]> git.sur5r.net Git - openocd/blob - src/target/target.c
Tcl commands: Fix improper return status in flash commands and load_image.
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
60
61 static int target_read_buffer_default(struct target *target, uint32_t address,
62                 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, uint32_t address,
64                 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66                 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68                 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71                 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73                 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
76
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type cortexr4_target;
92 extern struct target_type arm11_target;
93 extern struct target_type ls1_sap_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
104 extern struct target_type or1k_target;
105 extern struct target_type quark_x10xx_target;
106 extern struct target_type quark_d20xx_target;
107
108 static struct target_type *target_types[] = {
109         &arm7tdmi_target,
110         &arm9tdmi_target,
111         &arm920t_target,
112         &arm720t_target,
113         &arm966e_target,
114         &arm946e_target,
115         &arm926ejs_target,
116         &fa526_target,
117         &feroceon_target,
118         &dragonite_target,
119         &xscale_target,
120         &cortexm_target,
121         &cortexa_target,
122         &cortexr4_target,
123         &arm11_target,
124         &ls1_sap_target,
125         &mips_m4k_target,
126         &avr_target,
127         &dsp563xx_target,
128         &dsp5680xx_target,
129         &testee_target,
130         &avr32_ap7k_target,
131         &hla_target,
132         &nds32_v2_target,
133         &nds32_v3_target,
134         &nds32_v3m_target,
135         &or1k_target,
136         &quark_x10xx_target,
137         &quark_d20xx_target,
138         NULL,
139 };
140
141 struct target *all_targets;
142 static struct target_event_callback *target_event_callbacks;
143 static struct target_timer_callback *target_timer_callbacks;
144 LIST_HEAD(target_reset_callback_list);
145 LIST_HEAD(target_trace_callback_list);
146 static const int polling_interval = 100;
147
148 static const Jim_Nvp nvp_assert[] = {
149         { .name = "assert", NVP_ASSERT },
150         { .name = "deassert", NVP_DEASSERT },
151         { .name = "T", NVP_ASSERT },
152         { .name = "F", NVP_DEASSERT },
153         { .name = "t", NVP_ASSERT },
154         { .name = "f", NVP_DEASSERT },
155         { .name = NULL, .value = -1 }
156 };
157
158 static const Jim_Nvp nvp_error_target[] = {
159         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
160         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
161         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
162         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
163         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
164         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
165         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
166         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
167         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
168         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
169         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
170         { .value = -1, .name = NULL }
171 };
172
173 static const char *target_strerror_safe(int err)
174 {
175         const Jim_Nvp *n;
176
177         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
178         if (n->name == NULL)
179                 return "unknown";
180         else
181                 return n->name;
182 }
183
184 static const Jim_Nvp nvp_target_event[] = {
185
186         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
187         { .value = TARGET_EVENT_HALTED, .name = "halted" },
188         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
189         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
190         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
191
192         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
193         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
194
195         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
196         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
197         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
198         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
199         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
200         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
201         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
202         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
203         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
204         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
205         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
206         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
207
208         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
209         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
210
211         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
212         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
213
214         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
215         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
216
217         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
218         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
219
220         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
221         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
222
223         { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
224
225         { .name = NULL, .value = -1 }
226 };
227
228 static const Jim_Nvp nvp_target_state[] = {
229         { .name = "unknown", .value = TARGET_UNKNOWN },
230         { .name = "running", .value = TARGET_RUNNING },
231         { .name = "halted",  .value = TARGET_HALTED },
232         { .name = "reset",   .value = TARGET_RESET },
233         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
234         { .name = NULL, .value = -1 },
235 };
236
237 static const Jim_Nvp nvp_target_debug_reason[] = {
238         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
239         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
240         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
241         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
242         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
243         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
244         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
245         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
246         { .name = NULL, .value = -1 },
247 };
248
249 static const Jim_Nvp nvp_target_endian[] = {
250         { .name = "big",    .value = TARGET_BIG_ENDIAN },
251         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
252         { .name = "be",     .value = TARGET_BIG_ENDIAN },
253         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
254         { .name = NULL,     .value = -1 },
255 };
256
257 static const Jim_Nvp nvp_reset_modes[] = {
258         { .name = "unknown", .value = RESET_UNKNOWN },
259         { .name = "run"    , .value = RESET_RUN },
260         { .name = "halt"   , .value = RESET_HALT },
261         { .name = "init"   , .value = RESET_INIT },
262         { .name = NULL     , .value = -1 },
263 };
264
265 const char *debug_reason_name(struct target *t)
266 {
267         const char *cp;
268
269         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
270                         t->debug_reason)->name;
271         if (!cp) {
272                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
273                 cp = "(*BUG*unknown*BUG*)";
274         }
275         return cp;
276 }
277
278 const char *target_state_name(struct target *t)
279 {
280         const char *cp;
281         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
282         if (!cp) {
283                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
284                 cp = "(*BUG*unknown*BUG*)";
285         }
286         return cp;
287 }
288
289 const char *target_event_name(enum target_event event)
290 {
291         const char *cp;
292         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
293         if (!cp) {
294                 LOG_ERROR("Invalid target event: %d", (int)(event));
295                 cp = "(*BUG*unknown*BUG*)";
296         }
297         return cp;
298 }
299
300 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
301 {
302         const char *cp;
303         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
304         if (!cp) {
305                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
306                 cp = "(*BUG*unknown*BUG*)";
307         }
308         return cp;
309 }
310
311 /* determine the number of the new target */
312 static int new_target_number(void)
313 {
314         struct target *t;
315         int x;
316
317         /* number is 0 based */
318         x = -1;
319         t = all_targets;
320         while (t) {
321                 if (x < t->target_number)
322                         x = t->target_number;
323                 t = t->next;
324         }
325         return x + 1;
326 }
327
328 /* read a uint64_t from a buffer in target memory endianness */
329 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
330 {
331         if (target->endianness == TARGET_LITTLE_ENDIAN)
332                 return le_to_h_u64(buffer);
333         else
334                 return be_to_h_u64(buffer);
335 }
336
337 /* read a uint32_t from a buffer in target memory endianness */
338 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
339 {
340         if (target->endianness == TARGET_LITTLE_ENDIAN)
341                 return le_to_h_u32(buffer);
342         else
343                 return be_to_h_u32(buffer);
344 }
345
346 /* read a uint24_t from a buffer in target memory endianness */
347 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
348 {
349         if (target->endianness == TARGET_LITTLE_ENDIAN)
350                 return le_to_h_u24(buffer);
351         else
352                 return be_to_h_u24(buffer);
353 }
354
355 /* read a uint16_t from a buffer in target memory endianness */
356 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
357 {
358         if (target->endianness == TARGET_LITTLE_ENDIAN)
359                 return le_to_h_u16(buffer);
360         else
361                 return be_to_h_u16(buffer);
362 }
363
364 /* read a uint8_t from a buffer in target memory endianness */
365 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
366 {
367         return *buffer & 0x0ff;
368 }
369
370 /* write a uint64_t to a buffer in target memory endianness */
371 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
372 {
373         if (target->endianness == TARGET_LITTLE_ENDIAN)
374                 h_u64_to_le(buffer, value);
375         else
376                 h_u64_to_be(buffer, value);
377 }
378
379 /* write a uint32_t to a buffer in target memory endianness */
380 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
381 {
382         if (target->endianness == TARGET_LITTLE_ENDIAN)
383                 h_u32_to_le(buffer, value);
384         else
385                 h_u32_to_be(buffer, value);
386 }
387
388 /* write a uint24_t to a buffer in target memory endianness */
389 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
390 {
391         if (target->endianness == TARGET_LITTLE_ENDIAN)
392                 h_u24_to_le(buffer, value);
393         else
394                 h_u24_to_be(buffer, value);
395 }
396
397 /* write a uint16_t to a buffer in target memory endianness */
398 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
399 {
400         if (target->endianness == TARGET_LITTLE_ENDIAN)
401                 h_u16_to_le(buffer, value);
402         else
403                 h_u16_to_be(buffer, value);
404 }
405
406 /* write a uint8_t to a buffer in target memory endianness */
407 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
408 {
409         *buffer = value;
410 }
411
412 /* write a uint64_t array to a buffer in target memory endianness */
413 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
414 {
415         uint32_t i;
416         for (i = 0; i < count; i++)
417                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
418 }
419
420 /* write a uint32_t array to a buffer in target memory endianness */
421 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
422 {
423         uint32_t i;
424         for (i = 0; i < count; i++)
425                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
426 }
427
428 /* write a uint16_t array to a buffer in target memory endianness */
429 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
430 {
431         uint32_t i;
432         for (i = 0; i < count; i++)
433                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
434 }
435
436 /* write a uint64_t array to a buffer in target memory endianness */
437 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
438 {
439         uint32_t i;
440         for (i = 0; i < count; i++)
441                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
442 }
443
444 /* write a uint32_t array to a buffer in target memory endianness */
445 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
446 {
447         uint32_t i;
448         for (i = 0; i < count; i++)
449                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
450 }
451
452 /* write a uint16_t array to a buffer in target memory endianness */
453 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
454 {
455         uint32_t i;
456         for (i = 0; i < count; i++)
457                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
458 }
459
460 /* return a pointer to a configured target; id is name or number */
461 struct target *get_target(const char *id)
462 {
463         struct target *target;
464
465         /* try as tcltarget name */
466         for (target = all_targets; target; target = target->next) {
467                 if (target_name(target) == NULL)
468                         continue;
469                 if (strcmp(id, target_name(target)) == 0)
470                         return target;
471         }
472
473         /* It's OK to remove this fallback sometime after August 2010 or so */
474
475         /* no match, try as number */
476         unsigned num;
477         if (parse_uint(id, &num) != ERROR_OK)
478                 return NULL;
479
480         for (target = all_targets; target; target = target->next) {
481                 if (target->target_number == (int)num) {
482                         LOG_WARNING("use '%s' as target identifier, not '%u'",
483                                         target_name(target), num);
484                         return target;
485                 }
486         }
487
488         return NULL;
489 }
490
491 /* returns a pointer to the n-th configured target */
492 struct target *get_target_by_num(int num)
493 {
494         struct target *target = all_targets;
495
496         while (target) {
497                 if (target->target_number == num)
498                         return target;
499                 target = target->next;
500         }
501
502         return NULL;
503 }
504
505 struct target *get_current_target(struct command_context *cmd_ctx)
506 {
507         struct target *target = get_target_by_num(cmd_ctx->current_target);
508
509         if (target == NULL) {
510                 LOG_ERROR("BUG: current_target out of bounds");
511                 exit(-1);
512         }
513
514         return target;
515 }
516
517 int target_poll(struct target *target)
518 {
519         int retval;
520
521         /* We can't poll until after examine */
522         if (!target_was_examined(target)) {
523                 /* Fail silently lest we pollute the log */
524                 return ERROR_FAIL;
525         }
526
527         retval = target->type->poll(target);
528         if (retval != ERROR_OK)
529                 return retval;
530
531         if (target->halt_issued) {
532                 if (target->state == TARGET_HALTED)
533                         target->halt_issued = false;
534                 else {
535                         int64_t t = timeval_ms() - target->halt_issued_time;
536                         if (t > DEFAULT_HALT_TIMEOUT) {
537                                 target->halt_issued = false;
538                                 LOG_INFO("Halt timed out, wake up GDB.");
539                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
540                         }
541                 }
542         }
543
544         return ERROR_OK;
545 }
546
547 int target_halt(struct target *target)
548 {
549         int retval;
550         /* We can't poll until after examine */
551         if (!target_was_examined(target)) {
552                 LOG_ERROR("Target not examined yet");
553                 return ERROR_FAIL;
554         }
555
556         retval = target->type->halt(target);
557         if (retval != ERROR_OK)
558                 return retval;
559
560         target->halt_issued = true;
561         target->halt_issued_time = timeval_ms();
562
563         return ERROR_OK;
564 }
565
566 /**
567  * Make the target (re)start executing using its saved execution
568  * context (possibly with some modifications).
569  *
570  * @param target Which target should start executing.
571  * @param current True to use the target's saved program counter instead
572  *      of the address parameter
573  * @param address Optionally used as the program counter.
574  * @param handle_breakpoints True iff breakpoints at the resumption PC
575  *      should be skipped.  (For example, maybe execution was stopped by
576  *      such a breakpoint, in which case it would be counterprodutive to
577  *      let it re-trigger.
578  * @param debug_execution False if all working areas allocated by OpenOCD
579  *      should be released and/or restored to their original contents.
580  *      (This would for example be true to run some downloaded "helper"
581  *      algorithm code, which resides in one such working buffer and uses
582  *      another for data storage.)
583  *
584  * @todo Resolve the ambiguity about what the "debug_execution" flag
585  * signifies.  For example, Target implementations don't agree on how
586  * it relates to invalidation of the register cache, or to whether
587  * breakpoints and watchpoints should be enabled.  (It would seem wrong
588  * to enable breakpoints when running downloaded "helper" algorithms
589  * (debug_execution true), since the breakpoints would be set to match
590  * target firmware being debugged, not the helper algorithm.... and
591  * enabling them could cause such helpers to malfunction (for example,
592  * by overwriting data with a breakpoint instruction.  On the other
593  * hand the infrastructure for running such helpers might use this
594  * procedure but rely on hardware breakpoint to detect termination.)
595  */
596 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
597 {
598         int retval;
599
600         /* We can't poll until after examine */
601         if (!target_was_examined(target)) {
602                 LOG_ERROR("Target not examined yet");
603                 return ERROR_FAIL;
604         }
605
606         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
607
608         /* note that resume *must* be asynchronous. The CPU can halt before
609          * we poll. The CPU can even halt at the current PC as a result of
610          * a software breakpoint being inserted by (a bug?) the application.
611          */
612         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
613         if (retval != ERROR_OK)
614                 return retval;
615
616         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
617
618         return retval;
619 }
620
621 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
622 {
623         char buf[100];
624         int retval;
625         Jim_Nvp *n;
626         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
627         if (n->name == NULL) {
628                 LOG_ERROR("invalid reset mode");
629                 return ERROR_FAIL;
630         }
631
632         struct target *target;
633         for (target = all_targets; target; target = target->next)
634                 target_call_reset_callbacks(target, reset_mode);
635
636         /* disable polling during reset to make reset event scripts
637          * more predictable, i.e. dr/irscan & pathmove in events will
638          * not have JTAG operations injected into the middle of a sequence.
639          */
640         bool save_poll = jtag_poll_get_enabled();
641
642         jtag_poll_set_enabled(false);
643
644         sprintf(buf, "ocd_process_reset %s", n->name);
645         retval = Jim_Eval(cmd_ctx->interp, buf);
646
647         jtag_poll_set_enabled(save_poll);
648
649         if (retval != JIM_OK) {
650                 Jim_MakeErrorMessage(cmd_ctx->interp);
651                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
652                 return ERROR_FAIL;
653         }
654
655         /* We want any events to be processed before the prompt */
656         retval = target_call_timer_callbacks_now();
657
658         for (target = all_targets; target; target = target->next) {
659                 target->type->check_reset(target);
660                 target->running_alg = false;
661         }
662
663         return retval;
664 }
665
666 static int identity_virt2phys(struct target *target,
667                 uint32_t virtual, uint32_t *physical)
668 {
669         *physical = virtual;
670         return ERROR_OK;
671 }
672
673 static int no_mmu(struct target *target, int *enabled)
674 {
675         *enabled = 0;
676         return ERROR_OK;
677 }
678
679 static int default_examine(struct target *target)
680 {
681         target_set_examined(target);
682         return ERROR_OK;
683 }
684
685 /* no check by default */
686 static int default_check_reset(struct target *target)
687 {
688         return ERROR_OK;
689 }
690
691 int target_examine_one(struct target *target)
692 {
693         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
694
695         int retval = target->type->examine(target);
696         if (retval != ERROR_OK)
697                 return retval;
698
699         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
700
701         return ERROR_OK;
702 }
703
704 static int jtag_enable_callback(enum jtag_event event, void *priv)
705 {
706         struct target *target = priv;
707
708         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
709                 return ERROR_OK;
710
711         jtag_unregister_event_callback(jtag_enable_callback, target);
712
713         return target_examine_one(target);
714 }
715
716 /* Targets that correctly implement init + examine, i.e.
717  * no communication with target during init:
718  *
719  * XScale
720  */
721 int target_examine(void)
722 {
723         int retval = ERROR_OK;
724         struct target *target;
725
726         for (target = all_targets; target; target = target->next) {
727                 /* defer examination, but don't skip it */
728                 if (!target->tap->enabled) {
729                         jtag_register_event_callback(jtag_enable_callback,
730                                         target);
731                         continue;
732                 }
733
734                 retval = target_examine_one(target);
735                 if (retval != ERROR_OK)
736                         return retval;
737         }
738         return retval;
739 }
740
741 const char *target_type_name(struct target *target)
742 {
743         return target->type->name;
744 }
745
746 static int target_soft_reset_halt(struct target *target)
747 {
748         if (!target_was_examined(target)) {
749                 LOG_ERROR("Target not examined yet");
750                 return ERROR_FAIL;
751         }
752         if (!target->type->soft_reset_halt) {
753                 LOG_ERROR("Target %s does not support soft_reset_halt",
754                                 target_name(target));
755                 return ERROR_FAIL;
756         }
757         return target->type->soft_reset_halt(target);
758 }
759
760 /**
761  * Downloads a target-specific native code algorithm to the target,
762  * and executes it.  * Note that some targets may need to set up, enable,
763  * and tear down a breakpoint (hard or * soft) to detect algorithm
764  * termination, while others may support  lower overhead schemes where
765  * soft breakpoints embedded in the algorithm automatically terminate the
766  * algorithm.
767  *
768  * @param target used to run the algorithm
769  * @param arch_info target-specific description of the algorithm.
770  */
771 int target_run_algorithm(struct target *target,
772                 int num_mem_params, struct mem_param *mem_params,
773                 int num_reg_params, struct reg_param *reg_param,
774                 uint32_t entry_point, uint32_t exit_point,
775                 int timeout_ms, void *arch_info)
776 {
777         int retval = ERROR_FAIL;
778
779         if (!target_was_examined(target)) {
780                 LOG_ERROR("Target not examined yet");
781                 goto done;
782         }
783         if (!target->type->run_algorithm) {
784                 LOG_ERROR("Target type '%s' does not support %s",
785                                 target_type_name(target), __func__);
786                 goto done;
787         }
788
789         target->running_alg = true;
790         retval = target->type->run_algorithm(target,
791                         num_mem_params, mem_params,
792                         num_reg_params, reg_param,
793                         entry_point, exit_point, timeout_ms, arch_info);
794         target->running_alg = false;
795
796 done:
797         return retval;
798 }
799
800 /**
801  * Downloads a target-specific native code algorithm to the target,
802  * executes and leaves it running.
803  *
804  * @param target used to run the algorithm
805  * @param arch_info target-specific description of the algorithm.
806  */
807 int target_start_algorithm(struct target *target,
808                 int num_mem_params, struct mem_param *mem_params,
809                 int num_reg_params, struct reg_param *reg_params,
810                 uint32_t entry_point, uint32_t exit_point,
811                 void *arch_info)
812 {
813         int retval = ERROR_FAIL;
814
815         if (!target_was_examined(target)) {
816                 LOG_ERROR("Target not examined yet");
817                 goto done;
818         }
819         if (!target->type->start_algorithm) {
820                 LOG_ERROR("Target type '%s' does not support %s",
821                                 target_type_name(target), __func__);
822                 goto done;
823         }
824         if (target->running_alg) {
825                 LOG_ERROR("Target is already running an algorithm");
826                 goto done;
827         }
828
829         target->running_alg = true;
830         retval = target->type->start_algorithm(target,
831                         num_mem_params, mem_params,
832                         num_reg_params, reg_params,
833                         entry_point, exit_point, arch_info);
834
835 done:
836         return retval;
837 }
838
839 /**
840  * Waits for an algorithm started with target_start_algorithm() to complete.
841  *
842  * @param target used to run the algorithm
843  * @param arch_info target-specific description of the algorithm.
844  */
845 int target_wait_algorithm(struct target *target,
846                 int num_mem_params, struct mem_param *mem_params,
847                 int num_reg_params, struct reg_param *reg_params,
848                 uint32_t exit_point, int timeout_ms,
849                 void *arch_info)
850 {
851         int retval = ERROR_FAIL;
852
853         if (!target->type->wait_algorithm) {
854                 LOG_ERROR("Target type '%s' does not support %s",
855                                 target_type_name(target), __func__);
856                 goto done;
857         }
858         if (!target->running_alg) {
859                 LOG_ERROR("Target is not running an algorithm");
860                 goto done;
861         }
862
863         retval = target->type->wait_algorithm(target,
864                         num_mem_params, mem_params,
865                         num_reg_params, reg_params,
866                         exit_point, timeout_ms, arch_info);
867         if (retval != ERROR_TARGET_TIMEOUT)
868                 target->running_alg = false;
869
870 done:
871         return retval;
872 }
873
874 /**
875  * Executes a target-specific native code algorithm in the target.
876  * It differs from target_run_algorithm in that the algorithm is asynchronous.
877  * Because of this it requires an compliant algorithm:
878  * see contrib/loaders/flash/stm32f1x.S for example.
879  *
880  * @param target used to run the algorithm
881  */
882
883 int target_run_flash_async_algorithm(struct target *target,
884                 const uint8_t *buffer, uint32_t count, int block_size,
885                 int num_mem_params, struct mem_param *mem_params,
886                 int num_reg_params, struct reg_param *reg_params,
887                 uint32_t buffer_start, uint32_t buffer_size,
888                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
889 {
890         int retval;
891         int timeout = 0;
892
893         const uint8_t *buffer_orig = buffer;
894
895         /* Set up working area. First word is write pointer, second word is read pointer,
896          * rest is fifo data area. */
897         uint32_t wp_addr = buffer_start;
898         uint32_t rp_addr = buffer_start + 4;
899         uint32_t fifo_start_addr = buffer_start + 8;
900         uint32_t fifo_end_addr = buffer_start + buffer_size;
901
902         uint32_t wp = fifo_start_addr;
903         uint32_t rp = fifo_start_addr;
904
905         /* validate block_size is 2^n */
906         assert(!block_size || !(block_size & (block_size - 1)));
907
908         retval = target_write_u32(target, wp_addr, wp);
909         if (retval != ERROR_OK)
910                 return retval;
911         retval = target_write_u32(target, rp_addr, rp);
912         if (retval != ERROR_OK)
913                 return retval;
914
915         /* Start up algorithm on target and let it idle while writing the first chunk */
916         retval = target_start_algorithm(target, num_mem_params, mem_params,
917                         num_reg_params, reg_params,
918                         entry_point,
919                         exit_point,
920                         arch_info);
921
922         if (retval != ERROR_OK) {
923                 LOG_ERROR("error starting target flash write algorithm");
924                 return retval;
925         }
926
927         while (count > 0) {
928
929                 retval = target_read_u32(target, rp_addr, &rp);
930                 if (retval != ERROR_OK) {
931                         LOG_ERROR("failed to get read pointer");
932                         break;
933                 }
934
935                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
936                         (size_t) (buffer - buffer_orig), count, wp, rp);
937
938                 if (rp == 0) {
939                         LOG_ERROR("flash write algorithm aborted by target");
940                         retval = ERROR_FLASH_OPERATION_FAILED;
941                         break;
942                 }
943
944                 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
945                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
946                         break;
947                 }
948
949                 /* Count the number of bytes available in the fifo without
950                  * crossing the wrap around. Make sure to not fill it completely,
951                  * because that would make wp == rp and that's the empty condition. */
952                 uint32_t thisrun_bytes;
953                 if (rp > wp)
954                         thisrun_bytes = rp - wp - block_size;
955                 else if (rp > fifo_start_addr)
956                         thisrun_bytes = fifo_end_addr - wp;
957                 else
958                         thisrun_bytes = fifo_end_addr - wp - block_size;
959
960                 if (thisrun_bytes == 0) {
961                         /* Throttle polling a bit if transfer is (much) faster than flash
962                          * programming. The exact delay shouldn't matter as long as it's
963                          * less than buffer size / flash speed. This is very unlikely to
964                          * run when using high latency connections such as USB. */
965                         alive_sleep(10);
966
967                         /* to stop an infinite loop on some targets check and increment a timeout
968                          * this issue was observed on a stellaris using the new ICDI interface */
969                         if (timeout++ >= 500) {
970                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
971                                 return ERROR_FLASH_OPERATION_FAILED;
972                         }
973                         continue;
974                 }
975
976                 /* reset our timeout */
977                 timeout = 0;
978
979                 /* Limit to the amount of data we actually want to write */
980                 if (thisrun_bytes > count * block_size)
981                         thisrun_bytes = count * block_size;
982
983                 /* Write data to fifo */
984                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
985                 if (retval != ERROR_OK)
986                         break;
987
988                 /* Update counters and wrap write pointer */
989                 buffer += thisrun_bytes;
990                 count -= thisrun_bytes / block_size;
991                 wp += thisrun_bytes;
992                 if (wp >= fifo_end_addr)
993                         wp = fifo_start_addr;
994
995                 /* Store updated write pointer to target */
996                 retval = target_write_u32(target, wp_addr, wp);
997                 if (retval != ERROR_OK)
998                         break;
999         }
1000
1001         if (retval != ERROR_OK) {
1002                 /* abort flash write algorithm on target */
1003                 target_write_u32(target, wp_addr, 0);
1004         }
1005
1006         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1007                         num_reg_params, reg_params,
1008                         exit_point,
1009                         10000,
1010                         arch_info);
1011
1012         if (retval2 != ERROR_OK) {
1013                 LOG_ERROR("error waiting for target flash write algorithm");
1014                 retval = retval2;
1015         }
1016
1017         if (retval == ERROR_OK) {
1018                 /* check if algorithm set rp = 0 after fifo writer loop finished */
1019                 retval = target_read_u32(target, rp_addr, &rp);
1020                 if (retval == ERROR_OK && rp == 0) {
1021                         LOG_ERROR("flash write algorithm aborted by target");
1022                         retval = ERROR_FLASH_OPERATION_FAILED;
1023                 }
1024         }
1025
1026         return retval;
1027 }
1028
1029 int target_read_memory(struct target *target,
1030                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1031 {
1032         if (!target_was_examined(target)) {
1033                 LOG_ERROR("Target not examined yet");
1034                 return ERROR_FAIL;
1035         }
1036         if (!target->type->read_memory) {
1037                 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1038                 return ERROR_FAIL;
1039         }
1040         return target->type->read_memory(target, address, size, count, buffer);
1041 }
1042
1043 int target_read_phys_memory(struct target *target,
1044                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1045 {
1046         if (!target_was_examined(target)) {
1047                 LOG_ERROR("Target not examined yet");
1048                 return ERROR_FAIL;
1049         }
1050         if (!target->type->read_phys_memory) {
1051                 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1052                 return ERROR_FAIL;
1053         }
1054         return target->type->read_phys_memory(target, address, size, count, buffer);
1055 }
1056
1057 int target_write_memory(struct target *target,
1058                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1059 {
1060         if (!target_was_examined(target)) {
1061                 LOG_ERROR("Target not examined yet");
1062                 return ERROR_FAIL;
1063         }
1064         if (!target->type->write_memory) {
1065                 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1066                 return ERROR_FAIL;
1067         }
1068         return target->type->write_memory(target, address, size, count, buffer);
1069 }
1070
1071 int target_write_phys_memory(struct target *target,
1072                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1073 {
1074         if (!target_was_examined(target)) {
1075                 LOG_ERROR("Target not examined yet");
1076                 return ERROR_FAIL;
1077         }
1078         if (!target->type->write_phys_memory) {
1079                 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1080                 return ERROR_FAIL;
1081         }
1082         return target->type->write_phys_memory(target, address, size, count, buffer);
1083 }
1084
1085 int target_add_breakpoint(struct target *target,
1086                 struct breakpoint *breakpoint)
1087 {
1088         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1089                 LOG_WARNING("target %s is not halted", target_name(target));
1090                 return ERROR_TARGET_NOT_HALTED;
1091         }
1092         return target->type->add_breakpoint(target, breakpoint);
1093 }
1094
1095 int target_add_context_breakpoint(struct target *target,
1096                 struct breakpoint *breakpoint)
1097 {
1098         if (target->state != TARGET_HALTED) {
1099                 LOG_WARNING("target %s is not halted", target_name(target));
1100                 return ERROR_TARGET_NOT_HALTED;
1101         }
1102         return target->type->add_context_breakpoint(target, breakpoint);
1103 }
1104
1105 int target_add_hybrid_breakpoint(struct target *target,
1106                 struct breakpoint *breakpoint)
1107 {
1108         if (target->state != TARGET_HALTED) {
1109                 LOG_WARNING("target %s is not halted", target_name(target));
1110                 return ERROR_TARGET_NOT_HALTED;
1111         }
1112         return target->type->add_hybrid_breakpoint(target, breakpoint);
1113 }
1114
1115 int target_remove_breakpoint(struct target *target,
1116                 struct breakpoint *breakpoint)
1117 {
1118         return target->type->remove_breakpoint(target, breakpoint);
1119 }
1120
1121 int target_add_watchpoint(struct target *target,
1122                 struct watchpoint *watchpoint)
1123 {
1124         if (target->state != TARGET_HALTED) {
1125                 LOG_WARNING("target %s is not halted", target_name(target));
1126                 return ERROR_TARGET_NOT_HALTED;
1127         }
1128         return target->type->add_watchpoint(target, watchpoint);
1129 }
1130 int target_remove_watchpoint(struct target *target,
1131                 struct watchpoint *watchpoint)
1132 {
1133         return target->type->remove_watchpoint(target, watchpoint);
1134 }
1135 int target_hit_watchpoint(struct target *target,
1136                 struct watchpoint **hit_watchpoint)
1137 {
1138         if (target->state != TARGET_HALTED) {
1139                 LOG_WARNING("target %s is not halted", target->cmd_name);
1140                 return ERROR_TARGET_NOT_HALTED;
1141         }
1142
1143         if (target->type->hit_watchpoint == NULL) {
1144                 /* For backward compatible, if hit_watchpoint is not implemented,
1145                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1146                  * information. */
1147                 return ERROR_FAIL;
1148         }
1149
1150         return target->type->hit_watchpoint(target, hit_watchpoint);
1151 }
1152
1153 int target_get_gdb_reg_list(struct target *target,
1154                 struct reg **reg_list[], int *reg_list_size,
1155                 enum target_register_class reg_class)
1156 {
1157         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1158 }
1159 int target_step(struct target *target,
1160                 int current, uint32_t address, int handle_breakpoints)
1161 {
1162         return target->type->step(target, current, address, handle_breakpoints);
1163 }
1164
1165 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1166 {
1167         if (target->state != TARGET_HALTED) {
1168                 LOG_WARNING("target %s is not halted", target->cmd_name);
1169                 return ERROR_TARGET_NOT_HALTED;
1170         }
1171         return target->type->get_gdb_fileio_info(target, fileio_info);
1172 }
1173
1174 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1175 {
1176         if (target->state != TARGET_HALTED) {
1177                 LOG_WARNING("target %s is not halted", target->cmd_name);
1178                 return ERROR_TARGET_NOT_HALTED;
1179         }
1180         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1181 }
1182
1183 int target_profiling(struct target *target, uint32_t *samples,
1184                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1185 {
1186         if (target->state != TARGET_HALTED) {
1187                 LOG_WARNING("target %s is not halted", target->cmd_name);
1188                 return ERROR_TARGET_NOT_HALTED;
1189         }
1190         return target->type->profiling(target, samples, max_num_samples,
1191                         num_samples, seconds);
1192 }
1193
1194 /**
1195  * Reset the @c examined flag for the given target.
1196  * Pure paranoia -- targets are zeroed on allocation.
1197  */
1198 static void target_reset_examined(struct target *target)
1199 {
1200         target->examined = false;
1201 }
1202
1203 static int handle_target(void *priv);
1204
1205 static int target_init_one(struct command_context *cmd_ctx,
1206                 struct target *target)
1207 {
1208         target_reset_examined(target);
1209
1210         struct target_type *type = target->type;
1211         if (type->examine == NULL)
1212                 type->examine = default_examine;
1213
1214         if (type->check_reset == NULL)
1215                 type->check_reset = default_check_reset;
1216
1217         assert(type->init_target != NULL);
1218
1219         int retval = type->init_target(cmd_ctx, target);
1220         if (ERROR_OK != retval) {
1221                 LOG_ERROR("target '%s' init failed", target_name(target));
1222                 return retval;
1223         }
1224
1225         /* Sanity-check MMU support ... stub in what we must, to help
1226          * implement it in stages, but warn if we need to do so.
1227          */
1228         if (type->mmu) {
1229                 if (type->virt2phys == NULL) {
1230                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1231                         type->virt2phys = identity_virt2phys;
1232                 }
1233         } else {
1234                 /* Make sure no-MMU targets all behave the same:  make no
1235                  * distinction between physical and virtual addresses, and
1236                  * ensure that virt2phys() is always an identity mapping.
1237                  */
1238                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1239                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1240
1241                 type->mmu = no_mmu;
1242                 type->write_phys_memory = type->write_memory;
1243                 type->read_phys_memory = type->read_memory;
1244                 type->virt2phys = identity_virt2phys;
1245         }
1246
1247         if (target->type->read_buffer == NULL)
1248                 target->type->read_buffer = target_read_buffer_default;
1249
1250         if (target->type->write_buffer == NULL)
1251                 target->type->write_buffer = target_write_buffer_default;
1252
1253         if (target->type->get_gdb_fileio_info == NULL)
1254                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1255
1256         if (target->type->gdb_fileio_end == NULL)
1257                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1258
1259         if (target->type->profiling == NULL)
1260                 target->type->profiling = target_profiling_default;
1261
1262         return ERROR_OK;
1263 }
1264
1265 static int target_init(struct command_context *cmd_ctx)
1266 {
1267         struct target *target;
1268         int retval;
1269
1270         for (target = all_targets; target; target = target->next) {
1271                 retval = target_init_one(cmd_ctx, target);
1272                 if (ERROR_OK != retval)
1273                         return retval;
1274         }
1275
1276         if (!all_targets)
1277                 return ERROR_OK;
1278
1279         retval = target_register_user_commands(cmd_ctx);
1280         if (ERROR_OK != retval)
1281                 return retval;
1282
1283         retval = target_register_timer_callback(&handle_target,
1284                         polling_interval, 1, cmd_ctx->interp);
1285         if (ERROR_OK != retval)
1286                 return retval;
1287
1288         return ERROR_OK;
1289 }
1290
1291 COMMAND_HANDLER(handle_target_init_command)
1292 {
1293         int retval;
1294
1295         if (CMD_ARGC != 0)
1296                 return ERROR_COMMAND_SYNTAX_ERROR;
1297
1298         static bool target_initialized;
1299         if (target_initialized) {
1300                 LOG_INFO("'target init' has already been called");
1301                 return ERROR_OK;
1302         }
1303         target_initialized = true;
1304
1305         retval = command_run_line(CMD_CTX, "init_targets");
1306         if (ERROR_OK != retval)
1307                 return retval;
1308
1309         retval = command_run_line(CMD_CTX, "init_target_events");
1310         if (ERROR_OK != retval)
1311                 return retval;
1312
1313         retval = command_run_line(CMD_CTX, "init_board");
1314         if (ERROR_OK != retval)
1315                 return retval;
1316
1317         LOG_DEBUG("Initializing targets...");
1318         return target_init(CMD_CTX);
1319 }
1320
1321 int target_register_event_callback(int (*callback)(struct target *target,
1322                 enum target_event event, void *priv), void *priv)
1323 {
1324         struct target_event_callback **callbacks_p = &target_event_callbacks;
1325
1326         if (callback == NULL)
1327                 return ERROR_COMMAND_SYNTAX_ERROR;
1328
1329         if (*callbacks_p) {
1330                 while ((*callbacks_p)->next)
1331                         callbacks_p = &((*callbacks_p)->next);
1332                 callbacks_p = &((*callbacks_p)->next);
1333         }
1334
1335         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1336         (*callbacks_p)->callback = callback;
1337         (*callbacks_p)->priv = priv;
1338         (*callbacks_p)->next = NULL;
1339
1340         return ERROR_OK;
1341 }
1342
1343 int target_register_reset_callback(int (*callback)(struct target *target,
1344                 enum target_reset_mode reset_mode, void *priv), void *priv)
1345 {
1346         struct target_reset_callback *entry;
1347
1348         if (callback == NULL)
1349                 return ERROR_COMMAND_SYNTAX_ERROR;
1350
1351         entry = malloc(sizeof(struct target_reset_callback));
1352         if (entry == NULL) {
1353                 LOG_ERROR("error allocating buffer for reset callback entry");
1354                 return ERROR_COMMAND_SYNTAX_ERROR;
1355         }
1356
1357         entry->callback = callback;
1358         entry->priv = priv;
1359         list_add(&entry->list, &target_reset_callback_list);
1360
1361
1362         return ERROR_OK;
1363 }
1364
1365 int target_register_trace_callback(int (*callback)(struct target *target,
1366                 size_t len, uint8_t *data, void *priv), void *priv)
1367 {
1368         struct target_trace_callback *entry;
1369
1370         if (callback == NULL)
1371                 return ERROR_COMMAND_SYNTAX_ERROR;
1372
1373         entry = malloc(sizeof(struct target_trace_callback));
1374         if (entry == NULL) {
1375                 LOG_ERROR("error allocating buffer for trace callback entry");
1376                 return ERROR_COMMAND_SYNTAX_ERROR;
1377         }
1378
1379         entry->callback = callback;
1380         entry->priv = priv;
1381         list_add(&entry->list, &target_trace_callback_list);
1382
1383
1384         return ERROR_OK;
1385 }
1386
1387 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1388 {
1389         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1390         struct timeval now;
1391
1392         if (callback == NULL)
1393                 return ERROR_COMMAND_SYNTAX_ERROR;
1394
1395         if (*callbacks_p) {
1396                 while ((*callbacks_p)->next)
1397                         callbacks_p = &((*callbacks_p)->next);
1398                 callbacks_p = &((*callbacks_p)->next);
1399         }
1400
1401         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1402         (*callbacks_p)->callback = callback;
1403         (*callbacks_p)->periodic = periodic;
1404         (*callbacks_p)->time_ms = time_ms;
1405         (*callbacks_p)->removed = false;
1406
1407         gettimeofday(&now, NULL);
1408         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1409         time_ms -= (time_ms % 1000);
1410         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1411         if ((*callbacks_p)->when.tv_usec > 1000000) {
1412                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1413                 (*callbacks_p)->when.tv_sec += 1;
1414         }
1415
1416         (*callbacks_p)->priv = priv;
1417         (*callbacks_p)->next = NULL;
1418
1419         return ERROR_OK;
1420 }
1421
1422 int target_unregister_event_callback(int (*callback)(struct target *target,
1423                 enum target_event event, void *priv), void *priv)
1424 {
1425         struct target_event_callback **p = &target_event_callbacks;
1426         struct target_event_callback *c = target_event_callbacks;
1427
1428         if (callback == NULL)
1429                 return ERROR_COMMAND_SYNTAX_ERROR;
1430
1431         while (c) {
1432                 struct target_event_callback *next = c->next;
1433                 if ((c->callback == callback) && (c->priv == priv)) {
1434                         *p = next;
1435                         free(c);
1436                         return ERROR_OK;
1437                 } else
1438                         p = &(c->next);
1439                 c = next;
1440         }
1441
1442         return ERROR_OK;
1443 }
1444
1445 int target_unregister_reset_callback(int (*callback)(struct target *target,
1446                 enum target_reset_mode reset_mode, void *priv), void *priv)
1447 {
1448         struct target_reset_callback *entry;
1449
1450         if (callback == NULL)
1451                 return ERROR_COMMAND_SYNTAX_ERROR;
1452
1453         list_for_each_entry(entry, &target_reset_callback_list, list) {
1454                 if (entry->callback == callback && entry->priv == priv) {
1455                         list_del(&entry->list);
1456                         free(entry);
1457                         break;
1458                 }
1459         }
1460
1461         return ERROR_OK;
1462 }
1463
1464 int target_unregister_trace_callback(int (*callback)(struct target *target,
1465                 size_t len, uint8_t *data, void *priv), void *priv)
1466 {
1467         struct target_trace_callback *entry;
1468
1469         if (callback == NULL)
1470                 return ERROR_COMMAND_SYNTAX_ERROR;
1471
1472         list_for_each_entry(entry, &target_trace_callback_list, list) {
1473                 if (entry->callback == callback && entry->priv == priv) {
1474                         list_del(&entry->list);
1475                         free(entry);
1476                         break;
1477                 }
1478         }
1479
1480         return ERROR_OK;
1481 }
1482
1483 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1484 {
1485         if (callback == NULL)
1486                 return ERROR_COMMAND_SYNTAX_ERROR;
1487
1488         for (struct target_timer_callback *c = target_timer_callbacks;
1489              c; c = c->next) {
1490                 if ((c->callback == callback) && (c->priv == priv)) {
1491                         c->removed = true;
1492                         return ERROR_OK;
1493                 }
1494         }
1495
1496         return ERROR_FAIL;
1497 }
1498
1499 int target_call_event_callbacks(struct target *target, enum target_event event)
1500 {
1501         struct target_event_callback *callback = target_event_callbacks;
1502         struct target_event_callback *next_callback;
1503
1504         if (event == TARGET_EVENT_HALTED) {
1505                 /* execute early halted first */
1506                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1507         }
1508
1509         LOG_DEBUG("target event %i (%s)", event,
1510                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1511
1512         target_handle_event(target, event);
1513
1514         while (callback) {
1515                 next_callback = callback->next;
1516                 callback->callback(target, event, callback->priv);
1517                 callback = next_callback;
1518         }
1519
1520         return ERROR_OK;
1521 }
1522
1523 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1524 {
1525         struct target_reset_callback *callback;
1526
1527         LOG_DEBUG("target reset %i (%s)", reset_mode,
1528                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1529
1530         list_for_each_entry(callback, &target_reset_callback_list, list)
1531                 callback->callback(target, reset_mode, callback->priv);
1532
1533         return ERROR_OK;
1534 }
1535
1536 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1537 {
1538         struct target_trace_callback *callback;
1539
1540         list_for_each_entry(callback, &target_trace_callback_list, list)
1541                 callback->callback(target, len, data, callback->priv);
1542
1543         return ERROR_OK;
1544 }
1545
1546 static int target_timer_callback_periodic_restart(
1547                 struct target_timer_callback *cb, struct timeval *now)
1548 {
1549         int time_ms = cb->time_ms;
1550         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1551         time_ms -= (time_ms % 1000);
1552         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1553         if (cb->when.tv_usec > 1000000) {
1554                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1555                 cb->when.tv_sec += 1;
1556         }
1557         return ERROR_OK;
1558 }
1559
1560 static int target_call_timer_callback(struct target_timer_callback *cb,
1561                 struct timeval *now)
1562 {
1563         cb->callback(cb->priv);
1564
1565         if (cb->periodic)
1566                 return target_timer_callback_periodic_restart(cb, now);
1567
1568         return target_unregister_timer_callback(cb->callback, cb->priv);
1569 }
1570
1571 static int target_call_timer_callbacks_check_time(int checktime)
1572 {
1573         static bool callback_processing;
1574
1575         /* Do not allow nesting */
1576         if (callback_processing)
1577                 return ERROR_OK;
1578
1579         callback_processing = true;
1580
1581         keep_alive();
1582
1583         struct timeval now;
1584         gettimeofday(&now, NULL);
1585
1586         /* Store an address of the place containing a pointer to the
1587          * next item; initially, that's a standalone "root of the
1588          * list" variable. */
1589         struct target_timer_callback **callback = &target_timer_callbacks;
1590         while (*callback) {
1591                 if ((*callback)->removed) {
1592                         struct target_timer_callback *p = *callback;
1593                         *callback = (*callback)->next;
1594                         free(p);
1595                         continue;
1596                 }
1597
1598                 bool call_it = (*callback)->callback &&
1599                         ((!checktime && (*callback)->periodic) ||
1600                          now.tv_sec > (*callback)->when.tv_sec ||
1601                          (now.tv_sec == (*callback)->when.tv_sec &&
1602                           now.tv_usec >= (*callback)->when.tv_usec));
1603
1604                 if (call_it)
1605                         target_call_timer_callback(*callback, &now);
1606
1607                 callback = &(*callback)->next;
1608         }
1609
1610         callback_processing = false;
1611         return ERROR_OK;
1612 }
1613
1614 int target_call_timer_callbacks(void)
1615 {
1616         return target_call_timer_callbacks_check_time(1);
1617 }
1618
1619 /* invoke periodic callbacks immediately */
1620 int target_call_timer_callbacks_now(void)
1621 {
1622         return target_call_timer_callbacks_check_time(0);
1623 }
1624
1625 /* Prints the working area layout for debug purposes */
1626 static void print_wa_layout(struct target *target)
1627 {
1628         struct working_area *c = target->working_areas;
1629
1630         while (c) {
1631                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1632                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1633                         c->address, c->address + c->size - 1, c->size);
1634                 c = c->next;
1635         }
1636 }
1637
1638 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1639 static void target_split_working_area(struct working_area *area, uint32_t size)
1640 {
1641         assert(area->free); /* Shouldn't split an allocated area */
1642         assert(size <= area->size); /* Caller should guarantee this */
1643
1644         /* Split only if not already the right size */
1645         if (size < area->size) {
1646                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1647
1648                 if (new_wa == NULL)
1649                         return;
1650
1651                 new_wa->next = area->next;
1652                 new_wa->size = area->size - size;
1653                 new_wa->address = area->address + size;
1654                 new_wa->backup = NULL;
1655                 new_wa->user = NULL;
1656                 new_wa->free = true;
1657
1658                 area->next = new_wa;
1659                 area->size = size;
1660
1661                 /* If backup memory was allocated to this area, it has the wrong size
1662                  * now so free it and it will be reallocated if/when needed */
1663                 if (area->backup) {
1664                         free(area->backup);
1665                         area->backup = NULL;
1666                 }
1667         }
1668 }
1669
1670 /* Merge all adjacent free areas into one */
1671 static void target_merge_working_areas(struct target *target)
1672 {
1673         struct working_area *c = target->working_areas;
1674
1675         while (c && c->next) {
1676                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1677
1678                 /* Find two adjacent free areas */
1679                 if (c->free && c->next->free) {
1680                         /* Merge the last into the first */
1681                         c->size += c->next->size;
1682
1683                         /* Remove the last */
1684                         struct working_area *to_be_freed = c->next;
1685                         c->next = c->next->next;
1686                         if (to_be_freed->backup)
1687                                 free(to_be_freed->backup);
1688                         free(to_be_freed);
1689
1690                         /* If backup memory was allocated to the remaining area, it's has
1691                          * the wrong size now */
1692                         if (c->backup) {
1693                                 free(c->backup);
1694                                 c->backup = NULL;
1695                         }
1696                 } else {
1697                         c = c->next;
1698                 }
1699         }
1700 }
1701
1702 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1703 {
1704         /* Reevaluate working area address based on MMU state*/
1705         if (target->working_areas == NULL) {
1706                 int retval;
1707                 int enabled;
1708
1709                 retval = target->type->mmu(target, &enabled);
1710                 if (retval != ERROR_OK)
1711                         return retval;
1712
1713                 if (!enabled) {
1714                         if (target->working_area_phys_spec) {
1715                                 LOG_DEBUG("MMU disabled, using physical "
1716                                         "address for working memory 0x%08"PRIx32,
1717                                         target->working_area_phys);
1718                                 target->working_area = target->working_area_phys;
1719                         } else {
1720                                 LOG_ERROR("No working memory available. "
1721                                         "Specify -work-area-phys to target.");
1722                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1723                         }
1724                 } else {
1725                         if (target->working_area_virt_spec) {
1726                                 LOG_DEBUG("MMU enabled, using virtual "
1727                                         "address for working memory 0x%08"PRIx32,
1728                                         target->working_area_virt);
1729                                 target->working_area = target->working_area_virt;
1730                         } else {
1731                                 LOG_ERROR("No working memory available. "
1732                                         "Specify -work-area-virt to target.");
1733                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1734                         }
1735                 }
1736
1737                 /* Set up initial working area on first call */
1738                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1739                 if (new_wa) {
1740                         new_wa->next = NULL;
1741                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1742                         new_wa->address = target->working_area;
1743                         new_wa->backup = NULL;
1744                         new_wa->user = NULL;
1745                         new_wa->free = true;
1746                 }
1747
1748                 target->working_areas = new_wa;
1749         }
1750
1751         /* only allocate multiples of 4 byte */
1752         if (size % 4)
1753                 size = (size + 3) & (~3UL);
1754
1755         struct working_area *c = target->working_areas;
1756
1757         /* Find the first large enough working area */
1758         while (c) {
1759                 if (c->free && c->size >= size)
1760                         break;
1761                 c = c->next;
1762         }
1763
1764         if (c == NULL)
1765                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1766
1767         /* Split the working area into the requested size */
1768         target_split_working_area(c, size);
1769
1770         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1771
1772         if (target->backup_working_area) {
1773                 if (c->backup == NULL) {
1774                         c->backup = malloc(c->size);
1775                         if (c->backup == NULL)
1776                                 return ERROR_FAIL;
1777                 }
1778
1779                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1780                 if (retval != ERROR_OK)
1781                         return retval;
1782         }
1783
1784         /* mark as used, and return the new (reused) area */
1785         c->free = false;
1786         *area = c;
1787
1788         /* user pointer */
1789         c->user = area;
1790
1791         print_wa_layout(target);
1792
1793         return ERROR_OK;
1794 }
1795
1796 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1797 {
1798         int retval;
1799
1800         retval = target_alloc_working_area_try(target, size, area);
1801         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1802                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1803         return retval;
1804
1805 }
1806
1807 static int target_restore_working_area(struct target *target, struct working_area *area)
1808 {
1809         int retval = ERROR_OK;
1810
1811         if (target->backup_working_area && area->backup != NULL) {
1812                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1813                 if (retval != ERROR_OK)
1814                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1815                                         area->size, area->address);
1816         }
1817
1818         return retval;
1819 }
1820
1821 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1822 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1823 {
1824         int retval = ERROR_OK;
1825
1826         if (area->free)
1827                 return retval;
1828
1829         if (restore) {
1830                 retval = target_restore_working_area(target, area);
1831                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1832                 if (retval != ERROR_OK)
1833                         return retval;
1834         }
1835
1836         area->free = true;
1837
1838         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1839                         area->size, area->address);
1840
1841         /* mark user pointer invalid */
1842         /* TODO: Is this really safe? It points to some previous caller's memory.
1843          * How could we know that the area pointer is still in that place and not
1844          * some other vital data? What's the purpose of this, anyway? */
1845         *area->user = NULL;
1846         area->user = NULL;
1847
1848         target_merge_working_areas(target);
1849
1850         print_wa_layout(target);
1851
1852         return retval;
1853 }
1854
1855 int target_free_working_area(struct target *target, struct working_area *area)
1856 {
1857         return target_free_working_area_restore(target, area, 1);
1858 }
1859
1860 void target_quit(void)
1861 {
1862         struct target_event_callback *pe = target_event_callbacks;
1863         while (pe) {
1864                 struct target_event_callback *t = pe->next;
1865                 free(pe);
1866                 pe = t;
1867         }
1868         target_event_callbacks = NULL;
1869
1870         struct target_timer_callback *pt = target_timer_callbacks;
1871         while (pt) {
1872                 struct target_timer_callback *t = pt->next;
1873                 free(pt);
1874                 pt = t;
1875         }
1876         target_timer_callbacks = NULL;
1877
1878         for (struct target *target = all_targets;
1879              target; target = target->next) {
1880                 if (target->type->deinit_target)
1881                         target->type->deinit_target(target);
1882         }
1883 }
1884
1885 /* free resources and restore memory, if restoring memory fails,
1886  * free up resources anyway
1887  */
1888 static void target_free_all_working_areas_restore(struct target *target, int restore)
1889 {
1890         struct working_area *c = target->working_areas;
1891
1892         LOG_DEBUG("freeing all working areas");
1893
1894         /* Loop through all areas, restoring the allocated ones and marking them as free */
1895         while (c) {
1896                 if (!c->free) {
1897                         if (restore)
1898                                 target_restore_working_area(target, c);
1899                         c->free = true;
1900                         *c->user = NULL; /* Same as above */
1901                         c->user = NULL;
1902                 }
1903                 c = c->next;
1904         }
1905
1906         /* Run a merge pass to combine all areas into one */
1907         target_merge_working_areas(target);
1908
1909         print_wa_layout(target);
1910 }
1911
1912 void target_free_all_working_areas(struct target *target)
1913 {
1914         target_free_all_working_areas_restore(target, 1);
1915 }
1916
1917 /* Find the largest number of bytes that can be allocated */
1918 uint32_t target_get_working_area_avail(struct target *target)
1919 {
1920         struct working_area *c = target->working_areas;
1921         uint32_t max_size = 0;
1922
1923         if (c == NULL)
1924                 return target->working_area_size;
1925
1926         while (c) {
1927                 if (c->free && max_size < c->size)
1928                         max_size = c->size;
1929
1930                 c = c->next;
1931         }
1932
1933         return max_size;
1934 }
1935
1936 int target_arch_state(struct target *target)
1937 {
1938         int retval;
1939         if (target == NULL) {
1940                 LOG_USER("No target has been configured");
1941                 return ERROR_OK;
1942         }
1943
1944         LOG_USER("%s: target state: %s", target_name(target),
1945                  target_state_name(target));
1946
1947         if (target->state != TARGET_HALTED)
1948                 return ERROR_OK;
1949
1950         retval = target->type->arch_state(target);
1951         return retval;
1952 }
1953
1954 static int target_get_gdb_fileio_info_default(struct target *target,
1955                 struct gdb_fileio_info *fileio_info)
1956 {
1957         /* If target does not support semi-hosting function, target
1958            has no need to provide .get_gdb_fileio_info callback.
1959            It just return ERROR_FAIL and gdb_server will return "Txx"
1960            as target halted every time.  */
1961         return ERROR_FAIL;
1962 }
1963
1964 static int target_gdb_fileio_end_default(struct target *target,
1965                 int retcode, int fileio_errno, bool ctrl_c)
1966 {
1967         return ERROR_OK;
1968 }
1969
1970 static int target_profiling_default(struct target *target, uint32_t *samples,
1971                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1972 {
1973         struct timeval timeout, now;
1974
1975         gettimeofday(&timeout, NULL);
1976         timeval_add_time(&timeout, seconds, 0);
1977
1978         LOG_INFO("Starting profiling. Halting and resuming the"
1979                         " target as often as we can...");
1980
1981         uint32_t sample_count = 0;
1982         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1983         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1984
1985         int retval = ERROR_OK;
1986         for (;;) {
1987                 target_poll(target);
1988                 if (target->state == TARGET_HALTED) {
1989                         uint32_t t = buf_get_u32(reg->value, 0, 32);
1990                         samples[sample_count++] = t;
1991                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
1992                         retval = target_resume(target, 1, 0, 0, 0);
1993                         target_poll(target);
1994                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1995                 } else if (target->state == TARGET_RUNNING) {
1996                         /* We want to quickly sample the PC. */
1997                         retval = target_halt(target);
1998                 } else {
1999                         LOG_INFO("Target not halted or running");
2000                         retval = ERROR_OK;
2001                         break;
2002                 }
2003
2004                 if (retval != ERROR_OK)
2005                         break;
2006
2007                 gettimeofday(&now, NULL);
2008                 if ((sample_count >= max_num_samples) ||
2009                         ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
2010                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2011                         break;
2012                 }
2013         }
2014
2015         *num_samples = sample_count;
2016         return retval;
2017 }
2018
2019 /* Single aligned words are guaranteed to use 16 or 32 bit access
2020  * mode respectively, otherwise data is handled as quickly as
2021  * possible
2022  */
2023 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
2024 {
2025         LOG_DEBUG("writing buffer of %" PRIi32 " byte at 0x%8.8" PRIx32,
2026                           size, address);
2027
2028         if (!target_was_examined(target)) {
2029                 LOG_ERROR("Target not examined yet");
2030                 return ERROR_FAIL;
2031         }
2032
2033         if (size == 0)
2034                 return ERROR_OK;
2035
2036         if ((address + size - 1) < address) {
2037                 /* GDB can request this when e.g. PC is 0xfffffffc */
2038                 LOG_ERROR("address + size wrapped (0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2039                                   address,
2040                                   size);
2041                 return ERROR_FAIL;
2042         }
2043
2044         return target->type->write_buffer(target, address, size, buffer);
2045 }
2046
2047 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
2048 {
2049         uint32_t size;
2050
2051         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2052          * will have something to do with the size we leave to it. */
2053         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2054                 if (address & size) {
2055                         int retval = target_write_memory(target, address, size, 1, buffer);
2056                         if (retval != ERROR_OK)
2057                                 return retval;
2058                         address += size;
2059                         count -= size;
2060                         buffer += size;
2061                 }
2062         }
2063
2064         /* Write the data with as large access size as possible. */
2065         for (; size > 0; size /= 2) {
2066                 uint32_t aligned = count - count % size;
2067                 if (aligned > 0) {
2068                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2069                         if (retval != ERROR_OK)
2070                                 return retval;
2071                         address += aligned;
2072                         count -= aligned;
2073                         buffer += aligned;
2074                 }
2075         }
2076
2077         return ERROR_OK;
2078 }
2079
2080 /* Single aligned words are guaranteed to use 16 or 32 bit access
2081  * mode respectively, otherwise data is handled as quickly as
2082  * possible
2083  */
2084 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
2085 {
2086         LOG_DEBUG("reading buffer of %" PRIi32 " byte at 0x%8.8" PRIx32,
2087                           size, address);
2088
2089         if (!target_was_examined(target)) {
2090                 LOG_ERROR("Target not examined yet");
2091                 return ERROR_FAIL;
2092         }
2093
2094         if (size == 0)
2095                 return ERROR_OK;
2096
2097         if ((address + size - 1) < address) {
2098                 /* GDB can request this when e.g. PC is 0xfffffffc */
2099                 LOG_ERROR("address + size wrapped (0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2100                                   address,
2101                                   size);
2102                 return ERROR_FAIL;
2103         }
2104
2105         return target->type->read_buffer(target, address, size, buffer);
2106 }
2107
2108 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2109 {
2110         uint32_t size;
2111
2112         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2113          * will have something to do with the size we leave to it. */
2114         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2115                 if (address & size) {
2116                         int retval = target_read_memory(target, address, size, 1, buffer);
2117                         if (retval != ERROR_OK)
2118                                 return retval;
2119                         address += size;
2120                         count -= size;
2121                         buffer += size;
2122                 }
2123         }
2124
2125         /* Read the data with as large access size as possible. */
2126         for (; size > 0; size /= 2) {
2127                 uint32_t aligned = count - count % size;
2128                 if (aligned > 0) {
2129                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2130                         if (retval != ERROR_OK)
2131                                 return retval;
2132                         address += aligned;
2133                         count -= aligned;
2134                         buffer += aligned;
2135                 }
2136         }
2137
2138         return ERROR_OK;
2139 }
2140
2141 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
2142 {
2143         uint8_t *buffer;
2144         int retval;
2145         uint32_t i;
2146         uint32_t checksum = 0;
2147         if (!target_was_examined(target)) {
2148                 LOG_ERROR("Target not examined yet");
2149                 return ERROR_FAIL;
2150         }
2151
2152         retval = target->type->checksum_memory(target, address, size, &checksum);
2153         if (retval != ERROR_OK) {
2154                 buffer = malloc(size);
2155                 if (buffer == NULL) {
2156                         LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2157                         return ERROR_COMMAND_SYNTAX_ERROR;
2158                 }
2159                 retval = target_read_buffer(target, address, size, buffer);
2160                 if (retval != ERROR_OK) {
2161                         free(buffer);
2162                         return retval;
2163                 }
2164
2165                 /* convert to target endianness */
2166                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2167                         uint32_t target_data;
2168                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2169                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2170                 }
2171
2172                 retval = image_calculate_checksum(buffer, size, &checksum);
2173                 free(buffer);
2174         }
2175
2176         *crc = checksum;
2177
2178         return retval;
2179 }
2180
2181 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank,
2182         uint8_t erased_value)
2183 {
2184         int retval;
2185         if (!target_was_examined(target)) {
2186                 LOG_ERROR("Target not examined yet");
2187                 return ERROR_FAIL;
2188         }
2189
2190         if (target->type->blank_check_memory == 0)
2191                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2192
2193         retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2194
2195         return retval;
2196 }
2197
2198 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2199 {
2200         uint8_t value_buf[8];
2201         if (!target_was_examined(target)) {
2202                 LOG_ERROR("Target not examined yet");
2203                 return ERROR_FAIL;
2204         }
2205
2206         int retval = target_read_memory(target, address, 8, 1, value_buf);
2207
2208         if (retval == ERROR_OK) {
2209                 *value = target_buffer_get_u64(target, value_buf);
2210                 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2211                                   address,
2212                                   *value);
2213         } else {
2214                 *value = 0x0;
2215                 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2216                                   address);
2217         }
2218
2219         return retval;
2220 }
2221
2222 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2223 {
2224         uint8_t value_buf[4];
2225         if (!target_was_examined(target)) {
2226                 LOG_ERROR("Target not examined yet");
2227                 return ERROR_FAIL;
2228         }
2229
2230         int retval = target_read_memory(target, address, 4, 1, value_buf);
2231
2232         if (retval == ERROR_OK) {
2233                 *value = target_buffer_get_u32(target, value_buf);
2234                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2235                                   address,
2236                                   *value);
2237         } else {
2238                 *value = 0x0;
2239                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2240                                   address);
2241         }
2242
2243         return retval;
2244 }
2245
2246 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2247 {
2248         uint8_t value_buf[2];
2249         if (!target_was_examined(target)) {
2250                 LOG_ERROR("Target not examined yet");
2251                 return ERROR_FAIL;
2252         }
2253
2254         int retval = target_read_memory(target, address, 2, 1, value_buf);
2255
2256         if (retval == ERROR_OK) {
2257                 *value = target_buffer_get_u16(target, value_buf);
2258                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4" PRIx16,
2259                                   address,
2260                                   *value);
2261         } else {
2262                 *value = 0x0;
2263                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2264                                   address);
2265         }
2266
2267         return retval;
2268 }
2269
2270 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2271 {
2272         if (!target_was_examined(target)) {
2273                 LOG_ERROR("Target not examined yet");
2274                 return ERROR_FAIL;
2275         }
2276
2277         int retval = target_read_memory(target, address, 1, 1, value);
2278
2279         if (retval == ERROR_OK) {
2280                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2" PRIx8,
2281                                   address,
2282                                   *value);
2283         } else {
2284                 *value = 0x0;
2285                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2286                                   address);
2287         }
2288
2289         return retval;
2290 }
2291
2292 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2293 {
2294         int retval;
2295         uint8_t value_buf[8];
2296         if (!target_was_examined(target)) {
2297                 LOG_ERROR("Target not examined yet");
2298                 return ERROR_FAIL;
2299         }
2300
2301         LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2302                           address,
2303                           value);
2304
2305         target_buffer_set_u64(target, value_buf, value);
2306         retval = target_write_memory(target, address, 8, 1, value_buf);
2307         if (retval != ERROR_OK)
2308                 LOG_DEBUG("failed: %i", retval);
2309
2310         return retval;
2311 }
2312
2313 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2314 {
2315         int retval;
2316         uint8_t value_buf[4];
2317         if (!target_was_examined(target)) {
2318                 LOG_ERROR("Target not examined yet");
2319                 return ERROR_FAIL;
2320         }
2321
2322         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2323                           address,
2324                           value);
2325
2326         target_buffer_set_u32(target, value_buf, value);
2327         retval = target_write_memory(target, address, 4, 1, value_buf);
2328         if (retval != ERROR_OK)
2329                 LOG_DEBUG("failed: %i", retval);
2330
2331         return retval;
2332 }
2333
2334 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2335 {
2336         int retval;
2337         uint8_t value_buf[2];
2338         if (!target_was_examined(target)) {
2339                 LOG_ERROR("Target not examined yet");
2340                 return ERROR_FAIL;
2341         }
2342
2343         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx16,
2344                           address,
2345                           value);
2346
2347         target_buffer_set_u16(target, value_buf, value);
2348         retval = target_write_memory(target, address, 2, 1, value_buf);
2349         if (retval != ERROR_OK)
2350                 LOG_DEBUG("failed: %i", retval);
2351
2352         return retval;
2353 }
2354
2355 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2356 {
2357         int retval;
2358         if (!target_was_examined(target)) {
2359                 LOG_ERROR("Target not examined yet");
2360                 return ERROR_FAIL;
2361         }
2362
2363         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2" PRIx8,
2364                           address, value);
2365
2366         retval = target_write_memory(target, address, 1, 1, &value);
2367         if (retval != ERROR_OK)
2368                 LOG_DEBUG("failed: %i", retval);
2369
2370         return retval;
2371 }
2372
2373 static int find_target(struct command_context *cmd_ctx, const char *name)
2374 {
2375         struct target *target = get_target(name);
2376         if (target == NULL) {
2377                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2378                 return ERROR_FAIL;
2379         }
2380         if (!target->tap->enabled) {
2381                 LOG_USER("Target: TAP %s is disabled, "
2382                          "can't be the current target\n",
2383                          target->tap->dotted_name);
2384                 return ERROR_FAIL;
2385         }
2386
2387         cmd_ctx->current_target = target->target_number;
2388         return ERROR_OK;
2389 }
2390
2391
2392 COMMAND_HANDLER(handle_targets_command)
2393 {
2394         int retval = ERROR_OK;
2395         if (CMD_ARGC == 1) {
2396                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2397                 if (retval == ERROR_OK) {
2398                         /* we're done! */
2399                         return retval;
2400                 }
2401         }
2402
2403         struct target *target = all_targets;
2404         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2405         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2406         while (target) {
2407                 const char *state;
2408                 char marker = ' ';
2409
2410                 if (target->tap->enabled)
2411                         state = target_state_name(target);
2412                 else
2413                         state = "tap-disabled";
2414
2415                 if (CMD_CTX->current_target == target->target_number)
2416                         marker = '*';
2417
2418                 /* keep columns lined up to match the headers above */
2419                 command_print(CMD_CTX,
2420                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2421                                 target->target_number,
2422                                 marker,
2423                                 target_name(target),
2424                                 target_type_name(target),
2425                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2426                                         target->endianness)->name,
2427                                 target->tap->dotted_name,
2428                                 state);
2429                 target = target->next;
2430         }
2431
2432         return retval;
2433 }
2434
2435 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2436
2437 static int powerDropout;
2438 static int srstAsserted;
2439
2440 static int runPowerRestore;
2441 static int runPowerDropout;
2442 static int runSrstAsserted;
2443 static int runSrstDeasserted;
2444
2445 static int sense_handler(void)
2446 {
2447         static int prevSrstAsserted;
2448         static int prevPowerdropout;
2449
2450         int retval = jtag_power_dropout(&powerDropout);
2451         if (retval != ERROR_OK)
2452                 return retval;
2453
2454         int powerRestored;
2455         powerRestored = prevPowerdropout && !powerDropout;
2456         if (powerRestored)
2457                 runPowerRestore = 1;
2458
2459         int64_t current = timeval_ms();
2460         static int64_t lastPower;
2461         bool waitMore = lastPower + 2000 > current;
2462         if (powerDropout && !waitMore) {
2463                 runPowerDropout = 1;
2464                 lastPower = current;
2465         }
2466
2467         retval = jtag_srst_asserted(&srstAsserted);
2468         if (retval != ERROR_OK)
2469                 return retval;
2470
2471         int srstDeasserted;
2472         srstDeasserted = prevSrstAsserted && !srstAsserted;
2473
2474         static int64_t lastSrst;
2475         waitMore = lastSrst + 2000 > current;
2476         if (srstDeasserted && !waitMore) {
2477                 runSrstDeasserted = 1;
2478                 lastSrst = current;
2479         }
2480
2481         if (!prevSrstAsserted && srstAsserted)
2482                 runSrstAsserted = 1;
2483
2484         prevSrstAsserted = srstAsserted;
2485         prevPowerdropout = powerDropout;
2486
2487         if (srstDeasserted || powerRestored) {
2488                 /* Other than logging the event we can't do anything here.
2489                  * Issuing a reset is a particularly bad idea as we might
2490                  * be inside a reset already.
2491                  */
2492         }
2493
2494         return ERROR_OK;
2495 }
2496
2497 /* process target state changes */
2498 static int handle_target(void *priv)
2499 {
2500         Jim_Interp *interp = (Jim_Interp *)priv;
2501         int retval = ERROR_OK;
2502
2503         if (!is_jtag_poll_safe()) {
2504                 /* polling is disabled currently */
2505                 return ERROR_OK;
2506         }
2507
2508         /* we do not want to recurse here... */
2509         static int recursive;
2510         if (!recursive) {
2511                 recursive = 1;
2512                 sense_handler();
2513                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2514                  * We need to avoid an infinite loop/recursion here and we do that by
2515                  * clearing the flags after running these events.
2516                  */
2517                 int did_something = 0;
2518                 if (runSrstAsserted) {
2519                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2520                         Jim_Eval(interp, "srst_asserted");
2521                         did_something = 1;
2522                 }
2523                 if (runSrstDeasserted) {
2524                         Jim_Eval(interp, "srst_deasserted");
2525                         did_something = 1;
2526                 }
2527                 if (runPowerDropout) {
2528                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2529                         Jim_Eval(interp, "power_dropout");
2530                         did_something = 1;
2531                 }
2532                 if (runPowerRestore) {
2533                         Jim_Eval(interp, "power_restore");
2534                         did_something = 1;
2535                 }
2536
2537                 if (did_something) {
2538                         /* clear detect flags */
2539                         sense_handler();
2540                 }
2541
2542                 /* clear action flags */
2543
2544                 runSrstAsserted = 0;
2545                 runSrstDeasserted = 0;
2546                 runPowerRestore = 0;
2547                 runPowerDropout = 0;
2548
2549                 recursive = 0;
2550         }
2551
2552         /* Poll targets for state changes unless that's globally disabled.
2553          * Skip targets that are currently disabled.
2554          */
2555         for (struct target *target = all_targets;
2556                         is_jtag_poll_safe() && target;
2557                         target = target->next) {
2558
2559                 if (!target_was_examined(target))
2560                         continue;
2561
2562                 if (!target->tap->enabled)
2563                         continue;
2564
2565                 if (target->backoff.times > target->backoff.count) {
2566                         /* do not poll this time as we failed previously */
2567                         target->backoff.count++;
2568                         continue;
2569                 }
2570                 target->backoff.count = 0;
2571
2572                 /* only poll target if we've got power and srst isn't asserted */
2573                 if (!powerDropout && !srstAsserted) {
2574                         /* polling may fail silently until the target has been examined */
2575                         retval = target_poll(target);
2576                         if (retval != ERROR_OK) {
2577                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2578                                 if (target->backoff.times * polling_interval < 5000) {
2579                                         target->backoff.times *= 2;
2580                                         target->backoff.times++;
2581                                 }
2582
2583                                 /* Tell GDB to halt the debugger. This allows the user to
2584                                  * run monitor commands to handle the situation.
2585                                  */
2586                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2587                         }
2588                         if (target->backoff.times > 0) {
2589                                 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2590                                 target_reset_examined(target);
2591                                 retval = target_examine_one(target);
2592                                 /* Target examination could have failed due to unstable connection,
2593                                  * but we set the examined flag anyway to repoll it later */
2594                                 if (retval != ERROR_OK) {
2595                                         target->examined = true;
2596                                         LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2597                                                  target->backoff.times * polling_interval);
2598                                         return retval;
2599                                 }
2600                         }
2601
2602                         /* Since we succeeded, we reset backoff count */
2603                         target->backoff.times = 0;
2604                 }
2605         }
2606
2607         return retval;
2608 }
2609
2610 COMMAND_HANDLER(handle_reg_command)
2611 {
2612         struct target *target;
2613         struct reg *reg = NULL;
2614         unsigned count = 0;
2615         char *value;
2616
2617         LOG_DEBUG("-");
2618
2619         target = get_current_target(CMD_CTX);
2620
2621         /* list all available registers for the current target */
2622         if (CMD_ARGC == 0) {
2623                 struct reg_cache *cache = target->reg_cache;
2624
2625                 count = 0;
2626                 while (cache) {
2627                         unsigned i;
2628
2629                         command_print(CMD_CTX, "===== %s", cache->name);
2630
2631                         for (i = 0, reg = cache->reg_list;
2632                                         i < cache->num_regs;
2633                                         i++, reg++, count++) {
2634                                 /* only print cached values if they are valid */
2635                                 if (reg->valid) {
2636                                         value = buf_to_str(reg->value,
2637                                                         reg->size, 16);
2638                                         command_print(CMD_CTX,
2639                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2640                                                         count, reg->name,
2641                                                         reg->size, value,
2642                                                         reg->dirty
2643                                                                 ? " (dirty)"
2644                                                                 : "");
2645                                         free(value);
2646                                 } else {
2647                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2648                                                           count, reg->name,
2649                                                           reg->size) ;
2650                                 }
2651                         }
2652                         cache = cache->next;
2653                 }
2654
2655                 return ERROR_OK;
2656         }
2657
2658         /* access a single register by its ordinal number */
2659         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2660                 unsigned num;
2661                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2662
2663                 struct reg_cache *cache = target->reg_cache;
2664                 count = 0;
2665                 while (cache) {
2666                         unsigned i;
2667                         for (i = 0; i < cache->num_regs; i++) {
2668                                 if (count++ == num) {
2669                                         reg = &cache->reg_list[i];
2670                                         break;
2671                                 }
2672                         }
2673                         if (reg)
2674                                 break;
2675                         cache = cache->next;
2676                 }
2677
2678                 if (!reg) {
2679                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2680                                         "has only %i registers (0 - %i)", num, count, count - 1);
2681                         return ERROR_OK;
2682                 }
2683         } else {
2684                 /* access a single register by its name */
2685                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2686
2687                 if (!reg) {
2688                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2689                         return ERROR_OK;
2690                 }
2691         }
2692
2693         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2694
2695         /* display a register */
2696         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2697                         && (CMD_ARGV[1][0] <= '9')))) {
2698                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2699                         reg->valid = 0;
2700
2701                 if (reg->valid == 0)
2702                         reg->type->get(reg);
2703                 value = buf_to_str(reg->value, reg->size, 16);
2704                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2705                 free(value);
2706                 return ERROR_OK;
2707         }
2708
2709         /* set register value */
2710         if (CMD_ARGC == 2) {
2711                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2712                 if (buf == NULL)
2713                         return ERROR_FAIL;
2714                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2715
2716                 reg->type->set(reg, buf);
2717
2718                 value = buf_to_str(reg->value, reg->size, 16);
2719                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2720                 free(value);
2721
2722                 free(buf);
2723
2724                 return ERROR_OK;
2725         }
2726
2727         return ERROR_COMMAND_SYNTAX_ERROR;
2728 }
2729
2730 COMMAND_HANDLER(handle_poll_command)
2731 {
2732         int retval = ERROR_OK;
2733         struct target *target = get_current_target(CMD_CTX);
2734
2735         if (CMD_ARGC == 0) {
2736                 command_print(CMD_CTX, "background polling: %s",
2737                                 jtag_poll_get_enabled() ? "on" : "off");
2738                 command_print(CMD_CTX, "TAP: %s (%s)",
2739                                 target->tap->dotted_name,
2740                                 target->tap->enabled ? "enabled" : "disabled");
2741                 if (!target->tap->enabled)
2742                         return ERROR_OK;
2743                 retval = target_poll(target);
2744                 if (retval != ERROR_OK)
2745                         return retval;
2746                 retval = target_arch_state(target);
2747                 if (retval != ERROR_OK)
2748                         return retval;
2749         } else if (CMD_ARGC == 1) {
2750                 bool enable;
2751                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2752                 jtag_poll_set_enabled(enable);
2753         } else
2754                 return ERROR_COMMAND_SYNTAX_ERROR;
2755
2756         return retval;
2757 }
2758
2759 COMMAND_HANDLER(handle_wait_halt_command)
2760 {
2761         if (CMD_ARGC > 1)
2762                 return ERROR_COMMAND_SYNTAX_ERROR;
2763
2764         unsigned ms = DEFAULT_HALT_TIMEOUT;
2765         if (1 == CMD_ARGC) {
2766                 int retval = parse_uint(CMD_ARGV[0], &ms);
2767                 if (ERROR_OK != retval)
2768                         return ERROR_COMMAND_SYNTAX_ERROR;
2769         }
2770
2771         struct target *target = get_current_target(CMD_CTX);
2772         return target_wait_state(target, TARGET_HALTED, ms);
2773 }
2774
2775 /* wait for target state to change. The trick here is to have a low
2776  * latency for short waits and not to suck up all the CPU time
2777  * on longer waits.
2778  *
2779  * After 500ms, keep_alive() is invoked
2780  */
2781 int target_wait_state(struct target *target, enum target_state state, int ms)
2782 {
2783         int retval;
2784         int64_t then = 0, cur;
2785         bool once = true;
2786
2787         for (;;) {
2788                 retval = target_poll(target);
2789                 if (retval != ERROR_OK)
2790                         return retval;
2791                 if (target->state == state)
2792                         break;
2793                 cur = timeval_ms();
2794                 if (once) {
2795                         once = false;
2796                         then = timeval_ms();
2797                         LOG_DEBUG("waiting for target %s...",
2798                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2799                 }
2800
2801                 if (cur-then > 500)
2802                         keep_alive();
2803
2804                 if ((cur-then) > ms) {
2805                         LOG_ERROR("timed out while waiting for target %s",
2806                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2807                         return ERROR_FAIL;
2808                 }
2809         }
2810
2811         return ERROR_OK;
2812 }
2813
2814 COMMAND_HANDLER(handle_halt_command)
2815 {
2816         LOG_DEBUG("-");
2817
2818         struct target *target = get_current_target(CMD_CTX);
2819         int retval = target_halt(target);
2820         if (ERROR_OK != retval)
2821                 return retval;
2822
2823         if (CMD_ARGC == 1) {
2824                 unsigned wait_local;
2825                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2826                 if (ERROR_OK != retval)
2827                         return ERROR_COMMAND_SYNTAX_ERROR;
2828                 if (!wait_local)
2829                         return ERROR_OK;
2830         }
2831
2832         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2833 }
2834
2835 COMMAND_HANDLER(handle_soft_reset_halt_command)
2836 {
2837         struct target *target = get_current_target(CMD_CTX);
2838
2839         LOG_USER("requesting target halt and executing a soft reset");
2840
2841         target_soft_reset_halt(target);
2842
2843         return ERROR_OK;
2844 }
2845
2846 COMMAND_HANDLER(handle_reset_command)
2847 {
2848         if (CMD_ARGC > 1)
2849                 return ERROR_COMMAND_SYNTAX_ERROR;
2850
2851         enum target_reset_mode reset_mode = RESET_RUN;
2852         if (CMD_ARGC == 1) {
2853                 const Jim_Nvp *n;
2854                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2855                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2856                         return ERROR_COMMAND_SYNTAX_ERROR;
2857                 reset_mode = n->value;
2858         }
2859
2860         /* reset *all* targets */
2861         return target_process_reset(CMD_CTX, reset_mode);
2862 }
2863
2864
2865 COMMAND_HANDLER(handle_resume_command)
2866 {
2867         int current = 1;
2868         if (CMD_ARGC > 1)
2869                 return ERROR_COMMAND_SYNTAX_ERROR;
2870
2871         struct target *target = get_current_target(CMD_CTX);
2872
2873         /* with no CMD_ARGV, resume from current pc, addr = 0,
2874          * with one arguments, addr = CMD_ARGV[0],
2875          * handle breakpoints, not debugging */
2876         uint32_t addr = 0;
2877         if (CMD_ARGC == 1) {
2878                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2879                 current = 0;
2880         }
2881
2882         return target_resume(target, current, addr, 1, 0);
2883 }
2884
2885 COMMAND_HANDLER(handle_step_command)
2886 {
2887         if (CMD_ARGC > 1)
2888                 return ERROR_COMMAND_SYNTAX_ERROR;
2889
2890         LOG_DEBUG("-");
2891
2892         /* with no CMD_ARGV, step from current pc, addr = 0,
2893          * with one argument addr = CMD_ARGV[0],
2894          * handle breakpoints, debugging */
2895         uint32_t addr = 0;
2896         int current_pc = 1;
2897         if (CMD_ARGC == 1) {
2898                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2899                 current_pc = 0;
2900         }
2901
2902         struct target *target = get_current_target(CMD_CTX);
2903
2904         return target->type->step(target, current_pc, addr, 1);
2905 }
2906
2907 static void handle_md_output(struct command_context *cmd_ctx,
2908                 struct target *target, uint32_t address, unsigned size,
2909                 unsigned count, const uint8_t *buffer)
2910 {
2911         const unsigned line_bytecnt = 32;
2912         unsigned line_modulo = line_bytecnt / size;
2913
2914         char output[line_bytecnt * 4 + 1];
2915         unsigned output_len = 0;
2916
2917         const char *value_fmt;
2918         switch (size) {
2919         case 4:
2920                 value_fmt = "%8.8x ";
2921                 break;
2922         case 2:
2923                 value_fmt = "%4.4x ";
2924                 break;
2925         case 1:
2926                 value_fmt = "%2.2x ";
2927                 break;
2928         default:
2929                 /* "can't happen", caller checked */
2930                 LOG_ERROR("invalid memory read size: %u", size);
2931                 return;
2932         }
2933
2934         for (unsigned i = 0; i < count; i++) {
2935                 if (i % line_modulo == 0) {
2936                         output_len += snprintf(output + output_len,
2937                                         sizeof(output) - output_len,
2938                                         "0x%8.8x: ",
2939                                         (unsigned)(address + (i*size)));
2940                 }
2941
2942                 uint32_t value = 0;
2943                 const uint8_t *value_ptr = buffer + i * size;
2944                 switch (size) {
2945                 case 4:
2946                         value = target_buffer_get_u32(target, value_ptr);
2947                         break;
2948                 case 2:
2949                         value = target_buffer_get_u16(target, value_ptr);
2950                         break;
2951                 case 1:
2952                         value = *value_ptr;
2953                 }
2954                 output_len += snprintf(output + output_len,
2955                                 sizeof(output) - output_len,
2956                                 value_fmt, value);
2957
2958                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2959                         command_print(cmd_ctx, "%s", output);
2960                         output_len = 0;
2961                 }
2962         }
2963 }
2964
2965 COMMAND_HANDLER(handle_md_command)
2966 {
2967         if (CMD_ARGC < 1)
2968                 return ERROR_COMMAND_SYNTAX_ERROR;
2969
2970         unsigned size = 0;
2971         switch (CMD_NAME[2]) {
2972         case 'w':
2973                 size = 4;
2974                 break;
2975         case 'h':
2976                 size = 2;
2977                 break;
2978         case 'b':
2979                 size = 1;
2980                 break;
2981         default:
2982                 return ERROR_COMMAND_SYNTAX_ERROR;
2983         }
2984
2985         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2986         int (*fn)(struct target *target,
2987                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2988         if (physical) {
2989                 CMD_ARGC--;
2990                 CMD_ARGV++;
2991                 fn = target_read_phys_memory;
2992         } else
2993                 fn = target_read_memory;
2994         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2995                 return ERROR_COMMAND_SYNTAX_ERROR;
2996
2997         uint32_t address;
2998         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2999
3000         unsigned count = 1;
3001         if (CMD_ARGC == 2)
3002                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3003
3004         uint8_t *buffer = calloc(count, size);
3005
3006         struct target *target = get_current_target(CMD_CTX);
3007         int retval = fn(target, address, size, count, buffer);
3008         if (ERROR_OK == retval)
3009                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3010
3011         free(buffer);
3012
3013         return retval;
3014 }
3015
3016 typedef int (*target_write_fn)(struct target *target,
3017                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3018
3019 static int target_fill_mem(struct target *target,
3020                 uint32_t address,
3021                 target_write_fn fn,
3022                 unsigned data_size,
3023                 /* value */
3024                 uint32_t b,
3025                 /* count */
3026                 unsigned c)
3027 {
3028         /* We have to write in reasonably large chunks to be able
3029          * to fill large memory areas with any sane speed */
3030         const unsigned chunk_size = 16384;
3031         uint8_t *target_buf = malloc(chunk_size * data_size);
3032         if (target_buf == NULL) {
3033                 LOG_ERROR("Out of memory");
3034                 return ERROR_FAIL;
3035         }
3036
3037         for (unsigned i = 0; i < chunk_size; i++) {
3038                 switch (data_size) {
3039                 case 4:
3040                         target_buffer_set_u32(target, target_buf + i * data_size, b);
3041                         break;
3042                 case 2:
3043                         target_buffer_set_u16(target, target_buf + i * data_size, b);
3044                         break;
3045                 case 1:
3046                         target_buffer_set_u8(target, target_buf + i * data_size, b);
3047                         break;
3048                 default:
3049                         exit(-1);
3050                 }
3051         }
3052
3053         int retval = ERROR_OK;
3054
3055         for (unsigned x = 0; x < c; x += chunk_size) {
3056                 unsigned current;
3057                 current = c - x;
3058                 if (current > chunk_size)
3059                         current = chunk_size;
3060                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3061                 if (retval != ERROR_OK)
3062                         break;
3063                 /* avoid GDB timeouts */
3064                 keep_alive();
3065         }
3066         free(target_buf);
3067
3068         return retval;
3069 }
3070
3071
3072 COMMAND_HANDLER(handle_mw_command)
3073 {
3074         if (CMD_ARGC < 2)
3075                 return ERROR_COMMAND_SYNTAX_ERROR;
3076         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3077         target_write_fn fn;
3078         if (physical) {
3079                 CMD_ARGC--;
3080                 CMD_ARGV++;
3081                 fn = target_write_phys_memory;
3082         } else
3083                 fn = target_write_memory;
3084         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3085                 return ERROR_COMMAND_SYNTAX_ERROR;
3086
3087         uint32_t address;
3088         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
3089
3090         uint32_t value;
3091         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
3092
3093         unsigned count = 1;
3094         if (CMD_ARGC == 3)
3095                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3096
3097         struct target *target = get_current_target(CMD_CTX);
3098         unsigned wordsize;
3099         switch (CMD_NAME[2]) {
3100                 case 'w':
3101                         wordsize = 4;
3102                         break;
3103                 case 'h':
3104                         wordsize = 2;
3105                         break;
3106                 case 'b':
3107                         wordsize = 1;
3108                         break;
3109                 default:
3110                         return ERROR_COMMAND_SYNTAX_ERROR;
3111         }
3112
3113         return target_fill_mem(target, address, fn, wordsize, value, count);
3114 }
3115
3116 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3117                 uint32_t *min_address, uint32_t *max_address)
3118 {
3119         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3120                 return ERROR_COMMAND_SYNTAX_ERROR;
3121
3122         /* a base address isn't always necessary,
3123          * default to 0x0 (i.e. don't relocate) */
3124         if (CMD_ARGC >= 2) {
3125                 uint32_t addr;
3126                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3127                 image->base_address = addr;
3128                 image->base_address_set = 1;
3129         } else
3130                 image->base_address_set = 0;
3131
3132         image->start_address_set = 0;
3133
3134         if (CMD_ARGC >= 4)
3135                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
3136         if (CMD_ARGC == 5) {
3137                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
3138                 /* use size (given) to find max (required) */
3139                 *max_address += *min_address;
3140         }
3141
3142         if (*min_address > *max_address)
3143                 return ERROR_COMMAND_SYNTAX_ERROR;
3144
3145         return ERROR_OK;
3146 }
3147
3148 COMMAND_HANDLER(handle_load_image_command)
3149 {
3150         uint8_t *buffer;
3151         size_t buf_cnt;
3152         uint32_t image_size;
3153         uint32_t min_address = 0;
3154         uint32_t max_address = 0xffffffff;
3155         int i;
3156         struct image image;
3157
3158         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3159                         &image, &min_address, &max_address);
3160         if (ERROR_OK != retval)
3161                 return retval;
3162
3163         struct target *target = get_current_target(CMD_CTX);
3164
3165         struct duration bench;
3166         duration_start(&bench);
3167
3168         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3169                 return ERROR_FAIL;
3170
3171         image_size = 0x0;
3172         retval = ERROR_OK;
3173         for (i = 0; i < image.num_sections; i++) {
3174                 buffer = malloc(image.sections[i].size);
3175                 if (buffer == NULL) {
3176                         command_print(CMD_CTX,
3177                                                   "error allocating buffer for section (%d bytes)",
3178                                                   (int)(image.sections[i].size));
3179                         retval = ERROR_FAIL;
3180                         break;
3181                 }
3182
3183                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3184                 if (retval != ERROR_OK) {
3185                         free(buffer);
3186                         break;
3187                 }
3188
3189                 uint32_t offset = 0;
3190                 uint32_t length = buf_cnt;
3191
3192                 /* DANGER!!! beware of unsigned comparision here!!! */
3193
3194                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3195                                 (image.sections[i].base_address < max_address)) {
3196
3197                         if (image.sections[i].base_address < min_address) {
3198                                 /* clip addresses below */
3199                                 offset += min_address-image.sections[i].base_address;
3200                                 length -= offset;
3201                         }
3202
3203                         if (image.sections[i].base_address + buf_cnt > max_address)
3204                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3205
3206                         retval = target_write_buffer(target,
3207                                         image.sections[i].base_address + offset, length, buffer + offset);
3208                         if (retval != ERROR_OK) {
3209                                 free(buffer);
3210                                 break;
3211                         }
3212                         image_size += length;
3213                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3214                                         (unsigned int)length,
3215                                         image.sections[i].base_address + offset);
3216                 }
3217
3218                 free(buffer);
3219         }
3220
3221         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3222                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3223                                 "in %fs (%0.3f KiB/s)", image_size,
3224                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3225         }
3226
3227         image_close(&image);
3228
3229         return retval;
3230
3231 }
3232
3233 COMMAND_HANDLER(handle_dump_image_command)
3234 {
3235         struct fileio *fileio;
3236         uint8_t *buffer;
3237         int retval, retvaltemp;
3238         uint32_t address, size;
3239         struct duration bench;
3240         struct target *target = get_current_target(CMD_CTX);
3241
3242         if (CMD_ARGC != 3)
3243                 return ERROR_COMMAND_SYNTAX_ERROR;
3244
3245         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3246         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3247
3248         uint32_t buf_size = (size > 4096) ? 4096 : size;
3249         buffer = malloc(buf_size);
3250         if (!buffer)
3251                 return ERROR_FAIL;
3252
3253         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3254         if (retval != ERROR_OK) {
3255                 free(buffer);
3256                 return retval;
3257         }
3258
3259         duration_start(&bench);
3260
3261         while (size > 0) {
3262                 size_t size_written;
3263                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3264                 retval = target_read_buffer(target, address, this_run_size, buffer);
3265                 if (retval != ERROR_OK)
3266                         break;
3267
3268                 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3269                 if (retval != ERROR_OK)
3270                         break;
3271
3272                 size -= this_run_size;
3273                 address += this_run_size;
3274         }
3275
3276         free(buffer);
3277
3278         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3279                 size_t filesize;
3280                 retval = fileio_size(fileio, &filesize);
3281                 if (retval != ERROR_OK)
3282                         return retval;
3283                 command_print(CMD_CTX,
3284                                 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3285                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3286         }
3287
3288         retvaltemp = fileio_close(fileio);
3289         if (retvaltemp != ERROR_OK)
3290                 return retvaltemp;
3291
3292         return retval;
3293 }
3294
3295 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3296 {
3297         uint8_t *buffer;
3298         size_t buf_cnt;
3299         uint32_t image_size;
3300         int i;
3301         int retval;
3302         uint32_t checksum = 0;
3303         uint32_t mem_checksum = 0;
3304
3305         struct image image;
3306
3307         struct target *target = get_current_target(CMD_CTX);
3308
3309         if (CMD_ARGC < 1)
3310                 return ERROR_COMMAND_SYNTAX_ERROR;
3311
3312         if (!target) {
3313                 LOG_ERROR("no target selected");
3314                 return ERROR_FAIL;
3315         }
3316
3317         struct duration bench;
3318         duration_start(&bench);
3319
3320         if (CMD_ARGC >= 2) {
3321                 uint32_t addr;
3322                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3323                 image.base_address = addr;
3324                 image.base_address_set = 1;
3325         } else {
3326                 image.base_address_set = 0;
3327                 image.base_address = 0x0;
3328         }
3329
3330         image.start_address_set = 0;
3331
3332         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3333         if (retval != ERROR_OK)
3334                 return retval;
3335
3336         image_size = 0x0;
3337         int diffs = 0;
3338         retval = ERROR_OK;
3339         for (i = 0; i < image.num_sections; i++) {
3340                 buffer = malloc(image.sections[i].size);
3341                 if (buffer == NULL) {
3342                         command_print(CMD_CTX,
3343                                         "error allocating buffer for section (%d bytes)",
3344                                         (int)(image.sections[i].size));
3345                         break;
3346                 }
3347                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3348                 if (retval != ERROR_OK) {
3349                         free(buffer);
3350                         break;
3351                 }
3352
3353                 if (verify) {
3354                         /* calculate checksum of image */
3355                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3356                         if (retval != ERROR_OK) {
3357                                 free(buffer);
3358                                 break;
3359                         }
3360
3361                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3362                         if (retval != ERROR_OK) {
3363                                 free(buffer);
3364                                 break;
3365                         }
3366
3367                         if (checksum != mem_checksum) {
3368                                 /* failed crc checksum, fall back to a binary compare */
3369                                 uint8_t *data;
3370
3371                                 if (diffs == 0)
3372                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3373
3374                                 data = malloc(buf_cnt);
3375
3376                                 /* Can we use 32bit word accesses? */
3377                                 int size = 1;
3378                                 int count = buf_cnt;
3379                                 if ((count % 4) == 0) {
3380                                         size *= 4;
3381                                         count /= 4;
3382                                 }
3383                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3384                                 if (retval == ERROR_OK) {
3385                                         uint32_t t;
3386                                         for (t = 0; t < buf_cnt; t++) {
3387                                                 if (data[t] != buffer[t]) {
3388                                                         command_print(CMD_CTX,
3389                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3390                                                                                   diffs,
3391                                                                                   (unsigned)(t + image.sections[i].base_address),
3392                                                                                   data[t],
3393                                                                                   buffer[t]);
3394                                                         if (diffs++ >= 127) {
3395                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3396                                                                 free(data);
3397                                                                 free(buffer);
3398                                                                 goto done;
3399                                                         }
3400                                                 }
3401                                                 keep_alive();
3402                                         }
3403                                 }
3404                                 free(data);
3405                         }
3406                 } else {
3407                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3408                                                   image.sections[i].base_address,
3409                                                   buf_cnt);
3410                 }
3411
3412                 free(buffer);
3413                 image_size += buf_cnt;
3414         }
3415         if (diffs > 0)
3416                 command_print(CMD_CTX, "No more differences found.");
3417 done:
3418         if (diffs > 0)
3419                 retval = ERROR_FAIL;
3420         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3421                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3422                                 "in %fs (%0.3f KiB/s)", image_size,
3423                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3424         }
3425
3426         image_close(&image);
3427
3428         return retval;
3429 }
3430
3431 COMMAND_HANDLER(handle_verify_image_command)
3432 {
3433         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3434 }
3435
3436 COMMAND_HANDLER(handle_test_image_command)
3437 {
3438         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3439 }
3440
3441 static int handle_bp_command_list(struct command_context *cmd_ctx)
3442 {
3443         struct target *target = get_current_target(cmd_ctx);
3444         struct breakpoint *breakpoint = target->breakpoints;
3445         while (breakpoint) {
3446                 if (breakpoint->type == BKPT_SOFT) {
3447                         char *buf = buf_to_str(breakpoint->orig_instr,
3448                                         breakpoint->length, 16);
3449                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3450                                         breakpoint->address,
3451                                         breakpoint->length,
3452                                         breakpoint->set, buf);
3453                         free(buf);
3454                 } else {
3455                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3456                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3457                                                         breakpoint->asid,
3458                                                         breakpoint->length, breakpoint->set);
3459                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3460                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3461                                                         breakpoint->address,
3462                                                         breakpoint->length, breakpoint->set);
3463                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3464                                                         breakpoint->asid);
3465                         } else
3466                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3467                                                         breakpoint->address,
3468                                                         breakpoint->length, breakpoint->set);
3469                 }
3470
3471                 breakpoint = breakpoint->next;
3472         }
3473         return ERROR_OK;
3474 }
3475
3476 static int handle_bp_command_set(struct command_context *cmd_ctx,
3477                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3478 {
3479         struct target *target = get_current_target(cmd_ctx);
3480         int retval;
3481
3482         if (asid == 0) {
3483                 retval = breakpoint_add(target, addr, length, hw);
3484                 if (ERROR_OK == retval)
3485                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3486                 else {
3487                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3488                         return retval;
3489                 }
3490         } else if (addr == 0) {
3491                 if (target->type->add_context_breakpoint == NULL) {
3492                         LOG_WARNING("Context breakpoint not available");
3493                         return ERROR_OK;
3494                 }
3495                 retval = context_breakpoint_add(target, asid, length, hw);
3496                 if (ERROR_OK == retval)
3497                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3498                 else {
3499                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3500                         return retval;
3501                 }
3502         } else {
3503                 if (target->type->add_hybrid_breakpoint == NULL) {
3504                         LOG_WARNING("Hybrid breakpoint not available");
3505                         return ERROR_OK;
3506                 }
3507                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3508                 if (ERROR_OK == retval)
3509                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3510                 else {
3511                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3512                         return retval;
3513                 }
3514         }
3515         return ERROR_OK;
3516 }
3517
3518 COMMAND_HANDLER(handle_bp_command)
3519 {
3520         uint32_t addr;
3521         uint32_t asid;
3522         uint32_t length;
3523         int hw = BKPT_SOFT;
3524
3525         switch (CMD_ARGC) {
3526                 case 0:
3527                         return handle_bp_command_list(CMD_CTX);
3528
3529                 case 2:
3530                         asid = 0;
3531                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3532                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3533                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3534
3535                 case 3:
3536                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3537                                 hw = BKPT_HARD;
3538                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3539
3540                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3541
3542                                 asid = 0;
3543                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3544                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3545                                 hw = BKPT_HARD;
3546                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3547                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3548                                 addr = 0;
3549                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3550                         }
3551
3552                 case 4:
3553                         hw = BKPT_HARD;
3554                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3555                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3556                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3557                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3558
3559                 default:
3560                         return ERROR_COMMAND_SYNTAX_ERROR;
3561         }
3562 }
3563
3564 COMMAND_HANDLER(handle_rbp_command)
3565 {
3566         if (CMD_ARGC != 1)
3567                 return ERROR_COMMAND_SYNTAX_ERROR;
3568
3569         uint32_t addr;
3570         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3571
3572         struct target *target = get_current_target(CMD_CTX);
3573         breakpoint_remove(target, addr);
3574
3575         return ERROR_OK;
3576 }
3577
3578 COMMAND_HANDLER(handle_wp_command)
3579 {
3580         struct target *target = get_current_target(CMD_CTX);
3581
3582         if (CMD_ARGC == 0) {
3583                 struct watchpoint *watchpoint = target->watchpoints;
3584
3585                 while (watchpoint) {
3586                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3587                                         ", len: 0x%8.8" PRIx32
3588                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3589                                         ", mask: 0x%8.8" PRIx32,
3590                                         watchpoint->address,
3591                                         watchpoint->length,
3592                                         (int)watchpoint->rw,
3593                                         watchpoint->value,
3594                                         watchpoint->mask);
3595                         watchpoint = watchpoint->next;
3596                 }
3597                 return ERROR_OK;
3598         }
3599
3600         enum watchpoint_rw type = WPT_ACCESS;
3601         uint32_t addr = 0;
3602         uint32_t length = 0;
3603         uint32_t data_value = 0x0;
3604         uint32_t data_mask = 0xffffffff;
3605
3606         switch (CMD_ARGC) {
3607         case 5:
3608                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3609                 /* fall through */
3610         case 4:
3611                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3612                 /* fall through */
3613         case 3:
3614                 switch (CMD_ARGV[2][0]) {
3615                 case 'r':
3616                         type = WPT_READ;
3617                         break;
3618                 case 'w':
3619                         type = WPT_WRITE;
3620                         break;
3621                 case 'a':
3622                         type = WPT_ACCESS;
3623                         break;
3624                 default:
3625                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3626                         return ERROR_COMMAND_SYNTAX_ERROR;
3627                 }
3628                 /* fall through */
3629         case 2:
3630                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3631                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3632                 break;
3633
3634         default:
3635                 return ERROR_COMMAND_SYNTAX_ERROR;
3636         }
3637
3638         int retval = watchpoint_add(target, addr, length, type,
3639                         data_value, data_mask);
3640         if (ERROR_OK != retval)
3641                 LOG_ERROR("Failure setting watchpoints");
3642
3643         return retval;
3644 }
3645
3646 COMMAND_HANDLER(handle_rwp_command)
3647 {
3648         if (CMD_ARGC != 1)
3649                 return ERROR_COMMAND_SYNTAX_ERROR;
3650
3651         uint32_t addr;
3652         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3653
3654         struct target *target = get_current_target(CMD_CTX);
3655         watchpoint_remove(target, addr);
3656
3657         return ERROR_OK;
3658 }
3659
3660 /**
3661  * Translate a virtual address to a physical address.
3662  *
3663  * The low-level target implementation must have logged a detailed error
3664  * which is forwarded to telnet/GDB session.
3665  */
3666 COMMAND_HANDLER(handle_virt2phys_command)
3667 {
3668         if (CMD_ARGC != 1)
3669                 return ERROR_COMMAND_SYNTAX_ERROR;
3670
3671         uint32_t va;
3672         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3673         uint32_t pa;
3674
3675         struct target *target = get_current_target(CMD_CTX);
3676         int retval = target->type->virt2phys(target, va, &pa);
3677         if (retval == ERROR_OK)
3678                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3679
3680         return retval;
3681 }
3682
3683 static void writeData(FILE *f, const void *data, size_t len)
3684 {
3685         size_t written = fwrite(data, 1, len, f);
3686         if (written != len)
3687                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3688 }
3689
3690 static void writeLong(FILE *f, int l, struct target *target)
3691 {
3692         uint8_t val[4];
3693
3694         target_buffer_set_u32(target, val, l);
3695         writeData(f, val, 4);
3696 }
3697
3698 static void writeString(FILE *f, char *s)
3699 {
3700         writeData(f, s, strlen(s));
3701 }
3702
3703 typedef unsigned char UNIT[2];  /* unit of profiling */
3704
3705 /* Dump a gmon.out histogram file. */
3706 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3707                         uint32_t start_address, uint32_t end_address, struct target *target)
3708 {
3709         uint32_t i;
3710         FILE *f = fopen(filename, "w");
3711         if (f == NULL)
3712                 return;
3713         writeString(f, "gmon");
3714         writeLong(f, 0x00000001, target); /* Version */
3715         writeLong(f, 0, target); /* padding */
3716         writeLong(f, 0, target); /* padding */
3717         writeLong(f, 0, target); /* padding */
3718
3719         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3720         writeData(f, &zero, 1);
3721
3722         /* figure out bucket size */
3723         uint32_t min;
3724         uint32_t max;
3725         if (with_range) {
3726                 min = start_address;
3727                 max = end_address;
3728         } else {
3729                 min = samples[0];
3730                 max = samples[0];
3731                 for (i = 0; i < sampleNum; i++) {
3732                         if (min > samples[i])
3733                                 min = samples[i];
3734                         if (max < samples[i])
3735                                 max = samples[i];
3736                 }
3737
3738                 /* max should be (largest sample + 1)
3739                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3740                 max++;
3741         }
3742
3743         int addressSpace = max - min;
3744         assert(addressSpace >= 2);
3745
3746         /* FIXME: What is the reasonable number of buckets?
3747          * The profiling result will be more accurate if there are enough buckets. */
3748         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3749         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3750         if (numBuckets > maxBuckets)
3751                 numBuckets = maxBuckets;
3752         int *buckets = malloc(sizeof(int) * numBuckets);
3753         if (buckets == NULL) {
3754                 fclose(f);
3755                 return;
3756         }
3757         memset(buckets, 0, sizeof(int) * numBuckets);
3758         for (i = 0; i < sampleNum; i++) {
3759                 uint32_t address = samples[i];
3760
3761                 if ((address < min) || (max <= address))
3762                         continue;
3763
3764                 long long a = address - min;
3765                 long long b = numBuckets;
3766                 long long c = addressSpace;
3767                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3768                 buckets[index_t]++;
3769         }
3770
3771         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3772         writeLong(f, min, target);                      /* low_pc */
3773         writeLong(f, max, target);                      /* high_pc */
3774         writeLong(f, numBuckets, target);       /* # of buckets */
3775         writeLong(f, 100, target);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3776         writeString(f, "seconds");
3777         for (i = 0; i < (15-strlen("seconds")); i++)
3778                 writeData(f, &zero, 1);
3779         writeString(f, "s");
3780
3781         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3782
3783         char *data = malloc(2 * numBuckets);
3784         if (data != NULL) {
3785                 for (i = 0; i < numBuckets; i++) {
3786                         int val;
3787                         val = buckets[i];
3788                         if (val > 65535)
3789                                 val = 65535;
3790                         data[i * 2] = val&0xff;
3791                         data[i * 2 + 1] = (val >> 8) & 0xff;
3792                 }
3793                 free(buckets);
3794                 writeData(f, data, numBuckets * 2);
3795                 free(data);
3796         } else
3797                 free(buckets);
3798
3799         fclose(f);
3800 }
3801
3802 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3803  * which will be used as a random sampling of PC */
3804 COMMAND_HANDLER(handle_profile_command)
3805 {
3806         struct target *target = get_current_target(CMD_CTX);
3807
3808         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3809                 return ERROR_COMMAND_SYNTAX_ERROR;
3810
3811         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3812         uint32_t offset;
3813         uint32_t num_of_samples;
3814         int retval = ERROR_OK;
3815
3816         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3817
3818         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3819         if (samples == NULL) {
3820                 LOG_ERROR("No memory to store samples.");
3821                 return ERROR_FAIL;
3822         }
3823
3824         /**
3825          * Some cores let us sample the PC without the
3826          * annoying halt/resume step; for example, ARMv7 PCSR.
3827          * Provide a way to use that more efficient mechanism.
3828          */
3829         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3830                                 &num_of_samples, offset);
3831         if (retval != ERROR_OK) {
3832                 free(samples);
3833                 return retval;
3834         }
3835
3836         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3837
3838         retval = target_poll(target);
3839         if (retval != ERROR_OK) {
3840                 free(samples);
3841                 return retval;
3842         }
3843         if (target->state == TARGET_RUNNING) {
3844                 retval = target_halt(target);
3845                 if (retval != ERROR_OK) {
3846                         free(samples);
3847                         return retval;
3848                 }
3849         }
3850
3851         retval = target_poll(target);
3852         if (retval != ERROR_OK) {
3853                 free(samples);
3854                 return retval;
3855         }
3856
3857         uint32_t start_address = 0;
3858         uint32_t end_address = 0;
3859         bool with_range = false;
3860         if (CMD_ARGC == 4) {
3861                 with_range = true;
3862                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3863                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3864         }
3865
3866         write_gmon(samples, num_of_samples, CMD_ARGV[1],
3867                    with_range, start_address, end_address, target);
3868         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3869
3870         free(samples);
3871         return retval;
3872 }
3873
3874 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3875 {
3876         char *namebuf;
3877         Jim_Obj *nameObjPtr, *valObjPtr;
3878         int result;
3879
3880         namebuf = alloc_printf("%s(%d)", varname, idx);
3881         if (!namebuf)
3882                 return JIM_ERR;
3883
3884         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3885         valObjPtr = Jim_NewIntObj(interp, val);
3886         if (!nameObjPtr || !valObjPtr) {
3887                 free(namebuf);
3888                 return JIM_ERR;
3889         }
3890
3891         Jim_IncrRefCount(nameObjPtr);
3892         Jim_IncrRefCount(valObjPtr);
3893         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3894         Jim_DecrRefCount(interp, nameObjPtr);
3895         Jim_DecrRefCount(interp, valObjPtr);
3896         free(namebuf);
3897         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3898         return result;
3899 }
3900
3901 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3902 {
3903         struct command_context *context;
3904         struct target *target;
3905
3906         context = current_command_context(interp);
3907         assert(context != NULL);
3908
3909         target = get_current_target(context);
3910         if (target == NULL) {
3911                 LOG_ERROR("mem2array: no current target");
3912                 return JIM_ERR;
3913         }
3914
3915         return target_mem2array(interp, target, argc - 1, argv + 1);
3916 }
3917
3918 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3919 {
3920         long l;
3921         uint32_t width;
3922         int len;
3923         uint32_t addr;
3924         uint32_t count;
3925         uint32_t v;
3926         const char *varname;
3927         const char *phys;
3928         bool is_phys;
3929         int  n, e, retval;
3930         uint32_t i;
3931
3932         /* argv[1] = name of array to receive the data
3933          * argv[2] = desired width
3934          * argv[3] = memory address
3935          * argv[4] = count of times to read
3936          */
3937         if (argc < 4 || argc > 5) {
3938                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
3939                 return JIM_ERR;
3940         }
3941         varname = Jim_GetString(argv[0], &len);
3942         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3943
3944         e = Jim_GetLong(interp, argv[1], &l);
3945         width = l;
3946         if (e != JIM_OK)
3947                 return e;
3948
3949         e = Jim_GetLong(interp, argv[2], &l);
3950         addr = l;
3951         if (e != JIM_OK)
3952                 return e;
3953         e = Jim_GetLong(interp, argv[3], &l);
3954         len = l;
3955         if (e != JIM_OK)
3956                 return e;
3957         is_phys = false;
3958         if (argc > 4) {
3959                 phys = Jim_GetString(argv[4], &n);
3960                 if (!strncmp(phys, "phys", n))
3961                         is_phys = true;
3962                 else
3963                         return JIM_ERR;
3964         }
3965         switch (width) {
3966                 case 8:
3967                         width = 1;
3968                         break;
3969                 case 16:
3970                         width = 2;
3971                         break;
3972                 case 32:
3973                         width = 4;
3974                         break;
3975                 default:
3976                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3977                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3978                         return JIM_ERR;
3979         }
3980         if (len == 0) {
3981                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3982                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3983                 return JIM_ERR;
3984         }
3985         if ((addr + (len * width)) < addr) {
3986                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3987                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3988                 return JIM_ERR;
3989         }
3990         /* absurd transfer size? */
3991         if (len > 65536) {
3992                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3993                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3994                 return JIM_ERR;
3995         }
3996
3997         if ((width == 1) ||
3998                 ((width == 2) && ((addr & 1) == 0)) ||
3999                 ((width == 4) && ((addr & 3) == 0))) {
4000                 /* all is well */
4001         } else {
4002                 char buf[100];
4003                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4004                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4005                                 addr,
4006                                 width);
4007                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4008                 return JIM_ERR;
4009         }
4010
4011         /* Transfer loop */
4012
4013         /* index counter */
4014         n = 0;
4015
4016         size_t buffersize = 4096;
4017         uint8_t *buffer = malloc(buffersize);
4018         if (buffer == NULL)
4019                 return JIM_ERR;
4020
4021         /* assume ok */
4022         e = JIM_OK;
4023         while (len) {
4024                 /* Slurp... in buffer size chunks */
4025
4026                 count = len; /* in objects.. */
4027                 if (count > (buffersize / width))
4028                         count = (buffersize / width);
4029
4030                 if (is_phys)
4031                         retval = target_read_phys_memory(target, addr, width, count, buffer);
4032                 else
4033                         retval = target_read_memory(target, addr, width, count, buffer);
4034                 if (retval != ERROR_OK) {
4035                         /* BOO !*/
4036                         LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4037                                           addr,
4038                                           width,
4039                                           count);
4040                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4041                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4042                         e = JIM_ERR;
4043                         break;
4044                 } else {
4045                         v = 0; /* shut up gcc */
4046                         for (i = 0; i < count ; i++, n++) {
4047                                 switch (width) {
4048                                         case 4:
4049                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
4050                                                 break;
4051                                         case 2:
4052                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
4053                                                 break;
4054                                         case 1:
4055                                                 v = buffer[i] & 0x0ff;
4056                                                 break;
4057                                 }
4058                                 new_int_array_element(interp, varname, n, v);
4059                         }
4060                         len -= count;
4061                         addr += count * width;
4062                 }
4063         }
4064
4065         free(buffer);
4066
4067         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4068
4069         return e;
4070 }
4071
4072 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4073 {
4074         char *namebuf;
4075         Jim_Obj *nameObjPtr, *valObjPtr;
4076         int result;
4077         long l;
4078
4079         namebuf = alloc_printf("%s(%d)", varname, idx);
4080         if (!namebuf)
4081                 return JIM_ERR;
4082
4083         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4084         if (!nameObjPtr) {
4085                 free(namebuf);
4086                 return JIM_ERR;
4087         }
4088
4089         Jim_IncrRefCount(nameObjPtr);
4090         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4091         Jim_DecrRefCount(interp, nameObjPtr);
4092         free(namebuf);
4093         if (valObjPtr == NULL)
4094                 return JIM_ERR;
4095
4096         result = Jim_GetLong(interp, valObjPtr, &l);
4097         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4098         *val = l;
4099         return result;
4100 }
4101
4102 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4103 {
4104         struct command_context *context;
4105         struct target *target;
4106
4107         context = current_command_context(interp);
4108         assert(context != NULL);
4109
4110         target = get_current_target(context);
4111         if (target == NULL) {
4112                 LOG_ERROR("array2mem: no current target");
4113                 return JIM_ERR;
4114         }
4115
4116         return target_array2mem(interp, target, argc-1, argv + 1);
4117 }
4118
4119 static int target_array2mem(Jim_Interp *interp, struct target *target,
4120                 int argc, Jim_Obj *const *argv)
4121 {
4122         long l;
4123         uint32_t width;
4124         int len;
4125         uint32_t addr;
4126         uint32_t count;
4127         uint32_t v;
4128         const char *varname;
4129         const char *phys;
4130         bool is_phys;
4131         int  n, e, retval;
4132         uint32_t i;
4133
4134         /* argv[1] = name of array to get the data
4135          * argv[2] = desired width
4136          * argv[3] = memory address
4137          * argv[4] = count to write
4138          */
4139         if (argc < 4 || argc > 5) {
4140                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4141                 return JIM_ERR;
4142         }
4143         varname = Jim_GetString(argv[0], &len);
4144         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4145
4146         e = Jim_GetLong(interp, argv[1], &l);
4147         width = l;
4148         if (e != JIM_OK)
4149                 return e;
4150
4151         e = Jim_GetLong(interp, argv[2], &l);
4152         addr = l;
4153         if (e != JIM_OK)
4154                 return e;
4155         e = Jim_GetLong(interp, argv[3], &l);
4156         len = l;
4157         if (e != JIM_OK)
4158                 return e;
4159         is_phys = false;
4160         if (argc > 4) {
4161                 phys = Jim_GetString(argv[4], &n);
4162                 if (!strncmp(phys, "phys", n))
4163                         is_phys = true;
4164                 else
4165                         return JIM_ERR;
4166         }
4167         switch (width) {
4168                 case 8:
4169                         width = 1;
4170                         break;
4171                 case 16:
4172                         width = 2;
4173                         break;
4174                 case 32:
4175                         width = 4;
4176                         break;
4177                 default:
4178                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4179                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4180                                         "Invalid width param, must be 8/16/32", NULL);
4181                         return JIM_ERR;
4182         }
4183         if (len == 0) {
4184                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4185                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4186                                 "array2mem: zero width read?", NULL);
4187                 return JIM_ERR;
4188         }
4189         if ((addr + (len * width)) < addr) {
4190                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4191                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4192                                 "array2mem: addr + len - wraps to zero?", NULL);
4193                 return JIM_ERR;
4194         }
4195         /* absurd transfer size? */
4196         if (len > 65536) {
4197                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4198                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4199                                 "array2mem: absurd > 64K item request", NULL);
4200                 return JIM_ERR;
4201         }
4202
4203         if ((width == 1) ||
4204                 ((width == 2) && ((addr & 1) == 0)) ||
4205                 ((width == 4) && ((addr & 3) == 0))) {
4206                 /* all is well */
4207         } else {
4208                 char buf[100];
4209                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4210                 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4211                                 addr,
4212                                 width);
4213                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4214                 return JIM_ERR;
4215         }
4216
4217         /* Transfer loop */
4218
4219         /* index counter */
4220         n = 0;
4221         /* assume ok */
4222         e = JIM_OK;
4223
4224         size_t buffersize = 4096;
4225         uint8_t *buffer = malloc(buffersize);
4226         if (buffer == NULL)
4227                 return JIM_ERR;
4228
4229         while (len) {
4230                 /* Slurp... in buffer size chunks */
4231
4232                 count = len; /* in objects.. */
4233                 if (count > (buffersize / width))
4234                         count = (buffersize / width);
4235
4236                 v = 0; /* shut up gcc */
4237                 for (i = 0; i < count; i++, n++) {
4238                         get_int_array_element(interp, varname, n, &v);
4239                         switch (width) {
4240                         case 4:
4241                                 target_buffer_set_u32(target, &buffer[i * width], v);
4242                                 break;
4243                         case 2:
4244                                 target_buffer_set_u16(target, &buffer[i * width], v);
4245                                 break;
4246                         case 1:
4247                                 buffer[i] = v & 0x0ff;
4248                                 break;
4249                         }
4250                 }
4251                 len -= count;
4252
4253                 if (is_phys)
4254                         retval = target_write_phys_memory(target, addr, width, count, buffer);
4255                 else
4256                         retval = target_write_memory(target, addr, width, count, buffer);
4257                 if (retval != ERROR_OK) {
4258                         /* BOO !*/
4259                         LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4260                                           addr,
4261                                           width,
4262                                           count);
4263                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4264                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4265                         e = JIM_ERR;
4266                         break;
4267                 }
4268                 addr += count * width;
4269         }
4270
4271         free(buffer);
4272
4273         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4274
4275         return e;
4276 }
4277
4278 /* FIX? should we propagate errors here rather than printing them
4279  * and continuing?
4280  */
4281 void target_handle_event(struct target *target, enum target_event e)
4282 {
4283         struct target_event_action *teap;
4284
4285         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4286                 if (teap->event == e) {
4287                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4288                                            target->target_number,
4289                                            target_name(target),
4290                                            target_type_name(target),
4291                                            e,
4292                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4293                                            Jim_GetString(teap->body, NULL));
4294                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4295                                 Jim_MakeErrorMessage(teap->interp);
4296                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4297                         }
4298                 }
4299         }
4300 }
4301
4302 /**
4303  * Returns true only if the target has a handler for the specified event.
4304  */
4305 bool target_has_event_action(struct target *target, enum target_event event)
4306 {
4307         struct target_event_action *teap;
4308
4309         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4310                 if (teap->event == event)
4311                         return true;
4312         }
4313         return false;
4314 }
4315
4316 enum target_cfg_param {
4317         TCFG_TYPE,
4318         TCFG_EVENT,
4319         TCFG_WORK_AREA_VIRT,
4320         TCFG_WORK_AREA_PHYS,
4321         TCFG_WORK_AREA_SIZE,
4322         TCFG_WORK_AREA_BACKUP,
4323         TCFG_ENDIAN,
4324         TCFG_COREID,
4325         TCFG_CHAIN_POSITION,
4326         TCFG_DBGBASE,
4327         TCFG_RTOS,
4328 };
4329
4330 static Jim_Nvp nvp_config_opts[] = {
4331         { .name = "-type",             .value = TCFG_TYPE },
4332         { .name = "-event",            .value = TCFG_EVENT },
4333         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4334         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4335         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4336         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4337         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4338         { .name = "-coreid",           .value = TCFG_COREID },
4339         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4340         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4341         { .name = "-rtos",             .value = TCFG_RTOS },
4342         { .name = NULL, .value = -1 }
4343 };
4344
4345 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4346 {
4347         Jim_Nvp *n;
4348         Jim_Obj *o;
4349         jim_wide w;
4350         int e;
4351
4352         /* parse config or cget options ... */
4353         while (goi->argc > 0) {
4354                 Jim_SetEmptyResult(goi->interp);
4355                 /* Jim_GetOpt_Debug(goi); */
4356
4357                 if (target->type->target_jim_configure) {
4358                         /* target defines a configure function */
4359                         /* target gets first dibs on parameters */
4360                         e = (*(target->type->target_jim_configure))(target, goi);
4361                         if (e == JIM_OK) {
4362                                 /* more? */
4363                                 continue;
4364                         }
4365                         if (e == JIM_ERR) {
4366                                 /* An error */
4367                                 return e;
4368                         }
4369                         /* otherwise we 'continue' below */
4370                 }
4371                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4372                 if (e != JIM_OK) {
4373                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4374                         return e;
4375                 }
4376                 switch (n->value) {
4377                 case TCFG_TYPE:
4378                         /* not setable */
4379                         if (goi->isconfigure) {
4380                                 Jim_SetResultFormatted(goi->interp,
4381                                                 "not settable: %s", n->name);
4382                                 return JIM_ERR;
4383                         } else {
4384 no_params:
4385                                 if (goi->argc != 0) {
4386                                         Jim_WrongNumArgs(goi->interp,
4387                                                         goi->argc, goi->argv,
4388                                                         "NO PARAMS");
4389                                         return JIM_ERR;
4390                                 }
4391                         }
4392                         Jim_SetResultString(goi->interp,
4393                                         target_type_name(target), -1);
4394                         /* loop for more */
4395                         break;
4396                 case TCFG_EVENT:
4397                         if (goi->argc == 0) {
4398                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4399                                 return JIM_ERR;
4400                         }
4401
4402                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4403                         if (e != JIM_OK) {
4404                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4405                                 return e;
4406                         }
4407
4408                         if (goi->isconfigure) {
4409                                 if (goi->argc != 1) {
4410                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4411                                         return JIM_ERR;
4412                                 }
4413                         } else {
4414                                 if (goi->argc != 0) {
4415                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4416                                         return JIM_ERR;
4417                                 }
4418                         }
4419
4420                         {
4421                                 struct target_event_action *teap;
4422
4423                                 teap = target->event_action;
4424                                 /* replace existing? */
4425                                 while (teap) {
4426                                         if (teap->event == (enum target_event)n->value)
4427                                                 break;
4428                                         teap = teap->next;
4429                                 }
4430
4431                                 if (goi->isconfigure) {
4432                                         bool replace = true;
4433                                         if (teap == NULL) {
4434                                                 /* create new */
4435                                                 teap = calloc(1, sizeof(*teap));
4436                                                 replace = false;
4437                                         }
4438                                         teap->event = n->value;
4439                                         teap->interp = goi->interp;
4440                                         Jim_GetOpt_Obj(goi, &o);
4441                                         if (teap->body)
4442                                                 Jim_DecrRefCount(teap->interp, teap->body);
4443                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4444                                         /*
4445                                          * FIXME:
4446                                          *     Tcl/TK - "tk events" have a nice feature.
4447                                          *     See the "BIND" command.
4448                                          *    We should support that here.
4449                                          *     You can specify %X and %Y in the event code.
4450                                          *     The idea is: %T - target name.
4451                                          *     The idea is: %N - target number
4452                                          *     The idea is: %E - event name.
4453                                          */
4454                                         Jim_IncrRefCount(teap->body);
4455
4456                                         if (!replace) {
4457                                                 /* add to head of event list */
4458                                                 teap->next = target->event_action;
4459                                                 target->event_action = teap;
4460                                         }
4461                                         Jim_SetEmptyResult(goi->interp);
4462                                 } else {
4463                                         /* get */
4464                                         if (teap == NULL)
4465                                                 Jim_SetEmptyResult(goi->interp);
4466                                         else
4467                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4468                                 }
4469                         }
4470                         /* loop for more */
4471                         break;
4472
4473                 case TCFG_WORK_AREA_VIRT:
4474                         if (goi->isconfigure) {
4475                                 target_free_all_working_areas(target);
4476                                 e = Jim_GetOpt_Wide(goi, &w);
4477                                 if (e != JIM_OK)
4478                                         return e;
4479                                 target->working_area_virt = w;
4480                                 target->working_area_virt_spec = true;
4481                         } else {
4482                                 if (goi->argc != 0)
4483                                         goto no_params;
4484                         }
4485                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4486                         /* loop for more */
4487                         break;
4488
4489                 case TCFG_WORK_AREA_PHYS:
4490                         if (goi->isconfigure) {
4491                                 target_free_all_working_areas(target);
4492                                 e = Jim_GetOpt_Wide(goi, &w);
4493                                 if (e != JIM_OK)
4494                                         return e;
4495                                 target->working_area_phys = w;
4496                                 target->working_area_phys_spec = true;
4497                         } else {
4498                                 if (goi->argc != 0)
4499                                         goto no_params;
4500                         }
4501                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4502                         /* loop for more */
4503                         break;
4504
4505                 case TCFG_WORK_AREA_SIZE:
4506                         if (goi->isconfigure) {
4507                                 target_free_all_working_areas(target);
4508                                 e = Jim_GetOpt_Wide(goi, &w);
4509                                 if (e != JIM_OK)
4510                                         return e;
4511                                 target->working_area_size = w;
4512                         } else {
4513                                 if (goi->argc != 0)
4514                                         goto no_params;
4515                         }
4516                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4517                         /* loop for more */
4518                         break;
4519
4520                 case TCFG_WORK_AREA_BACKUP:
4521                         if (goi->isconfigure) {
4522                                 target_free_all_working_areas(target);
4523                                 e = Jim_GetOpt_Wide(goi, &w);
4524                                 if (e != JIM_OK)
4525                                         return e;
4526                                 /* make this exactly 1 or 0 */
4527                                 target->backup_working_area = (!!w);
4528                         } else {
4529                                 if (goi->argc != 0)
4530                                         goto no_params;
4531                         }
4532                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4533                         /* loop for more e*/
4534                         break;
4535
4536
4537                 case TCFG_ENDIAN:
4538                         if (goi->isconfigure) {
4539                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4540                                 if (e != JIM_OK) {
4541                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4542                                         return e;
4543                                 }
4544                                 target->endianness = n->value;
4545                         } else {
4546                                 if (goi->argc != 0)
4547                                         goto no_params;
4548                         }
4549                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4550                         if (n->name == NULL) {
4551                                 target->endianness = TARGET_LITTLE_ENDIAN;
4552                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4553                         }
4554                         Jim_SetResultString(goi->interp, n->name, -1);
4555                         /* loop for more */
4556                         break;
4557
4558                 case TCFG_COREID:
4559                         if (goi->isconfigure) {
4560                                 e = Jim_GetOpt_Wide(goi, &w);
4561                                 if (e != JIM_OK)
4562                                         return e;
4563                                 target->coreid = (int32_t)w;
4564                         } else {
4565                                 if (goi->argc != 0)
4566                                         goto no_params;
4567                         }
4568                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4569                         /* loop for more */
4570                         break;
4571
4572                 case TCFG_CHAIN_POSITION:
4573                         if (goi->isconfigure) {
4574                                 Jim_Obj *o_t;
4575                                 struct jtag_tap *tap;
4576                                 target_free_all_working_areas(target);
4577                                 e = Jim_GetOpt_Obj(goi, &o_t);
4578                                 if (e != JIM_OK)
4579                                         return e;
4580                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4581                                 if (tap == NULL)
4582                                         return JIM_ERR;
4583                                 /* make this exactly 1 or 0 */
4584                                 target->tap = tap;
4585                         } else {
4586                                 if (goi->argc != 0)
4587                                         goto no_params;
4588                         }
4589                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4590                         /* loop for more e*/
4591                         break;
4592                 case TCFG_DBGBASE:
4593                         if (goi->isconfigure) {
4594                                 e = Jim_GetOpt_Wide(goi, &w);
4595                                 if (e != JIM_OK)
4596                                         return e;
4597                                 target->dbgbase = (uint32_t)w;
4598                                 target->dbgbase_set = true;
4599                         } else {
4600                                 if (goi->argc != 0)
4601                                         goto no_params;
4602                         }
4603                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4604                         /* loop for more */
4605                         break;
4606
4607                 case TCFG_RTOS:
4608                         /* RTOS */
4609                         {
4610                                 int result = rtos_create(goi, target);
4611                                 if (result != JIM_OK)
4612                                         return result;
4613                         }
4614                         /* loop for more */
4615                         break;
4616                 }
4617         } /* while (goi->argc) */
4618
4619
4620                 /* done - we return */
4621         return JIM_OK;
4622 }
4623
4624 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4625 {
4626         Jim_GetOptInfo goi;
4627
4628         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4629         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4630         int need_args = 1 + goi.isconfigure;
4631         if (goi.argc < need_args) {
4632                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4633                         goi.isconfigure
4634                                 ? "missing: -option VALUE ..."
4635                                 : "missing: -option ...");
4636                 return JIM_ERR;
4637         }
4638         struct target *target = Jim_CmdPrivData(goi.interp);
4639         return target_configure(&goi, target);
4640 }
4641
4642 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4643 {
4644         const char *cmd_name = Jim_GetString(argv[0], NULL);
4645
4646         Jim_GetOptInfo goi;
4647         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4648
4649         if (goi.argc < 2 || goi.argc > 4) {
4650                 Jim_SetResultFormatted(goi.interp,
4651                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4652                 return JIM_ERR;
4653         }
4654
4655         target_write_fn fn;
4656         fn = target_write_memory;
4657
4658         int e;
4659         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4660                 /* consume it */
4661                 struct Jim_Obj *obj;
4662                 e = Jim_GetOpt_Obj(&goi, &obj);
4663                 if (e != JIM_OK)
4664                         return e;
4665
4666                 fn = target_write_phys_memory;
4667         }
4668
4669         jim_wide a;
4670         e = Jim_GetOpt_Wide(&goi, &a);
4671         if (e != JIM_OK)
4672                 return e;
4673
4674         jim_wide b;
4675         e = Jim_GetOpt_Wide(&goi, &b);
4676         if (e != JIM_OK)
4677                 return e;
4678
4679         jim_wide c = 1;
4680         if (goi.argc == 1) {
4681                 e = Jim_GetOpt_Wide(&goi, &c);
4682                 if (e != JIM_OK)
4683                         return e;
4684         }
4685
4686         /* all args must be consumed */
4687         if (goi.argc != 0)
4688                 return JIM_ERR;
4689
4690         struct target *target = Jim_CmdPrivData(goi.interp);
4691         unsigned data_size;
4692         if (strcasecmp(cmd_name, "mww") == 0)
4693                 data_size = 4;
4694         else if (strcasecmp(cmd_name, "mwh") == 0)
4695                 data_size = 2;
4696         else if (strcasecmp(cmd_name, "mwb") == 0)
4697                 data_size = 1;
4698         else {
4699                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4700                 return JIM_ERR;
4701         }
4702
4703         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4704 }
4705
4706 /**
4707 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4708 *
4709 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4710 *         mdh [phys] <address> [<count>] - for 16 bit reads
4711 *         mdb [phys] <address> [<count>] - for  8 bit reads
4712 *
4713 *  Count defaults to 1.
4714 *
4715 *  Calls target_read_memory or target_read_phys_memory depending on
4716 *  the presence of the "phys" argument
4717 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4718 *  to int representation in base16.
4719 *  Also outputs read data in a human readable form using command_print
4720 *
4721 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4722 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4723 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4724 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4725 *  on success, with [<count>] number of elements.
4726 *
4727 *  In case of little endian target:
4728 *      Example1: "mdw 0x00000000"  returns "10123456"
4729 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4730 *      Example3: "mdb 0x00000000" returns "56"
4731 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4732 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4733 **/
4734 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4735 {
4736         const char *cmd_name = Jim_GetString(argv[0], NULL);
4737
4738         Jim_GetOptInfo goi;
4739         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4740
4741         if ((goi.argc < 1) || (goi.argc > 3)) {
4742                 Jim_SetResultFormatted(goi.interp,
4743                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4744                 return JIM_ERR;
4745         }
4746
4747         int (*fn)(struct target *target,
4748                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4749         fn = target_read_memory;
4750
4751         int e;
4752         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4753                 /* consume it */
4754                 struct Jim_Obj *obj;
4755                 e = Jim_GetOpt_Obj(&goi, &obj);
4756                 if (e != JIM_OK)
4757                         return e;
4758
4759                 fn = target_read_phys_memory;
4760         }
4761
4762         /* Read address parameter */
4763         jim_wide addr;
4764         e = Jim_GetOpt_Wide(&goi, &addr);
4765         if (e != JIM_OK)
4766                 return JIM_ERR;
4767
4768         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4769         jim_wide count;
4770         if (goi.argc == 1) {
4771                 e = Jim_GetOpt_Wide(&goi, &count);
4772                 if (e != JIM_OK)
4773                         return JIM_ERR;
4774         } else
4775                 count = 1;
4776
4777         /* all args must be consumed */
4778         if (goi.argc != 0)
4779                 return JIM_ERR;
4780
4781         jim_wide dwidth = 1; /* shut up gcc */
4782         if (strcasecmp(cmd_name, "mdw") == 0)
4783                 dwidth = 4;
4784         else if (strcasecmp(cmd_name, "mdh") == 0)
4785                 dwidth = 2;
4786         else if (strcasecmp(cmd_name, "mdb") == 0)
4787                 dwidth = 1;
4788         else {
4789                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4790                 return JIM_ERR;
4791         }
4792
4793         /* convert count to "bytes" */
4794         int bytes = count * dwidth;
4795
4796         struct target *target = Jim_CmdPrivData(goi.interp);
4797         uint8_t  target_buf[32];
4798         jim_wide x, y, z;
4799         while (bytes > 0) {
4800                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4801
4802                 /* Try to read out next block */
4803                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4804
4805                 if (e != ERROR_OK) {
4806                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4807                         return JIM_ERR;
4808                 }
4809
4810                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4811                 switch (dwidth) {
4812                 case 4:
4813                         for (x = 0; x < 16 && x < y; x += 4) {
4814                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4815                                 command_print_sameline(NULL, "%08x ", (int)(z));
4816                         }
4817                         for (; (x < 16) ; x += 4)
4818                                 command_print_sameline(NULL, "         ");
4819                         break;
4820                 case 2:
4821                         for (x = 0; x < 16 && x < y; x += 2) {
4822                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4823                                 command_print_sameline(NULL, "%04x ", (int)(z));
4824                         }
4825                         for (; (x < 16) ; x += 2)
4826                                 command_print_sameline(NULL, "     ");
4827                         break;
4828                 case 1:
4829                 default:
4830                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4831                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4832                                 command_print_sameline(NULL, "%02x ", (int)(z));
4833                         }
4834                         for (; (x < 16) ; x += 1)
4835                                 command_print_sameline(NULL, "   ");
4836                         break;
4837                 }
4838                 /* ascii-ify the bytes */
4839                 for (x = 0 ; x < y ; x++) {
4840                         if ((target_buf[x] >= 0x20) &&
4841                                 (target_buf[x] <= 0x7e)) {
4842                                 /* good */
4843                         } else {
4844                                 /* smack it */
4845                                 target_buf[x] = '.';
4846                         }
4847                 }
4848                 /* space pad  */
4849                 while (x < 16) {
4850                         target_buf[x] = ' ';
4851                         x++;
4852                 }
4853                 /* terminate */
4854                 target_buf[16] = 0;
4855                 /* print - with a newline */
4856                 command_print_sameline(NULL, "%s\n", target_buf);
4857                 /* NEXT... */
4858                 bytes -= 16;
4859                 addr += 16;
4860         }
4861         return JIM_OK;
4862 }
4863
4864 static int jim_target_mem2array(Jim_Interp *interp,
4865                 int argc, Jim_Obj *const *argv)
4866 {
4867         struct target *target = Jim_CmdPrivData(interp);
4868         return target_mem2array(interp, target, argc - 1, argv + 1);
4869 }
4870
4871 static int jim_target_array2mem(Jim_Interp *interp,
4872                 int argc, Jim_Obj *const *argv)
4873 {
4874         struct target *target = Jim_CmdPrivData(interp);
4875         return target_array2mem(interp, target, argc - 1, argv + 1);
4876 }
4877
4878 static int jim_target_tap_disabled(Jim_Interp *interp)
4879 {
4880         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4881         return JIM_ERR;
4882 }
4883
4884 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4885 {
4886         if (argc != 1) {
4887                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4888                 return JIM_ERR;
4889         }
4890         struct target *target = Jim_CmdPrivData(interp);
4891         if (!target->tap->enabled)
4892                 return jim_target_tap_disabled(interp);
4893
4894         int e = target->type->examine(target);
4895         if (e != ERROR_OK)
4896                 return JIM_ERR;
4897         return JIM_OK;
4898 }
4899
4900 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4901 {
4902         if (argc != 1) {
4903                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4904                 return JIM_ERR;
4905         }
4906         struct target *target = Jim_CmdPrivData(interp);
4907
4908         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4909                 return JIM_ERR;
4910
4911         return JIM_OK;
4912 }
4913
4914 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4915 {
4916         if (argc != 1) {
4917                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4918                 return JIM_ERR;
4919         }
4920         struct target *target = Jim_CmdPrivData(interp);
4921         if (!target->tap->enabled)
4922                 return jim_target_tap_disabled(interp);
4923
4924         int e;
4925         if (!(target_was_examined(target)))
4926                 e = ERROR_TARGET_NOT_EXAMINED;
4927         else
4928                 e = target->type->poll(target);
4929         if (e != ERROR_OK)
4930                 return JIM_ERR;
4931         return JIM_OK;
4932 }
4933
4934 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4935 {
4936         Jim_GetOptInfo goi;
4937         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4938
4939         if (goi.argc != 2) {
4940                 Jim_WrongNumArgs(interp, 0, argv,
4941                                 "([tT]|[fF]|assert|deassert) BOOL");
4942                 return JIM_ERR;
4943         }
4944
4945         Jim_Nvp *n;
4946         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4947         if (e != JIM_OK) {
4948                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4949                 return e;
4950         }
4951         /* the halt or not param */
4952         jim_wide a;
4953         e = Jim_GetOpt_Wide(&goi, &a);
4954         if (e != JIM_OK)
4955                 return e;
4956
4957         struct target *target = Jim_CmdPrivData(goi.interp);
4958         if (!target->tap->enabled)
4959                 return jim_target_tap_disabled(interp);
4960
4961         if (!target->type->assert_reset || !target->type->deassert_reset) {
4962                 Jim_SetResultFormatted(interp,
4963                                 "No target-specific reset for %s",
4964                                 target_name(target));
4965                 return JIM_ERR;
4966         }
4967         /* determine if we should halt or not. */
4968         target->reset_halt = !!a;
4969         /* When this happens - all workareas are invalid. */
4970         target_free_all_working_areas_restore(target, 0);
4971
4972         /* do the assert */
4973         if (n->value == NVP_ASSERT)
4974                 e = target->type->assert_reset(target);
4975         else
4976                 e = target->type->deassert_reset(target);
4977         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4978 }
4979
4980 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4981 {
4982         if (argc != 1) {
4983                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4984                 return JIM_ERR;
4985         }
4986         struct target *target = Jim_CmdPrivData(interp);
4987         if (!target->tap->enabled)
4988                 return jim_target_tap_disabled(interp);
4989         int e = target->type->halt(target);
4990         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4991 }
4992
4993 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4994 {
4995         Jim_GetOptInfo goi;
4996         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4997
4998         /* params:  <name>  statename timeoutmsecs */
4999         if (goi.argc != 2) {
5000                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5001                 Jim_SetResultFormatted(goi.interp,
5002                                 "%s <state_name> <timeout_in_msec>", cmd_name);
5003                 return JIM_ERR;
5004         }
5005
5006         Jim_Nvp *n;
5007         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5008         if (e != JIM_OK) {
5009                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5010                 return e;
5011         }
5012         jim_wide a;
5013         e = Jim_GetOpt_Wide(&goi, &a);
5014         if (e != JIM_OK)
5015                 return e;
5016         struct target *target = Jim_CmdPrivData(interp);
5017         if (!target->tap->enabled)
5018                 return jim_target_tap_disabled(interp);
5019
5020         e = target_wait_state(target, n->value, a);
5021         if (e != ERROR_OK) {
5022                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5023                 Jim_SetResultFormatted(goi.interp,
5024                                 "target: %s wait %s fails (%#s) %s",
5025                                 target_name(target), n->name,
5026                                 eObj, target_strerror_safe(e));
5027                 Jim_FreeNewObj(interp, eObj);
5028                 return JIM_ERR;
5029         }
5030         return JIM_OK;
5031 }
5032 /* List for human, Events defined for this target.
5033  * scripts/programs should use 'name cget -event NAME'
5034  */
5035 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5036 {
5037         struct command_context *cmd_ctx = current_command_context(interp);
5038         assert(cmd_ctx != NULL);
5039
5040         struct target *target = Jim_CmdPrivData(interp);
5041         struct target_event_action *teap = target->event_action;
5042         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5043                                    target->target_number,
5044                                    target_name(target));
5045         command_print(cmd_ctx, "%-25s | Body", "Event");
5046         command_print(cmd_ctx, "------------------------- | "
5047                         "----------------------------------------");
5048         while (teap) {
5049                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5050                 command_print(cmd_ctx, "%-25s | %s",
5051                                 opt->name, Jim_GetString(teap->body, NULL));
5052                 teap = teap->next;
5053         }
5054         command_print(cmd_ctx, "***END***");
5055         return JIM_OK;
5056 }
5057 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5058 {
5059         if (argc != 1) {
5060                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5061                 return JIM_ERR;
5062         }
5063         struct target *target = Jim_CmdPrivData(interp);
5064         Jim_SetResultString(interp, target_state_name(target), -1);
5065         return JIM_OK;
5066 }
5067 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5068 {
5069         Jim_GetOptInfo goi;
5070         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5071         if (goi.argc != 1) {
5072                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5073                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5074                 return JIM_ERR;
5075         }
5076         Jim_Nvp *n;
5077         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5078         if (e != JIM_OK) {
5079                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5080                 return e;
5081         }
5082         struct target *target = Jim_CmdPrivData(interp);
5083         target_handle_event(target, n->value);
5084         return JIM_OK;
5085 }
5086
5087 static const struct command_registration target_instance_command_handlers[] = {
5088         {
5089                 .name = "configure",
5090                 .mode = COMMAND_CONFIG,
5091                 .jim_handler = jim_target_configure,
5092                 .help  = "configure a new target for use",
5093                 .usage = "[target_attribute ...]",
5094         },
5095         {
5096                 .name = "cget",
5097                 .mode = COMMAND_ANY,
5098                 .jim_handler = jim_target_configure,
5099                 .help  = "returns the specified target attribute",
5100                 .usage = "target_attribute",
5101         },
5102         {
5103                 .name = "mww",
5104                 .mode = COMMAND_EXEC,
5105                 .jim_handler = jim_target_mw,
5106                 .help = "Write 32-bit word(s) to target memory",
5107                 .usage = "address data [count]",
5108         },
5109         {
5110                 .name = "mwh",
5111                 .mode = COMMAND_EXEC,
5112                 .jim_handler = jim_target_mw,
5113                 .help = "Write 16-bit half-word(s) to target memory",
5114                 .usage = "address data [count]",
5115         },
5116         {
5117                 .name = "mwb",
5118                 .mode = COMMAND_EXEC,
5119                 .jim_handler = jim_target_mw,
5120                 .help = "Write byte(s) to target memory",
5121                 .usage = "address data [count]",
5122         },
5123         {
5124                 .name = "mdw",
5125                 .mode = COMMAND_EXEC,
5126                 .jim_handler = jim_target_md,
5127                 .help = "Display target memory as 32-bit words",
5128                 .usage = "address [count]",
5129         },
5130         {
5131                 .name = "mdh",
5132                 .mode = COMMAND_EXEC,
5133                 .jim_handler = jim_target_md,
5134                 .help = "Display target memory as 16-bit half-words",
5135                 .usage = "address [count]",
5136         },
5137         {
5138                 .name = "mdb",
5139                 .mode = COMMAND_EXEC,
5140                 .jim_handler = jim_target_md,
5141                 .help = "Display target memory as 8-bit bytes",
5142                 .usage = "address [count]",
5143         },
5144         {
5145                 .name = "array2mem",
5146                 .mode = COMMAND_EXEC,
5147                 .jim_handler = jim_target_array2mem,
5148                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5149                         "to target memory",
5150                 .usage = "arrayname bitwidth address count",
5151         },
5152         {
5153                 .name = "mem2array",
5154                 .mode = COMMAND_EXEC,
5155                 .jim_handler = jim_target_mem2array,
5156                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5157                         "from target memory",
5158                 .usage = "arrayname bitwidth address count",
5159         },
5160         {
5161                 .name = "eventlist",
5162                 .mode = COMMAND_EXEC,
5163                 .jim_handler = jim_target_event_list,
5164                 .help = "displays a table of events defined for this target",
5165         },
5166         {
5167                 .name = "curstate",
5168                 .mode = COMMAND_EXEC,
5169                 .jim_handler = jim_target_current_state,
5170                 .help = "displays the current state of this target",
5171         },
5172         {
5173                 .name = "arp_examine",
5174                 .mode = COMMAND_EXEC,
5175                 .jim_handler = jim_target_examine,
5176                 .help = "used internally for reset processing",
5177         },
5178         {
5179                 .name = "arp_halt_gdb",
5180                 .mode = COMMAND_EXEC,
5181                 .jim_handler = jim_target_halt_gdb,
5182                 .help = "used internally for reset processing to halt GDB",
5183         },
5184         {
5185                 .name = "arp_poll",
5186                 .mode = COMMAND_EXEC,
5187                 .jim_handler = jim_target_poll,
5188                 .help = "used internally for reset processing",
5189         },
5190         {
5191                 .name = "arp_reset",
5192                 .mode = COMMAND_EXEC,
5193                 .jim_handler = jim_target_reset,
5194                 .help = "used internally for reset processing",
5195         },
5196         {
5197                 .name = "arp_halt",
5198                 .mode = COMMAND_EXEC,
5199                 .jim_handler = jim_target_halt,
5200                 .help = "used internally for reset processing",
5201         },
5202         {
5203                 .name = "arp_waitstate",
5204                 .mode = COMMAND_EXEC,
5205                 .jim_handler = jim_target_wait_state,
5206                 .help = "used internally for reset processing",
5207         },
5208         {
5209                 .name = "invoke-event",
5210                 .mode = COMMAND_EXEC,
5211                 .jim_handler = jim_target_invoke_event,
5212                 .help = "invoke handler for specified event",
5213                 .usage = "event_name",
5214         },
5215         COMMAND_REGISTRATION_DONE
5216 };
5217
5218 static int target_create(Jim_GetOptInfo *goi)
5219 {
5220         Jim_Obj *new_cmd;
5221         Jim_Cmd *cmd;
5222         const char *cp;
5223         int e;
5224         int x;
5225         struct target *target;
5226         struct command_context *cmd_ctx;
5227
5228         cmd_ctx = current_command_context(goi->interp);
5229         assert(cmd_ctx != NULL);
5230
5231         if (goi->argc < 3) {
5232                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5233                 return JIM_ERR;
5234         }
5235
5236         /* COMMAND */
5237         Jim_GetOpt_Obj(goi, &new_cmd);
5238         /* does this command exist? */
5239         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5240         if (cmd) {
5241                 cp = Jim_GetString(new_cmd, NULL);
5242                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5243                 return JIM_ERR;
5244         }
5245
5246         /* TYPE */
5247         e = Jim_GetOpt_String(goi, &cp, NULL);
5248         if (e != JIM_OK)
5249                 return e;
5250         struct transport *tr = get_current_transport();
5251         if (tr->override_target) {
5252                 e = tr->override_target(&cp);
5253                 if (e != ERROR_OK) {
5254                         LOG_ERROR("The selected transport doesn't support this target");
5255                         return JIM_ERR;
5256                 }
5257                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5258         }
5259         /* now does target type exist */
5260         for (x = 0 ; target_types[x] ; x++) {
5261                 if (0 == strcmp(cp, target_types[x]->name)) {
5262                         /* found */
5263                         break;
5264                 }
5265
5266                 /* check for deprecated name */
5267                 if (target_types[x]->deprecated_name) {
5268                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5269                                 /* found */
5270                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5271                                 break;
5272                         }
5273                 }
5274         }
5275         if (target_types[x] == NULL) {
5276                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5277                 for (x = 0 ; target_types[x] ; x++) {
5278                         if (target_types[x + 1]) {
5279                                 Jim_AppendStrings(goi->interp,
5280                                                                    Jim_GetResult(goi->interp),
5281                                                                    target_types[x]->name,
5282                                                                    ", ", NULL);
5283                         } else {
5284                                 Jim_AppendStrings(goi->interp,
5285                                                                    Jim_GetResult(goi->interp),
5286                                                                    " or ",
5287                                                                    target_types[x]->name, NULL);
5288                         }
5289                 }
5290                 return JIM_ERR;
5291         }
5292
5293         /* Create it */
5294         target = calloc(1, sizeof(struct target));
5295         /* set target number */
5296         target->target_number = new_target_number();
5297         cmd_ctx->current_target = target->target_number;
5298
5299         /* allocate memory for each unique target type */
5300         target->type = calloc(1, sizeof(struct target_type));
5301
5302         memcpy(target->type, target_types[x], sizeof(struct target_type));
5303
5304         /* will be set by "-endian" */
5305         target->endianness = TARGET_ENDIAN_UNKNOWN;
5306
5307         /* default to first core, override with -coreid */
5308         target->coreid = 0;
5309
5310         target->working_area        = 0x0;
5311         target->working_area_size   = 0x0;
5312         target->working_areas       = NULL;
5313         target->backup_working_area = 0;
5314
5315         target->state               = TARGET_UNKNOWN;
5316         target->debug_reason        = DBG_REASON_UNDEFINED;
5317         target->reg_cache           = NULL;
5318         target->breakpoints         = NULL;
5319         target->watchpoints         = NULL;
5320         target->next                = NULL;
5321         target->arch_info           = NULL;
5322
5323         target->display             = 1;
5324
5325         target->halt_issued                     = false;
5326
5327         /* initialize trace information */
5328         target->trace_info = malloc(sizeof(struct trace));
5329         target->trace_info->num_trace_points         = 0;
5330         target->trace_info->trace_points_size        = 0;
5331         target->trace_info->trace_points             = NULL;
5332         target->trace_info->trace_history_size       = 0;
5333         target->trace_info->trace_history            = NULL;
5334         target->trace_info->trace_history_pos        = 0;
5335         target->trace_info->trace_history_overflowed = 0;
5336
5337         target->dbgmsg          = NULL;
5338         target->dbg_msg_enabled = 0;
5339
5340         target->endianness = TARGET_ENDIAN_UNKNOWN;
5341
5342         target->rtos = NULL;
5343         target->rtos_auto_detect = false;
5344
5345         /* Do the rest as "configure" options */
5346         goi->isconfigure = 1;
5347         e = target_configure(goi, target);
5348
5349         if (target->tap == NULL) {
5350                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5351                 e = JIM_ERR;
5352         }
5353
5354         if (e != JIM_OK) {
5355                 free(target->type);
5356                 free(target);
5357                 return e;
5358         }
5359
5360         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5361                 /* default endian to little if not specified */
5362                 target->endianness = TARGET_LITTLE_ENDIAN;
5363         }
5364
5365         cp = Jim_GetString(new_cmd, NULL);
5366         target->cmd_name = strdup(cp);
5367
5368         /* create the target specific commands */
5369         if (target->type->commands) {
5370                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5371                 if (ERROR_OK != e)
5372                         LOG_ERROR("unable to register '%s' commands", cp);
5373         }
5374         if (target->type->target_create)
5375                 (*(target->type->target_create))(target, goi->interp);
5376
5377         /* append to end of list */
5378         {
5379                 struct target **tpp;
5380                 tpp = &(all_targets);
5381                 while (*tpp)
5382                         tpp = &((*tpp)->next);
5383                 *tpp = target;
5384         }
5385
5386         /* now - create the new target name command */
5387         const struct command_registration target_subcommands[] = {
5388                 {
5389                         .chain = target_instance_command_handlers,
5390                 },
5391                 {
5392                         .chain = target->type->commands,
5393                 },
5394                 COMMAND_REGISTRATION_DONE
5395         };
5396         const struct command_registration target_commands[] = {
5397                 {
5398                         .name = cp,
5399                         .mode = COMMAND_ANY,
5400                         .help = "target command group",
5401                         .usage = "",
5402                         .chain = target_subcommands,
5403                 },
5404                 COMMAND_REGISTRATION_DONE
5405         };
5406         e = register_commands(cmd_ctx, NULL, target_commands);
5407         if (ERROR_OK != e)
5408                 return JIM_ERR;
5409
5410         struct command *c = command_find_in_context(cmd_ctx, cp);
5411         assert(c);
5412         command_set_handler_data(c, target);
5413
5414         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5415 }
5416
5417 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5418 {
5419         if (argc != 1) {
5420                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5421                 return JIM_ERR;
5422         }
5423         struct command_context *cmd_ctx = current_command_context(interp);
5424         assert(cmd_ctx != NULL);
5425
5426         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5427         return JIM_OK;
5428 }
5429
5430 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5431 {
5432         if (argc != 1) {
5433                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5434                 return JIM_ERR;
5435         }
5436         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5437         for (unsigned x = 0; NULL != target_types[x]; x++) {
5438                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5439                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5440         }
5441         return JIM_OK;
5442 }
5443
5444 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5445 {
5446         if (argc != 1) {
5447                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5448                 return JIM_ERR;
5449         }
5450         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5451         struct target *target = all_targets;
5452         while (target) {
5453                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5454                         Jim_NewStringObj(interp, target_name(target), -1));
5455                 target = target->next;
5456         }
5457         return JIM_OK;
5458 }
5459
5460 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5461 {
5462         int i;
5463         const char *targetname;
5464         int retval, len;
5465         struct target *target = (struct target *) NULL;
5466         struct target_list *head, *curr, *new;
5467         curr = (struct target_list *) NULL;
5468         head = (struct target_list *) NULL;
5469
5470         retval = 0;
5471         LOG_DEBUG("%d", argc);
5472         /* argv[1] = target to associate in smp
5473          * argv[2] = target to assoicate in smp
5474          * argv[3] ...
5475          */
5476
5477         for (i = 1; i < argc; i++) {
5478
5479                 targetname = Jim_GetString(argv[i], &len);
5480                 target = get_target(targetname);
5481                 LOG_DEBUG("%s ", targetname);
5482                 if (target) {
5483                         new = malloc(sizeof(struct target_list));
5484                         new->target = target;
5485                         new->next = (struct target_list *)NULL;
5486                         if (head == (struct target_list *)NULL) {
5487                                 head = new;
5488                                 curr = head;
5489                         } else {
5490                                 curr->next = new;
5491                                 curr = new;
5492                         }
5493                 }
5494         }
5495         /*  now parse the list of cpu and put the target in smp mode*/
5496         curr = head;
5497
5498         while (curr != (struct target_list *)NULL) {
5499                 target = curr->target;
5500                 target->smp = 1;
5501                 target->head = head;
5502                 curr = curr->next;
5503         }
5504
5505         if (target && target->rtos)
5506                 retval = rtos_smp_init(head->target);
5507
5508         return retval;
5509 }
5510
5511
5512 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5513 {
5514         Jim_GetOptInfo goi;
5515         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5516         if (goi.argc < 3) {
5517                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5518                         "<name> <target_type> [<target_options> ...]");
5519                 return JIM_ERR;
5520         }
5521         return target_create(&goi);
5522 }
5523
5524 static const struct command_registration target_subcommand_handlers[] = {
5525         {
5526                 .name = "init",
5527                 .mode = COMMAND_CONFIG,
5528                 .handler = handle_target_init_command,
5529                 .help = "initialize targets",
5530         },
5531         {
5532                 .name = "create",
5533                 /* REVISIT this should be COMMAND_CONFIG ... */
5534                 .mode = COMMAND_ANY,
5535                 .jim_handler = jim_target_create,
5536                 .usage = "name type '-chain-position' name [options ...]",
5537                 .help = "Creates and selects a new target",
5538         },
5539         {
5540                 .name = "current",
5541                 .mode = COMMAND_ANY,
5542                 .jim_handler = jim_target_current,
5543                 .help = "Returns the currently selected target",
5544         },
5545         {
5546                 .name = "types",
5547                 .mode = COMMAND_ANY,
5548                 .jim_handler = jim_target_types,
5549                 .help = "Returns the available target types as "
5550                                 "a list of strings",
5551         },
5552         {
5553                 .name = "names",
5554                 .mode = COMMAND_ANY,
5555                 .jim_handler = jim_target_names,
5556                 .help = "Returns the names of all targets as a list of strings",
5557         },
5558         {
5559                 .name = "smp",
5560                 .mode = COMMAND_ANY,
5561                 .jim_handler = jim_target_smp,
5562                 .usage = "targetname1 targetname2 ...",
5563                 .help = "gather several target in a smp list"
5564         },
5565
5566         COMMAND_REGISTRATION_DONE
5567 };
5568
5569 struct FastLoad {
5570         uint32_t address;
5571         uint8_t *data;
5572         int length;
5573
5574 };
5575
5576 static int fastload_num;
5577 static struct FastLoad *fastload;
5578
5579 static void free_fastload(void)
5580 {
5581         if (fastload != NULL) {
5582                 int i;
5583                 for (i = 0; i < fastload_num; i++) {
5584                         if (fastload[i].data)
5585                                 free(fastload[i].data);
5586                 }
5587                 free(fastload);
5588                 fastload = NULL;
5589         }
5590 }
5591
5592 COMMAND_HANDLER(handle_fast_load_image_command)
5593 {
5594         uint8_t *buffer;
5595         size_t buf_cnt;
5596         uint32_t image_size;
5597         uint32_t min_address = 0;
5598         uint32_t max_address = 0xffffffff;
5599         int i;
5600
5601         struct image image;
5602
5603         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5604                         &image, &min_address, &max_address);
5605         if (ERROR_OK != retval)
5606                 return retval;
5607
5608         struct duration bench;
5609         duration_start(&bench);
5610
5611         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5612         if (retval != ERROR_OK)
5613                 return retval;
5614
5615         image_size = 0x0;
5616         retval = ERROR_OK;
5617         fastload_num = image.num_sections;
5618         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5619         if (fastload == NULL) {
5620                 command_print(CMD_CTX, "out of memory");
5621                 image_close(&image);
5622                 return ERROR_FAIL;
5623         }
5624         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5625         for (i = 0; i < image.num_sections; i++) {
5626                 buffer = malloc(image.sections[i].size);
5627                 if (buffer == NULL) {
5628                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5629                                                   (int)(image.sections[i].size));
5630                         retval = ERROR_FAIL;
5631                         break;
5632                 }
5633
5634                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5635                 if (retval != ERROR_OK) {
5636                         free(buffer);
5637                         break;
5638                 }
5639
5640                 uint32_t offset = 0;
5641                 uint32_t length = buf_cnt;
5642
5643                 /* DANGER!!! beware of unsigned comparision here!!! */
5644
5645                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5646                                 (image.sections[i].base_address < max_address)) {
5647                         if (image.sections[i].base_address < min_address) {
5648                                 /* clip addresses below */
5649                                 offset += min_address-image.sections[i].base_address;
5650                                 length -= offset;
5651                         }
5652
5653                         if (image.sections[i].base_address + buf_cnt > max_address)
5654                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5655
5656                         fastload[i].address = image.sections[i].base_address + offset;
5657                         fastload[i].data = malloc(length);
5658                         if (fastload[i].data == NULL) {
5659                                 free(buffer);
5660                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5661                                                           length);
5662                                 retval = ERROR_FAIL;
5663                                 break;
5664                         }
5665                         memcpy(fastload[i].data, buffer + offset, length);
5666                         fastload[i].length = length;
5667
5668                         image_size += length;
5669                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5670                                                   (unsigned int)length,
5671                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5672                 }
5673
5674                 free(buffer);
5675         }
5676
5677         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5678                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5679                                 "in %fs (%0.3f KiB/s)", image_size,
5680                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5681
5682                 command_print(CMD_CTX,
5683                                 "WARNING: image has not been loaded to target!"
5684                                 "You can issue a 'fast_load' to finish loading.");
5685         }
5686
5687         image_close(&image);
5688
5689         if (retval != ERROR_OK)
5690                 free_fastload();
5691
5692         return retval;
5693 }
5694
5695 COMMAND_HANDLER(handle_fast_load_command)
5696 {
5697         if (CMD_ARGC > 0)
5698                 return ERROR_COMMAND_SYNTAX_ERROR;
5699         if (fastload == NULL) {
5700                 LOG_ERROR("No image in memory");
5701                 return ERROR_FAIL;
5702         }
5703         int i;
5704         int64_t ms = timeval_ms();
5705         int size = 0;
5706         int retval = ERROR_OK;
5707         for (i = 0; i < fastload_num; i++) {
5708                 struct target *target = get_current_target(CMD_CTX);
5709                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5710                                           (unsigned int)(fastload[i].address),
5711                                           (unsigned int)(fastload[i].length));
5712                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5713                 if (retval != ERROR_OK)
5714                         break;
5715                 size += fastload[i].length;
5716         }
5717         if (retval == ERROR_OK) {
5718                 int64_t after = timeval_ms();
5719                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5720         }
5721         return retval;
5722 }
5723
5724 static const struct command_registration target_command_handlers[] = {
5725         {
5726                 .name = "targets",
5727                 .handler = handle_targets_command,
5728                 .mode = COMMAND_ANY,
5729                 .help = "change current default target (one parameter) "
5730                         "or prints table of all targets (no parameters)",
5731                 .usage = "[target]",
5732         },
5733         {
5734                 .name = "target",
5735                 .mode = COMMAND_CONFIG,
5736                 .help = "configure target",
5737
5738                 .chain = target_subcommand_handlers,
5739         },
5740         COMMAND_REGISTRATION_DONE
5741 };
5742
5743 int target_register_commands(struct command_context *cmd_ctx)
5744 {
5745         return register_commands(cmd_ctx, NULL, target_command_handlers);
5746 }
5747
5748 static bool target_reset_nag = true;
5749
5750 bool get_target_reset_nag(void)
5751 {
5752         return target_reset_nag;
5753 }
5754
5755 COMMAND_HANDLER(handle_target_reset_nag)
5756 {
5757         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5758                         &target_reset_nag, "Nag after each reset about options to improve "
5759                         "performance");
5760 }
5761
5762 COMMAND_HANDLER(handle_ps_command)
5763 {
5764         struct target *target = get_current_target(CMD_CTX);
5765         char *display;
5766         if (target->state != TARGET_HALTED) {
5767                 LOG_INFO("target not halted !!");
5768                 return ERROR_OK;
5769         }
5770
5771         if ((target->rtos) && (target->rtos->type)
5772                         && (target->rtos->type->ps_command)) {
5773                 display = target->rtos->type->ps_command(target);
5774                 command_print(CMD_CTX, "%s", display);
5775                 free(display);
5776                 return ERROR_OK;
5777         } else {
5778                 LOG_INFO("failed");
5779                 return ERROR_TARGET_FAILURE;
5780         }
5781 }
5782
5783 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5784 {
5785         if (text != NULL)
5786                 command_print_sameline(cmd_ctx, "%s", text);
5787         for (int i = 0; i < size; i++)
5788                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5789         command_print(cmd_ctx, " ");
5790 }
5791
5792 COMMAND_HANDLER(handle_test_mem_access_command)
5793 {
5794         struct target *target = get_current_target(CMD_CTX);
5795         uint32_t test_size;
5796         int retval = ERROR_OK;
5797
5798         if (target->state != TARGET_HALTED) {
5799                 LOG_INFO("target not halted !!");
5800                 return ERROR_FAIL;
5801         }
5802
5803         if (CMD_ARGC != 1)
5804                 return ERROR_COMMAND_SYNTAX_ERROR;
5805
5806         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5807
5808         /* Test reads */
5809         size_t num_bytes = test_size + 4;
5810
5811         struct working_area *wa = NULL;
5812         retval = target_alloc_working_area(target, num_bytes, &wa);
5813         if (retval != ERROR_OK) {
5814                 LOG_ERROR("Not enough working area");
5815                 return ERROR_FAIL;
5816         }
5817
5818         uint8_t *test_pattern = malloc(num_bytes);
5819
5820         for (size_t i = 0; i < num_bytes; i++)
5821                 test_pattern[i] = rand();
5822
5823         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5824         if (retval != ERROR_OK) {
5825                 LOG_ERROR("Test pattern write failed");
5826                 goto out;
5827         }
5828
5829         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5830                 for (int size = 1; size <= 4; size *= 2) {
5831                         for (int offset = 0; offset < 4; offset++) {
5832                                 uint32_t count = test_size / size;
5833                                 size_t host_bufsiz = (count + 2) * size + host_offset;
5834                                 uint8_t *read_ref = malloc(host_bufsiz);
5835                                 uint8_t *read_buf = malloc(host_bufsiz);
5836
5837                                 for (size_t i = 0; i < host_bufsiz; i++) {
5838                                         read_ref[i] = rand();
5839                                         read_buf[i] = read_ref[i];
5840                                 }
5841                                 command_print_sameline(CMD_CTX,
5842                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
5843                                                 size, offset, host_offset ? "un" : "");
5844
5845                                 struct duration bench;
5846                                 duration_start(&bench);
5847
5848                                 retval = target_read_memory(target, wa->address + offset, size, count,
5849                                                 read_buf + size + host_offset);
5850
5851                                 duration_measure(&bench);
5852
5853                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5854                                         command_print(CMD_CTX, "Unsupported alignment");
5855                                         goto next;
5856                                 } else if (retval != ERROR_OK) {
5857                                         command_print(CMD_CTX, "Memory read failed");
5858                                         goto next;
5859                                 }
5860
5861                                 /* replay on host */
5862                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
5863
5864                                 /* check result */
5865                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
5866                                 if (result == 0) {
5867                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5868                                                         duration_elapsed(&bench),
5869                                                         duration_kbps(&bench, count * size));
5870                                 } else {
5871                                         command_print(CMD_CTX, "Compare failed");
5872                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
5873                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
5874                                 }
5875 next:
5876                                 free(read_ref);
5877                                 free(read_buf);
5878                         }
5879                 }
5880         }
5881
5882 out:
5883         free(test_pattern);
5884
5885         if (wa != NULL)
5886                 target_free_working_area(target, wa);
5887
5888         /* Test writes */
5889         num_bytes = test_size + 4 + 4 + 4;
5890
5891         retval = target_alloc_working_area(target, num_bytes, &wa);
5892         if (retval != ERROR_OK) {
5893                 LOG_ERROR("Not enough working area");
5894                 return ERROR_FAIL;
5895         }
5896
5897         test_pattern = malloc(num_bytes);
5898
5899         for (size_t i = 0; i < num_bytes; i++)
5900                 test_pattern[i] = rand();
5901
5902         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5903                 for (int size = 1; size <= 4; size *= 2) {
5904                         for (int offset = 0; offset < 4; offset++) {
5905                                 uint32_t count = test_size / size;
5906                                 size_t host_bufsiz = count * size + host_offset;
5907                                 uint8_t *read_ref = malloc(num_bytes);
5908                                 uint8_t *read_buf = malloc(num_bytes);
5909                                 uint8_t *write_buf = malloc(host_bufsiz);
5910
5911                                 for (size_t i = 0; i < host_bufsiz; i++)
5912                                         write_buf[i] = rand();
5913                                 command_print_sameline(CMD_CTX,
5914                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
5915                                                 size, offset, host_offset ? "un" : "");
5916
5917                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5918                                 if (retval != ERROR_OK) {
5919                                         command_print(CMD_CTX, "Test pattern write failed");
5920                                         goto nextw;
5921                                 }
5922
5923                                 /* replay on host */
5924                                 memcpy(read_ref, test_pattern, num_bytes);
5925                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
5926
5927                                 struct duration bench;
5928                                 duration_start(&bench);
5929
5930                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
5931                                                 write_buf + host_offset);
5932
5933                                 duration_measure(&bench);
5934
5935                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5936                                         command_print(CMD_CTX, "Unsupported alignment");
5937                                         goto nextw;
5938                                 } else if (retval != ERROR_OK) {
5939                                         command_print(CMD_CTX, "Memory write failed");
5940                                         goto nextw;
5941                                 }
5942
5943                                 /* read back */
5944                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
5945                                 if (retval != ERROR_OK) {
5946                                         command_print(CMD_CTX, "Test pattern write failed");
5947                                         goto nextw;
5948                                 }
5949
5950                                 /* check result */
5951                                 int result = memcmp(read_ref, read_buf, num_bytes);
5952                                 if (result == 0) {
5953                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5954                                                         duration_elapsed(&bench),
5955                                                         duration_kbps(&bench, count * size));
5956                                 } else {
5957                                         command_print(CMD_CTX, "Compare failed");
5958                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
5959                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
5960                                 }
5961 nextw:
5962                                 free(read_ref);
5963                                 free(read_buf);
5964                         }
5965                 }
5966         }
5967
5968         free(test_pattern);
5969
5970         if (wa != NULL)
5971                 target_free_working_area(target, wa);
5972         return retval;
5973 }
5974
5975 static const struct command_registration target_exec_command_handlers[] = {
5976         {
5977                 .name = "fast_load_image",
5978                 .handler = handle_fast_load_image_command,
5979                 .mode = COMMAND_ANY,
5980                 .help = "Load image into server memory for later use by "
5981                         "fast_load; primarily for profiling",
5982                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5983                         "[min_address [max_length]]",
5984         },
5985         {
5986                 .name = "fast_load",
5987                 .handler = handle_fast_load_command,
5988                 .mode = COMMAND_EXEC,
5989                 .help = "loads active fast load image to current target "
5990                         "- mainly for profiling purposes",
5991                 .usage = "",
5992         },
5993         {
5994                 .name = "profile",
5995                 .handler = handle_profile_command,
5996                 .mode = COMMAND_EXEC,
5997                 .usage = "seconds filename [start end]",
5998                 .help = "profiling samples the CPU PC",
5999         },
6000         /** @todo don't register virt2phys() unless target supports it */
6001         {
6002                 .name = "virt2phys",
6003                 .handler = handle_virt2phys_command,
6004                 .mode = COMMAND_ANY,
6005                 .help = "translate a virtual address into a physical address",
6006                 .usage = "virtual_address",
6007         },
6008         {
6009                 .name = "reg",
6010                 .handler = handle_reg_command,
6011                 .mode = COMMAND_EXEC,
6012                 .help = "display (reread from target with \"force\") or set a register; "
6013                         "with no arguments, displays all registers and their values",
6014                 .usage = "[(register_number|register_name) [(value|'force')]]",
6015         },
6016         {
6017                 .name = "poll",
6018                 .handler = handle_poll_command,
6019                 .mode = COMMAND_EXEC,
6020                 .help = "poll target state; or reconfigure background polling",
6021                 .usage = "['on'|'off']",
6022         },
6023         {
6024                 .name = "wait_halt",
6025                 .handler = handle_wait_halt_command,
6026                 .mode = COMMAND_EXEC,
6027                 .help = "wait up to the specified number of milliseconds "
6028                         "(default 5000) for a previously requested halt",
6029                 .usage = "[milliseconds]",
6030         },
6031         {
6032                 .name = "halt",
6033                 .handler = handle_halt_command,
6034                 .mode = COMMAND_EXEC,
6035                 .help = "request target to halt, then wait up to the specified"
6036                         "number of milliseconds (default 5000) for it to complete",
6037                 .usage = "[milliseconds]",
6038         },
6039         {
6040                 .name = "resume",
6041                 .handler = handle_resume_command,
6042                 .mode = COMMAND_EXEC,
6043                 .help = "resume target execution from current PC or address",
6044                 .usage = "[address]",
6045         },
6046         {
6047                 .name = "reset",
6048                 .handler = handle_reset_command,
6049                 .mode = COMMAND_EXEC,
6050                 .usage = "[run|halt|init]",
6051                 .help = "Reset all targets into the specified mode."
6052                         "Default reset mode is run, if not given.",
6053         },
6054         {
6055                 .name = "soft_reset_halt",
6056                 .handler = handle_soft_reset_halt_command,
6057                 .mode = COMMAND_EXEC,
6058                 .usage = "",
6059                 .help = "halt the target and do a soft reset",
6060         },
6061         {
6062                 .name = "step",
6063                 .handler = handle_step_command,
6064                 .mode = COMMAND_EXEC,
6065                 .help = "step one instruction from current PC or address",
6066                 .usage = "[address]",
6067         },
6068         {
6069                 .name = "mdw",
6070                 .handler = handle_md_command,
6071                 .mode = COMMAND_EXEC,
6072                 .help = "display memory words",
6073                 .usage = "['phys'] address [count]",
6074         },
6075         {
6076                 .name = "mdh",
6077                 .handler = handle_md_command,
6078                 .mode = COMMAND_EXEC,
6079                 .help = "display memory half-words",
6080                 .usage = "['phys'] address [count]",
6081         },
6082         {
6083                 .name = "mdb",
6084                 .handler = handle_md_command,
6085                 .mode = COMMAND_EXEC,
6086                 .help = "display memory bytes",
6087                 .usage = "['phys'] address [count]",
6088         },
6089         {
6090                 .name = "mww",
6091                 .handler = handle_mw_command,
6092                 .mode = COMMAND_EXEC,
6093                 .help = "write memory word",
6094                 .usage = "['phys'] address value [count]",
6095         },
6096         {
6097                 .name = "mwh",
6098                 .handler = handle_mw_command,
6099                 .mode = COMMAND_EXEC,
6100                 .help = "write memory half-word",
6101                 .usage = "['phys'] address value [count]",
6102         },
6103         {
6104                 .name = "mwb",
6105                 .handler = handle_mw_command,
6106                 .mode = COMMAND_EXEC,
6107                 .help = "write memory byte",
6108                 .usage = "['phys'] address value [count]",
6109         },
6110         {
6111                 .name = "bp",
6112                 .handler = handle_bp_command,
6113                 .mode = COMMAND_EXEC,
6114                 .help = "list or set hardware or software breakpoint",
6115                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6116         },
6117         {
6118                 .name = "rbp",
6119                 .handler = handle_rbp_command,
6120                 .mode = COMMAND_EXEC,
6121                 .help = "remove breakpoint",
6122                 .usage = "address",
6123         },
6124         {
6125                 .name = "wp",
6126                 .handler = handle_wp_command,
6127                 .mode = COMMAND_EXEC,
6128                 .help = "list (no params) or create watchpoints",
6129                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6130         },
6131         {
6132                 .name = "rwp",
6133                 .handler = handle_rwp_command,
6134                 .mode = COMMAND_EXEC,
6135                 .help = "remove watchpoint",
6136                 .usage = "address",
6137         },
6138         {
6139                 .name = "load_image",
6140                 .handler = handle_load_image_command,
6141                 .mode = COMMAND_EXEC,
6142                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6143                         "[min_address] [max_length]",
6144         },
6145         {
6146                 .name = "dump_image",
6147                 .handler = handle_dump_image_command,
6148                 .mode = COMMAND_EXEC,
6149                 .usage = "filename address size",
6150         },
6151         {
6152                 .name = "verify_image",
6153                 .handler = handle_verify_image_command,
6154                 .mode = COMMAND_EXEC,
6155                 .usage = "filename [offset [type]]",
6156         },
6157         {
6158                 .name = "test_image",
6159                 .handler = handle_test_image_command,
6160                 .mode = COMMAND_EXEC,
6161                 .usage = "filename [offset [type]]",
6162         },
6163         {
6164                 .name = "mem2array",
6165                 .mode = COMMAND_EXEC,
6166                 .jim_handler = jim_mem2array,
6167                 .help = "read 8/16/32 bit memory and return as a TCL array "
6168                         "for script processing",
6169                 .usage = "arrayname bitwidth address count",
6170         },
6171         {
6172                 .name = "array2mem",
6173                 .mode = COMMAND_EXEC,
6174                 .jim_handler = jim_array2mem,
6175                 .help = "convert a TCL array to memory locations "
6176                         "and write the 8/16/32 bit values",
6177                 .usage = "arrayname bitwidth address count",
6178         },
6179         {
6180                 .name = "reset_nag",
6181                 .handler = handle_target_reset_nag,
6182                 .mode = COMMAND_ANY,
6183                 .help = "Nag after each reset about options that could have been "
6184                                 "enabled to improve performance. ",
6185                 .usage = "['enable'|'disable']",
6186         },
6187         {
6188                 .name = "ps",
6189                 .handler = handle_ps_command,
6190                 .mode = COMMAND_EXEC,
6191                 .help = "list all tasks ",
6192                 .usage = " ",
6193         },
6194         {
6195                 .name = "test_mem_access",
6196                 .handler = handle_test_mem_access_command,
6197                 .mode = COMMAND_EXEC,
6198                 .help = "Test the target's memory access functions",
6199                 .usage = "size",
6200         },
6201
6202         COMMAND_REGISTRATION_DONE
6203 };
6204 static int target_register_user_commands(struct command_context *cmd_ctx)
6205 {
6206         int retval = ERROR_OK;
6207         retval = target_request_register_commands(cmd_ctx);
6208         if (retval != ERROR_OK)
6209                 return retval;
6210
6211         retval = trace_register_commands(cmd_ctx);
6212         if (retval != ERROR_OK)
6213                 return retval;
6214
6215
6216         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6217 }