->type->run_algorithm_imp = target->type->run_algorithm;
499                 target->type->run_algorithm = target_run_algorithm_imp;
500
501
502                 if (target->type->mmu == NULL)
503                 {
504                         target->type->mmu = default_mmu;
505                 }
506                 target = target->next;
507         }
508
509         if (targets)
510         {
511                 target_register_user_commands(cmd_ctx);
512                 target_register_timer_callback(handle_target, 100, 1, NULL);
513         }
514
515         return ERROR_OK;
516 }
517
518 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
519 {
520         target_event_callback_t **callbacks_p = &target_event_callbacks;
521
522         if (callback == NULL)
523         {
524                 return ERROR_INVALID_ARGUMENTS;
525         }
526
527         if (*callbacks_p)
528         {
529                 while ((*callbacks_p)->next)
530                         callbacks_p = &((*callbacks_p)->next);
531                 callbacks_p = &((*callbacks_p)->next);
532         }
533
534         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
535         (*callbacks_p)->callback = callback;
536         (*callbacks_p)->priv = priv;
537         (*callbacks_p)->next = NULL;
538
539         return ERROR_OK;
540 }
541
542 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
543 {
544         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
545         struct timeval now;
546
547         if (callback == NULL)
548         {
549                 return ERROR_INVALID_ARGUMENTS;
550         }
551
552         if (*callbacks_p)
553         {
554                 while ((*callbacks_p)->next)
555                         callbacks_p = &((*callbacks_p)->next);
556                 callbacks_p = &((*callbacks_p)->next);
557         }
558
559         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
560         (*callbacks_p)->callback = callback;
561         (*callbacks_p)->periodic = periodic;
562         (*callbacks_p)->time_ms = time_ms;
563
564         gettimeofday(&now, NULL);
565         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
566         time_ms -= (time_ms % 1000);
567         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
568         if ((*callbacks_p)->when.tv_usec > 1000000)
569         {
570                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
571                 (*callbacks_p)->when.tv_sec += 1;
572         }
573
574         (*callbacks_p)->priv = priv;
575         (*callbacks_p)->next = NULL;
576
577         return ERROR_OK;
578 }
579
580 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
581 {
582         target_event_callback_t **p = &target_event_callbacks;
583         target_event_callback_t *c = target_event_callbacks;
584
585         if (callback == NULL)
586         {
587                 return ERROR_INVALID_ARGUMENTS;
588         }
589
590         while (c)
591         {
592                 target_event_callback_t *next = c->next;
593                 if ((c->callback == callback) && (c->priv == priv))
594                 {
595                         *p = next;
596                         free(c);
597                         return ERROR_OK;
598                 }
599                 else
600                         p = &(c->next);
601                 c = next;
602         }
603
604         return ERROR_OK;
605 }
606
607 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
608 {
609         target_timer_callback_t **p = &target_timer_callbacks;
610         target_timer_callback_t *c = target_timer_callbacks;
611
612         if (callback == NULL)
613         {
614                 return ERROR_INVALID_ARGUMENTS;
615         }
616
617         while (c)
618         {
619                 target_timer_callback_t *next = c->next;
620                 if ((c->callback == callback) && (c->priv == priv))
621                 {
622                         *p = next;
623                         free(c);
624                         return ERROR_OK;
625                 }
626                 else
627                         p = &(c->next);
628                 c = next;
629         }
630
631         return ERROR_OK;
632 }
633
634 int target_call_event_callbacks(target_t *target, enum target_event event)
635 {
636         target_event_callback_t *callback = target_event_callbacks;
637         target_event_callback_t *next_callback;
638
639         LOG_DEBUG("target event %i", event);
640
641         while (callback)
642         {
643                 next_callback = callback->next;
644                 callback->callback(target, event, callback->priv);
645                 callback = next_callback;
646         }
647
648         return ERROR_OK;
649 }
650
651 static int target_call_timer_callbacks_check_time(int checktime)
652 {
653         target_timer_callback_t *callback = target_timer_callbacks;
654         target_timer_callback_t *next_callback;
655         struct timeval now;
656
657         keep_alive();
658
659         gettimeofday(&now, NULL);
660
661         while (callback)
662         {
663                 next_callback = callback->next;
664
665                 if ((!checktime&&callback->periodic)||
666                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
667                                                 || (now.tv_sec > callback->when.tv_sec)))
668                 {
669                         if(callback->callback != NULL)
670                         {
671                                 callback->callback(callback->priv);
672                                 if (callback->periodic)
673                                 {
674                                         int time_ms = callback->time_ms;
675                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
676                                         time_ms -= (time_ms % 1000);
677                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
678                                         if (callback->when.tv_usec > 1000000)
679                                         {
680                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
681                                                 callback->when.tv_sec += 1;
682                                         }
683                                 }
684                                 else
685                                         target_unregister_timer_callback(callback->callback, callback->priv);
686                         }
687                 }
688
689                 callback = next_callback;
690         }
691
692         return ERROR_OK;
693 }
694
695 int target_call_timer_callbacks()
696 {
697         return target_call_timer_callbacks_check_time(1);
698 }
699
700 /* invoke periodic callbacks immediately */
701 int target_call_timer_callbacks_now()
702 {
703         return target_call_timer_callbacks(0);
704 }
705
706 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
707 {
708         working_area_t *c = target->working_areas;
709         working_area_t *new_wa = NULL;
710
711         /* Reevaluate working area address based on MMU state*/
712         if (target->working_areas == NULL)
713         {
714                 int retval;
715                 int enabled;
716                 retval = target->type->mmu(target, &enabled);
717                 if (retval != ERROR_OK)
718                 {
719                         return retval;
720                 }
721                 if (enabled)
722                 {
723                         target->working_area = target->working_area_virt;
724                 }
725                 else
726                 {
727                         target->working_area = target->working_area_phys;
728                 }
729         }
730
731         /* only allocate multiples of 4 byte */
732         if (size % 4)
733         {
734                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
735                 size = CEIL(size, 4);
736         }
737
738         /* see if there's already a matching working area */
739         while (c)
740         {
741                 if ((c->free) && (c->size == size))
742                 {
743                         new_wa = c;
744                         break;
745                 }
746                 c = c->next;
747         }
748
749         /* if not, allocate a new one */
750         if (!new_wa)
751         {
752                 working_area_t **p = &target->working_areas;
753                 u32 first_free = target->working_area;
754                 u32 free_size = target->working_area_size;
755
756                 LOG_DEBUG("allocating new working area");
757
758                 c = target->working_areas;
759                 while (c)
760                 {
761                         first_free += c->size;
762                         free_size -= c->size;
763                         p = &c->next;
764                         c = c->next;
765                 }
766
767                 if (free_size < size)
768                 {
769                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
770                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
771                 }
772
773                 new_wa = malloc(sizeof(working_area_t));
774                 new_wa->next = NULL;
775                 new_wa->size = size;
776                 new_wa->address = first_free;
777
778                 if (target->backup_working_area)
779                 {
780                         new_wa->backup = malloc(new_wa->size);
781                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
782                 }
783                 else
784                 {
785                         new_wa->backup = NULL;
786                 }
787
788                 /* put new entry in list */
789                 *p = new_wa;
790         }
791
792         /* mark as used, and return the new (reused) area */
793         new_wa->free = 0;
794         *area = new_wa;
795
796         /* user pointer */
797         new_wa->user = area;
798
799         return ERROR_OK;
800 }
801
802 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
803 {
804         if (area->free)
805                 return ERROR_OK;
806
807         if (restore&&target->backup_working_area)
808                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
809
810         area->free = 1;
811
812         /* mark user pointer invalid */
813         *area->user = NULL;
814         area->user = NULL;
815
816         return ERROR_OK;
817 }
818
819 int target_free_working_area(struct target_s *target, working_area_t *area)
820 {
821         return target_free_working_area_restore(target, area, 1);
822 }
823
824 int target_free_all_working_areas_restore(struct target_s *target, int restore)
825 {
826         working_area_t *c = target->working_areas;
827
828         while (c)
829         {
830                 working_area_t *next = c->next;
831                 target_free_working_area_restore(target, c, restore);
832
833                 if (c->backup)
834                         free(c->backup);
835
836                 free(c);
837
838                 c = next;
839         }
840
841         target->working_areas = NULL;
842
843         return ERROR_OK;
844 }
845
846 int target_free_all_working_areas(struct target_s *target)
847 {
848         return target_free_all_working_areas_restore(target, 1);
849 }
850
851 int target_register_commands(struct command_context_s *cmd_ctx)
852 {
853         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
854         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
855         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
856         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
857         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
858
859
860         /* script procedures */
861         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing");
862         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values");
863         return ERROR_OK;
864 }
865
866 int target_arch_state(struct target_s *target)
867 {
868         int retval;
869         if (target==NULL)
870         {
871                 LOG_USER("No target has been configured");
872                 return ERROR_OK;
873         }
874
875         LOG_USER("target state: %s", target_state_strings[target->state]);
876
877         if (target->state!=TARGET_HALTED)
878                 return ERROR_OK;
879
880         retval=target->type->arch_state(target);
881         return retval;
882 }
883
884 /* Single aligned words are guaranteed to use 16 or 32 bit access
885  * mode respectively, otherwise data is handled as quickly as
886  * possible
887  */
888 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
889 {
890         int retval;
891         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
892
893         if (!target->type->examined)
894         {
895                 LOG_ERROR("Target not examined yet");
896                 return ERROR_FAIL;
897         }
898
899         if (address+size<address)
900         {
901                 /* GDB can request this when e.g. PC is 0xfffffffc*/
902                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
903                 return ERROR_FAIL;
904         }
905
906         if (((address % 2) == 0) && (size == 2))
907         {
908                 return target->type->write_memory(target, address, 2, 1, buffer);
909         }
910
911         /* handle unaligned head bytes */
912         if (address % 4)
913         {
914                 int unaligned = 4 - (address % 4);
915
916                 if (unaligned > size)
917                         unaligned = size;
918
919                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
920                         return retval;
921
922                 buffer += unaligned;
923                 address += unaligned;
924                 size -= unaligned;
925         }
926
927         /* handle aligned words */
928         if (size >= 4)
929         {
930                 int aligned = size - (size % 4);
931
932                 /* use bulk writes above a certain limit. This may have to be changed */
933                 if (aligned > 128)
934                 {
935                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
936                                 return retval;
937                 }
938                 else
939                 {
940                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
941                                 return retval;
942                 }
943
944                 buffer += aligned;
945                 address += aligned;
946                 size -= aligned;
947         }
948
949         /* handle tail writes of less than 4 bytes */
950         if (size > 0)
951         {
952                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
953                         return retval;
954         }
955
956         return ERROR_OK;
957 }
958
959
960 /* Single aligned words are guaranteed to use 16 or 32 bit access
961  * mode respectively, otherwise data is handled as quickly as
962  * possible
963  */
964 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
965 {
966         int retval;
967         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
968
969         if (!target->type->examined)
970         {
971                 LOG_ERROR("Target not examined yet");
972                 return ERROR_FAIL;
973         }
974
975         if (address+size<address)
976         {
977                 /* GDB can request this when e.g. PC is 0xfffffffc*/
978                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
979                 return ERROR_FAIL;
980         }
981
982         if (((address % 2) == 0) && (size == 2))
983         {
984                 return target->type->read_memory(target, address, 2, 1, buffer);
985         }
986
987         /* handle unaligned head bytes */
988         if (address % 4)
989         {
990                 int unaligned = 4 - (address % 4);
991
992                 if (unaligned > size)
993                         unaligned = size;
994
995                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
996                         return retval;
997
998                 buffer += unaligned;
999                 address += unaligned;
1000                 size -= unaligned;
1001         }
1002
1003         /* handle aligned words */
1004         if (size >= 4)
1005         {
1006                 int aligned = size - (size % 4);
1007
1008                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1009                         return retval;
1010
1011                 buffer += aligned;
1012                 address += aligned;
1013                 size -= aligned;
1014         }
1015
1016         /* handle tail writes of less than 4 bytes */
1017         if (size > 0)
1018         {
1019                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1020                         return retval;
1021         }
1022
1023         return ERROR_OK;
1024 }
1025
1026 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1027 {
1028         u8 *buffer;
1029         int retval;
1030         int i;
1031         u32 checksum = 0;
1032         if (!target->type->examined)
1033         {
1034                 LOG_ERROR("Target not examined yet");
1035                 return ERROR_FAIL;
1036         }
1037
1038         if ((retval = target->type->checksum_memory(target, address,
1039                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1040         {
1041                 buffer = malloc(size);
1042                 if (buffer == NULL)
1043                 {
1044                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1045                         return ERROR_INVALID_ARGUMENTS;
1046                 }
1047                 retval = target_read_buffer(target, address, size, buffer);
1048                 if (retval != ERROR_OK)
1049                 {
1050                         free(buffer);
1051                         return retval;
1052                 }
1053
1054                 /* convert to target endianess */
1055                 for (i = 0; i < (size/sizeof(u32)); i++)
1056                 {
1057                         u32 target_data;
1058                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1059                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1060                 }
1061
1062                 retval = image_calculate_checksum( buffer, size, &checksum );
1063                 free(buffer);
1064         }
1065
1066         *crc = checksum;
1067
1068         return retval;
1069 }
1070
1071 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1072 {
1073         int retval;
1074         if (!target->type->examined)
1075         {
1076                 LOG_ERROR("Target not examined yet");
1077                 return ERROR_FAIL;
1078         }
1079
1080         if (target->type->blank_check_memory == 0)
1081                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1082
1083         retval = target->type->blank_check_memory(target, address, size, blank);
1084
1085         return retval;
1086 }
1087
1088 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1089 {
1090         u8 value_buf[4];
1091         if (!target->type->examined)
1092         {
1093                 LOG_ERROR("Target not examined yet");
1094                 return ERROR_FAIL;
1095         }
1096
1097         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1098
1099         if (retval == ERROR_OK)
1100         {
1101                 *value = target_buffer_get_u32(target, value_buf);
1102                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1103         }
1104         else
1105         {
1106                 *value = 0x0;
1107                 LOG_DEBUG("address: 0x%8.8x failed", address);
1108         }
1109
1110         return retval;
1111 }
1112
1113 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1114 {
1115         u8 value_buf[2];
1116         if (!target->type->examined)
1117         {
1118                 LOG_ERROR("Target not examined yet");
1119                 return ERROR_FAIL;
1120         }
1121
1122         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1123
1124         if (retval == ERROR_OK)
1125         {
1126                 *value = target_buffer_get_u16(target, value_buf);
1127                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1128         }
1129         else
1130         {
1131                 *value = 0x0;
1132                 LOG_DEBUG("address: 0x%8.8x failed", address);
1133         }
1134
1135         return retval;
1136 }
1137
1138 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1139 {
1140         int retval = target->type->read_memory(target, address, 1, 1, value);
1141         if (!target->type->examined)
1142         {
1143                 LOG_ERROR("Target not examined yet");
1144                 return ERROR_FAIL;
1145         }
1146
1147         if (retval == ERROR_OK)
1148         {
1149                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1150         }
1151         else
1152         {
1153                 *value = 0x0;
1154                 LOG_DEBUG("address: 0x%8.8x failed", address);
1155         }
1156
1157         return retval;
1158 }
1159
1160 int target_write_u32(struct target_s *target, u32 address, u32 value)
1161 {
1162         int retval;
1163         u8 value_buf[4];
1164         if (!target->type->examined)
1165         {
1166                 LOG_ERROR("Target not examined yet");
1167                 return ERROR_FAIL;
1168         }
1169
1170         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1171
1172         target_buffer_set_u32(target, value_buf, value);
1173         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1174         {
1175                 LOG_DEBUG("failed: %i", retval);
1176         }
1177
1178         return retval;
1179 }
1180
1181 int target_write_u16(struct target_s *target, u32 address, u16 value)
1182 {
1183         int retval;
1184         u8 value_buf[2];
1185         if (!target->type->examined)
1186         {
1187                 LOG_ERROR("Target not examined yet");
1188                 return ERROR_FAIL;
1189         }
1190
1191         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1192
1193         target_buffer_set_u16(target, value_buf, value);
1194         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1195         {
1196                 LOG_DEBUG("failed: %i", retval);
1197         }
1198
1199         return retval;
1200 }
1201
1202 int target_write_u8(struct target_s *target, u32 address, u8 value)
1203 {
1204         int retval;
1205         if (!target->type->examined)
1206         {
1207                 LOG_ERROR("Target not examined yet");
1208                 return ERROR_FAIL;
1209         }
1210
1211         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1212
1213         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1214         {
1215                 LOG_DEBUG("failed: %i", retval);
1216         }
1217
1218         return retval;
1219 }
1220
1221 int target_register_user_commands(struct command_context_s *cmd_ctx)
1222 {
1223         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1224         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1225         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1226         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1227         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1228         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1229         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init]");
1230         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1231
1232         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1233         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1234         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1235
1236         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1237         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1238         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1239
1240         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1241         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1242         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1243         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1244
1245         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1246         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1247         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1248
1249         target_request_register_commands(cmd_ctx);
1250         trace_register_commands(cmd_ctx);
1251
1252         return ERROR_OK;
1253 }
1254
1255 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1256 {
1257         target_t *target = targets;
1258         int count = 0;
1259
1260         if (argc == 1)
1261         {
1262                 int num = strtoul(args[0], NULL, 0);
1263
1264                 while (target)
1265                 {
1266                         count++;
1267                         target = target->next;
1268                 }
1269
1270                 if (num < count)
1271                         cmd_ctx->current_target = num;
1272                 else
1273                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1274
1275                 return ERROR_OK;
1276         }
1277
1278         while (target)
1279         {
1280                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1281                 target = target->next;
1282         }
1283
1284         return ERROR_OK;
1285 }
1286
1287 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1288 {
1289         int i;
1290         int found = 0;
1291
1292         if (argc < 3)
1293         {
1294                 return ERROR_COMMAND_SYNTAX_ERROR;
1295         }
1296
1297         /* search for the specified target */
1298         if (args[0] && (args[0][0] != 0))
1299         {
1300                 for (i = 0; target_types[i]; i++)
1301                 {
1302                         if (strcmp(args[0], target_types[i]->name) == 0)
1303                         {
1304                                 target_t **last_target_p = &targets;
1305
1306                                 /* register target specific commands */
1307                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1308                                 {
1309                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1310                                         exit(-1);
1311                                 }
1312
1313                                 if (*last_target_p)
1314                                 {
1315                                         while ((*last_target_p)->next)
1316                                                 last_target_p = &((*last_target_p)->next);
1317                                         last_target_p = &((*last_target_p)->next);
1318                                 }
1319
1320                                 *last_target_p = malloc(sizeof(target_t));
1321
1322                                 /* allocate memory for each unique target type */
1323                                 (*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t));
1324                                 *((*last_target_p)->type) = *target_types[i];
1325
1326                                 if (strcmp(args[1], "big") == 0)
1327                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1328                                 else if (strcmp(args[1], "little") == 0)
1329                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1330                                 else
1331                                 {
1332                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1333                                         return ERROR_COMMAND_SYNTAX_ERROR;
1334                                 }
1335
1336                                 if (strcmp(args[2], "reset_halt") == 0)
1337                                 {
1338                                         LOG_WARNING("reset_mode argument is obsolete.");
1339                                         return ERROR_COMMAND_SYNTAX_ERROR;
1340                                 }
1341                                 else if (strcmp(args[2], "reset_run") == 0)
1342                                 {
1343                                         LOG_WARNING("reset_mode argument is obsolete.");
1344                                         return ERROR_COMMAND_SYNTAX_ERROR;
1345                                 }
1346                                 else if (strcmp(args[2], "reset_init") == 0)
1347                                 {
1348                                         LOG_WARNING("reset_mode argument is obsolete.");
1349                                         return ERROR_COMMAND_SYNTAX_ERROR;
1350                                 }
1351                                 else if (strcmp(args[2], "run_and_halt") == 0)
1352                                 {
1353                                         LOG_WARNING("reset_mode argument is obsolete.");
1354                                         return ERROR_COMMAND_SYNTAX_ERROR;
1355                                 }
1356                                 else if (strcmp(args[2], "run_and_init") == 0)
1357                                 {
1358                                         LOG_WARNING("reset_mode argument is obsolete.");
1359                                         return ERROR_COMMAND_SYNTAX_ERROR;
1360                                 }
1361                                 else
1362                                 {
1363                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1364                                         args--;
1365                                         argc++;
1366                                 }
1367
1368                                 (*last_target_p)->working_area = 0x0;
1369                                 (*last_target_p)->working_area_size = 0x0;
1370                                 (*last_target_p)->working_areas = NULL;
1371                                 (*last_target_p)->backup_working_area = 0;
1372
1373                                 (*last_target_p)->state = TARGET_UNKNOWN;
1374                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1375                                 (*last_target_p)->reg_cache = NULL;
1376                                 (*last_target_p)->breakpoints = NULL;
1377                                 (*last_target_p)->watchpoints = NULL;
1378                                 (*last_target_p)->next = NULL;
1379                                 (*last_target_p)->arch_info = NULL;
1380
1381                                 /* initialize trace information */
1382                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1383                                 (*last_target_p)->trace_info->num_trace_points = 0;
1384                                 (*last_target_p)->trace_info->trace_points_size = 0;
1385                                 (*last_target_p)->trace_info->trace_points = NULL;
1386                                 (*last_target_p)->trace_info->trace_history_size = 0;
1387                                 (*last_target_p)->trace_info->trace_history = NULL;
1388                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1389                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1390
1391                                 (*last_target_p)->dbgmsg = NULL;
1392                                 (*last_target_p)->dbg_msg_enabled = 0;
1393
1394                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1395
1396                                 found = 1;
1397                                 break;
1398                         }
1399                 }
1400         }
1401
1402         /* no matching target found */
1403         if (!found)
1404         {
1405                 LOG_ERROR("target '%s' not found", args[0]);
1406                 return ERROR_COMMAND_SYNTAX_ERROR;
1407         }
1408
1409         return ERROR_OK;
1410 }
1411
1412 int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name)
1413 {
1414         return command_run_linef(cmd_ctx, " if {[catch {info body target_%d_%s} t]==0} {target_%d_%s}",
1415                         get_num_by_target(target), name,
1416                         get_num_by_target(target), name);
1417 }
1418
1419 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1420 {
1421         target_t *target = NULL;
1422
1423         if ((argc < 4) || (argc > 5))
1424         {
1425                 return ERROR_COMMAND_SYNTAX_ERROR;
1426         }
1427
1428         target = get_target_by_num(strtoul(args[0], NULL, 0));
1429         if (!target)
1430         {
1431                 return ERROR_COMMAND_SYNTAX_ERROR;
1432         }
1433         target_free_all_working_areas(target);
1434
1435         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1436         if (argc == 5)
1437         {
1438                 target->working_area_virt = strtoul(args[4], NULL, 0);
1439         }
1440         target->working_area_size = strtoul(args[2], NULL, 0);
1441
1442         if (strcmp(args[3], "backup") == 0)
1443         {
1444                 target->backup_working_area = 1;
1445         }
1446         else if (strcmp(args[3], "nobackup") == 0)
1447         {
1448                 target->backup_working_area = 0;
1449         }
1450         else
1451         {
1452                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1453                 return ERROR_COMMAND_SYNTAX_ERROR;
1454         }
1455
1456         return ERROR_OK;
1457 }
1458
1459
1460 /* process target state changes */
1461 int handle_target(void *priv)
1462 {
1463         target_t *target = targets;
1464
1465         while (target)
1466         {
1467                 if (target_continous_poll)
1468                 {
1469                         /* polling may fail silently until the target has been examined */
1470                         target_poll(target);
1471                 }
1472
1473                 target = target->next;
1474         }
1475
1476         return ERROR_OK;
1477 }
1478
1479 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1480 {
1481         target_t *target;
1482         reg_t *reg = NULL;
1483         int count = 0;
1484         char *value;
1485
1486         LOG_DEBUG("-");
1487
1488         target = get_current_target(cmd_ctx);
1489
1490         /* list all available registers for the current target */
1491         if (argc == 0)
1492         {
1493                 reg_cache_t *cache = target->reg_cache;
1494
1495                 count = 0;
1496                 while(cache)
1497                 {
1498                         int i;
1499                         for (i = 0; i < cache->num_regs; i++)
1500                         {
1501                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1502                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1503                                 free(value);
1504                         }
1505                         cache = cache->next;
1506                 }
1507
1508                 return ERROR_OK;
1509         }
1510
1511         /* access a single register by its ordinal number */
1512         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1513         {
1514                 int num = strtoul(args[0], NULL, 0);
1515                 reg_cache_t *cache = target->reg_cache;
1516
1517                 count = 0;
1518                 while(cache)
1519                 {
1520                         int i;
1521                         for (i = 0; i < cache->num_regs; i++)
1522                         {
1523                                 if (count++ == num)
1524                                 {
1525                                         reg = &cache->reg_list[i];
1526                                         break;
1527                                 }
1528                         }
1529                         if (reg)
1530                                 break;
1531                         cache = cache->next;
1532                 }
1533
1534                 if (!reg)
1535                 {
1536                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1537                         return ERROR_OK;
1538                 }
1539         } else /* access a single register by its name */
1540         {
1541                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1542
1543                 if (!reg)
1544                 {
1545                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1546                         return ERROR_OK;
1547                 }
1548         }
1549
1550         /* display a register */
1551         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1552         {
1553                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1554                         reg->valid = 0;
1555
1556                 if (reg->valid == 0)
1557                 {
1558                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1559                         if (arch_type == NULL)
1560                         {
1561                                 LOG_ERROR("BUG: encountered unregistered arch type");
1562                                 return ERROR_OK;
1563                         }
1564                         arch_type->get(reg);
1565                 }
1566                 value = buf_to_str(reg->value, reg->size, 16);
1567                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1568                 free(value);
1569                 return ERROR_OK;
1570         }
1571
1572         /* set register value */
1573         if (argc == 2)
1574         {
1575                 u8 *buf = malloc(CEIL(reg->size, 8));
1576                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1577
1578                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1579                 if (arch_type == NULL)
1580                 {
1581                         LOG_ERROR("BUG: encountered unregistered arch type");
1582                         return ERROR_OK;
1583                 }
1584
1585                 arch_type->set(reg, buf);
1586
1587                 value = buf_to_str(reg->value, reg->size, 16);
1588                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1589                 free(value);
1590
1591                 free(buf);
1592
1593                 return ERROR_OK;
1594         }
1595
1596         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1597
1598         return ERROR_OK;
1599 }
1600
1601
1602 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1603 {
1604         target_t *target = get_current_target(cmd_ctx);
1605
1606         if (argc == 0)
1607         {
1608                 target_poll(target);
1609                 target_arch_state(target);
1610         }
1611         else
1612         {
1613                 if (strcmp(args[0], "on") == 0)
1614                 {
1615                         target_continous_poll = 1;
1616                 }
1617                 else if (strcmp(args[0], "off") == 0)
1618                 {
1619                         target_continous_poll = 0;
1620                 }
1621                 else
1622                 {
1623                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1624                 }
1625         }
1626
1627
1628         return ERROR_OK;
1629 }
1630
1631 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1632 {
1633         int ms = 5000;
1634
1635         if (argc > 0)
1636         {
1637                 char *end;
1638
1639                 ms = strtoul(args[0], &end, 0) * 1000;
1640                 if (*end)
1641                 {
1642                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1643                         return ERROR_OK;
1644                 }
1645         }
1646         target_t *target = get_current_target(cmd_ctx);
1647
1648         return target_wait_state(target, TARGET_HALTED, ms);
1649 }
1650
1651 int target_wait_state(target_t *target, enum target_state state, int ms)
1652 {
1653         int retval;
1654         struct timeval timeout, now;
1655         int once=1;
1656         gettimeofday(&timeout, NULL);
1657         timeval_add_time(&timeout, 0, ms * 1000);
1658
1659         for (;;)
1660         {
1661                 if ((retval=target_poll(target))!=ERROR_OK)
1662                         return retval;
1663                 target_call_timer_callbacks_now();
1664                 if (target->state == state)
1665                 {
1666                         break;
1667                 }
1668                 if (once)
1669                 {
1670                         once=0;
1671                         LOG_USER("waiting for target %s...", target_state_strings[state]);
1672                 }
1673
1674                 gettimeofday(&now, NULL);
1675                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1676                 {
1677                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1678                         return ERROR_FAIL;
1679                 }
1680         }
1681
1682         return ERROR_OK;
1683 }
1684
1685 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1686 {
1687         int retval;
1688         target_t *target = get_current_target(cmd_ctx);
1689
1690         LOG_DEBUG("-");
1691
1692         if ((retval = target_halt(target)) != ERROR_OK)
1693         {
1694                 return retval;
1695         }
1696
1697         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1698 }
1699
1700 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1701 {
1702         target_t *target = get_current_target(cmd_ctx);
1703
1704         LOG_USER("requesting target halt and executing a soft reset");
1705
1706         target->type->soft_reset_halt(target);
1707
1708         return ERROR_OK;
1709 }
1710
1711 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1712 {
1713         enum target_reset_mode reset_mode = RESET_RUN;
1714
1715         if (argc >= 1)
1716         {
1717                 if (strcmp("run", args[0]) == 0)
1718                         reset_mode = RESET_RUN;
1719                 else if (strcmp("halt", args[0]) == 0)
1720                         reset_mode = RESET_HALT;
1721                 else if (strcmp("init", args[0]) == 0)
1722                         reset_mode = RESET_INIT;
1723                 else
1724                 {
1725                         return ERROR_COMMAND_SYNTAX_ERROR;
1726                 }
1727         }
1728
1729         /* reset *all* targets */
1730         target_process_reset(cmd_ctx, reset_mode);
1731
1732         return ERROR_OK;
1733 }
1734
1735 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1736 {
1737         int retval;
1738         target_t *target = get_current_target(cmd_ctx);
1739
1740         target_invoke_script(cmd_ctx, target, "pre_resume");
1741
1742         if (argc == 0)
1743                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1744         else if (argc == 1)
1745                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1746         else
1747         {
1748                 return ERROR_COMMAND_SYNTAX_ERROR;
1749         }
1750
1751         return retval;
1752 }
1753
1754 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1755 {
1756         target_t *target = get_current_target(cmd_ctx);
1757
1758         LOG_DEBUG("-");
1759
1760         if (argc == 0)
1761                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1762
1763         if (argc == 1)
1764                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1765
1766         return ERROR_OK;
1767 }
1768
1769 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1770 {
1771         const int line_bytecnt = 32;
1772         int count = 1;
1773         int size = 4;
1774         u32 address = 0;
1775         int line_modulo;
1776         int i;
1777
1778         char output[128];
1779         int output_len;
1780
1781         int retval;
1782
1783         u8 *buffer;
1784         target_t *target = get_current_target(cmd_ctx);
1785
1786         if (argc < 1)
1787                 return ERROR_OK;
1788
1789         if (argc == 2)
1790                 count = strtoul(args[1], NULL, 0);
1791
1792         address = strtoul(args[0], NULL, 0);
1793
1794
1795         switch (cmd[2])
1796         {
1797                 case 'w':
1798                         size = 4; line_modulo = line_bytecnt / 4;
1799                         break;
1800                 case 'h':
1801                         size = 2; line_modulo = line_bytecnt / 2;
1802                         break;
1803                 case 'b':
1804                         size = 1; line_modulo = line_bytecnt / 1;
1805                         break;
1806                 default:
1807                         return ERROR_OK;
1808         }
1809
1810         buffer = calloc(count, size);
1811         retval  = target->type->read_memory(target, address, size, count, buffer);
1812         if (retval == ERROR_OK)
1813         {
1814                 output_len = 0;
1815
1816                 for (i = 0; i < count; i++)
1817                 {
1818                         if (i%line_modulo == 0)
1819                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1820
1821                         switch (size)
1822                         {
1823                                 case 4:
1824                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1825                                         break;
1826                                 case 2:
1827                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1828                                         break;
1829                                 case 1:
1830                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1831                                         break;
1832                         }
1833
1834                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1835                         {
1836                                 command_print(cmd_ctx, output);
1837                                 output_len = 0;
1838                         }
1839                 }
1840         }
1841
1842         free(buffer);
1843
1844         return retval;
1845 }
1846
1847 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1848 {
1849         u32 address = 0;
1850         u32 value = 0;
1851         int count = 1;
1852         int i;
1853         int wordsize;
1854         target_t *target = get_current_target(cmd_ctx);
1855         u8 value_buf[4];
1856
1857          if ((argc < 2) || (argc > 3))
1858                 return ERROR_COMMAND_SYNTAX_ERROR;
1859
1860         address = strtoul(args[0], NULL, 0);
1861         value = strtoul(args[1], NULL, 0);
1862         if (argc == 3)
1863                 count = strtoul(args[2], NULL, 0);
1864
1865         switch (cmd[2])
1866         {
1867                 case 'w':
1868                         wordsize = 4;
1869                         target_buffer_set_u32(target, value_buf, value);
1870                         break;
1871                 case 'h':
1872                         wordsize = 2;
1873                         target_buffer_set_u16(target, value_buf, value);
1874                         break;
1875                 case 'b':
1876                         wordsize = 1;
1877                         value_buf[0] = value;
1878                         break;
1879                 default:
1880                         return ERROR_COMMAND_SYNTAX_ERROR;
1881         }
1882         for (i=0; i<count; i++)
1883         {
1884                 int retval;
1885                 switch (wordsize)
1886                 {
1887                         case 4:
1888                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
1889                                 break;
1890                         case 2:
1891                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
1892                                 break;
1893                         case 1:
1894                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
1895                         break;
1896                         default:
1897                         return ERROR_OK;
1898                 }
1899                 if (retval!=ERROR_OK)
1900                 {
1901                         return retval;
1902                 }
1903         }
1904
1905         return ERROR_OK;
1906
1907 }
1908
1909 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1910 {
1911         u8 *buffer;
1912         u32 buf_cnt;
1913         u32 image_size;
1914         u32 min_address=0;
1915         u32 max_address=0xffffffff;
1916         int i;
1917         int retval;
1918
1919         image_t image;
1920
1921         duration_t duration;
1922         char *duration_text;
1923
1924         target_t *target = get_current_target(cmd_ctx);
1925
1926         if ((argc < 1)||(argc > 5))
1927         {
1928                 return ERROR_COMMAND_SYNTAX_ERROR;
1929         }
1930
1931         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
1932         if (argc >= 2)
1933         {
1934                 image.base_address_set = 1;
1935                 image.base_address = strtoul(args[1], NULL, 0);
1936         }
1937         else
1938         {
1939                 image.base_address_set = 0;
1940         }
1941
1942
1943         image.start_address_set = 0;
1944
1945         if (argc>=4)
1946         {
1947                 min_address=strtoul(args[3], NULL, 0);
1948         }
1949         if (argc>=5)
1950         {
1951                 max_address=strtoul(args[4], NULL, 0)+min_address;
1952         }
1953
1954         if (min_address>max_address)
1955         {
1956                 return ERROR_COMMAND_SYNTAX_ERROR;
1957         }
1958
1959
1960         duration_start_measure(&duration);
1961
1962         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
1963         {
1964                 return ERROR_OK;
1965         }
1966
1967         image_size = 0x0;
1968         retval = ERROR_OK;
1969         for (i = 0; i < image.num_sections; i++)
1970         {
1971                 buffer = malloc(image.sections[i].size);
1972                 if (buffer == NULL)
1973                 {
1974                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
1975                         break;
1976                 }
1977
1978                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
1979                 {
1980                         free(buffer);
1981                         break;
1982                 }
1983
1984                 u32 offset=0;
1985                 u32 length=buf_cnt;
1986
1987
1988                 /* DANGER!!! beware of unsigned comparision here!!! */
1989
1990                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
1991                                 (image.sections[i].base_address<max_address))
1992                 {
1993                         if (image.sections[i].base_address<min_address)
1994                         {
1995                                 /* clip addresses below */
1996                                 offset+=min_address-image.sections[i].base_address;
1997                                 length-=offset;
1998                         }
1999
2000                         if (image.sections[i].base_address+buf_cnt>max_address)
2001                         {
2002                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2003                         }
2004
2005                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2006                         {
2007                                 free(buffer);
2008                                 break;
2009                         }
2010                         image_size += length;
2011                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2012                 }
2013
2014                 free(buffer);
2015         }
2016
2017         duration_stop_measure(&duration, &duration_text);
2018         if (retval==ERROR_OK)
2019         {
2020                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2021         }
2022         free(duration_text);
2023
2024         image_close(&image);
2025
2026         return retval;
2027
2028 }
2029
2030 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2031 {
2032         fileio_t fileio;
2033
2034         u32 address;
2035         u32 size;
2036         u8 buffer[560];
2037         int retval=ERROR_OK;
2038
2039         duration_t duration;
2040         char *duration_text;
2041
2042         target_t *target = get_current_target(cmd_ctx);
2043
2044         if (argc != 3)
2045         {
2046                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2047                 return ERROR_OK;
2048         }
2049
2050         address = strtoul(args[1], NULL, 0);
2051         size = strtoul(args[2], NULL, 0);
2052
2053         if ((address & 3) || (size & 3))
2054         {
2055                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2056                 return ERROR_OK;
2057         }
2058
2059         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2060         {
2061                 return ERROR_OK;
2062         }
2063
2064         duration_start_measure(&duration);
2065
2066         while (size > 0)
2067         {
2068                 u32 size_written;
2069                 u32 this_run_size = (size > 560) ? 560 : size;
2070
2071                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2072                 if (retval != ERROR_OK)
2073                 {
2074                         break;
2075                 }
2076
2077                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2078                 if (retval != ERROR_OK)
2079                 {
2080                         break;
2081                 }
2082
2083                 size -= this_run_size;
2084                 address += this_run_size;
2085         }
2086
2087         fileio_close(&fileio);
2088
2089         duration_stop_measure(&duration, &duration_text);
2090         if (retval==ERROR_OK)
2091         {
2092                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2093         }
2094         free(duration_text);
2095
2096         return ERROR_OK;
2097 }
2098
2099 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2100 {
2101         u8 *buffer;
2102         u32 buf_cnt;
2103         u32 image_size;
2104         int i;
2105         int retval;
2106         u32 checksum = 0;
2107         u32 mem_checksum = 0;
2108
2109         image_t image;
2110
2111         duration_t duration;
2112         char *duration_text;
2113
2114         target_t *target = get_current_target(cmd_ctx);
2115
2116         if (argc < 1)
2117         {
2118                 return ERROR_COMMAND_SYNTAX_ERROR;
2119         }
2120
2121         if (!target)
2122         {
2123                 LOG_ERROR("no target selected");
2124                 return ERROR_FAIL;
2125         }
2126
2127         duration_start_measure(&duration);
2128
2129         if (argc >= 2)
2130         {
2131                 image.base_address_set = 1;
2132                 image.base_address = strtoul(args[1], NULL, 0);
2133         }
2134         else
2135         {
2136                 image.base_address_set = 0;
2137                 image.base_address = 0x0;
2138         }
2139
2140         image.start_address_set = 0;
2141
2142         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2143         {
2144                 return retval;
2145         }
2146
2147         image_size = 0x0;
2148         retval=ERROR_OK;
2149         for (i = 0; i < image.num_sections; i++)
2150         {
2151                 buffer = malloc(image.sections[i].size);
2152                 if (buffer == NULL)
2153                 {
2154                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2155                         break;
2156                 }
2157                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2158                 {
2159                         free(buffer);
2160                         break;
2161                 }
2162
2163                 /* calculate checksum of image */
2164                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2165
2166                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2167                 if( retval != ERROR_OK )
2168                 {
2169                         free(buffer);
2170                         break;
2171                 }
2172
2173                 if( checksum != mem_checksum )
2174                 {
2175                         /* failed crc checksum, fall back to a binary compare */
2176                         u8 *data;
2177
2178                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2179
2180                         data = (u8*)malloc(buf_cnt);
2181
2182                         /* Can we use 32bit word accesses? */
2183                         int size = 1;
2184                         int count = buf_cnt;
2185                         if ((count % 4) == 0)
2186                         {
2187                                 size *= 4;
2188                                 count /= 4;
2189                         }
2190                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2191                         if (retval == ERROR_OK)
2192                         {
2193                                 int t;
2194                                 for (t = 0; t < buf_cnt; t++)
2195                                 {
2196                                         if (data[t] != buffer[t])
2197                                         {
2198                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2199                                                 free(data);
2200                                                 free(buffer);
2201                                                 retval=ERROR_FAIL;
2202                                                 goto done;
2203                                         }
2204                                 }
2205                         }
2206
2207                         free(data);
2208                 }
2209
2210                 free(buffer);
2211                 image_size += buf_cnt;
2212         }
2213 done:
2214         duration_stop_measure(&duration, &duration_text);
2215         if (retval==ERROR_OK)
2216         {
2217                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2218         }
2219         free(duration_text);
2220
2221         image_close(&image);
2222
2223         return retval;
2224 }
2225
2226 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2227 {
2228         int retval;
2229         target_t *target = get_current_target(cmd_ctx);
2230
2231         if (argc == 0)
2232         {
2233                 breakpoint_t *breakpoint = target->breakpoints;
2234
2235                 while (breakpoint)
2236                 {
2237                         if (breakpoint->type == BKPT_SOFT)
2238                         {
2239                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2240                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2241                                 free(buf);
2242                         }
2243                         else
2244                         {
2245                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2246                         }
2247                         breakpoint = breakpoint->next;
2248                 }
2249         }
2250         else if (argc >= 2)
2251         {
2252                 int hw = BKPT_SOFT;
2253                 u32 length = 0;
2254
2255                 length = strtoul(args[1], NULL, 0);
2256
2257                 if (argc >= 3)
2258                         if (strcmp(args[2], "hw") == 0)
2259                                 hw = BKPT_HARD;
2260
2261                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2262                 {
2263                         LOG_ERROR("Failure setting breakpoints");
2264                 }
2265                 else
2266                 {
2267                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2268                 }
2269         }
2270         else
2271         {
2272                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2273         }
2274
2275         return ERROR_OK;
2276 }
2277
2278 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2279 {
2280         target_t *target = get_current_target(cmd_ctx);
2281
2282         if (argc > 0)
2283                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2284
2285         return ERROR_OK;
2286 }
2287
2288 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2289 {
2290         target_t *target = get_current_target(cmd_ctx);
2291         int retval;
2292
2293         if (argc == 0)
2294         {
2295                 watchpoint_t *watchpoint = target->watchpoints;
2296
2297                 while (watchpoint)
2298                 {
2299                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2300                         watchpoint = watchpoint->next;
2301                 }
2302         }
2303         else if (argc >= 2)
2304         {
2305                 enum watchpoint_rw type = WPT_ACCESS;
2306                 u32 data_value = 0x0;
2307                 u32 data_mask = 0xffffffff;
2308
2309                 if (argc >= 3)
2310                 {
2311                         switch(args[2][0])
2312                         {
2313                                 case 'r':
2314                                         type = WPT_READ;
2315                                         break;
2316                                 case 'w':
2317                                         type = WPT_WRITE;
2318                                         break;
2319                                 case 'a':
2320                                         type = WPT_ACCESS;
2321                                         break;
2322                                 default:
2323                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2324                                         return ERROR_OK;
2325                         }
2326                 }
2327                 if (argc >= 4)
2328                 {
2329                         data_value = strtoul(args[3], NULL, 0);
2330                 }
2331                 if (argc >= 5)
2332                 {
2333                         data_mask = strtoul(args[4], NULL, 0);
2334                 }
2335
2336                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2337                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2338                 {
2339                         LOG_ERROR("Failure setting breakpoints");
2340                 }
2341         }
2342         else
2343         {
2344                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2345         }
2346
2347         return ERROR_OK;
2348 }
2349
2350 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2351 {
2352         target_t *target = get_current_target(cmd_ctx);
2353
2354         if (argc > 0)
2355                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2356
2357         return ERROR_OK;
2358 }
2359
2360 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2361 {
2362         int retval;
2363         target_t *target = get_current_target(cmd_ctx);
2364         u32 va;
2365         u32 pa;
2366
2367         if (argc != 1)
2368         {
2369                 return ERROR_COMMAND_SYNTAX_ERROR;
2370         }
2371         va = strtoul(args[0], NULL, 0);
2372
2373         retval = target->type->virt2phys(target, va, &pa);
2374         if (retval == ERROR_OK)
2375         {
2376                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2377         }
2378         else
2379         {
2380                 /* lower levels will have logged a detailed error which is
2381                  * forwarded to telnet/GDB session.
2382                  */
2383         }
2384         return retval;
2385 }
2386 static void writeLong(FILE *f, int l)
2387 {
2388         int i;
2389         for (i=0; i<4; i++)
2390         {
2391                 char c=(l>>(i*8))&0xff;
2392                 fwrite(&c, 1, 1, f);
2393         }
2394
2395 }
2396 static void writeString(FILE *f, char *s)
2397 {
2398         fwrite(s, 1, strlen(s), f);
2399 }
2400
2401
2402
2403 // Dump a gmon.out histogram file.
2404 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2405 {
2406         int i;
2407         FILE *f=fopen(filename, "w");
2408         if (f==NULL)
2409                 return;
2410         fwrite("gmon", 1, 4, f);
2411         writeLong(f, 0x00000001); // Version
2412         writeLong(f, 0); // padding
2413         writeLong(f, 0); // padding
2414         writeLong(f, 0); // padding
2415
2416         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST
2417
2418         // figure out bucket size
2419         u32 min=samples[0];
2420         u32 max=samples[0];
2421         for (i=0; i<sampleNum; i++)
2422         {
2423                 if (min>samples[i])
2424                 {
2425                         min=samples[i];
2426                 }
2427                 if (max<samples[i])
2428                 {
2429                         max=samples[i];
2430                 }
2431         }
2432
2433         int addressSpace=(max-min+1);
2434
2435         static int const maxBuckets=256*1024; // maximum buckets.
2436         int length=addressSpace;
2437         if (length > maxBuckets)
2438         {
2439                 length=maxBuckets;
2440         }
2441         int *buckets=malloc(sizeof(int)*length);
2442         if (buckets==NULL)
2443         {
2444                 fclose(f);
2445                 return;
2446         }
2447         memset(buckets, 0, sizeof(int)*length);
2448         for (i=0; i<sampleNum;i++)
2449         {
2450                 u32 address=samples[i];
2451                 long long a=address-min;
2452                 long long b=length-1;
2453                 long long c=addressSpace-1;
2454                 int index=(a*b)/c; // danger!!!! int32 overflows
2455                 buckets[index]++;
2456         }
2457
2458         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2459         writeLong(f, min);                                      // low_pc
2460         writeLong(f, max);              // high_pc
2461         writeLong(f, length);           // # of samples
2462         writeLong(f, 64000000);                         // 64MHz
2463         writeString(f, "seconds");
2464         for (i=0; i<(15-strlen("seconds")); i++)
2465         {
2466                 fwrite("", 1, 1, f);  // padding
2467         }
2468         writeString(f, "s");
2469
2470 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2471
2472         char *data=malloc(2*length);
2473         if (data!=NULL)
2474         {
2475                 for (i=0; i<length;i++)
2476                 {
2477                         int val;
2478                         val=buckets[i];
2479                         if (val>65535)
2480                         {
2481                                 val=65535;
2482                         }
2483                         data[i*2]=val&0xff;
2484                         data[i*2+1]=(val>>8)&0xff;
2485                 }
2486                 free(buckets);
2487                 fwrite(data, 1, length*2, f);
2488                 free(data);
2489         } else
2490         {
2491                 free(buckets);
2492         }
2493
2494         fclose(f);
2495 }
2496
2497 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2498 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2499 {
2500         target_t *target = get_current_target(cmd_ctx);
2501         struct timeval timeout, now;
2502
2503         gettimeofday(&timeout, NULL);
2504         if (argc!=2)
2505         {
2506                 return ERROR_COMMAND_SYNTAX_ERROR;
2507         }
2508         char *end;
2509         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2510         if (*end)
2511         {
2512                 return ERROR_OK;
2513         }
2514
2515         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2516
2517         static const int maxSample=10000;
2518         u32 *samples=malloc(sizeof(u32)*maxSample);
2519         if (samples==NULL)
2520                 return ERROR_OK;
2521
2522         int numSamples=0;
2523         int retval=ERROR_OK;
2524         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2525         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2526
2527         for (;;)
2528         {
2529                 target_poll(target);
2530                 if (target->state == TARGET_HALTED)
2531                 {
2532                         u32 t=*((u32 *)reg->value);
2533                         samples[numSamples++]=t;
2534                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2535                         target_poll(target);
2536                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2537                 } else if (target->state == TARGET_RUNNING)
2538                 {
2539                         // We want to quickly sample the PC.
2540                         target_halt(target);
2541                 } else
2542                 {
2543                         command_print(cmd_ctx, "Target not halted or running");
2544                         retval=ERROR_OK;
2545                         break;
2546                 }
2547                 if (retval!=ERROR_OK)
2548                 {
2549                         break;
2550                 }
2551
2552                 gettimeofday(&now, NULL);
2553                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2554                 {
2555                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2556                         target_poll(target);
2557                         if (target->state == TARGET_HALTED)
2558                         {
2559                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2560                         }
2561                         target_poll(target);
2562                         writeGmon(samples, numSamples, args[1]);
2563                         command_print(cmd_ctx, "Wrote %s", args[1]);
2564                         break;
2565                 }
2566         }
2567         free(samples);
2568
2569         return ERROR_OK;
2570 }
2571
2572 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2573 {
2574         char *namebuf;
2575         Jim_Obj *nameObjPtr, *valObjPtr;
2576         int result;
2577
2578         namebuf = alloc_printf("%s(%d)", varname, idx);
2579         if (!namebuf)
2580                 return JIM_ERR;
2581
2582         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2583         valObjPtr = Jim_NewIntObj(interp, val);
2584         if (!nameObjPtr || !valObjPtr)
2585         {
2586                 free(namebuf);
2587                 return JIM_ERR;
2588         }
2589
2590         Jim_IncrRefCount(nameObjPtr);
2591         Jim_IncrRefCount(valObjPtr);
2592         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2593         Jim_DecrRefCount(interp, nameObjPtr);
2594         Jim_DecrRefCount(interp, valObjPtr);
2595         free(namebuf);
2596         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2597         return result;
2598 }
2599
2600 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2601 {
2602         target_t *target;
2603         command_context_t *context;
2604         long l;
2605         u32 width;
2606         u32 len;
2607         u32 addr;
2608         u32 count;
2609         u32 v;
2610         const char *varname;
2611         u8 buffer[4096];
2612         int  i, n, e, retval;
2613
2614         /* argv[1] = name of array to receive the data
2615          * argv[2] = desired width
2616          * argv[3] = memory address
2617          * argv[4] = count of times to read
2618          */
2619         if (argc != 5) {
2620                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2621                 return JIM_ERR;
2622         }
2623         varname = Jim_GetString(argv[1], &len);
2624         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2625
2626         e = Jim_GetLong(interp, argv[2], &l);
2627         width = l;
2628         if (e != JIM_OK) {
2629                 return e;
2630         }
2631
2632         e = Jim_GetLong(interp, argv[3], &l);
2633         addr = l;
2634         if (e != JIM_OK) {
2635                 return e;
2636         }
2637         e = Jim_GetLong(interp, argv[4], &l);
2638         len = l;
2639         if (e != JIM_OK) {
2640                 return e;
2641         }
2642         switch (width) {
2643                 case 8:
2644                         width = 1;
2645                         break;
2646                 case 16:
2647                         width = 2;
2648                         break;
2649                 case 32:
2650                         width = 4;
2651                         break;
2652                 default:
2653                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2654                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2655                         return JIM_ERR;
2656         }
2657         if (len == 0) {
2658                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2659                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2660                 return JIM_ERR;
2661         }
2662         if ((addr + (len * width)) < addr) {
2663                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2664                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2665                 return JIM_ERR;
2666         }
2667         /* absurd transfer size? */
2668         if (len > 65536) {
2669                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2670                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2671                 return JIM_ERR;
2672         }
2673
2674         if ((width == 1) ||
2675                 ((width == 2) && ((addr & 1) == 0)) ||
2676                 ((width == 4) && ((addr & 3) == 0))) {
2677                 /* all is well */
2678         } else {
2679                 char buf[100];
2680                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2681                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2682                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2683                 return JIM_ERR;
2684         }
2685
2686         context = Jim_GetAssocData(interp, "context");
2687         if (context == NULL)
2688         {
2689                 LOG_ERROR("mem2array: no command context");
2690                 return JIM_ERR;
2691         }
2692         target = get_current_target(context);
2693         if (target == NULL)
2694         {
2695                 LOG_ERROR("mem2array: no current target");
2696                 return JIM_ERR;
2697         }
2698
2699         /* Transfer loop */
2700
2701         /* index counter */
2702         n = 0;
2703         /* assume ok */
2704         e = JIM_OK;
2705         while (len) {
2706                 /* Slurp... in buffer size chunks */
2707
2708                 count = len; /* in objects.. */
2709                 if (count > (sizeof(buffer)/width)) {
2710                         count = (sizeof(buffer)/width);
2711                 }
2712
2713                 retval = target->type->read_memory( target, addr, width, count, buffer );
2714                 if (retval != ERROR_OK) {
2715                         /* BOO !*/
2716                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2717                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2718                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2719                         e = JIM_ERR;
2720                         len = 0;
2721                 } else {
2722                         v = 0; /* shut up gcc */
2723                         for (i = 0 ;i < count ;i++, n++) {
2724                                 switch (width) {
2725                                         case 4:
2726                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2727                                                 break;
2728                                         case 2:
2729                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2730                                                 break;
2731                                         case 1:
2732                                                 v = buffer[i] & 0x0ff;
2733                                                 break;
2734                                 }
2735                                 new_int_array_element(interp, varname, n, v);
2736                         }
2737                         len -= count;
2738                 }
2739         }
2740
2741         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2742
2743         return JIM_OK;
2744 }
2745
2746 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2747 {
2748         char *namebuf;
2749         Jim_Obj *nameObjPtr, *valObjPtr;
2750         int result;
2751         long l;
2752
2753         namebuf = alloc_printf("%s(%d)", varname, idx);
2754         if (!namebuf)
2755                 return JIM_ERR;
2756
2757         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2758         if (!nameObjPtr)
2759         {
2760                 free(namebuf);
2761                 return JIM_ERR;
2762         }
2763
2764         Jim_IncrRefCount(nameObjPtr);
2765         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2766         Jim_DecrRefCount(interp, nameObjPtr);
2767         free(namebuf);
2768         if (valObjPtr == NULL)
2769                 return JIM_ERR;
2770
2771         result = Jim_GetLong(interp, valObjPtr, &l);
2772         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2773         *val = l;
2774         return result;
2775 }
2776
2777 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2778 {
2779         target_t *target;
2780         command_context_t *context;
2781         long l;
2782         u32 width;
2783         u32 len;
2784         u32 addr;
2785         u32 count;
2786         u32 v;
2787         const char *varname;
2788         u8 buffer[4096];
2789         int  i, n, e, retval;
2790
2791         /* argv[1] = name of array to get the data
2792          * argv[2] = desired width
2793          * argv[3] = memory address
2794          * argv[4] = count to write
2795          */
2796         if (argc != 5) {
2797                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2798                 return JIM_ERR;
2799         }
2800         varname = Jim_GetString(argv[1], &len);
2801         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2802
2803         e = Jim_GetLong(interp, argv[2], &l);
2804         width = l;
2805         if (e != JIM_OK) {
2806                 return e;
2807         }
2808
2809         e = Jim_GetLong(interp, argv[3], &l);
2810         addr = l;
2811         if (e != JIM_OK) {
2812                 return e;
2813         }
2814         e = Jim_GetLong(interp, argv[4], &l);
2815         len = l;
2816         if (e != JIM_OK) {
2817                 return e;
2818         }
2819         switch (width) {
2820                 case 8:
2821                         width = 1;
2822                         break;
2823                 case 16:
2824                         width = 2;
2825                         break;
2826                 case 32:
2827                         width = 4;
2828                         break;
2829                 default:
2830                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2831                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2832                         return JIM_ERR;
2833         }
2834         if (len == 0) {
2835                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2836                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
2837                 return JIM_ERR;
2838         }
2839         if ((addr + (len * width)) < addr) {
2840                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2841                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
2842                 return JIM_ERR;
2843         }
2844         /* absurd transfer size? */
2845         if (len > 65536) {
2846                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2847                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
2848                 return JIM_ERR;
2849         }
2850
2851         if ((width == 1) ||
2852                 ((width == 2) && ((addr & 1) == 0)) ||
2853                 ((width == 4) && ((addr & 3) == 0))) {
2854                 /* all is well */
2855         } else {
2856                 char buf[100];
2857                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2858                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
2859                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2860                 return JIM_ERR;
2861         }
2862
2863         context = Jim_GetAssocData(interp, "context");
2864         if (context == NULL)
2865         {
2866                 LOG_ERROR("array2mem: no command context");
2867                 return JIM_ERR;
2868         }
2869         target = get_current_target(context);
2870         if (target == NULL)
2871         {
2872                 LOG_ERROR("array2mem: no current target");
2873                 return JIM_ERR;
2874         }
2875
2876         /* Transfer loop */
2877
2878         /* index counter */
2879         n = 0;
2880         /* assume ok */
2881         e = JIM_OK;
2882         while (len) {
2883                 /* Slurp... in buffer size chunks */
2884
2885                 count = len; /* in objects.. */
2886                 if (count > (sizeof(buffer)/width)) {
2887                         count = (sizeof(buffer)/width);
2888                 }
2889
2890                 v = 0; /* shut up gcc */
2891                 for (i = 0 ;i < count ;i++, n++) {
2892                         get_int_array_element(interp, varname, n, &v);
2893                         switch (width) {
2894                         case 4:
2895                                 target_buffer_set_u32(target, &buffer[i*width], v);
2896                                 break;
2897                         case 2:
2898                                 target_buffer_set_u16(target, &buffer[i*width], v);
2899                                 break;
2900                         case 1:
2901                                 buffer[i] = v & 0x0ff;
2902                                 break;
2903                         }
2904                 }
2905                 len -= count;
2906
2907                 retval = target->type->write_memory(target, addr, width, count, buffer);
2908                 if (retval != ERROR_OK) {
2909                         /* BOO !*/
2910                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2911                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2912                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2913                         e = JIM_ERR;
2914                         len = 0;
2915                 }
2916         }
2917
2918         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2919
2920         return JIM_OK;
2921 }