]> git.sur5r.net Git - openocd/blob - src/target/target.c
watchpoint_add() cleanup
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2009 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74 static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
75
76 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
78
79 /* targets */
80 extern target_type_t arm7tdmi_target;
81 extern target_type_t arm720t_target;
82 extern target_type_t arm9tdmi_target;
83 extern target_type_t arm920t_target;
84 extern target_type_t arm966e_target;
85 extern target_type_t arm926ejs_target;
86 extern target_type_t fa526_target;
87 extern target_type_t feroceon_target;
88 extern target_type_t dragonite_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t cortexa8_target;
92 extern target_type_t arm11_target;
93 extern target_type_t mips_m4k_target;
94 extern target_type_t avr_target;
95
96 target_type_t *target_types[] =
97 {
98         &arm7tdmi_target,
99         &arm9tdmi_target,
100         &arm920t_target,
101         &arm720t_target,
102         &arm966e_target,
103         &arm926ejs_target,
104         &fa526_target,
105         &feroceon_target,
106         &dragonite_target,
107         &xscale_target,
108         &cortexm3_target,
109         &cortexa8_target,
110         &arm11_target,
111         &mips_m4k_target,
112         &avr_target,
113         NULL,
114 };
115
116 target_t *all_targets = NULL;
117 target_event_callback_t *target_event_callbacks = NULL;
118 target_timer_callback_t *target_timer_callbacks = NULL;
119
120 const Jim_Nvp nvp_assert[] = {
121         { .name = "assert", NVP_ASSERT },
122         { .name = "deassert", NVP_DEASSERT },
123         { .name = "T", NVP_ASSERT },
124         { .name = "F", NVP_DEASSERT },
125         { .name = "t", NVP_ASSERT },
126         { .name = "f", NVP_DEASSERT },
127         { .name = NULL, .value = -1 }
128 };
129
130 const Jim_Nvp nvp_error_target[] = {
131         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
132         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
133         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
134         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
135         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
136         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
137         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
138         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
139         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
140         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
141         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
142         { .value = -1, .name = NULL }
143 };
144
145 const char *target_strerror_safe(int err)
146 {
147         const Jim_Nvp *n;
148
149         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
150         if (n->name == NULL) {
151                 return "unknown";
152         } else {
153                 return n->name;
154         }
155 }
156
157 static const Jim_Nvp nvp_target_event[] = {
158         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
159         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
160
161         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
162         { .value = TARGET_EVENT_HALTED, .name = "halted" },
163         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
164         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
165         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
166
167         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
168         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
169
170         /* historical name */
171
172         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
173
174         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
175         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
176         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
177         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
178         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
179         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
180         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
181         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
182         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
183         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
184
185         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
186         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
187
188         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
189         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
190
191         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
192         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
193
194         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
195         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
196
197         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
198         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
199
200         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
201         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
202         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
203
204         { .name = NULL, .value = -1 }
205 };
206
207 const Jim_Nvp nvp_target_state[] = {
208         { .name = "unknown", .value = TARGET_UNKNOWN },
209         { .name = "running", .value = TARGET_RUNNING },
210         { .name = "halted",  .value = TARGET_HALTED },
211         { .name = "reset",   .value = TARGET_RESET },
212         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
213         { .name = NULL, .value = -1 },
214 };
215
216 const Jim_Nvp nvp_target_debug_reason [] = {
217         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
218         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
219         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
220         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
221         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
222         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
223         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
224         { .name = NULL, .value = -1 },
225 };
226
227 const Jim_Nvp nvp_target_endian[] = {
228         { .name = "big",    .value = TARGET_BIG_ENDIAN },
229         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
230         { .name = "be",     .value = TARGET_BIG_ENDIAN },
231         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
232         { .name = NULL,     .value = -1 },
233 };
234
235 const Jim_Nvp nvp_reset_modes[] = {
236         { .name = "unknown", .value = RESET_UNKNOWN },
237         { .name = "run"    , .value = RESET_RUN },
238         { .name = "halt"   , .value = RESET_HALT },
239         { .name = "init"   , .value = RESET_INIT },
240         { .name = NULL     , .value = -1 },
241 };
242
243 const char *
244 target_state_name( target_t *t )
245 {
246         const char *cp;
247         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
248         if( !cp ){
249                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
250                 cp = "(*BUG*unknown*BUG*)";
251         }
252         return cp;
253 }
254
255 /* determine the number of the new target */
256 static int new_target_number(void)
257 {
258         target_t *t;
259         int x;
260
261         /* number is 0 based */
262         x = -1;
263         t = all_targets;
264         while (t) {
265                 if (x < t->target_number) {
266                         x = t->target_number;
267                 }
268                 t = t->next;
269         }
270         return x + 1;
271 }
272
273 /* read a uint32_t from a buffer in target memory endianness */
274 uint32_t target_buffer_get_u32(target_t *target, const uint8_t *buffer)
275 {
276         if (target->endianness == TARGET_LITTLE_ENDIAN)
277                 return le_to_h_u32(buffer);
278         else
279                 return be_to_h_u32(buffer);
280 }
281
282 /* read a uint16_t from a buffer in target memory endianness */
283 uint16_t target_buffer_get_u16(target_t *target, const uint8_t *buffer)
284 {
285         if (target->endianness == TARGET_LITTLE_ENDIAN)
286                 return le_to_h_u16(buffer);
287         else
288                 return be_to_h_u16(buffer);
289 }
290
291 /* read a uint8_t from a buffer in target memory endianness */
292 uint8_t target_buffer_get_u8(target_t *target, const uint8_t *buffer)
293 {
294         return *buffer & 0x0ff;
295 }
296
297 /* write a uint32_t to a buffer in target memory endianness */
298 void target_buffer_set_u32(target_t *target, uint8_t *buffer, uint32_t value)
299 {
300         if (target->endianness == TARGET_LITTLE_ENDIAN)
301                 h_u32_to_le(buffer, value);
302         else
303                 h_u32_to_be(buffer, value);
304 }
305
306 /* write a uint16_t to a buffer in target memory endianness */
307 void target_buffer_set_u16(target_t *target, uint8_t *buffer, uint16_t value)
308 {
309         if (target->endianness == TARGET_LITTLE_ENDIAN)
310                 h_u16_to_le(buffer, value);
311         else
312                 h_u16_to_be(buffer, value);
313 }
314
315 /* write a uint8_t to a buffer in target memory endianness */
316 void target_buffer_set_u8(target_t *target, uint8_t *buffer, uint8_t value)
317 {
318         *buffer = value;
319 }
320
321 /* return a pointer to a configured target; id is name or number */
322 target_t *get_target(const char *id)
323 {
324         target_t *target;
325
326         /* try as tcltarget name */
327         for (target = all_targets; target; target = target->next) {
328                 if (target->cmd_name == NULL)
329                         continue;
330                 if (strcmp(id, target->cmd_name) == 0)
331                         return target;
332         }
333
334         /* It's OK to remove this fallback sometime after August 2010 or so */
335
336         /* no match, try as number */
337         unsigned num;
338         if (parse_uint(id, &num) != ERROR_OK)
339                 return NULL;
340
341         for (target = all_targets; target; target = target->next) {
342                 if (target->target_number == (int)num) {
343                         LOG_WARNING("use '%s' as target identifier, not '%u'",
344                                         target->cmd_name, num);
345                         return target;
346                 }
347         }
348
349         return NULL;
350 }
351
352 /* returns a pointer to the n-th configured target */
353 static target_t *get_target_by_num(int num)
354 {
355         target_t *target = all_targets;
356
357         while (target) {
358                 if (target->target_number == num) {
359                         return target;
360                 }
361                 target = target->next;
362         }
363
364         return NULL;
365 }
366
367 target_t* get_current_target(command_context_t *cmd_ctx)
368 {
369         target_t *target = get_target_by_num(cmd_ctx->current_target);
370
371         if (target == NULL)
372         {
373                 LOG_ERROR("BUG: current_target out of bounds");
374                 exit(-1);
375         }
376
377         return target;
378 }
379
380 int target_poll(struct target_s *target)
381 {
382         int retval;
383
384         /* We can't poll until after examine */
385         if (!target_was_examined(target))
386         {
387                 /* Fail silently lest we pollute the log */
388                 return ERROR_FAIL;
389         }
390
391         retval = target->type->poll(target);
392         if (retval != ERROR_OK)
393                 return retval;
394
395         if (target->halt_issued)
396         {
397                 if (target->state == TARGET_HALTED)
398                 {
399                         target->halt_issued = false;
400                 } else
401                 {
402                         long long t = timeval_ms() - target->halt_issued_time;
403                         if (t>1000)
404                         {
405                                 target->halt_issued = false;
406                                 LOG_INFO("Halt timed out, wake up GDB.");
407                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
408                         }
409                 }
410         }
411
412         return ERROR_OK;
413 }
414
415 int target_halt(struct target_s *target)
416 {
417         int retval;
418         /* We can't poll until after examine */
419         if (!target_was_examined(target))
420         {
421                 LOG_ERROR("Target not examined yet");
422                 return ERROR_FAIL;
423         }
424
425         retval = target->type->halt(target);
426         if (retval != ERROR_OK)
427                 return retval;
428
429         target->halt_issued = true;
430         target->halt_issued_time = timeval_ms();
431
432         return ERROR_OK;
433 }
434
435 int target_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
436 {
437         int retval;
438
439         /* We can't poll until after examine */
440         if (!target_was_examined(target))
441         {
442                 LOG_ERROR("Target not examined yet");
443                 return ERROR_FAIL;
444         }
445
446         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
447          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
448          * the application.
449          */
450         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
451                 return retval;
452
453         return retval;
454 }
455
456 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
457 {
458         char buf[100];
459         int retval;
460         Jim_Nvp *n;
461         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
462         if (n->name == NULL) {
463                 LOG_ERROR("invalid reset mode");
464                 return ERROR_FAIL;
465         }
466
467         /* disable polling during reset to make reset event scripts
468          * more predictable, i.e. dr/irscan & pathmove in events will
469          * not have JTAG operations injected into the middle of a sequence.
470          */
471         bool save_poll = jtag_poll_get_enabled();
472
473         jtag_poll_set_enabled(false);
474
475         sprintf(buf, "ocd_process_reset %s", n->name);
476         retval = Jim_Eval(interp, buf);
477
478         jtag_poll_set_enabled(save_poll);
479
480         if (retval != JIM_OK) {
481                 Jim_PrintErrorMessage(interp);
482                 return ERROR_FAIL;
483         }
484
485         /* We want any events to be processed before the prompt */
486         retval = target_call_timer_callbacks_now();
487
488         return retval;
489 }
490
491 static int default_virt2phys(struct target_s *target, uint32_t virtual, uint32_t *physical)
492 {
493         *physical = virtual;
494         return ERROR_OK;
495 }
496
497 static int default_mmu(struct target_s *target, int *enabled)
498 {
499         LOG_ERROR("Not implemented.");
500         return ERROR_FAIL;
501 }
502
503 static int default_has_mmu(struct target_s *target, bool *has_mmu)
504 {
505         *has_mmu = true;
506         return ERROR_OK;
507 }
508
509 static int default_examine(struct target_s *target)
510 {
511         target_set_examined(target);
512         return ERROR_OK;
513 }
514
515 int target_examine_one(struct target_s *target)
516 {
517         return target->type->examine(target);
518 }
519
520 static int jtag_enable_callback(enum jtag_event event, void *priv)
521 {
522         target_t *target = priv;
523
524         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
525                 return ERROR_OK;
526
527         jtag_unregister_event_callback(jtag_enable_callback, target);
528         return target_examine_one(target);
529 }
530
531
532 /* Targets that correctly implement init + examine, i.e.
533  * no communication with target during init:
534  *
535  * XScale
536  */
537 int target_examine(void)
538 {
539         int retval = ERROR_OK;
540         target_t *target;
541
542         for (target = all_targets; target; target = target->next)
543         {
544                 /* defer examination, but don't skip it */
545                 if (!target->tap->enabled) {
546                         jtag_register_event_callback(jtag_enable_callback,
547                                         target);
548                         continue;
549                 }
550                 if ((retval = target_examine_one(target)) != ERROR_OK)
551                         return retval;
552         }
553         return retval;
554 }
555 const char *target_get_name(struct target_s *target)
556 {
557         return target->type->name;
558 }
559
560 static int target_write_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
561 {
562         if (!target_was_examined(target))
563         {
564                 LOG_ERROR("Target not examined yet");
565                 return ERROR_FAIL;
566         }
567         return target->type->write_memory_imp(target, address, size, count, buffer);
568 }
569
570 static int target_read_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
571 {
572         if (!target_was_examined(target))
573         {
574                 LOG_ERROR("Target not examined yet");
575                 return ERROR_FAIL;
576         }
577         return target->type->read_memory_imp(target, address, size, count, buffer);
578 }
579
580 static int target_soft_reset_halt_imp(struct target_s *target)
581 {
582         if (!target_was_examined(target))
583         {
584                 LOG_ERROR("Target not examined yet");
585                 return ERROR_FAIL;
586         }
587         if (!target->type->soft_reset_halt_imp) {
588                 LOG_ERROR("Target %s does not support soft_reset_halt",
589                                 target->cmd_name);
590                 return ERROR_FAIL;
591         }
592         return target->type->soft_reset_halt_imp(target);
593 }
594
595 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
596 {
597         if (!target_was_examined(target))
598         {
599                 LOG_ERROR("Target not examined yet");
600                 return ERROR_FAIL;
601         }
602         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
603 }
604
605 int target_read_memory(struct target_s *target,
606                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
607 {
608         return target->type->read_memory(target, address, size, count, buffer);
609 }
610
611 int target_read_phys_memory(struct target_s *target,
612                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
613 {
614         return target->type->read_phys_memory(target, address, size, count, buffer);
615 }
616
617 int target_write_memory(struct target_s *target,
618                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
619 {
620         return target->type->write_memory(target, address, size, count, buffer);
621 }
622
623 int target_write_phys_memory(struct target_s *target,
624                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
625 {
626         return target->type->write_phys_memory(target, address, size, count, buffer);
627 }
628
629 int target_bulk_write_memory(struct target_s *target,
630                 uint32_t address, uint32_t count, uint8_t *buffer)
631 {
632         return target->type->bulk_write_memory(target, address, count, buffer);
633 }
634
635 int target_add_breakpoint(struct target_s *target,
636                 struct breakpoint_s *breakpoint)
637 {
638         return target->type->add_breakpoint(target, breakpoint);
639 }
640 int target_remove_breakpoint(struct target_s *target,
641                 struct breakpoint_s *breakpoint)
642 {
643         return target->type->remove_breakpoint(target, breakpoint);
644 }
645
646 int target_add_watchpoint(struct target_s *target,
647                 struct watchpoint_s *watchpoint)
648 {
649         return target->type->add_watchpoint(target, watchpoint);
650 }
651 int target_remove_watchpoint(struct target_s *target,
652                 struct watchpoint_s *watchpoint)
653 {
654         return target->type->remove_watchpoint(target, watchpoint);
655 }
656
657 int target_get_gdb_reg_list(struct target_s *target,
658                 struct reg_s **reg_list[], int *reg_list_size)
659 {
660         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
661 }
662 int target_step(struct target_s *target,
663                 int current, uint32_t address, int handle_breakpoints)
664 {
665         return target->type->step(target, current, address, handle_breakpoints);
666 }
667
668
669 int target_run_algorithm(struct target_s *target,
670                 int num_mem_params, mem_param_t *mem_params,
671                 int num_reg_params, reg_param_t *reg_param,
672                 uint32_t entry_point, uint32_t exit_point,
673                 int timeout_ms, void *arch_info)
674 {
675         return target->type->run_algorithm(target,
676                         num_mem_params, mem_params, num_reg_params, reg_param,
677                         entry_point, exit_point, timeout_ms, arch_info);
678 }
679
680 /// @returns @c true if the target has been examined.
681 bool target_was_examined(struct target_s *target)
682 {
683         return target->type->examined;
684 }
685 /// Sets the @c examined flag for the given target.
686 void target_set_examined(struct target_s *target)
687 {
688         target->type->examined = true;
689 }
690 // Reset the @c examined flag for the given target.
691 void target_reset_examined(struct target_s *target)
692 {
693         target->type->examined = false;
694 }
695
696
697
698 static int default_mrc(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
699 {
700         LOG_ERROR("Not implemented");
701         return ERROR_FAIL;
702 }
703
704 static int default_mcr(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
705 {
706         LOG_ERROR("Not implemented");
707         return ERROR_FAIL;
708 }
709
710 static int arm_cp_check(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm)
711 {
712         /* basic check */
713         if (!target_was_examined(target))
714         {
715                 LOG_ERROR("Target not examined yet");
716                 return ERROR_FAIL;
717         }
718
719         if ((cpnum <0) || (cpnum > 15))
720         {
721                 LOG_ERROR("Illegal co-processor %d", cpnum);
722                 return ERROR_FAIL;
723         }
724
725         return ERROR_OK;
726 }
727
728 int target_mrc(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
729 {
730         int retval;
731
732         retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
733         if (retval != ERROR_OK)
734                 return retval;
735
736         return target->type->mrc(target, cpnum, op1, op2, CRn, CRm, value);
737 }
738
739 int target_mcr(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
740 {
741         int retval;
742
743         retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
744         if (retval != ERROR_OK)
745                 return retval;
746
747         return target->type->mcr(target, cpnum, op1, op2, CRn, CRm, value);
748 }
749
750 static int default_read_phys_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
751 {
752         int retval;
753         bool mmu;
754         retval = target->type->has_mmu(target, &mmu);
755         if (retval != ERROR_OK)
756                 return retval;
757         if (mmu)
758         {
759                 LOG_ERROR("Not implemented");
760                 return ERROR_FAIL;
761         }
762         return target_read_memory(target, address, size, count, buffer);
763 }
764
765 static int default_write_phys_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
766 {
767         int retval;
768         bool mmu;
769         retval = target->type->has_mmu(target, &mmu);
770         if (retval != ERROR_OK)
771                 return retval;
772         if (mmu)
773         {
774                 LOG_ERROR("Not implemented");
775                 return ERROR_FAIL;
776         }
777         return target_write_memory(target, address, size, count, buffer);
778 }
779
780
781 int target_init(struct command_context_s *cmd_ctx)
782 {
783         target_t *target = all_targets;
784         int retval;
785
786         while (target)
787         {
788                 target_reset_examined(target);
789                 if (target->type->examine == NULL)
790                 {
791                         target->type->examine = default_examine;
792                 }
793
794                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
795                 {
796                         LOG_ERROR("target '%s' init failed", target_get_name(target));
797                         return retval;
798                 }
799
800                 /* Set up default functions if none are provided by target */
801                 if (target->type->virt2phys == NULL)
802                 {
803                         target->type->virt2phys = default_virt2phys;
804                 }
805
806                 if (target->type->read_phys_memory == NULL)
807                 {
808                         target->type->read_phys_memory = default_read_phys_memory;
809                 }
810
811                 if (target->type->write_phys_memory == NULL)
812                 {
813                         target->type->write_phys_memory = default_write_phys_memory;
814                 }
815
816                 if (target->type->mcr == NULL)
817                 {
818                         target->type->mcr = default_mcr;
819                 }
820
821                 if (target->type->mrc == NULL)
822                 {
823                         target->type->mrc = default_mrc;
824                 }
825
826
827                 /* a non-invasive way(in terms of patches) to add some code that
828                  * runs before the type->write/read_memory implementation
829                  */
830                 target->type->write_memory_imp = target->type->write_memory;
831                 target->type->write_memory = target_write_memory_imp;
832                 target->type->read_memory_imp = target->type->read_memory;
833                 target->type->read_memory = target_read_memory_imp;
834                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
835                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
836                 target->type->run_algorithm_imp = target->type->run_algorithm;
837                 target->type->run_algorithm = target_run_algorithm_imp;
838
839                 if (target->type->mmu == NULL)
840                 {
841                         target->type->mmu = default_mmu;
842                 }
843                 if (target->type->has_mmu == NULL)
844                 {
845                         target->type->has_mmu = default_has_mmu;
846                 }
847                 target = target->next;
848         }
849
850         if (all_targets)
851         {
852                 if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
853                         return retval;
854                 if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
855                         return retval;
856         }
857
858         return ERROR_OK;
859 }
860
861 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
862 {
863         target_event_callback_t **callbacks_p = &target_event_callbacks;
864
865         if (callback == NULL)
866         {
867                 return ERROR_INVALID_ARGUMENTS;
868         }
869
870         if (*callbacks_p)
871         {
872                 while ((*callbacks_p)->next)
873                         callbacks_p = &((*callbacks_p)->next);
874                 callbacks_p = &((*callbacks_p)->next);
875         }
876
877         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
878         (*callbacks_p)->callback = callback;
879         (*callbacks_p)->priv = priv;
880         (*callbacks_p)->next = NULL;
881
882         return ERROR_OK;
883 }
884
885 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
886 {
887         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
888         struct timeval now;
889
890         if (callback == NULL)
891         {
892                 return ERROR_INVALID_ARGUMENTS;
893         }
894
895         if (*callbacks_p)
896         {
897                 while ((*callbacks_p)->next)
898                         callbacks_p = &((*callbacks_p)->next);
899                 callbacks_p = &((*callbacks_p)->next);
900         }
901
902         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
903         (*callbacks_p)->callback = callback;
904         (*callbacks_p)->periodic = periodic;
905         (*callbacks_p)->time_ms = time_ms;
906
907         gettimeofday(&now, NULL);
908         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
909         time_ms -= (time_ms % 1000);
910         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
911         if ((*callbacks_p)->when.tv_usec > 1000000)
912         {
913                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
914                 (*callbacks_p)->when.tv_sec += 1;
915         }
916
917         (*callbacks_p)->priv = priv;
918         (*callbacks_p)->next = NULL;
919
920         return ERROR_OK;
921 }
922
923 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
924 {
925         target_event_callback_t **p = &target_event_callbacks;
926         target_event_callback_t *c = target_event_callbacks;
927
928         if (callback == NULL)
929         {
930                 return ERROR_INVALID_ARGUMENTS;
931         }
932
933         while (c)
934         {
935                 target_event_callback_t *next = c->next;
936                 if ((c->callback == callback) && (c->priv == priv))
937                 {
938                         *p = next;
939                         free(c);
940                         return ERROR_OK;
941                 }
942                 else
943                         p = &(c->next);
944                 c = next;
945         }
946
947         return ERROR_OK;
948 }
949
950 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
951 {
952         target_timer_callback_t **p = &target_timer_callbacks;
953         target_timer_callback_t *c = target_timer_callbacks;
954
955         if (callback == NULL)
956         {
957                 return ERROR_INVALID_ARGUMENTS;
958         }
959
960         while (c)
961         {
962                 target_timer_callback_t *next = c->next;
963                 if ((c->callback == callback) && (c->priv == priv))
964                 {
965                         *p = next;
966                         free(c);
967                         return ERROR_OK;
968                 }
969                 else
970                         p = &(c->next);
971                 c = next;
972         }
973
974         return ERROR_OK;
975 }
976
977 int target_call_event_callbacks(target_t *target, enum target_event event)
978 {
979         target_event_callback_t *callback = target_event_callbacks;
980         target_event_callback_t *next_callback;
981
982         if (event == TARGET_EVENT_HALTED)
983         {
984                 /* execute early halted first */
985                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
986         }
987
988         LOG_DEBUG("target event %i (%s)",
989                           event,
990                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
991
992         target_handle_event(target, event);
993
994         while (callback)
995         {
996                 next_callback = callback->next;
997                 callback->callback(target, event, callback->priv);
998                 callback = next_callback;
999         }
1000
1001         return ERROR_OK;
1002 }
1003
1004 static int target_timer_callback_periodic_restart(
1005                 target_timer_callback_t *cb, struct timeval *now)
1006 {
1007         int time_ms = cb->time_ms;
1008         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1009         time_ms -= (time_ms % 1000);
1010         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1011         if (cb->when.tv_usec > 1000000)
1012         {
1013                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1014                 cb->when.tv_sec += 1;
1015         }
1016         return ERROR_OK;
1017 }
1018
1019 static int target_call_timer_callback(target_timer_callback_t *cb,
1020                 struct timeval *now)
1021 {
1022         cb->callback(cb->priv);
1023
1024         if (cb->periodic)
1025                 return target_timer_callback_periodic_restart(cb, now);
1026
1027         return target_unregister_timer_callback(cb->callback, cb->priv);
1028 }
1029
1030 static int target_call_timer_callbacks_check_time(int checktime)
1031 {
1032         keep_alive();
1033
1034         struct timeval now;
1035         gettimeofday(&now, NULL);
1036
1037         target_timer_callback_t *callback = target_timer_callbacks;
1038         while (callback)
1039         {
1040                 // cleaning up may unregister and free this callback
1041                 target_timer_callback_t *next_callback = callback->next;
1042
1043                 bool call_it = callback->callback &&
1044                         ((!checktime && callback->periodic) ||
1045                           now.tv_sec > callback->when.tv_sec ||
1046                          (now.tv_sec == callback->when.tv_sec &&
1047                           now.tv_usec >= callback->when.tv_usec));
1048
1049                 if (call_it)
1050                 {
1051                         int retval = target_call_timer_callback(callback, &now);
1052                         if (retval != ERROR_OK)
1053                                 return retval;
1054                 }
1055
1056                 callback = next_callback;
1057         }
1058
1059         return ERROR_OK;
1060 }
1061
1062 int target_call_timer_callbacks(void)
1063 {
1064         return target_call_timer_callbacks_check_time(1);
1065 }
1066
1067 /* invoke periodic callbacks immediately */
1068 int target_call_timer_callbacks_now(void)
1069 {
1070         return target_call_timer_callbacks_check_time(0);
1071 }
1072
1073 int target_alloc_working_area(struct target_s *target, uint32_t size, working_area_t **area)
1074 {
1075         working_area_t *c = target->working_areas;
1076         working_area_t *new_wa = NULL;
1077
1078         /* Reevaluate working area address based on MMU state*/
1079         if (target->working_areas == NULL)
1080         {
1081                 int retval;
1082                 int enabled;
1083                 retval = target->type->mmu(target, &enabled);
1084                 if (retval != ERROR_OK)
1085                 {
1086                         return retval;
1087                 }
1088
1089                 if (enabled)
1090                 {
1091                         if (target->working_area_phys_spec)
1092                         {
1093                                 LOG_DEBUG("MMU disabled, using physical address for working memory 0x%08x", (unsigned)target->working_area_phys);
1094                                 target->working_area = target->working_area_phys;
1095                         } else
1096                         {
1097                                 LOG_ERROR("No working memory available. Specify -work-area-phys to target.");
1098                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1099                         }
1100                 } else
1101                 {
1102                         if (target->working_area_virt_spec)
1103                         {
1104                                 LOG_DEBUG("MMU enabled, using virtual address for working memory 0x%08x", (unsigned)target->working_area_virt);
1105                                 target->working_area = target->working_area_virt;
1106                         } else
1107                         {
1108                                 LOG_ERROR("No working memory available. Specify -work-area-virt to target.");
1109                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1110                         }
1111                 }
1112         }
1113
1114         /* only allocate multiples of 4 byte */
1115         if (size % 4)
1116         {
1117                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1118                 size = (size + 3) & (~3);
1119         }
1120
1121         /* see if there's already a matching working area */
1122         while (c)
1123         {
1124                 if ((c->free) && (c->size == size))
1125                 {
1126                         new_wa = c;
1127                         break;
1128                 }
1129                 c = c->next;
1130         }
1131
1132         /* if not, allocate a new one */
1133         if (!new_wa)
1134         {
1135                 working_area_t **p = &target->working_areas;
1136                 uint32_t first_free = target->working_area;
1137                 uint32_t free_size = target->working_area_size;
1138
1139                 c = target->working_areas;
1140                 while (c)
1141                 {
1142                         first_free += c->size;
1143                         free_size -= c->size;
1144                         p = &c->next;
1145                         c = c->next;
1146                 }
1147
1148                 if (free_size < size)
1149                 {
1150                         LOG_WARNING("not enough working area available(requested %u, free %u)",
1151                                     (unsigned)(size), (unsigned)(free_size));
1152                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1153                 }
1154
1155                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1156
1157                 new_wa = malloc(sizeof(working_area_t));
1158                 new_wa->next = NULL;
1159                 new_wa->size = size;
1160                 new_wa->address = first_free;
1161
1162                 if (target->backup_working_area)
1163                 {
1164                         int retval;
1165                         new_wa->backup = malloc(new_wa->size);
1166                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1167                         {
1168                                 free(new_wa->backup);
1169                                 free(new_wa);
1170                                 return retval;
1171                         }
1172                 }
1173                 else
1174                 {
1175                         new_wa->backup = NULL;
1176                 }
1177
1178                 /* put new entry in list */
1179                 *p = new_wa;
1180         }
1181
1182         /* mark as used, and return the new (reused) area */
1183         new_wa->free = 0;
1184         *area = new_wa;
1185
1186         /* user pointer */
1187         new_wa->user = area;
1188
1189         return ERROR_OK;
1190 }
1191
1192 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
1193 {
1194         if (area->free)
1195                 return ERROR_OK;
1196
1197         if (restore && target->backup_working_area)
1198         {
1199                 int retval;
1200                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1201                         return retval;
1202         }
1203
1204         area->free = 1;
1205
1206         /* mark user pointer invalid */
1207         *area->user = NULL;
1208         area->user = NULL;
1209
1210         return ERROR_OK;
1211 }
1212
1213 int target_free_working_area(struct target_s *target, working_area_t *area)
1214 {
1215         return target_free_working_area_restore(target, area, 1);
1216 }
1217
1218 /* free resources and restore memory, if restoring memory fails,
1219  * free up resources anyway
1220  */
1221 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1222 {
1223         working_area_t *c = target->working_areas;
1224
1225         while (c)
1226         {
1227                 working_area_t *next = c->next;
1228                 target_free_working_area_restore(target, c, restore);
1229
1230                 if (c->backup)
1231                         free(c->backup);
1232
1233                 free(c);
1234
1235                 c = next;
1236         }
1237
1238         target->working_areas = NULL;
1239 }
1240
1241 void target_free_all_working_areas(struct target_s *target)
1242 {
1243         target_free_all_working_areas_restore(target, 1);
1244 }
1245
1246 int target_register_commands(struct command_context_s *cmd_ctx)
1247 {
1248
1249         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1250
1251
1252
1253
1254         register_jim(cmd_ctx, "target", jim_target, "configure target");
1255
1256         return ERROR_OK;
1257 }
1258
1259 int target_arch_state(struct target_s *target)
1260 {
1261         int retval;
1262         if (target == NULL)
1263         {
1264                 LOG_USER("No target has been configured");
1265                 return ERROR_OK;
1266         }
1267
1268         LOG_USER("target state: %s", target_state_name( target ));
1269
1270         if (target->state != TARGET_HALTED)
1271                 return ERROR_OK;
1272
1273         retval = target->type->arch_state(target);
1274         return retval;
1275 }
1276
1277 /* Single aligned words are guaranteed to use 16 or 32 bit access
1278  * mode respectively, otherwise data is handled as quickly as
1279  * possible
1280  */
1281 int target_write_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
1282 {
1283         int retval;
1284         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1285                   (int)size, (unsigned)address);
1286
1287         if (!target_was_examined(target))
1288         {
1289                 LOG_ERROR("Target not examined yet");
1290                 return ERROR_FAIL;
1291         }
1292
1293         if (size == 0) {
1294                 return ERROR_OK;
1295         }
1296
1297         if ((address + size - 1) < address)
1298         {
1299                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1300                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1301                                   (unsigned)address,
1302                                   (unsigned)size);
1303                 return ERROR_FAIL;
1304         }
1305
1306         if (((address % 2) == 0) && (size == 2))
1307         {
1308                 return target_write_memory(target, address, 2, 1, buffer);
1309         }
1310
1311         /* handle unaligned head bytes */
1312         if (address % 4)
1313         {
1314                 uint32_t unaligned = 4 - (address % 4);
1315
1316                 if (unaligned > size)
1317                         unaligned = size;
1318
1319                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1320                         return retval;
1321
1322                 buffer += unaligned;
1323                 address += unaligned;
1324                 size -= unaligned;
1325         }
1326
1327         /* handle aligned words */
1328         if (size >= 4)
1329         {
1330                 int aligned = size - (size % 4);
1331
1332                 /* use bulk writes above a certain limit. This may have to be changed */
1333                 if (aligned > 128)
1334                 {
1335                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1336                                 return retval;
1337                 }
1338                 else
1339                 {
1340                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1341                                 return retval;
1342                 }
1343
1344                 buffer += aligned;
1345                 address += aligned;
1346                 size -= aligned;
1347         }
1348
1349         /* handle tail writes of less than 4 bytes */
1350         if (size > 0)
1351         {
1352                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1353                         return retval;
1354         }
1355
1356         return ERROR_OK;
1357 }
1358
1359 /* Single aligned words are guaranteed to use 16 or 32 bit access
1360  * mode respectively, otherwise data is handled as quickly as
1361  * possible
1362  */
1363 int target_read_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
1364 {
1365         int retval;
1366         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1367                           (int)size, (unsigned)address);
1368
1369         if (!target_was_examined(target))
1370         {
1371                 LOG_ERROR("Target not examined yet");
1372                 return ERROR_FAIL;
1373         }
1374
1375         if (size == 0) {
1376                 return ERROR_OK;
1377         }
1378
1379         if ((address + size - 1) < address)
1380         {
1381                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1382                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1383                                   address,
1384                                   size);
1385                 return ERROR_FAIL;
1386         }
1387
1388         if (((address % 2) == 0) && (size == 2))
1389         {
1390                 return target_read_memory(target, address, 2, 1, buffer);
1391         }
1392
1393         /* handle unaligned head bytes */
1394         if (address % 4)
1395         {
1396                 uint32_t unaligned = 4 - (address % 4);
1397
1398                 if (unaligned > size)
1399                         unaligned = size;
1400
1401                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1402                         return retval;
1403
1404                 buffer += unaligned;
1405                 address += unaligned;
1406                 size -= unaligned;
1407         }
1408
1409         /* handle aligned words */
1410         if (size >= 4)
1411         {
1412                 int aligned = size - (size % 4);
1413
1414                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1415                         return retval;
1416
1417                 buffer += aligned;
1418                 address += aligned;
1419                 size -= aligned;
1420         }
1421
1422         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1423         if(size >=2)
1424         {
1425                 int aligned = size - (size%2);
1426                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1427                 if (retval != ERROR_OK)
1428                         return retval;
1429
1430                 buffer += aligned;
1431                 address += aligned;
1432                 size -= aligned;
1433         }
1434         /* handle tail writes of less than 4 bytes */
1435         if (size > 0)
1436         {
1437                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1438                         return retval;
1439         }
1440
1441         return ERROR_OK;
1442 }
1443
1444 int target_checksum_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* crc)
1445 {
1446         uint8_t *buffer;
1447         int retval;
1448         uint32_t i;
1449         uint32_t checksum = 0;
1450         if (!target_was_examined(target))
1451         {
1452                 LOG_ERROR("Target not examined yet");
1453                 return ERROR_FAIL;
1454         }
1455
1456         if ((retval = target->type->checksum_memory(target, address,
1457                 size, &checksum)) != ERROR_OK)
1458         {
1459                 buffer = malloc(size);
1460                 if (buffer == NULL)
1461                 {
1462                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1463                         return ERROR_INVALID_ARGUMENTS;
1464                 }
1465                 retval = target_read_buffer(target, address, size, buffer);
1466                 if (retval != ERROR_OK)
1467                 {
1468                         free(buffer);
1469                         return retval;
1470                 }
1471
1472                 /* convert to target endianess */
1473                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1474                 {
1475                         uint32_t target_data;
1476                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1477                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1478                 }
1479
1480                 retval = image_calculate_checksum(buffer, size, &checksum);
1481                 free(buffer);
1482         }
1483
1484         *crc = checksum;
1485
1486         return retval;
1487 }
1488
1489 int target_blank_check_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* blank)
1490 {
1491         int retval;
1492         if (!target_was_examined(target))
1493         {
1494                 LOG_ERROR("Target not examined yet");
1495                 return ERROR_FAIL;
1496         }
1497
1498         if (target->type->blank_check_memory == 0)
1499                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1500
1501         retval = target->type->blank_check_memory(target, address, size, blank);
1502
1503         return retval;
1504 }
1505
1506 int target_read_u32(struct target_s *target, uint32_t address, uint32_t *value)
1507 {
1508         uint8_t value_buf[4];
1509         if (!target_was_examined(target))
1510         {
1511                 LOG_ERROR("Target not examined yet");
1512                 return ERROR_FAIL;
1513         }
1514
1515         int retval = target_read_memory(target, address, 4, 1, value_buf);
1516
1517         if (retval == ERROR_OK)
1518         {
1519                 *value = target_buffer_get_u32(target, value_buf);
1520                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1521                                   address,
1522                                   *value);
1523         }
1524         else
1525         {
1526                 *value = 0x0;
1527                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1528                                   address);
1529         }
1530
1531         return retval;
1532 }
1533
1534 int target_read_u16(struct target_s *target, uint32_t address, uint16_t *value)
1535 {
1536         uint8_t value_buf[2];
1537         if (!target_was_examined(target))
1538         {
1539                 LOG_ERROR("Target not examined yet");
1540                 return ERROR_FAIL;
1541         }
1542
1543         int retval = target_read_memory(target, address, 2, 1, value_buf);
1544
1545         if (retval == ERROR_OK)
1546         {
1547                 *value = target_buffer_get_u16(target, value_buf);
1548                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1549                                   address,
1550                                   *value);
1551         }
1552         else
1553         {
1554                 *value = 0x0;
1555                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1556                                   address);
1557         }
1558
1559         return retval;
1560 }
1561
1562 int target_read_u8(struct target_s *target, uint32_t address, uint8_t *value)
1563 {
1564         int retval = target_read_memory(target, address, 1, 1, value);
1565         if (!target_was_examined(target))
1566         {
1567                 LOG_ERROR("Target not examined yet");
1568                 return ERROR_FAIL;
1569         }
1570
1571         if (retval == ERROR_OK)
1572         {
1573                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1574                                   address,
1575                                   *value);
1576         }
1577         else
1578         {
1579                 *value = 0x0;
1580                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1581                                   address);
1582         }
1583
1584         return retval;
1585 }
1586
1587 int target_write_u32(struct target_s *target, uint32_t address, uint32_t value)
1588 {
1589         int retval;
1590         uint8_t value_buf[4];
1591         if (!target_was_examined(target))
1592         {
1593                 LOG_ERROR("Target not examined yet");
1594                 return ERROR_FAIL;
1595         }
1596
1597         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1598                           address,
1599                           value);
1600
1601         target_buffer_set_u32(target, value_buf, value);
1602         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1603         {
1604                 LOG_DEBUG("failed: %i", retval);
1605         }
1606
1607         return retval;
1608 }
1609
1610 int target_write_u16(struct target_s *target, uint32_t address, uint16_t value)
1611 {
1612         int retval;
1613         uint8_t value_buf[2];
1614         if (!target_was_examined(target))
1615         {
1616                 LOG_ERROR("Target not examined yet");
1617                 return ERROR_FAIL;
1618         }
1619
1620         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1621                           address,
1622                           value);
1623
1624         target_buffer_set_u16(target, value_buf, value);
1625         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1626         {
1627                 LOG_DEBUG("failed: %i", retval);
1628         }
1629
1630         return retval;
1631 }
1632
1633 int target_write_u8(struct target_s *target, uint32_t address, uint8_t value)
1634 {
1635         int retval;
1636         if (!target_was_examined(target))
1637         {
1638                 LOG_ERROR("Target not examined yet");
1639                 return ERROR_FAIL;
1640         }
1641
1642         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1643                           address, value);
1644
1645         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1646         {
1647                 LOG_DEBUG("failed: %i", retval);
1648         }
1649
1650         return retval;
1651 }
1652
1653 int target_register_user_commands(struct command_context_s *cmd_ctx)
1654 {
1655         int retval = ERROR_OK;
1656
1657
1658         /* script procedures */
1659         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1660         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
1661         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
1662
1663         register_jim(cmd_ctx, "mrc", jim_mcrmrc, "read coprocessor <cpnum> <op1> <op2> <CRn> <CRm>");
1664         register_jim(cmd_ctx, "mcr", jim_mcrmrc, "write coprocessor <cpnum> <op1> <op2> <CRn> <CRm> <value>");
1665
1666         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1667                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1668
1669         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1670                         "loads active fast load image to current target - mainly for profiling purposes");
1671
1672
1673         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1674         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1675         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1676         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1677         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1678         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1679         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1680         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run | halt | init] - default is run");
1681         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1682
1683         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words [phys] <addr> [count]");
1684         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words [phys] <addr> [count]");
1685         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes [phys] <addr> [count]");
1686
1687         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word [phys]  <addr> <value> [count]");
1688         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word [phys]  <addr> <value> [count]");
1689         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte [phys] <addr> <value> [count]");
1690
1691         register_command(cmd_ctx,  NULL, "bp",
1692                         handle_bp_command, COMMAND_EXEC,
1693                         "list or set breakpoint [<address> <length> [hw]]");
1694         register_command(cmd_ctx,  NULL, "rbp",
1695                         handle_rbp_command, COMMAND_EXEC,
1696                         "remove breakpoint <address>");
1697         register_command(cmd_ctx,  NULL, "wp",
1698                         handle_wp_command, COMMAND_EXEC,
1699                         "list or set watchpoint "
1700                                 "[<address> <length> <r/w/a> [value] [mask]]");
1701         register_command(cmd_ctx,  NULL, "rwp",
1702                         handle_rwp_command, COMMAND_EXEC,
1703                         "remove watchpoint <address>");
1704
1705         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1706         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1707         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1708         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1709
1710         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1711                 return retval;
1712         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1713                 return retval;
1714
1715         return retval;
1716 }
1717
1718 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1719 {
1720         target_t *target = all_targets;
1721
1722         if (argc == 1)
1723         {
1724                 target = get_target(args[0]);
1725                 if (target == NULL) {
1726                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0]);
1727                         goto DumpTargets;
1728                 }
1729                 if (!target->tap->enabled) {
1730                         command_print(cmd_ctx,"Target: TAP %s is disabled, "
1731                                         "can't be the current target\n",
1732                                         target->tap->dotted_name);
1733                         return ERROR_FAIL;
1734                 }
1735
1736                 cmd_ctx->current_target = target->target_number;
1737                 return ERROR_OK;
1738         }
1739 DumpTargets:
1740
1741         target = all_targets;
1742         command_print(cmd_ctx, "    TargetName         Type       Endian TapName            State       ");
1743         command_print(cmd_ctx, "--  ------------------ ---------- ------ ------------------ ------------");
1744         while (target)
1745         {
1746                 const char *state;
1747                 char marker = ' ';
1748
1749                 if (target->tap->enabled)
1750                         state = target_state_name( target );
1751                 else
1752                         state = "tap-disabled";
1753
1754                 if (cmd_ctx->current_target == target->target_number)
1755                         marker = '*';
1756
1757                 /* keep columns lined up to match the headers above */
1758                 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1759                                           target->target_number,
1760                                           marker,
1761                                           target->cmd_name,
1762                                           target_get_name(target),
1763                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1764                                                                 target->endianness)->name,
1765                                           target->tap->dotted_name,
1766                                           state);
1767                 target = target->next;
1768         }
1769
1770         return ERROR_OK;
1771 }
1772
1773 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1774
1775 static int powerDropout;
1776 static int srstAsserted;
1777
1778 static int runPowerRestore;
1779 static int runPowerDropout;
1780 static int runSrstAsserted;
1781 static int runSrstDeasserted;
1782
1783 static int sense_handler(void)
1784 {
1785         static int prevSrstAsserted = 0;
1786         static int prevPowerdropout = 0;
1787
1788         int retval;
1789         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1790                 return retval;
1791
1792         int powerRestored;
1793         powerRestored = prevPowerdropout && !powerDropout;
1794         if (powerRestored)
1795         {
1796                 runPowerRestore = 1;
1797         }
1798
1799         long long current = timeval_ms();
1800         static long long lastPower = 0;
1801         int waitMore = lastPower + 2000 > current;
1802         if (powerDropout && !waitMore)
1803         {
1804                 runPowerDropout = 1;
1805                 lastPower = current;
1806         }
1807
1808         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1809                 return retval;
1810
1811         int srstDeasserted;
1812         srstDeasserted = prevSrstAsserted && !srstAsserted;
1813
1814         static long long lastSrst = 0;
1815         waitMore = lastSrst + 2000 > current;
1816         if (srstDeasserted && !waitMore)
1817         {
1818                 runSrstDeasserted = 1;
1819                 lastSrst = current;
1820         }
1821
1822         if (!prevSrstAsserted && srstAsserted)
1823         {
1824                 runSrstAsserted = 1;
1825         }
1826
1827         prevSrstAsserted = srstAsserted;
1828         prevPowerdropout = powerDropout;
1829
1830         if (srstDeasserted || powerRestored)
1831         {
1832                 /* Other than logging the event we can't do anything here.
1833                  * Issuing a reset is a particularly bad idea as we might
1834                  * be inside a reset already.
1835                  */
1836         }
1837
1838         return ERROR_OK;
1839 }
1840
1841 static void target_call_event_callbacks_all(enum target_event e) {
1842         target_t *target;
1843         target = all_targets;
1844         while (target) {
1845                 target_call_event_callbacks(target, e);
1846                 target = target->next;
1847         }
1848 }
1849
1850 /* process target state changes */
1851 int handle_target(void *priv)
1852 {
1853         int retval = ERROR_OK;
1854
1855         /* we do not want to recurse here... */
1856         static int recursive = 0;
1857         if (! recursive)
1858         {
1859                 recursive = 1;
1860                 sense_handler();
1861                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1862                  * We need to avoid an infinite loop/recursion here and we do that by
1863                  * clearing the flags after running these events.
1864                  */
1865                 int did_something = 0;
1866                 if (runSrstAsserted)
1867                 {
1868                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1869                         Jim_Eval(interp, "srst_asserted");
1870                         did_something = 1;
1871                 }
1872                 if (runSrstDeasserted)
1873                 {
1874                         Jim_Eval(interp, "srst_deasserted");
1875                         did_something = 1;
1876                 }
1877                 if (runPowerDropout)
1878                 {
1879                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1880                         Jim_Eval(interp, "power_dropout");
1881                         did_something = 1;
1882                 }
1883                 if (runPowerRestore)
1884                 {
1885                         Jim_Eval(interp, "power_restore");
1886                         did_something = 1;
1887                 }
1888
1889                 if (did_something)
1890                 {
1891                         /* clear detect flags */
1892                         sense_handler();
1893                 }
1894
1895                 /* clear action flags */
1896
1897                 runSrstAsserted = 0;
1898                 runSrstDeasserted = 0;
1899                 runPowerRestore = 0;
1900                 runPowerDropout = 0;
1901
1902                 recursive = 0;
1903         }
1904
1905         /* Poll targets for state changes unless that's globally disabled.
1906          * Skip targets that are currently disabled.
1907          */
1908         for (target_t *target = all_targets;
1909                         is_jtag_poll_safe() && target;
1910                         target = target->next)
1911         {
1912                 if (!target->tap->enabled)
1913                         continue;
1914
1915                 /* only poll target if we've got power and srst isn't asserted */
1916                 if (!powerDropout && !srstAsserted)
1917                 {
1918                         /* polling may fail silently until the target has been examined */
1919                         if ((retval = target_poll(target)) != ERROR_OK)
1920                         {
1921                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1922                                 return retval;
1923                         }
1924                 }
1925         }
1926
1927         return retval;
1928 }
1929
1930 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1931 {
1932         target_t *target;
1933         reg_t *reg = NULL;
1934         int count = 0;
1935         char *value;
1936
1937         LOG_DEBUG("-");
1938
1939         target = get_current_target(cmd_ctx);
1940
1941         /* list all available registers for the current target */
1942         if (argc == 0)
1943         {
1944                 reg_cache_t *cache = target->reg_cache;
1945
1946                 count = 0;
1947                 while (cache)
1948                 {
1949                         int i;
1950
1951                         command_print(cmd_ctx, "===== %s", cache->name);
1952
1953                         for (i = 0, reg = cache->reg_list;
1954                                         i < cache->num_regs;
1955                                         i++, reg++, count++)
1956                         {
1957                                 /* only print cached values if they are valid */
1958                                 if (reg->valid) {
1959                                         value = buf_to_str(reg->value,
1960                                                         reg->size, 16);
1961                                         command_print(cmd_ctx,
1962                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1963                                                         count, reg->name,
1964                                                         reg->size, value,
1965                                                         reg->dirty
1966                                                                 ? " (dirty)"
1967                                                                 : "");
1968                                         free(value);
1969                                 } else {
1970                                         command_print(cmd_ctx, "(%i) %s (/%" PRIu32 ")",
1971                                                           count, reg->name,
1972                                                           reg->size) ;
1973                                 }
1974                         }
1975                         cache = cache->next;
1976                 }
1977
1978                 return ERROR_OK;
1979         }
1980
1981         /* access a single register by its ordinal number */
1982         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1983         {
1984                 unsigned num;
1985                 int retval = parse_uint(args[0], &num);
1986                 if (ERROR_OK != retval)
1987                         return ERROR_COMMAND_SYNTAX_ERROR;
1988
1989                 reg_cache_t *cache = target->reg_cache;
1990                 count = 0;
1991                 while (cache)
1992                 {
1993                         int i;
1994                         for (i = 0; i < cache->num_regs; i++)
1995                         {
1996                                 if (count++ == (int)num)
1997                                 {
1998                                         reg = &cache->reg_list[i];
1999                                         break;
2000                                 }
2001                         }
2002                         if (reg)
2003                                 break;
2004                         cache = cache->next;
2005                 }
2006
2007                 if (!reg)
2008                 {
2009                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
2010                         return ERROR_OK;
2011                 }
2012         } else /* access a single register by its name */
2013         {
2014                 reg = register_get_by_name(target->reg_cache, args[0], 1);
2015
2016                 if (!reg)
2017                 {
2018                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
2019                         return ERROR_OK;
2020                 }
2021         }
2022
2023         /* display a register */
2024         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
2025         {
2026                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
2027                         reg->valid = 0;
2028
2029                 if (reg->valid == 0)
2030                 {
2031                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
2032                         arch_type->get(reg);
2033                 }
2034                 value = buf_to_str(reg->value, reg->size, 16);
2035                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2036                 free(value);
2037                 return ERROR_OK;
2038         }
2039
2040         /* set register value */
2041         if (argc == 2)
2042         {
2043                 uint8_t *buf = malloc(CEIL(reg->size, 8));
2044                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
2045
2046                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
2047                 arch_type->set(reg, buf);
2048
2049                 value = buf_to_str(reg->value, reg->size, 16);
2050                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2051                 free(value);
2052
2053                 free(buf);
2054
2055                 return ERROR_OK;
2056         }
2057
2058         command_print(cmd_ctx, "usage: reg <#|name> [value]");
2059
2060         return ERROR_OK;
2061 }
2062
2063 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2064 {
2065         int retval = ERROR_OK;
2066         target_t *target = get_current_target(cmd_ctx);
2067
2068         if (argc == 0)
2069         {
2070                 command_print(cmd_ctx, "background polling: %s",
2071                                 jtag_poll_get_enabled() ? "on" : "off");
2072                 command_print(cmd_ctx, "TAP: %s (%s)",
2073                                 target->tap->dotted_name,
2074                                 target->tap->enabled ? "enabled" : "disabled");
2075                 if (!target->tap->enabled)
2076                         return ERROR_OK;
2077                 if ((retval = target_poll(target)) != ERROR_OK)
2078                         return retval;
2079                 if ((retval = target_arch_state(target)) != ERROR_OK)
2080                         return retval;
2081
2082         }
2083         else if (argc == 1)
2084         {
2085                 if (strcmp(args[0], "on") == 0)
2086                 {
2087                         jtag_poll_set_enabled(true);
2088                 }
2089                 else if (strcmp(args[0], "off") == 0)
2090                 {
2091                         jtag_poll_set_enabled(false);
2092                 }
2093                 else
2094                 {
2095                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
2096                 }
2097         } else
2098         {
2099                 return ERROR_COMMAND_SYNTAX_ERROR;
2100         }
2101
2102         return retval;
2103 }
2104
2105 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2106 {
2107         if (argc > 1)
2108                 return ERROR_COMMAND_SYNTAX_ERROR;
2109
2110         unsigned ms = 5000;
2111         if (1 == argc)
2112         {
2113                 int retval = parse_uint(args[0], &ms);
2114                 if (ERROR_OK != retval)
2115                 {
2116                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
2117                         return ERROR_COMMAND_SYNTAX_ERROR;
2118                 }
2119                 // convert seconds (given) to milliseconds (needed)
2120                 ms *= 1000;
2121         }
2122
2123         target_t *target = get_current_target(cmd_ctx);
2124         return target_wait_state(target, TARGET_HALTED, ms);
2125 }
2126
2127 /* wait for target state to change. The trick here is to have a low
2128  * latency for short waits and not to suck up all the CPU time
2129  * on longer waits.
2130  *
2131  * After 500ms, keep_alive() is invoked
2132  */
2133 int target_wait_state(target_t *target, enum target_state state, int ms)
2134 {
2135         int retval;
2136         long long then = 0, cur;
2137         int once = 1;
2138
2139         for (;;)
2140         {
2141                 if ((retval = target_poll(target)) != ERROR_OK)
2142                         return retval;
2143                 if (target->state == state)
2144                 {
2145                         break;
2146                 }
2147                 cur = timeval_ms();
2148                 if (once)
2149                 {
2150                         once = 0;
2151                         then = timeval_ms();
2152                         LOG_DEBUG("waiting for target %s...",
2153                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2154                 }
2155
2156                 if (cur-then > 500)
2157                 {
2158                         keep_alive();
2159                 }
2160
2161                 if ((cur-then) > ms)
2162                 {
2163                         LOG_ERROR("timed out while waiting for target %s",
2164                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2165                         return ERROR_FAIL;
2166                 }
2167         }
2168
2169         return ERROR_OK;
2170 }
2171
2172 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2173 {
2174         LOG_DEBUG("-");
2175
2176         target_t *target = get_current_target(cmd_ctx);
2177         int retval = target_halt(target);
2178         if (ERROR_OK != retval)
2179                 return retval;
2180
2181         if (argc == 1)
2182         {
2183                 unsigned wait;
2184                 retval = parse_uint(args[0], &wait);
2185                 if (ERROR_OK != retval)
2186                         return ERROR_COMMAND_SYNTAX_ERROR;
2187                 if (!wait)
2188                         return ERROR_OK;
2189         }
2190
2191         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
2192 }
2193
2194 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2195 {
2196         target_t *target = get_current_target(cmd_ctx);
2197
2198         LOG_USER("requesting target halt and executing a soft reset");
2199
2200         target->type->soft_reset_halt(target);
2201
2202         return ERROR_OK;
2203 }
2204
2205 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2206 {
2207         if (argc > 1)
2208                 return ERROR_COMMAND_SYNTAX_ERROR;
2209
2210         enum target_reset_mode reset_mode = RESET_RUN;
2211         if (argc == 1)
2212         {
2213                 const Jim_Nvp *n;
2214                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, args[0]);
2215                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2216                         return ERROR_COMMAND_SYNTAX_ERROR;
2217                 }
2218                 reset_mode = n->value;
2219         }
2220
2221         /* reset *all* targets */
2222         return target_process_reset(cmd_ctx, reset_mode);
2223 }
2224
2225
2226 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2227 {
2228         int current = 1;
2229         if (argc > 1)
2230                 return ERROR_COMMAND_SYNTAX_ERROR;
2231
2232         target_t *target = get_current_target(cmd_ctx);
2233         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2234
2235         /* with no args, resume from current pc, addr = 0,
2236          * with one arguments, addr = args[0],
2237          * handle breakpoints, not debugging */
2238         uint32_t addr = 0;
2239         if (argc == 1)
2240         {
2241                 int retval = parse_u32(args[0], &addr);
2242                 if (ERROR_OK != retval)
2243                         return retval;
2244                 current = 0;
2245         }
2246
2247         return target_resume(target, current, addr, 1, 0);
2248 }
2249
2250 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2251 {
2252         if (argc > 1)
2253                 return ERROR_COMMAND_SYNTAX_ERROR;
2254
2255         LOG_DEBUG("-");
2256
2257         /* with no args, step from current pc, addr = 0,
2258          * with one argument addr = args[0],
2259          * handle breakpoints, debugging */
2260         uint32_t addr = 0;
2261         int current_pc = 1;
2262         if (argc == 1)
2263         {
2264                 int retval = parse_u32(args[0], &addr);
2265                 if (ERROR_OK != retval)
2266                         return retval;
2267                 current_pc = 0;
2268         }
2269
2270         target_t *target = get_current_target(cmd_ctx);
2271
2272         return target->type->step(target, current_pc, addr, 1);
2273 }
2274
2275 static void handle_md_output(struct command_context_s *cmd_ctx,
2276                 struct target_s *target, uint32_t address, unsigned size,
2277                 unsigned count, const uint8_t *buffer)
2278 {
2279         const unsigned line_bytecnt = 32;
2280         unsigned line_modulo = line_bytecnt / size;
2281
2282         char output[line_bytecnt * 4 + 1];
2283         unsigned output_len = 0;
2284
2285         const char *value_fmt;
2286         switch (size) {
2287         case 4: value_fmt = "%8.8x "; break;
2288         case 2: value_fmt = "%4.2x "; break;
2289         case 1: value_fmt = "%2.2x "; break;
2290         default:
2291                 LOG_ERROR("invalid memory read size: %u", size);
2292                 exit(-1);
2293         }
2294
2295         for (unsigned i = 0; i < count; i++)
2296         {
2297                 if (i % line_modulo == 0)
2298                 {
2299                         output_len += snprintf(output + output_len,
2300                                         sizeof(output) - output_len,
2301                                         "0x%8.8x: ",
2302                                         (unsigned)(address + (i*size)));
2303                 }
2304
2305                 uint32_t value = 0;
2306                 const uint8_t *value_ptr = buffer + i * size;
2307                 switch (size) {
2308                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2309                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2310                 case 1: value = *value_ptr;
2311                 }
2312                 output_len += snprintf(output + output_len,
2313                                 sizeof(output) - output_len,
2314                                 value_fmt, value);
2315
2316                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2317                 {
2318                         command_print(cmd_ctx, "%s", output);
2319                         output_len = 0;
2320                 }
2321         }
2322 }
2323
2324 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2325 {
2326         if (argc < 1)
2327                 return ERROR_COMMAND_SYNTAX_ERROR;
2328
2329         unsigned size = 0;
2330         switch (cmd[2]) {
2331         case 'w': size = 4; break;
2332         case 'h': size = 2; break;
2333         case 'b': size = 1; break;
2334         default: return ERROR_COMMAND_SYNTAX_ERROR;
2335         }
2336
2337         bool physical=strcmp(args[0], "phys")==0;
2338         int (*fn)(struct target_s *target,
2339                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2340         if (physical)
2341         {
2342                 argc--;
2343                 args++;
2344                 fn=target_read_phys_memory;
2345         } else
2346         {
2347                 fn=target_read_memory;
2348         }
2349         if ((argc < 1) || (argc > 2))
2350         {
2351                 return ERROR_COMMAND_SYNTAX_ERROR;
2352         }
2353         uint32_t address;
2354         int retval = parse_u32(args[0], &address);
2355         if (ERROR_OK != retval)
2356                 return retval;
2357
2358         unsigned count = 1;
2359         if (argc == 2)
2360         {
2361                 retval = parse_uint(args[1], &count);
2362                 if (ERROR_OK != retval)
2363                         return retval;
2364         }
2365
2366         uint8_t *buffer = calloc(count, size);
2367
2368         target_t *target = get_current_target(cmd_ctx);
2369         retval = fn(target, address, size, count, buffer);
2370         if (ERROR_OK == retval)
2371                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2372
2373         free(buffer);
2374
2375         return retval;
2376 }
2377
2378 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2379 {
2380         if (argc < 2)
2381         {
2382                 return ERROR_COMMAND_SYNTAX_ERROR;
2383         }
2384         bool physical=strcmp(args[0], "phys")==0;
2385         int (*fn)(struct target_s *target,
2386                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2387         if (physical)
2388         {
2389                 argc--;
2390                 args++;
2391                 fn=target_write_phys_memory;
2392         } else
2393         {
2394                 fn=target_write_memory;
2395         }
2396         if ((argc < 2) || (argc > 3))
2397                 return ERROR_COMMAND_SYNTAX_ERROR;
2398
2399         uint32_t address;
2400         int retval = parse_u32(args[0], &address);
2401         if (ERROR_OK != retval)
2402                 return retval;
2403
2404         uint32_t value;
2405         retval = parse_u32(args[1], &value);
2406         if (ERROR_OK != retval)
2407                 return retval;
2408
2409         unsigned count = 1;
2410         if (argc == 3)
2411         {
2412                 retval = parse_uint(args[2], &count);
2413                 if (ERROR_OK != retval)
2414                         return retval;
2415         }
2416
2417         target_t *target = get_current_target(cmd_ctx);
2418         unsigned wordsize;
2419         uint8_t value_buf[4];
2420         switch (cmd[2])
2421         {
2422                 case 'w':
2423                         wordsize = 4;
2424                         target_buffer_set_u32(target, value_buf, value);
2425                         break;
2426                 case 'h':
2427                         wordsize = 2;
2428                         target_buffer_set_u16(target, value_buf, value);
2429                         break;
2430                 case 'b':
2431                         wordsize = 1;
2432                         value_buf[0] = value;
2433                         break;
2434                 default:
2435                         return ERROR_COMMAND_SYNTAX_ERROR;
2436         }
2437         for (unsigned i = 0; i < count; i++)
2438         {
2439                 retval = fn(target,
2440                                 address + i * wordsize, wordsize, 1, value_buf);
2441                 if (ERROR_OK != retval)
2442                         return retval;
2443                 keep_alive();
2444         }
2445
2446         return ERROR_OK;
2447
2448 }
2449
2450 static int parse_load_image_command_args(char **args, int argc,
2451                 image_t *image, uint32_t *min_address, uint32_t *max_address)
2452 {
2453         if (argc < 1 || argc > 5)
2454                 return ERROR_COMMAND_SYNTAX_ERROR;
2455
2456         /* a base address isn't always necessary,
2457          * default to 0x0 (i.e. don't relocate) */
2458         if (argc >= 2)
2459         {
2460                 uint32_t addr;
2461                 int retval = parse_u32(args[1], &addr);
2462                 if (ERROR_OK != retval)
2463                         return ERROR_COMMAND_SYNTAX_ERROR;
2464                 image->base_address = addr;
2465                 image->base_address_set = 1;
2466         }
2467         else
2468                 image->base_address_set = 0;
2469
2470         image->start_address_set = 0;
2471
2472         if (argc >= 4)
2473         {
2474                 int retval = parse_u32(args[3], min_address);
2475                 if (ERROR_OK != retval)
2476                         return ERROR_COMMAND_SYNTAX_ERROR;
2477         }
2478         if (argc == 5)
2479         {
2480                 int retval = parse_u32(args[4], max_address);
2481                 if (ERROR_OK != retval)
2482                         return ERROR_COMMAND_SYNTAX_ERROR;
2483                 // use size (given) to find max (required)
2484                 *max_address += *min_address;
2485         }
2486
2487         if (*min_address > *max_address)
2488                 return ERROR_COMMAND_SYNTAX_ERROR;
2489
2490         return ERROR_OK;
2491 }
2492
2493 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2494 {
2495         uint8_t *buffer;
2496         uint32_t buf_cnt;
2497         uint32_t image_size;
2498         uint32_t min_address = 0;
2499         uint32_t max_address = 0xffffffff;
2500         int i;
2501         int retvaltemp;
2502
2503         image_t image;
2504
2505         duration_t duration;
2506         char *duration_text;
2507
2508         int retval = parse_load_image_command_args(args, argc,
2509                         &image, &min_address, &max_address);
2510         if (ERROR_OK != retval)
2511                 return retval;
2512
2513         target_t *target = get_current_target(cmd_ctx);
2514         duration_start_measure(&duration);
2515
2516         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2517         {
2518                 return ERROR_OK;
2519         }
2520
2521         image_size = 0x0;
2522         retval = ERROR_OK;
2523         for (i = 0; i < image.num_sections; i++)
2524         {
2525                 buffer = malloc(image.sections[i].size);
2526                 if (buffer == NULL)
2527                 {
2528                         command_print(cmd_ctx,
2529                                                   "error allocating buffer for section (%d bytes)",
2530                                                   (int)(image.sections[i].size));
2531                         break;
2532                 }
2533
2534                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2535                 {
2536                         free(buffer);
2537                         break;
2538                 }
2539
2540                 uint32_t offset = 0;
2541                 uint32_t length = buf_cnt;
2542
2543                 /* DANGER!!! beware of unsigned comparision here!!! */
2544
2545                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2546                                 (image.sections[i].base_address < max_address))
2547                 {
2548                         if (image.sections[i].base_address < min_address)
2549                         {
2550                                 /* clip addresses below */
2551                                 offset += min_address-image.sections[i].base_address;
2552                                 length -= offset;
2553                         }
2554
2555                         if (image.sections[i].base_address + buf_cnt > max_address)
2556                         {
2557                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2558                         }
2559
2560                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2561                         {
2562                                 free(buffer);
2563                                 break;
2564                         }
2565                         image_size += length;
2566                         command_print(cmd_ctx, "%u bytes written at address 0x%8.8" PRIx32 "",
2567                                                   (unsigned int)length,
2568                                                   image.sections[i].base_address + offset);
2569                 }
2570
2571                 free(buffer);
2572         }
2573
2574         if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2575         {
2576                 image_close(&image);
2577                 return retvaltemp;
2578         }
2579
2580         if (retval == ERROR_OK)
2581         {
2582                 command_print(cmd_ctx, "downloaded %u byte in %s",
2583                                           (unsigned int)image_size,
2584                                           duration_text);
2585         }
2586         free(duration_text);
2587
2588         image_close(&image);
2589
2590         return retval;
2591
2592 }
2593
2594 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2595 {
2596         fileio_t fileio;
2597
2598         uint8_t buffer[560];
2599         int retvaltemp;
2600
2601         duration_t duration;
2602         char *duration_text;
2603
2604         target_t *target = get_current_target(cmd_ctx);
2605
2606         if (argc != 3)
2607         {
2608                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2609                 return ERROR_OK;
2610         }
2611
2612         uint32_t address;
2613         int retval = parse_u32(args[1], &address);
2614         if (ERROR_OK != retval)
2615                 return retval;
2616
2617         uint32_t size;
2618         retval = parse_u32(args[2], &size);
2619         if (ERROR_OK != retval)
2620                 return retval;
2621
2622         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2623         {
2624                 return ERROR_OK;
2625         }
2626
2627         duration_start_measure(&duration);
2628
2629         while (size > 0)
2630         {
2631                 uint32_t size_written;
2632                 uint32_t this_run_size = (size > 560) ? 560 : size;
2633
2634                 retval = target_read_buffer(target, address, this_run_size, buffer);
2635                 if (retval != ERROR_OK)
2636                 {
2637                         break;
2638                 }
2639
2640                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2641                 if (retval != ERROR_OK)
2642                 {
2643                         break;
2644                 }
2645
2646                 size -= this_run_size;
2647                 address += this_run_size;
2648         }
2649
2650         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2651                 return retvaltemp;
2652
2653         if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2654                 return retvaltemp;
2655
2656         if (retval == ERROR_OK)
2657         {
2658                 command_print(cmd_ctx, "dumped %lld byte in %s",
2659                                 fileio.size, duration_text);
2660                 free(duration_text);
2661         }
2662
2663         return retval;
2664 }
2665
2666 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2667 {
2668         uint8_t *buffer;
2669         uint32_t buf_cnt;
2670         uint32_t image_size;
2671         int i;
2672         int retval, retvaltemp;
2673         uint32_t checksum = 0;
2674         uint32_t mem_checksum = 0;
2675
2676         image_t image;
2677
2678         duration_t duration;
2679         char *duration_text;
2680
2681         target_t *target = get_current_target(cmd_ctx);
2682
2683         if (argc < 1)
2684         {
2685                 return ERROR_COMMAND_SYNTAX_ERROR;
2686         }
2687
2688         if (!target)
2689         {
2690                 LOG_ERROR("no target selected");
2691                 return ERROR_FAIL;
2692         }
2693
2694         duration_start_measure(&duration);
2695
2696         if (argc >= 2)
2697         {
2698                 uint32_t addr;
2699                 retval = parse_u32(args[1], &addr);
2700                 if (ERROR_OK != retval)
2701                         return ERROR_COMMAND_SYNTAX_ERROR;
2702                 image.base_address = addr;
2703                 image.base_address_set = 1;
2704         }
2705         else
2706         {
2707                 image.base_address_set = 0;
2708                 image.base_address = 0x0;
2709         }
2710
2711         image.start_address_set = 0;
2712
2713         if ((retval = image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2714         {
2715                 return retval;
2716         }
2717
2718         image_size = 0x0;
2719         retval = ERROR_OK;
2720         for (i = 0; i < image.num_sections; i++)
2721         {
2722                 buffer = malloc(image.sections[i].size);
2723                 if (buffer == NULL)
2724                 {
2725                         command_print(cmd_ctx,
2726                                                   "error allocating buffer for section (%d bytes)",
2727                                                   (int)(image.sections[i].size));
2728                         break;
2729                 }
2730                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2731                 {
2732                         free(buffer);
2733                         break;
2734                 }
2735
2736                 if (verify)
2737                 {
2738                         /* calculate checksum of image */
2739                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2740
2741                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2742                         if (retval != ERROR_OK)
2743                         {
2744                                 free(buffer);
2745                                 break;
2746                         }
2747
2748                         if (checksum != mem_checksum)
2749                         {
2750                                 /* failed crc checksum, fall back to a binary compare */
2751                                 uint8_t *data;
2752
2753                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2754
2755                                 data = (uint8_t*)malloc(buf_cnt);
2756
2757                                 /* Can we use 32bit word accesses? */
2758                                 int size = 1;
2759                                 int count = buf_cnt;
2760                                 if ((count % 4) == 0)
2761                                 {
2762                                         size *= 4;
2763                                         count /= 4;
2764                                 }
2765                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2766                                 if (retval == ERROR_OK)
2767                                 {
2768                                         uint32_t t;
2769                                         for (t = 0; t < buf_cnt; t++)
2770                                         {
2771                                                 if (data[t] != buffer[t])
2772                                                 {
2773                                                         command_print(cmd_ctx,
2774                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2775                                                                                   (unsigned)(t + image.sections[i].base_address),
2776                                                                                   data[t],
2777                                                                                   buffer[t]);
2778                                                         free(data);
2779                                                         free(buffer);
2780                                                         retval = ERROR_FAIL;
2781                                                         goto done;
2782                                                 }
2783                                                 if ((t%16384) == 0)
2784                                                 {
2785                                                         keep_alive();
2786                                                 }
2787                                         }
2788                                 }
2789
2790                                 free(data);
2791                         }
2792                 } else
2793                 {
2794                         command_print(cmd_ctx, "address 0x%08" PRIx32 " length 0x%08" PRIx32 "",
2795                                                   image.sections[i].base_address,
2796                                                   buf_cnt);
2797                 }
2798
2799                 free(buffer);
2800                 image_size += buf_cnt;
2801         }
2802 done:
2803
2804         if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2805         {
2806                 image_close(&image);
2807                 return retvaltemp;
2808         }
2809
2810         if (retval == ERROR_OK)
2811         {
2812                 command_print(cmd_ctx, "verified %u bytes in %s",
2813                                           (unsigned int)image_size,
2814                                           duration_text);
2815         }
2816         free(duration_text);
2817
2818         image_close(&image);
2819
2820         return retval;
2821 }
2822
2823 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2824 {
2825         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2826 }
2827
2828 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2829 {
2830         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2831 }
2832
2833 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2834 {
2835         target_t *target = get_current_target(cmd_ctx);
2836         breakpoint_t *breakpoint = target->breakpoints;
2837         while (breakpoint)
2838         {
2839                 if (breakpoint->type == BKPT_SOFT)
2840                 {
2841                         char* buf = buf_to_str(breakpoint->orig_instr,
2842                                         breakpoint->length, 16);
2843                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2844                                         breakpoint->address,
2845                                         breakpoint->length,
2846                                         breakpoint->set, buf);
2847                         free(buf);
2848                 }
2849                 else
2850                 {
2851                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2852                                                   breakpoint->address,
2853                                                   breakpoint->length, breakpoint->set);
2854                 }
2855
2856                 breakpoint = breakpoint->next;
2857         }
2858         return ERROR_OK;
2859 }
2860
2861 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2862                 uint32_t addr, uint32_t length, int hw)
2863 {
2864         target_t *target = get_current_target(cmd_ctx);
2865         int retval = breakpoint_add(target, addr, length, hw);
2866         if (ERROR_OK == retval)
2867                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2868         else
2869                 LOG_ERROR("Failure setting breakpoint");
2870         return retval;
2871 }
2872
2873 static int handle_bp_command(struct command_context_s *cmd_ctx,
2874                 char *cmd, char **args, int argc)
2875 {
2876         if (argc == 0)
2877                 return handle_bp_command_list(cmd_ctx);
2878
2879         if (argc < 2 || argc > 3)
2880         {
2881                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2882                 return ERROR_COMMAND_SYNTAX_ERROR;
2883         }
2884
2885         uint32_t addr;
2886         int retval = parse_u32(args[0], &addr);
2887         if (ERROR_OK != retval)
2888                 return retval;
2889
2890         uint32_t length;
2891         retval = parse_u32(args[1], &length);
2892         if (ERROR_OK != retval)
2893                 return retval;
2894
2895         int hw = BKPT_SOFT;
2896         if (argc == 3)
2897         {
2898                 if (strcmp(args[2], "hw") == 0)
2899                         hw = BKPT_HARD;
2900                 else
2901                         return ERROR_COMMAND_SYNTAX_ERROR;
2902         }
2903
2904         return handle_bp_command_set(cmd_ctx, addr, length, hw);
2905 }
2906
2907 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2908 {
2909         if (argc != 1)
2910                 return ERROR_COMMAND_SYNTAX_ERROR;
2911
2912         uint32_t addr;
2913         int retval = parse_u32(args[0], &addr);
2914         if (ERROR_OK != retval)
2915                 return retval;
2916
2917         target_t *target = get_current_target(cmd_ctx);
2918         breakpoint_remove(target, addr);
2919
2920         return ERROR_OK;
2921 }
2922
2923 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2924 {
2925         target_t *target = get_current_target(cmd_ctx);
2926
2927         if (argc == 0)
2928         {
2929                 watchpoint_t *watchpoint = target->watchpoints;
2930
2931                 while (watchpoint)
2932                 {
2933                         command_print(cmd_ctx,
2934                                                   "address: 0x%8.8" PRIx32 ", len: 0x%8.8x, r/w/a: %i, value: 0x%8.8" PRIx32 ", mask: 0x%8.8" PRIx32 "",
2935                                                   watchpoint->address,
2936                                                   watchpoint->length,
2937                                                   (int)(watchpoint->rw),
2938                                                   watchpoint->value,
2939                                                   watchpoint->mask);
2940                         watchpoint = watchpoint->next;
2941                 }
2942                 return ERROR_OK;
2943         }
2944
2945         enum watchpoint_rw type = WPT_ACCESS;
2946         uint32_t addr = 0;
2947         uint32_t length = 0;
2948         uint32_t data_value = 0x0;
2949         uint32_t data_mask = 0xffffffff;
2950         int retval;
2951
2952         switch (argc)
2953         {
2954         case 5:
2955                 retval = parse_u32(args[4], &data_mask);
2956                 if (ERROR_OK != retval)
2957                         return retval;
2958                 // fall through
2959         case 4:
2960                 retval = parse_u32(args[3], &data_value);
2961                 if (ERROR_OK != retval)
2962                         return retval;
2963                 // fall through
2964         case 3:
2965                 switch (args[2][0])
2966                 {
2967                 case 'r':
2968                         type = WPT_READ;
2969                         break;
2970                 case 'w':
2971                         type = WPT_WRITE;
2972                         break;
2973                 case 'a':
2974                         type = WPT_ACCESS;
2975                         break;
2976                 default:
2977                         LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]);
2978                         return ERROR_COMMAND_SYNTAX_ERROR;
2979                 }
2980                 // fall through
2981         case 2:
2982                 retval = parse_u32(args[1], &length);
2983                 if (ERROR_OK != retval)
2984                         return retval;
2985                 retval = parse_u32(args[0], &addr);
2986                 if (ERROR_OK != retval)
2987                         return retval;
2988                 break;
2989
2990         default:
2991                 command_print(cmd_ctx, "usage: wp [address length "
2992                                 "[(r|w|a) [value [mask]]]]");
2993                 return ERROR_COMMAND_SYNTAX_ERROR;
2994         }
2995
2996         retval = watchpoint_add(target, addr, length, type,
2997                         data_value, data_mask);
2998         if (ERROR_OK != retval)
2999                 LOG_ERROR("Failure setting watchpoints");
3000
3001         return retval;
3002 }
3003
3004 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3005 {
3006         if (argc != 1)
3007                 return ERROR_COMMAND_SYNTAX_ERROR;
3008
3009         uint32_t addr;
3010         int retval = parse_u32(args[0], &addr);
3011         if (ERROR_OK != retval)
3012                 return retval;
3013
3014         target_t *target = get_current_target(cmd_ctx);
3015         watchpoint_remove(target, addr);
3016
3017         return ERROR_OK;
3018 }
3019
3020
3021 /**
3022  * Translate a virtual address to a physical address.
3023  *
3024  * The low-level target implementation must have logged a detailed error
3025  * which is forwarded to telnet/GDB session.
3026  */
3027 static int handle_virt2phys_command(command_context_t *cmd_ctx,
3028                 char *cmd, char **args, int argc)
3029 {
3030         if (argc != 1)
3031                 return ERROR_COMMAND_SYNTAX_ERROR;
3032
3033         uint32_t va;
3034         int retval = parse_u32(args[0], &va);
3035         if (ERROR_OK != retval)
3036                 return retval;
3037         uint32_t pa;
3038
3039         target_t *target = get_current_target(cmd_ctx);
3040         retval = target->type->virt2phys(target, va, &pa);
3041         if (retval == ERROR_OK)
3042                 command_print(cmd_ctx, "Physical address 0x%08" PRIx32 "", pa);
3043
3044         return retval;
3045 }
3046
3047 static void writeData(FILE *f, const void *data, size_t len)
3048 {
3049         size_t written = fwrite(data, 1, len, f);
3050         if (written != len)
3051                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3052 }
3053
3054 static void writeLong(FILE *f, int l)
3055 {
3056         int i;
3057         for (i = 0; i < 4; i++)
3058         {
3059                 char c = (l >> (i*8))&0xff;
3060                 writeData(f, &c, 1);
3061         }
3062
3063 }
3064
3065 static void writeString(FILE *f, char *s)
3066 {
3067         writeData(f, s, strlen(s));
3068 }
3069
3070 /* Dump a gmon.out histogram file. */
3071 static void writeGmon(uint32_t *samples, uint32_t sampleNum, char *filename)
3072 {
3073         uint32_t i;
3074         FILE *f = fopen(filename, "w");
3075         if (f == NULL)
3076                 return;
3077         writeString(f, "gmon");
3078         writeLong(f, 0x00000001); /* Version */
3079         writeLong(f, 0); /* padding */
3080         writeLong(f, 0); /* padding */
3081         writeLong(f, 0); /* padding */
3082
3083         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3084         writeData(f, &zero, 1);
3085
3086         /* figure out bucket size */
3087         uint32_t min = samples[0];
3088         uint32_t max = samples[0];
3089         for (i = 0; i < sampleNum; i++)
3090         {
3091                 if (min > samples[i])
3092                 {
3093                         min = samples[i];
3094                 }
3095                 if (max < samples[i])
3096                 {
3097                         max = samples[i];
3098                 }
3099         }
3100
3101         int addressSpace = (max-min + 1);
3102
3103         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3104         uint32_t length = addressSpace;
3105         if (length > maxBuckets)
3106         {
3107                 length = maxBuckets;
3108         }
3109         int *buckets = malloc(sizeof(int)*length);
3110         if (buckets == NULL)
3111         {
3112                 fclose(f);
3113                 return;
3114         }
3115         memset(buckets, 0, sizeof(int)*length);
3116         for (i = 0; i < sampleNum;i++)
3117         {
3118                 uint32_t address = samples[i];
3119                 long long a = address-min;
3120                 long long b = length-1;
3121                 long long c = addressSpace-1;
3122                 int index = (a*b)/c; /* danger!!!! int32 overflows */
3123                 buckets[index]++;
3124         }
3125
3126         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3127         writeLong(f, min);                      /* low_pc */
3128         writeLong(f, max);                      /* high_pc */
3129         writeLong(f, length);           /* # of samples */
3130         writeLong(f, 64000000);         /* 64MHz */
3131         writeString(f, "seconds");
3132         for (i = 0; i < (15-strlen("seconds")); i++)
3133                 writeData(f, &zero, 1);
3134         writeString(f, "s");
3135
3136         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3137
3138         char *data = malloc(2*length);
3139         if (data != NULL)
3140         {
3141                 for (i = 0; i < length;i++)
3142                 {
3143                         int val;
3144                         val = buckets[i];
3145                         if (val > 65535)
3146                         {
3147                                 val = 65535;
3148                         }
3149                         data[i*2]=val&0xff;
3150                         data[i*2 + 1]=(val >> 8)&0xff;
3151                 }
3152                 free(buckets);
3153                 writeData(f, data, length * 2);
3154                 free(data);
3155         } else
3156         {
3157                 free(buckets);
3158         }
3159
3160         fclose(f);
3161 }
3162
3163 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
3164 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3165 {
3166         target_t *target = get_current_target(cmd_ctx);
3167         struct timeval timeout, now;
3168
3169         gettimeofday(&timeout, NULL);
3170         if (argc != 2)
3171         {
3172                 return ERROR_COMMAND_SYNTAX_ERROR;
3173         }
3174         unsigned offset;
3175         int retval = parse_uint(args[0], &offset);
3176         if (ERROR_OK != retval)
3177                 return retval;
3178
3179         timeval_add_time(&timeout, offset, 0);
3180
3181         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
3182
3183         static const int maxSample = 10000;
3184         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3185         if (samples == NULL)
3186                 return ERROR_OK;
3187
3188         int numSamples = 0;
3189         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3190         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
3191
3192         for (;;)
3193         {
3194                 target_poll(target);
3195                 if (target->state == TARGET_HALTED)
3196                 {
3197                         uint32_t t=*((uint32_t *)reg->value);
3198                         samples[numSamples++]=t;
3199                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3200                         target_poll(target);
3201                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3202                 } else if (target->state == TARGET_RUNNING)
3203                 {
3204                         /* We want to quickly sample the PC. */
3205                         if ((retval = target_halt(target)) != ERROR_OK)
3206                         {
3207                                 free(samples);
3208                                 return retval;
3209                         }
3210                 } else
3211                 {
3212                         command_print(cmd_ctx, "Target not halted or running");
3213                         retval = ERROR_OK;
3214                         break;
3215                 }
3216                 if (retval != ERROR_OK)
3217                 {
3218                         break;
3219                 }
3220
3221                 gettimeofday(&now, NULL);
3222                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3223                 {
3224                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
3225                         if ((retval = target_poll(target)) != ERROR_OK)
3226                         {
3227                                 free(samples);
3228                                 return retval;
3229                         }
3230                         if (target->state == TARGET_HALTED)
3231                         {
3232                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3233                         }
3234                         if ((retval = target_poll(target)) != ERROR_OK)
3235                         {
3236                                 free(samples);
3237                                 return retval;
3238                         }
3239                         writeGmon(samples, numSamples, args[1]);
3240                         command_print(cmd_ctx, "Wrote %s", args[1]);
3241                         break;
3242                 }
3243         }
3244         free(samples);
3245
3246         return ERROR_OK;
3247 }
3248
3249 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3250 {
3251         char *namebuf;
3252         Jim_Obj *nameObjPtr, *valObjPtr;
3253         int result;
3254
3255         namebuf = alloc_printf("%s(%d)", varname, idx);
3256         if (!namebuf)
3257                 return JIM_ERR;
3258
3259         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3260         valObjPtr = Jim_NewIntObj(interp, val);
3261         if (!nameObjPtr || !valObjPtr)
3262         {
3263                 free(namebuf);
3264                 return JIM_ERR;
3265         }
3266
3267         Jim_IncrRefCount(nameObjPtr);
3268         Jim_IncrRefCount(valObjPtr);
3269         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3270         Jim_DecrRefCount(interp, nameObjPtr);
3271         Jim_DecrRefCount(interp, valObjPtr);
3272         free(namebuf);
3273         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3274         return result;
3275 }
3276
3277 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3278 {
3279         command_context_t *context;
3280         target_t *target;
3281
3282         context = Jim_GetAssocData(interp, "context");
3283         if (context == NULL)
3284         {
3285                 LOG_ERROR("mem2array: no command context");
3286                 return JIM_ERR;
3287         }
3288         target = get_current_target(context);
3289         if (target == NULL)
3290         {
3291                 LOG_ERROR("mem2array: no current target");
3292                 return JIM_ERR;
3293         }
3294
3295         return  target_mem2array(interp, target, argc-1, argv + 1);
3296 }
3297
3298 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3299 {
3300         long l;
3301         uint32_t width;
3302         int len;
3303         uint32_t addr;
3304         uint32_t count;
3305         uint32_t v;
3306         const char *varname;
3307         uint8_t buffer[4096];
3308         int  n, e, retval;
3309         uint32_t i;
3310
3311         /* argv[1] = name of array to receive the data
3312          * argv[2] = desired width
3313          * argv[3] = memory address
3314          * argv[4] = count of times to read
3315          */
3316         if (argc != 4) {
3317                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3318                 return JIM_ERR;
3319         }
3320         varname = Jim_GetString(argv[0], &len);
3321         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3322
3323         e = Jim_GetLong(interp, argv[1], &l);
3324         width = l;
3325         if (e != JIM_OK) {
3326                 return e;
3327         }
3328
3329         e = Jim_GetLong(interp, argv[2], &l);
3330         addr = l;
3331         if (e != JIM_OK) {
3332                 return e;
3333         }
3334         e = Jim_GetLong(interp, argv[3], &l);
3335         len = l;
3336         if (e != JIM_OK) {
3337                 return e;
3338         }
3339         switch (width) {
3340                 case 8:
3341                         width = 1;
3342                         break;
3343                 case 16:
3344                         width = 2;
3345                         break;
3346                 case 32:
3347                         width = 4;
3348                         break;
3349                 default:
3350                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3351                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3352                         return JIM_ERR;
3353         }
3354         if (len == 0) {
3355                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3356                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3357                 return JIM_ERR;
3358         }
3359         if ((addr + (len * width)) < addr) {
3360                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3361                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3362                 return JIM_ERR;
3363         }
3364         /* absurd transfer size? */
3365         if (len > 65536) {
3366                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3367                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3368                 return JIM_ERR;
3369         }
3370
3371         if ((width == 1) ||
3372                 ((width == 2) && ((addr & 1) == 0)) ||
3373                 ((width == 4) && ((addr & 3) == 0))) {
3374                 /* all is well */
3375         } else {
3376                 char buf[100];
3377                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3378                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3379                                 addr,
3380                                 width);
3381                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3382                 return JIM_ERR;
3383         }
3384
3385         /* Transfer loop */
3386
3387         /* index counter */
3388         n = 0;
3389         /* assume ok */
3390         e = JIM_OK;
3391         while (len) {
3392                 /* Slurp... in buffer size chunks */
3393
3394                 count = len; /* in objects.. */
3395                 if (count > (sizeof(buffer)/width)) {
3396                         count = (sizeof(buffer)/width);
3397                 }
3398
3399                 retval = target_read_memory(target, addr, width, count, buffer);
3400                 if (retval != ERROR_OK) {
3401                         /* BOO !*/
3402                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3403                                           (unsigned int)addr,
3404                                           (int)width,
3405                                           (int)count);
3406                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3407                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3408                         e = JIM_ERR;
3409                         len = 0;
3410                 } else {
3411                         v = 0; /* shut up gcc */
3412                         for (i = 0 ;i < count ;i++, n++) {
3413                                 switch (width) {
3414                                         case 4:
3415                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3416                                                 break;
3417                                         case 2:
3418                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3419                                                 break;
3420                                         case 1:
3421                                                 v = buffer[i] & 0x0ff;
3422                                                 break;
3423                                 }
3424                                 new_int_array_element(interp, varname, n, v);
3425                         }
3426                         len -= count;
3427                 }
3428         }
3429
3430         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3431
3432         return JIM_OK;
3433 }
3434
3435 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3436 {
3437         char *namebuf;
3438         Jim_Obj *nameObjPtr, *valObjPtr;
3439         int result;
3440         long l;
3441
3442         namebuf = alloc_printf("%s(%d)", varname, idx);
3443         if (!namebuf)
3444                 return JIM_ERR;
3445
3446         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3447         if (!nameObjPtr)
3448         {
3449                 free(namebuf);
3450                 return JIM_ERR;
3451         }
3452
3453         Jim_IncrRefCount(nameObjPtr);
3454         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3455         Jim_DecrRefCount(interp, nameObjPtr);
3456         free(namebuf);
3457         if (valObjPtr == NULL)
3458                 return JIM_ERR;
3459
3460         result = Jim_GetLong(interp, valObjPtr, &l);
3461         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3462         *val = l;
3463         return result;
3464 }
3465
3466 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3467 {
3468         command_context_t *context;
3469         target_t *target;
3470
3471         context = Jim_GetAssocData(interp, "context");
3472         if (context == NULL) {
3473                 LOG_ERROR("array2mem: no command context");
3474                 return JIM_ERR;
3475         }
3476         target = get_current_target(context);
3477         if (target == NULL) {
3478                 LOG_ERROR("array2mem: no current target");
3479                 return JIM_ERR;
3480         }
3481
3482         return target_array2mem(interp,target, argc-1, argv + 1);
3483 }
3484 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3485 {
3486         long l;
3487         uint32_t width;
3488         int len;
3489         uint32_t addr;
3490         uint32_t count;
3491         uint32_t v;
3492         const char *varname;
3493         uint8_t buffer[4096];
3494         int  n, e, retval;
3495         uint32_t i;
3496
3497         /* argv[1] = name of array to get the data
3498          * argv[2] = desired width
3499          * argv[3] = memory address
3500          * argv[4] = count to write
3501          */
3502         if (argc != 4) {
3503                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3504                 return JIM_ERR;
3505         }
3506         varname = Jim_GetString(argv[0], &len);
3507         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3508
3509         e = Jim_GetLong(interp, argv[1], &l);
3510         width = l;
3511         if (e != JIM_OK) {
3512                 return e;
3513         }
3514
3515         e = Jim_GetLong(interp, argv[2], &l);
3516         addr = l;
3517         if (e != JIM_OK) {
3518                 return e;
3519         }
3520         e = Jim_GetLong(interp, argv[3], &l);
3521         len = l;
3522         if (e != JIM_OK) {
3523                 return e;
3524         }
3525         switch (width) {
3526                 case 8:
3527                         width = 1;
3528                         break;
3529                 case 16:
3530                         width = 2;
3531                         break;
3532                 case 32:
3533                         width = 4;
3534                         break;
3535                 default:
3536                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3537                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3538                         return JIM_ERR;
3539         }
3540         if (len == 0) {
3541                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3542                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3543                 return JIM_ERR;
3544         }
3545         if ((addr + (len * width)) < addr) {
3546                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3547                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3548                 return JIM_ERR;
3549         }
3550         /* absurd transfer size? */
3551         if (len > 65536) {
3552                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3553                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3554                 return JIM_ERR;
3555         }
3556
3557         if ((width == 1) ||
3558                 ((width == 2) && ((addr & 1) == 0)) ||
3559                 ((width == 4) && ((addr & 3) == 0))) {
3560                 /* all is well */
3561         } else {
3562                 char buf[100];
3563                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3564                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3565                                 (unsigned int)addr,
3566                                 (int)width);
3567                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3568                 return JIM_ERR;
3569         }
3570
3571         /* Transfer loop */
3572
3573         /* index counter */
3574         n = 0;
3575         /* assume ok */
3576         e = JIM_OK;
3577         while (len) {
3578                 /* Slurp... in buffer size chunks */
3579
3580                 count = len; /* in objects.. */
3581                 if (count > (sizeof(buffer)/width)) {
3582                         count = (sizeof(buffer)/width);
3583                 }
3584
3585                 v = 0; /* shut up gcc */
3586                 for (i = 0 ;i < count ;i++, n++) {
3587                         get_int_array_element(interp, varname, n, &v);
3588                         switch (width) {
3589                         case 4:
3590                                 target_buffer_set_u32(target, &buffer[i*width], v);
3591                                 break;
3592                         case 2:
3593                                 target_buffer_set_u16(target, &buffer[i*width], v);
3594                                 break;
3595                         case 1:
3596                                 buffer[i] = v & 0x0ff;
3597                                 break;
3598                         }
3599                 }
3600                 len -= count;
3601
3602                 retval = target_write_memory(target, addr, width, count, buffer);
3603                 if (retval != ERROR_OK) {
3604                         /* BOO !*/
3605                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3606                                           (unsigned int)addr,
3607                                           (int)width,
3608                                           (int)count);
3609                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3610                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3611                         e = JIM_ERR;
3612                         len = 0;
3613                 }
3614         }
3615
3616         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3617
3618         return JIM_OK;
3619 }
3620
3621 void target_all_handle_event(enum target_event e)
3622 {
3623         target_t *target;
3624
3625         LOG_DEBUG("**all*targets: event: %d, %s",
3626                            (int)e,
3627                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3628
3629         target = all_targets;
3630         while (target) {
3631                 target_handle_event(target, e);
3632                 target = target->next;
3633         }
3634 }
3635
3636
3637 /* FIX? should we propagate errors here rather than printing them
3638  * and continuing?
3639  */
3640 void target_handle_event(target_t *target, enum target_event e)
3641 {
3642         target_event_action_t *teap;
3643
3644         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3645                 if (teap->event == e) {
3646                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3647                                            target->target_number,
3648                                            target->cmd_name,
3649                                            target_get_name(target),
3650                                            e,
3651                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3652                                            Jim_GetString(teap->body, NULL));
3653                         if (Jim_EvalObj(interp, teap->body) != JIM_OK)
3654                         {
3655                                 Jim_PrintErrorMessage(interp);
3656                         }
3657                 }
3658         }
3659 }
3660
3661 enum target_cfg_param {
3662         TCFG_TYPE,
3663         TCFG_EVENT,
3664         TCFG_WORK_AREA_VIRT,
3665         TCFG_WORK_AREA_PHYS,
3666         TCFG_WORK_AREA_SIZE,
3667         TCFG_WORK_AREA_BACKUP,
3668         TCFG_ENDIAN,
3669         TCFG_VARIANT,
3670         TCFG_CHAIN_POSITION,
3671 };
3672
3673 static Jim_Nvp nvp_config_opts[] = {
3674         { .name = "-type",             .value = TCFG_TYPE },
3675         { .name = "-event",            .value = TCFG_EVENT },
3676         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3677         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3678         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3679         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3680         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3681         { .name = "-variant",          .value = TCFG_VARIANT },
3682         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3683
3684         { .name = NULL, .value = -1 }
3685 };
3686
3687 static int target_configure(Jim_GetOptInfo *goi, target_t *target)
3688 {
3689         Jim_Nvp *n;
3690         Jim_Obj *o;
3691         jim_wide w;
3692         char *cp;
3693         int e;
3694
3695         /* parse config or cget options ... */
3696         while (goi->argc > 0) {
3697                 Jim_SetEmptyResult(goi->interp);
3698                 /* Jim_GetOpt_Debug(goi); */
3699
3700                 if (target->type->target_jim_configure) {
3701                         /* target defines a configure function */
3702                         /* target gets first dibs on parameters */
3703                         e = (*(target->type->target_jim_configure))(target, goi);
3704                         if (e == JIM_OK) {
3705                                 /* more? */
3706                                 continue;
3707                         }
3708                         if (e == JIM_ERR) {
3709                                 /* An error */
3710                                 return e;
3711                         }
3712                         /* otherwise we 'continue' below */
3713                 }
3714                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3715                 if (e != JIM_OK) {
3716                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3717                         return e;
3718                 }
3719                 switch (n->value) {
3720                 case TCFG_TYPE:
3721                         /* not setable */
3722                         if (goi->isconfigure) {
3723                                 Jim_SetResult_sprintf(goi->interp, "not setable: %s", n->name);
3724                                 return JIM_ERR;
3725                         } else {
3726                         no_params:
3727                                 if (goi->argc != 0) {
3728                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
3729                                         return JIM_ERR;
3730                                 }
3731                         }
3732                         Jim_SetResultString(goi->interp, target_get_name(target), -1);
3733                         /* loop for more */
3734                         break;
3735                 case TCFG_EVENT:
3736                         if (goi->argc == 0) {
3737                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3738                                 return JIM_ERR;
3739                         }
3740
3741                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3742                         if (e != JIM_OK) {
3743                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3744                                 return e;
3745                         }
3746
3747                         if (goi->isconfigure) {
3748                                 if (goi->argc != 1) {
3749                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3750                                         return JIM_ERR;
3751                                 }
3752                         } else {
3753                                 if (goi->argc != 0) {
3754                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3755                                         return JIM_ERR;
3756                                 }
3757                         }
3758
3759                         {
3760                                 target_event_action_t *teap;
3761
3762                                 teap = target->event_action;
3763                                 /* replace existing? */
3764                                 while (teap) {
3765                                         if (teap->event == (enum target_event)n->value) {
3766                                                 break;
3767                                         }
3768                                         teap = teap->next;
3769                                 }
3770
3771                                 if (goi->isconfigure) {
3772                                         bool replace = true;
3773                                         if (teap == NULL) {
3774                                                 /* create new */
3775                                                 teap = calloc(1, sizeof(*teap));
3776                                                 replace = false;
3777                                         }
3778                                         teap->event = n->value;
3779                                         Jim_GetOpt_Obj(goi, &o);
3780                                         if (teap->body) {
3781                                                 Jim_DecrRefCount(interp, teap->body);
3782                                         }
3783                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3784                                         /*
3785                                          * FIXME:
3786                                          *     Tcl/TK - "tk events" have a nice feature.
3787                                          *     See the "BIND" command.
3788                                          *    We should support that here.
3789                                          *     You can specify %X and %Y in the event code.
3790                                          *     The idea is: %T - target name.
3791                                          *     The idea is: %N - target number
3792                                          *     The idea is: %E - event name.
3793                                          */
3794                                         Jim_IncrRefCount(teap->body);
3795
3796                                         if (!replace)
3797                                         {
3798                                                 /* add to head of event list */
3799                                                 teap->next = target->event_action;
3800                                                 target->event_action = teap;
3801                                         }
3802                                         Jim_SetEmptyResult(goi->interp);
3803                                 } else {
3804                                         /* get */
3805                                         if (teap == NULL) {
3806                                                 Jim_SetEmptyResult(goi->interp);
3807                                         } else {
3808                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3809                                         }
3810                                 }
3811                         }
3812                         /* loop for more */
3813                         break;
3814
3815                 case TCFG_WORK_AREA_VIRT:
3816                         if (goi->isconfigure) {
3817                                 target_free_all_working_areas(target);
3818                                 e = Jim_GetOpt_Wide(goi, &w);
3819                                 if (e != JIM_OK) {
3820                                         return e;
3821                                 }
3822                                 target->working_area_virt = w;
3823                                 target->working_area_virt_spec = true;
3824                         } else {
3825                                 if (goi->argc != 0) {
3826                                         goto no_params;
3827                                 }
3828                         }
3829                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3830                         /* loop for more */
3831                         break;
3832
3833                 case TCFG_WORK_AREA_PHYS:
3834                         if (goi->isconfigure) {
3835                                 target_free_all_working_areas(target);
3836                                 e = Jim_GetOpt_Wide(goi, &w);
3837                                 if (e != JIM_OK) {
3838                                         return e;
3839                                 }
3840                                 target->working_area_phys = w;
3841                                 target->working_area_phys_spec = true;
3842                         } else {
3843                                 if (goi->argc != 0) {
3844                                         goto no_params;
3845                                 }
3846                         }
3847                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3848                         /* loop for more */
3849                         break;
3850
3851                 case TCFG_WORK_AREA_SIZE:
3852                         if (goi->isconfigure) {
3853                                 target_free_all_working_areas(target);
3854                                 e = Jim_GetOpt_Wide(goi, &w);
3855                                 if (e != JIM_OK) {
3856                                         return e;
3857                                 }
3858                                 target->working_area_size = w;
3859                         } else {
3860                                 if (goi->argc != 0) {
3861                                         goto no_params;
3862                                 }
3863                         }
3864                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3865                         /* loop for more */
3866                         break;
3867
3868                 case TCFG_WORK_AREA_BACKUP:
3869                         if (goi->isconfigure) {
3870                                 target_free_all_working_areas(target);
3871                                 e = Jim_GetOpt_Wide(goi, &w);
3872                                 if (e != JIM_OK) {
3873                                         return e;
3874                                 }
3875                                 /* make this exactly 1 or 0 */
3876                                 target->backup_working_area = (!!w);
3877                         } else {
3878                                 if (goi->argc != 0) {
3879                                         goto no_params;
3880                                 }
3881                         }
3882                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3883                         /* loop for more e*/
3884                         break;
3885
3886                 case TCFG_ENDIAN:
3887                         if (goi->isconfigure) {
3888                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3889                                 if (e != JIM_OK) {
3890                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3891                                         return e;
3892                                 }
3893                                 target->endianness = n->value;
3894                         } else {
3895                                 if (goi->argc != 0) {
3896                                         goto no_params;
3897                                 }
3898                         }
3899                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3900                         if (n->name == NULL) {
3901                                 target->endianness = TARGET_LITTLE_ENDIAN;
3902                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3903                         }
3904                         Jim_SetResultString(goi->interp, n->name, -1);
3905                         /* loop for more */
3906                         break;
3907
3908                 case TCFG_VARIANT:
3909                         if (goi->isconfigure) {
3910                                 if (goi->argc < 1) {
3911                                         Jim_SetResult_sprintf(goi->interp,
3912                                                                                    "%s ?STRING?",
3913                                                                                    n->name);
3914                                         return JIM_ERR;
3915                                 }
3916                                 if (target->variant) {
3917                                         free((void *)(target->variant));
3918                                 }
3919                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3920                                 target->variant = strdup(cp);
3921                         } else {
3922                                 if (goi->argc != 0) {
3923                                         goto no_params;
3924                                 }
3925                         }
3926                         Jim_SetResultString(goi->interp, target->variant,-1);
3927                         /* loop for more */
3928                         break;
3929                 case TCFG_CHAIN_POSITION:
3930                         if (goi->isconfigure) {
3931                                 Jim_Obj *o;
3932                                 jtag_tap_t *tap;
3933                                 target_free_all_working_areas(target);
3934                                 e = Jim_GetOpt_Obj(goi, &o);
3935                                 if (e != JIM_OK) {
3936                                         return e;
3937                                 }
3938                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3939                                 if (tap == NULL) {
3940                                         return JIM_ERR;
3941                                 }
3942                                 /* make this exactly 1 or 0 */
3943                                 target->tap = tap;
3944                         } else {
3945                                 if (goi->argc != 0) {
3946                                         goto no_params;
3947                                 }
3948                         }
3949                         Jim_SetResultString(interp, target->tap->dotted_name, -1);
3950                         /* loop for more e*/
3951                         break;
3952                 }
3953         } /* while (goi->argc) */
3954
3955
3956                 /* done - we return */
3957         return JIM_OK;
3958 }
3959
3960 /** this is the 'tcl' handler for the target specific command */
3961 static int tcl_target_func(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3962 {
3963         Jim_GetOptInfo goi;
3964         jim_wide a,b,c;
3965         int x,y,z;
3966         uint8_t  target_buf[32];
3967         Jim_Nvp *n;
3968         target_t *target;
3969         struct command_context_s *cmd_ctx;
3970         int e;
3971
3972         enum {
3973                 TS_CMD_CONFIGURE,
3974                 TS_CMD_CGET,
3975
3976                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3977                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3978                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3979                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3980                 TS_CMD_EXAMINE,
3981                 TS_CMD_POLL,
3982                 TS_CMD_RESET,
3983                 TS_CMD_HALT,
3984                 TS_CMD_WAITSTATE,
3985                 TS_CMD_EVENTLIST,
3986                 TS_CMD_CURSTATE,
3987                 TS_CMD_INVOKE_EVENT,
3988         };
3989
3990         static const Jim_Nvp target_options[] = {
3991                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3992                 { .name = "cget", .value = TS_CMD_CGET },
3993                 { .name = "mww", .value = TS_CMD_MWW },
3994                 { .name = "mwh", .value = TS_CMD_MWH },
3995                 { .name = "mwb", .value = TS_CMD_MWB },
3996                 { .name = "mdw", .value = TS_CMD_MDW },
3997                 { .name = "mdh", .value = TS_CMD_MDH },
3998                 { .name = "mdb", .value = TS_CMD_MDB },
3999                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
4000                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
4001                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
4002                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
4003
4004                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
4005                 { .name = "arp_poll", .value = TS_CMD_POLL },
4006                 { .name = "arp_reset", .value = TS_CMD_RESET },
4007                 { .name = "arp_halt", .value = TS_CMD_HALT },
4008                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
4009                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
4010
4011                 { .name = NULL, .value = -1 },
4012         };
4013
4014         /* go past the "command" */
4015         Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
4016
4017         target = Jim_CmdPrivData(goi.interp);
4018         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
4019
4020         /* commands here are in an NVP table */
4021         e = Jim_GetOpt_Nvp(&goi, target_options, &n);
4022         if (e != JIM_OK) {
4023                 Jim_GetOpt_NvpUnknown(&goi, target_options, 0);
4024                 return e;
4025         }
4026         /* Assume blank result */
4027         Jim_SetEmptyResult(goi.interp);
4028
4029         switch (n->value) {
4030         case TS_CMD_CONFIGURE:
4031                 if (goi.argc < 2) {
4032                         Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
4033                         return JIM_ERR;
4034                 }
4035                 goi.isconfigure = 1;
4036                 return target_configure(&goi, target);
4037         case TS_CMD_CGET:
4038                 // some things take params
4039                 if (goi.argc < 1) {
4040                         Jim_WrongNumArgs(goi.interp, 0, goi.argv, "missing: ?-option?");
4041                         return JIM_ERR;
4042                 }
4043                 goi.isconfigure = 0;
4044                 return target_configure(&goi, target);
4045                 break;
4046         case TS_CMD_MWW:
4047         case TS_CMD_MWH:
4048         case TS_CMD_MWB:
4049                 /* argv[0] = cmd
4050                  * argv[1] = address
4051                  * argv[2] = data
4052                  * argv[3] = optional count.
4053                  */
4054
4055                 if ((goi.argc == 2) || (goi.argc == 3)) {
4056                         /* all is well */
4057                 } else {
4058                 mwx_error:
4059                         Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR DATA [COUNT]", n->name);
4060                         return JIM_ERR;
4061                 }
4062
4063                 e = Jim_GetOpt_Wide(&goi, &a);
4064                 if (e != JIM_OK) {
4065                         goto mwx_error;
4066                 }
4067
4068                 e = Jim_GetOpt_Wide(&goi, &b);
4069                 if (e != JIM_OK) {
4070                         goto mwx_error;
4071                 }
4072                 if (goi.argc == 3) {
4073                         e = Jim_GetOpt_Wide(&goi, &c);
4074                         if (e != JIM_OK) {
4075                                 goto mwx_error;
4076                         }
4077                 } else {
4078                         c = 1;
4079                 }
4080
4081                 switch (n->value) {
4082                 case TS_CMD_MWW:
4083                         target_buffer_set_u32(target, target_buf, b);
4084                         b = 4;
4085                         break;
4086                 case TS_CMD_MWH:
4087                         target_buffer_set_u16(target, target_buf, b);
4088                         b = 2;
4089                         break;
4090                 case TS_CMD_MWB:
4091                         target_buffer_set_u8(target, target_buf, b);
4092                         b = 1;
4093                         break;
4094                 }
4095                 for (x = 0 ; x < c ; x++) {
4096                         e = target_write_memory(target, a, b, 1, target_buf);
4097                         if (e != ERROR_OK) {
4098                                 Jim_SetResult_sprintf(interp, "Error writing @ 0x%08x: %d\n", (int)(a), e);
4099                                 return JIM_ERR;
4100                         }
4101                         /* b = width */
4102                         a = a + b;
4103                 }
4104                 return JIM_OK;
4105                 break;
4106
4107                 /* display */
4108         case TS_CMD_MDW:
4109         case TS_CMD_MDH:
4110         case TS_CMD_MDB:
4111                 /* argv[0] = command
4112                  * argv[1] = address
4113                  * argv[2] = optional count
4114                  */
4115                 if ((goi.argc == 2) || (goi.argc == 3)) {
4116                         Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR [COUNT]", n->name);
4117                         return JIM_ERR;
4118                 }
4119                 e = Jim_GetOpt_Wide(&goi, &a);
4120                 if (e != JIM_OK) {
4121                         return JIM_ERR;
4122                 }
4123                 if (goi.argc) {
4124                         e = Jim_GetOpt_Wide(&goi, &c);
4125                         if (e != JIM_OK) {
4126                                 return JIM_ERR;
4127                         }
4128                 } else {
4129                         c = 1;
4130                 }
4131                 b = 1; /* shut up gcc */
4132                 switch (n->value) {
4133                 case TS_CMD_MDW:
4134                         b =  4;
4135                         break;
4136                 case TS_CMD_MDH:
4137                         b = 2;
4138                         break;
4139                 case TS_CMD_MDB:
4140                         b = 1;
4141                         break;
4142                 }
4143
4144                 /* convert to "bytes" */
4145                 c = c * b;
4146                 /* count is now in 'BYTES' */
4147                 while (c > 0) {
4148                         y = c;
4149                         if (y > 16) {
4150                                 y = 16;
4151                         }
4152                         e = target_read_memory(target, a, b, y / b, target_buf);
4153                         if (e != ERROR_OK) {
4154                                 Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4155                                 return JIM_ERR;
4156                         }
4157
4158                         Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4159                         switch (b) {
4160                         case 4:
4161                                 for (x = 0 ; (x < 16) && (x < y) ; x += 4) {
4162                                         z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
4163                                         Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4164                                 }
4165                                 for (; (x < 16) ; x += 4) {
4166                                         Jim_fprintf(interp, interp->cookie_stdout, "         ");
4167                                 }
4168                                 break;
4169                         case 2:
4170                                 for (x = 0 ; (x < 16) && (x < y) ; x += 2) {
4171                                         z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
4172                                         Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4173                                 }
4174                                 for (; (x < 16) ; x += 2) {
4175                                         Jim_fprintf(interp, interp->cookie_stdout, "     ");
4176                                 }
4177                                 break;
4178                         case 1:
4179                         default:
4180                                 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4181                                         z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
4182                                         Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4183                                 }
4184                                 for (; (x < 16) ; x += 1) {
4185                                         Jim_fprintf(interp, interp->cookie_stdout, "   ");
4186                                 }
4187                                 break;
4188                         }
4189                         /* ascii-ify the bytes */
4190                         for (x = 0 ; x < y ; x++) {
4191                                 if ((target_buf[x] >= 0x20) &&
4192                                         (target_buf[x] <= 0x7e)) {
4193                                         /* good */
4194                                 } else {
4195                                         /* smack it */
4196                                         target_buf[x] = '.';
4197                                 }
4198                         }
4199                         /* space pad  */
4200                         while (x < 16) {
4201                                 target_buf[x] = ' ';
4202                                 x++;
4203                         }
4204                         /* terminate */
4205                         target_buf[16] = 0;
4206                         /* print - with a newline */
4207                         Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4208                         /* NEXT... */
4209                         c -= 16;
4210                         a += 16;
4211                 }
4212                 return JIM_OK;
4213         case TS_CMD_MEM2ARRAY:
4214                 return target_mem2array(goi.interp, target, goi.argc, goi.argv);
4215                 break;
4216         case TS_CMD_ARRAY2MEM:
4217                 return target_array2mem(goi.interp, target, goi.argc, goi.argv);
4218                 break;
4219         case TS_CMD_EXAMINE:
4220                 if (goi.argc) {
4221                         Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
4222                         return JIM_ERR;
4223                 }
4224                 if (!target->tap->enabled)
4225                         goto err_tap_disabled;
4226                 e = target->type->examine(target);
4227                 if (e != ERROR_OK) {
4228                         Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4229                         return JIM_ERR;
4230                 }
4231                 return JIM_OK;
4232         case TS_CMD_POLL:
4233                 if (goi.argc) {
4234                         Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
4235                         return JIM_ERR;
4236                 }
4237                 if (!target->tap->enabled)
4238                         goto err_tap_disabled;
4239                 if (!(target_was_examined(target))) {
4240                         e = ERROR_TARGET_NOT_EXAMINED;
4241                 } else {
4242                         e = target->type->poll(target);
4243                 }
4244                 if (e != ERROR_OK) {
4245                         Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4246                         return JIM_ERR;
4247                 } else {
4248                         return JIM_OK;
4249                 }
4250                 break;
4251         case TS_CMD_RESET:
4252                 if (goi.argc != 2) {
4253                         Jim_WrongNumArgs(interp, 2, argv,
4254                                         "([tT]|[fF]|assert|deassert) BOOL");
4255                         return JIM_ERR;
4256                 }
4257                 e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4258                 if (e != JIM_OK) {
4259                         Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4260                         return e;
4261                 }
4262                 /* the halt or not param */
4263                 e = Jim_GetOpt_Wide(&goi, &a);
4264                 if (e != JIM_OK) {
4265                         return e;
4266                 }
4267                 if (!target->tap->enabled)
4268                         goto err_tap_disabled;
4269                 if (!target->type->assert_reset
4270                                 || !target->type->deassert_reset) {
4271                         Jim_SetResult_sprintf(interp,
4272                                         "No target-specific reset for %s",
4273                                         target->cmd_name);
4274                         return JIM_ERR;
4275                 }
4276                 /* determine if we should halt or not. */
4277                 target->reset_halt = !!a;
4278                 /* When this happens - all workareas are invalid. */
4279                 target_free_all_working_areas_restore(target, 0);
4280
4281                 /* do the assert */
4282                 if (n->value == NVP_ASSERT) {
4283                         e = target->type->assert_reset(target);
4284                 } else {
4285                         e = target->type->deassert_reset(target);
4286                 }
4287                 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4288         case TS_CMD_HALT:
4289                 if (goi.argc) {
4290                         Jim_WrongNumArgs(goi.interp, 0, argv, "halt [no parameters]");
4291                         return JIM_ERR;
4292                 }
4293                 if (!target->tap->enabled)
4294                         goto err_tap_disabled;
4295                 e = target->type->halt(target);
4296                 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4297         case TS_CMD_WAITSTATE:
4298                 /* params:  <name>  statename timeoutmsecs */
4299                 if (goi.argc != 2) {
4300                         Jim_SetResult_sprintf(goi.interp, "%s STATENAME TIMEOUTMSECS", n->name);
4301                         return JIM_ERR;
4302                 }
4303                 e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4304                 if (e != JIM_OK) {
4305                         Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4306                         return e;
4307                 }
4308                 e = Jim_GetOpt_Wide(&goi, &a);
4309                 if (e != JIM_OK) {
4310                         return e;
4311                 }
4312                 if (!target->tap->enabled)
4313                         goto err_tap_disabled;
4314                 e = target_wait_state(target, n->value, a);
4315                 if (e != ERROR_OK) {
4316                         Jim_SetResult_sprintf(goi.interp,
4317                                                                    "target: %s wait %s fails (%d) %s",
4318                                                                    target->cmd_name,
4319                                                                    n->name,
4320                                                                    e, target_strerror_safe(e));
4321                         return JIM_ERR;
4322                 } else {
4323                         return JIM_OK;
4324                 }
4325         case TS_CMD_EVENTLIST:
4326                 /* List for human, Events defined for this target.
4327                  * scripts/programs should use 'name cget -event NAME'
4328                  */
4329                 {
4330                         target_event_action_t *teap;
4331                         teap = target->event_action;
4332                         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4333                                                    target->target_number,
4334                                                    target->cmd_name);
4335                         command_print(cmd_ctx, "%-25s | Body", "Event");
4336                         command_print(cmd_ctx, "------------------------- | ----------------------------------------");
4337                         while (teap) {
4338                                 command_print(cmd_ctx,
4339                                                            "%-25s | %s",
4340                                                            Jim_Nvp_value2name_simple(nvp_target_event, teap->event)->name,
4341                                                            Jim_GetString(teap->body, NULL));
4342                                 teap = teap->next;
4343                         }
4344                         command_print(cmd_ctx, "***END***");
4345                         return JIM_OK;
4346                 }
4347         case TS_CMD_CURSTATE:
4348                 if (goi.argc != 0) {
4349                         Jim_WrongNumArgs(goi.interp, 0, argv, "[no parameters]");
4350                         return JIM_ERR;
4351                 }
4352                 Jim_SetResultString(goi.interp,
4353                                                         target_state_name( target ),
4354                                                         -1);
4355                 return JIM_OK;
4356         case TS_CMD_INVOKE_EVENT:
4357                 if (goi.argc != 1) {
4358                         Jim_SetResult_sprintf(goi.interp, "%s ?EVENTNAME?",n->name);
4359                         return JIM_ERR;
4360                 }
4361                 e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4362                 if (e != JIM_OK) {
4363                         Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4364                         return e;
4365                 }
4366                 target_handle_event(target, n->value);
4367                 return JIM_OK;
4368         }
4369         return JIM_ERR;
4370
4371 err_tap_disabled:
4372         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4373         return JIM_ERR;
4374 }
4375
4376 static int target_create(Jim_GetOptInfo *goi)
4377 {
4378         Jim_Obj *new_cmd;
4379         Jim_Cmd *cmd;
4380         const char *cp;
4381         char *cp2;
4382         int e;
4383         int x;
4384         target_t *target;
4385         struct command_context_s *cmd_ctx;
4386
4387         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4388         if (goi->argc < 3) {
4389                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4390                 return JIM_ERR;
4391         }
4392
4393         /* COMMAND */
4394         Jim_GetOpt_Obj(goi, &new_cmd);
4395         /* does this command exist? */
4396         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4397         if (cmd) {
4398                 cp = Jim_GetString(new_cmd, NULL);
4399                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4400                 return JIM_ERR;
4401         }
4402
4403         /* TYPE */
4404         e = Jim_GetOpt_String(goi, &cp2, NULL);
4405         cp = cp2;
4406         /* now does target type exist */
4407         for (x = 0 ; target_types[x] ; x++) {
4408                 if (0 == strcmp(cp, target_types[x]->name)) {
4409                         /* found */
4410                         break;
4411                 }
4412         }
4413         if (target_types[x] == NULL) {
4414                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4415                 for (x = 0 ; target_types[x] ; x++) {
4416                         if (target_types[x + 1]) {
4417                                 Jim_AppendStrings(goi->interp,
4418                                                                    Jim_GetResult(goi->interp),
4419                                                                    target_types[x]->name,
4420                                                                    ", ", NULL);
4421                         } else {
4422                                 Jim_AppendStrings(goi->interp,
4423                                                                    Jim_GetResult(goi->interp),
4424                                                                    " or ",
4425                                                                    target_types[x]->name,NULL);
4426                         }
4427                 }
4428                 return JIM_ERR;
4429         }
4430
4431         /* Create it */
4432         target = calloc(1,sizeof(target_t));
4433         /* set target number */
4434         target->target_number = new_target_number();
4435
4436         /* allocate memory for each unique target type */
4437         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
4438
4439         memcpy(target->type, target_types[x], sizeof(target_type_t));
4440
4441         /* will be set by "-endian" */
4442         target->endianness = TARGET_ENDIAN_UNKNOWN;
4443
4444         target->working_area        = 0x0;
4445         target->working_area_size   = 0x0;
4446         target->working_areas       = NULL;
4447         target->backup_working_area = 0;
4448
4449         target->state               = TARGET_UNKNOWN;
4450         target->debug_reason        = DBG_REASON_UNDEFINED;
4451         target->reg_cache           = NULL;
4452         target->breakpoints         = NULL;
4453         target->watchpoints         = NULL;
4454         target->next                = NULL;
4455         target->arch_info           = NULL;
4456
4457         target->display             = 1;
4458
4459         target->halt_issued                     = false;
4460
4461         /* initialize trace information */
4462         target->trace_info = malloc(sizeof(trace_t));
4463         target->trace_info->num_trace_points         = 0;
4464         target->trace_info->trace_points_size        = 0;
4465         target->trace_info->trace_points             = NULL;
4466         target->trace_info->trace_history_size       = 0;
4467         target->trace_info->trace_history            = NULL;
4468         target->trace_info->trace_history_pos        = 0;
4469         target->trace_info->trace_history_overflowed = 0;
4470
4471         target->dbgmsg          = NULL;
4472         target->dbg_msg_enabled = 0;
4473
4474         target->endianness = TARGET_ENDIAN_UNKNOWN;
4475
4476         /* Do the rest as "configure" options */
4477         goi->isconfigure = 1;
4478         e = target_configure(goi, target);
4479
4480         if (target->tap == NULL)
4481         {
4482                 Jim_SetResultString(interp, "-chain-position required when creating target", -1);
4483                 e = JIM_ERR;
4484         }
4485
4486         if (e != JIM_OK) {
4487                 free(target->type);
4488                 free(target);
4489                 return e;
4490         }
4491
4492         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4493                 /* default endian to little if not specified */
4494                 target->endianness = TARGET_LITTLE_ENDIAN;
4495         }
4496
4497         /* incase variant is not set */
4498         if (!target->variant)
4499                 target->variant = strdup("");
4500
4501         /* create the target specific commands */
4502         if (target->type->register_commands) {
4503                 (*(target->type->register_commands))(cmd_ctx);
4504         }
4505         if (target->type->target_create) {
4506                 (*(target->type->target_create))(target, goi->interp);
4507         }
4508
4509         /* append to end of list */
4510         {
4511                 target_t **tpp;
4512                 tpp = &(all_targets);
4513                 while (*tpp) {
4514                         tpp = &((*tpp)->next);
4515                 }
4516                 *tpp = target;
4517         }
4518
4519         cp = Jim_GetString(new_cmd, NULL);
4520         target->cmd_name = strdup(cp);
4521
4522         /* now - create the new target name command */
4523         e = Jim_CreateCommand(goi->interp,
4524                                                    /* name */
4525                                                    cp,
4526                                                    tcl_target_func, /* C function */
4527                                                    target, /* private data */
4528                                                    NULL); /* no del proc */
4529
4530         return e;
4531 }
4532
4533 static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4534 {
4535         int x,r,e;
4536         jim_wide w;
4537         struct command_context_s *cmd_ctx;
4538         target_t *target;
4539         Jim_GetOptInfo goi;
4540         enum tcmd {
4541                 /* TG = target generic */
4542                 TG_CMD_CREATE,
4543                 TG_CMD_TYPES,
4544                 TG_CMD_NAMES,
4545                 TG_CMD_CURRENT,
4546                 TG_CMD_NUMBER,
4547                 TG_CMD_COUNT,
4548         };
4549         const char *target_cmds[] = {
4550                 "create", "types", "names", "current", "number",
4551                 "count",
4552                 NULL /* terminate */
4553         };
4554
4555         LOG_DEBUG("Target command params:");
4556         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4557
4558         cmd_ctx = Jim_GetAssocData(interp, "context");
4559
4560         Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
4561
4562         if (goi.argc == 0) {
4563                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4564                 return JIM_ERR;
4565         }
4566
4567         /* Jim_GetOpt_Debug(&goi); */
4568         r = Jim_GetOpt_Enum(&goi, target_cmds, &x);
4569         if (r != JIM_OK) {
4570                 return r;
4571         }
4572
4573         switch (x) {
4574         default:
4575                 Jim_Panic(goi.interp,"Why am I here?");
4576                 return JIM_ERR;
4577         case TG_CMD_CURRENT:
4578                 if (goi.argc != 0) {
4579                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4580                         return JIM_ERR;
4581                 }
4582                 Jim_SetResultString(goi.interp, get_current_target(cmd_ctx)->cmd_name, -1);
4583                 return JIM_OK;
4584         case TG_CMD_TYPES:
4585                 if (goi.argc != 0) {
4586                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4587                         return JIM_ERR;
4588                 }
4589                 Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
4590                 for (x = 0 ; target_types[x] ; x++) {
4591                         Jim_ListAppendElement(goi.interp,
4592                                                                    Jim_GetResult(goi.interp),
4593                                                                    Jim_NewStringObj(goi.interp, target_types[x]->name, -1));
4594                 }
4595                 return JIM_OK;
4596         case TG_CMD_NAMES:
4597                 if (goi.argc != 0) {
4598                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4599                         return JIM_ERR;
4600                 }
4601                 Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
4602                 target = all_targets;
4603                 while (target) {
4604                         Jim_ListAppendElement(goi.interp,
4605                                                                    Jim_GetResult(goi.interp),
4606                                                                    Jim_NewStringObj(goi.interp, target->cmd_name, -1));
4607                         target = target->next;
4608                 }
4609                 return JIM_OK;
4610         case TG_CMD_CREATE:
4611                 if (goi.argc < 3) {
4612                         Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4613                         return JIM_ERR;
4614                 }
4615                 return target_create(&goi);
4616                 break;
4617         case TG_CMD_NUMBER:
4618                 /* It's OK to remove this mechanism sometime after August 2010 or so */
4619                 LOG_WARNING("don't use numbers as target identifiers; use names");
4620                 if (goi.argc != 1) {
4621                         Jim_SetResult_sprintf(goi.interp, "expected: target number ?NUMBER?");
4622                         return JIM_ERR;
4623                 }
4624                 e = Jim_GetOpt_Wide(&goi, &w);
4625                 if (e != JIM_OK) {
4626                         return JIM_ERR;
4627                 }
4628                 for (x = 0, target = all_targets; target; target = target->next, x++) {
4629                         if (target->target_number == w)
4630                                 break;
4631                 }
4632                 if (target == NULL) {
4633                         Jim_SetResult_sprintf(goi.interp,
4634                                         "Target: number %d does not exist", (int)(w));
4635                         return JIM_ERR;
4636                 }
4637                 Jim_SetResultString(goi.interp, target->cmd_name, -1);
4638                 return JIM_OK;
4639         case TG_CMD_COUNT:
4640                 if (goi.argc != 0) {
4641                         Jim_WrongNumArgs(goi.interp, 0, goi.argv, "<no parameters>");
4642                         return JIM_ERR;
4643                 }
4644                 for (x = 0, target = all_targets; target; target = target->next, x++)
4645                         continue;
4646                 Jim_SetResult(goi.interp, Jim_NewIntObj(goi.interp, x));
4647                 return JIM_OK;
4648         }
4649
4650         return JIM_ERR;
4651 }
4652
4653
4654 struct FastLoad
4655 {
4656         uint32_t address;
4657         uint8_t *data;
4658         int length;
4659
4660 };
4661
4662 static int fastload_num;
4663 static struct FastLoad *fastload;
4664
4665 static void free_fastload(void)
4666 {
4667         if (fastload != NULL)
4668         {
4669                 int i;
4670                 for (i = 0; i < fastload_num; i++)
4671                 {
4672                         if (fastload[i].data)
4673                                 free(fastload[i].data);
4674                 }
4675                 free(fastload);
4676                 fastload = NULL;
4677         }
4678 }
4679
4680
4681
4682
4683 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4684 {
4685         uint8_t *buffer;
4686         uint32_t buf_cnt;
4687         uint32_t image_size;
4688         uint32_t min_address = 0;
4689         uint32_t max_address = 0xffffffff;
4690         int i;
4691
4692         image_t image;
4693
4694         duration_t duration;
4695         char *duration_text;
4696
4697         int retval = parse_load_image_command_args(args, argc,
4698                         &image, &min_address, &max_address);
4699         if (ERROR_OK != retval)
4700                 return retval;
4701
4702         duration_start_measure(&duration);
4703
4704         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4705         {
4706                 return ERROR_OK;
4707         }
4708
4709         image_size = 0x0;
4710         retval = ERROR_OK;
4711         fastload_num = image.num_sections;
4712         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4713         if (fastload == NULL)
4714         {
4715                 image_close(&image);
4716                 return ERROR_FAIL;
4717         }
4718         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4719         for (i = 0; i < image.num_sections; i++)
4720         {
4721                 buffer = malloc(image.sections[i].size);
4722                 if (buffer == NULL)
4723                 {
4724                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)",
4725                                                   (int)(image.sections[i].size));
4726                         break;
4727                 }
4728
4729                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4730                 {
4731                         free(buffer);
4732                         break;
4733                 }
4734
4735                 uint32_t offset = 0;
4736                 uint32_t length = buf_cnt;
4737
4738
4739                 /* DANGER!!! beware of unsigned comparision here!!! */
4740
4741                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4742                                 (image.sections[i].base_address < max_address))
4743                 {
4744                         if (image.sections[i].base_address < min_address)
4745                         {
4746                                 /* clip addresses below */
4747                                 offset += min_address-image.sections[i].base_address;
4748                                 length -= offset;
4749                         }
4750
4751                         if (image.sections[i].base_address + buf_cnt > max_address)
4752                         {
4753                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4754                         }
4755
4756                         fastload[i].address = image.sections[i].base_address + offset;
4757                         fastload[i].data = malloc(length);
4758                         if (fastload[i].data == NULL)
4759                         {
4760                                 free(buffer);
4761                                 break;
4762                         }
4763                         memcpy(fastload[i].data, buffer + offset, length);
4764                         fastload[i].length = length;
4765
4766                         image_size += length;
4767                         command_print(cmd_ctx, "%u bytes written at address 0x%8.8x",
4768                                                   (unsigned int)length,
4769                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4770                 }
4771
4772                 free(buffer);
4773         }
4774
4775         duration_stop_measure(&duration, &duration_text);
4776         if (retval == ERROR_OK)
4777         {
4778                 command_print(cmd_ctx, "Loaded %u bytes in %s", (unsigned int)image_size, duration_text);
4779                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4780         }
4781         free(duration_text);
4782
4783         image_close(&image);
4784
4785         if (retval != ERROR_OK)
4786         {
4787                 free_fastload();
4788         }
4789
4790         return retval;
4791 }
4792
4793 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4794 {
4795         if (argc > 0)
4796                 return ERROR_COMMAND_SYNTAX_ERROR;
4797         if (fastload == NULL)
4798         {
4799                 LOG_ERROR("No image in memory");
4800                 return ERROR_FAIL;
4801         }
4802         int i;
4803         int ms = timeval_ms();
4804         int size = 0;
4805         int retval = ERROR_OK;
4806         for (i = 0; i < fastload_num;i++)
4807         {
4808                 target_t *target = get_current_target(cmd_ctx);
4809                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x",
4810                                           (unsigned int)(fastload[i].address),
4811                                           (unsigned int)(fastload[i].length));
4812                 if (retval == ERROR_OK)
4813                 {
4814                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4815                 }
4816                 size += fastload[i].length;
4817         }
4818         int after = timeval_ms();
4819         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4820         return retval;
4821 }
4822
4823 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4824 {
4825         command_context_t *context;
4826         target_t *target;
4827         int retval;
4828
4829         context = Jim_GetAssocData(interp, "context");
4830         if (context == NULL) {
4831                 LOG_ERROR("array2mem: no command context");
4832                 return JIM_ERR;
4833         }
4834         target = get_current_target(context);
4835         if (target == NULL) {
4836                 LOG_ERROR("array2mem: no current target");
4837                 return JIM_ERR;
4838         }
4839
4840         if ((argc < 6) || (argc > 7))
4841         {
4842                 return JIM_ERR;
4843         }
4844
4845         int cpnum;
4846         uint32_t op1;
4847         uint32_t op2;
4848         uint32_t CRn;
4849         uint32_t CRm;
4850         uint32_t value;
4851
4852         int e;
4853         long l;
4854         e = Jim_GetLong(interp, argv[1], &l);
4855         if (e != JIM_OK) {
4856                 return e;
4857         }
4858         cpnum = l;
4859
4860         e = Jim_GetLong(interp, argv[2], &l);
4861         if (e != JIM_OK) {
4862                 return e;
4863         }
4864         op1 = l;
4865
4866         e = Jim_GetLong(interp, argv[3], &l);
4867         if (e != JIM_OK) {
4868                 return e;
4869         }
4870         op2 = l;
4871
4872         e = Jim_GetLong(interp, argv[4], &l);
4873         if (e != JIM_OK) {
4874                 return e;
4875         }
4876         CRn = l;
4877
4878         e = Jim_GetLong(interp, argv[5], &l);
4879         if (e != JIM_OK) {
4880                 return e;
4881         }
4882         CRm = l;
4883
4884         value = 0;
4885
4886         if (argc == 7)
4887         {
4888                 e = Jim_GetLong(interp, argv[6], &l);
4889                 if (e != JIM_OK) {
4890                         return e;
4891                 }
4892                 value = l;
4893
4894                 retval = target_mcr(target, cpnum, op1, op2, CRn, CRm, value);
4895                 if (retval != ERROR_OK)
4896                         return JIM_ERR;
4897         } else
4898         {
4899                 retval = target_mrc(target, cpnum, op1, op2, CRn, CRm, &value);
4900                 if (retval != ERROR_OK)
4901                         return JIM_ERR;
4902
4903                 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
4904         }
4905
4906         return JIM_OK;
4907 }