]> git.sur5r.net Git - openocd/blob - src/target/target.c
target: use correct target in target-prefixed commands and event handlers
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
60
61 static int target_read_buffer_default(struct target *target, target_addr_t address,
62                 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, target_addr_t address,
64                 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66                 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68                 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71                 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73                 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
76
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type aarch64_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type ls1_sap_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
108 extern struct target_type stm8_target;
109
110 static struct target_type *target_types[] = {
111         &arm7tdmi_target,
112         &arm9tdmi_target,
113         &arm920t_target,
114         &arm720t_target,
115         &arm966e_target,
116         &arm946e_target,
117         &arm926ejs_target,
118         &fa526_target,
119         &feroceon_target,
120         &dragonite_target,
121         &xscale_target,
122         &cortexm_target,
123         &cortexa_target,
124         &cortexr4_target,
125         &arm11_target,
126         &ls1_sap_target,
127         &mips_m4k_target,
128         &avr_target,
129         &dsp563xx_target,
130         &dsp5680xx_target,
131         &testee_target,
132         &avr32_ap7k_target,
133         &hla_target,
134         &nds32_v2_target,
135         &nds32_v3_target,
136         &nds32_v3m_target,
137         &or1k_target,
138         &quark_x10xx_target,
139         &quark_d20xx_target,
140         &stm8_target,
141 #if BUILD_TARGET64
142         &aarch64_target,
143 #endif
144         NULL,
145 };
146
147 struct target *all_targets;
148 static struct target_event_callback *target_event_callbacks;
149 static struct target_timer_callback *target_timer_callbacks;
150 LIST_HEAD(target_reset_callback_list);
151 LIST_HEAD(target_trace_callback_list);
152 static const int polling_interval = 100;
153
154 static const Jim_Nvp nvp_assert[] = {
155         { .name = "assert", NVP_ASSERT },
156         { .name = "deassert", NVP_DEASSERT },
157         { .name = "T", NVP_ASSERT },
158         { .name = "F", NVP_DEASSERT },
159         { .name = "t", NVP_ASSERT },
160         { .name = "f", NVP_DEASSERT },
161         { .name = NULL, .value = -1 }
162 };
163
164 static const Jim_Nvp nvp_error_target[] = {
165         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
166         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
167         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
168         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
169         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
170         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
171         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
172         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
173         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
174         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
175         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
176         { .value = -1, .name = NULL }
177 };
178
179 static const char *target_strerror_safe(int err)
180 {
181         const Jim_Nvp *n;
182
183         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
184         if (n->name == NULL)
185                 return "unknown";
186         else
187                 return n->name;
188 }
189
190 static const Jim_Nvp nvp_target_event[] = {
191
192         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
193         { .value = TARGET_EVENT_HALTED, .name = "halted" },
194         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
195         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
197
198         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
199         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
200
201         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
202         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
203         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
204         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
205         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
206         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
207         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
208         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
209
210         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
211         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
212
213         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
214         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
215
216         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
217         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
218
219         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
220         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
221
222         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
223         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
224
225         { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
226
227         { .name = NULL, .value = -1 }
228 };
229
230 static const Jim_Nvp nvp_target_state[] = {
231         { .name = "unknown", .value = TARGET_UNKNOWN },
232         { .name = "running", .value = TARGET_RUNNING },
233         { .name = "halted",  .value = TARGET_HALTED },
234         { .name = "reset",   .value = TARGET_RESET },
235         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
236         { .name = NULL, .value = -1 },
237 };
238
239 static const Jim_Nvp nvp_target_debug_reason[] = {
240         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
241         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
242         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
243         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
244         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
245         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
246         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
247         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
248         { .name = NULL, .value = -1 },
249 };
250
251 static const Jim_Nvp nvp_target_endian[] = {
252         { .name = "big",    .value = TARGET_BIG_ENDIAN },
253         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
254         { .name = "be",     .value = TARGET_BIG_ENDIAN },
255         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
256         { .name = NULL,     .value = -1 },
257 };
258
259 static const Jim_Nvp nvp_reset_modes[] = {
260         { .name = "unknown", .value = RESET_UNKNOWN },
261         { .name = "run"    , .value = RESET_RUN },
262         { .name = "halt"   , .value = RESET_HALT },
263         { .name = "init"   , .value = RESET_INIT },
264         { .name = NULL     , .value = -1 },
265 };
266
267 const char *debug_reason_name(struct target *t)
268 {
269         const char *cp;
270
271         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
272                         t->debug_reason)->name;
273         if (!cp) {
274                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
275                 cp = "(*BUG*unknown*BUG*)";
276         }
277         return cp;
278 }
279
280 const char *target_state_name(struct target *t)
281 {
282         const char *cp;
283         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
284         if (!cp) {
285                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
286                 cp = "(*BUG*unknown*BUG*)";
287         }
288
289         if (!target_was_examined(t) && t->defer_examine)
290                 cp = "examine deferred";
291
292         return cp;
293 }
294
295 const char *target_event_name(enum target_event event)
296 {
297         const char *cp;
298         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
299         if (!cp) {
300                 LOG_ERROR("Invalid target event: %d", (int)(event));
301                 cp = "(*BUG*unknown*BUG*)";
302         }
303         return cp;
304 }
305
306 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
307 {
308         const char *cp;
309         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
310         if (!cp) {
311                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
312                 cp = "(*BUG*unknown*BUG*)";
313         }
314         return cp;
315 }
316
317 /* determine the number of the new target */
318 static int new_target_number(void)
319 {
320         struct target *t;
321         int x;
322
323         /* number is 0 based */
324         x = -1;
325         t = all_targets;
326         while (t) {
327                 if (x < t->target_number)
328                         x = t->target_number;
329                 t = t->next;
330         }
331         return x + 1;
332 }
333
334 /* read a uint64_t from a buffer in target memory endianness */
335 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
336 {
337         if (target->endianness == TARGET_LITTLE_ENDIAN)
338                 return le_to_h_u64(buffer);
339         else
340                 return be_to_h_u64(buffer);
341 }
342
343 /* read a uint32_t from a buffer in target memory endianness */
344 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
345 {
346         if (target->endianness == TARGET_LITTLE_ENDIAN)
347                 return le_to_h_u32(buffer);
348         else
349                 return be_to_h_u32(buffer);
350 }
351
352 /* read a uint24_t from a buffer in target memory endianness */
353 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
354 {
355         if (target->endianness == TARGET_LITTLE_ENDIAN)
356                 return le_to_h_u24(buffer);
357         else
358                 return be_to_h_u24(buffer);
359 }
360
361 /* read a uint16_t from a buffer in target memory endianness */
362 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
363 {
364         if (target->endianness == TARGET_LITTLE_ENDIAN)
365                 return le_to_h_u16(buffer);
366         else
367                 return be_to_h_u16(buffer);
368 }
369
370 /* read a uint8_t from a buffer in target memory endianness */
371 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
372 {
373         return *buffer & 0x0ff;
374 }
375
376 /* write a uint64_t to a buffer in target memory endianness */
377 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
378 {
379         if (target->endianness == TARGET_LITTLE_ENDIAN)
380                 h_u64_to_le(buffer, value);
381         else
382                 h_u64_to_be(buffer, value);
383 }
384
385 /* write a uint32_t to a buffer in target memory endianness */
386 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
387 {
388         if (target->endianness == TARGET_LITTLE_ENDIAN)
389                 h_u32_to_le(buffer, value);
390         else
391                 h_u32_to_be(buffer, value);
392 }
393
394 /* write a uint24_t to a buffer in target memory endianness */
395 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
396 {
397         if (target->endianness == TARGET_LITTLE_ENDIAN)
398                 h_u24_to_le(buffer, value);
399         else
400                 h_u24_to_be(buffer, value);
401 }
402
403 /* write a uint16_t to a buffer in target memory endianness */
404 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
405 {
406         if (target->endianness == TARGET_LITTLE_ENDIAN)
407                 h_u16_to_le(buffer, value);
408         else
409                 h_u16_to_be(buffer, value);
410 }
411
412 /* write a uint8_t to a buffer in target memory endianness */
413 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
414 {
415         *buffer = value;
416 }
417
418 /* write a uint64_t array to a buffer in target memory endianness */
419 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
420 {
421         uint32_t i;
422         for (i = 0; i < count; i++)
423                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
424 }
425
426 /* write a uint32_t array to a buffer in target memory endianness */
427 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
428 {
429         uint32_t i;
430         for (i = 0; i < count; i++)
431                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
432 }
433
434 /* write a uint16_t array to a buffer in target memory endianness */
435 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
436 {
437         uint32_t i;
438         for (i = 0; i < count; i++)
439                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
440 }
441
442 /* write a uint64_t array to a buffer in target memory endianness */
443 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
444 {
445         uint32_t i;
446         for (i = 0; i < count; i++)
447                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
448 }
449
450 /* write a uint32_t array to a buffer in target memory endianness */
451 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
452 {
453         uint32_t i;
454         for (i = 0; i < count; i++)
455                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
456 }
457
458 /* write a uint16_t array to a buffer in target memory endianness */
459 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
460 {
461         uint32_t i;
462         for (i = 0; i < count; i++)
463                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
464 }
465
466 /* return a pointer to a configured target; id is name or number */
467 struct target *get_target(const char *id)
468 {
469         struct target *target;
470
471         /* try as tcltarget name */
472         for (target = all_targets; target; target = target->next) {
473                 if (target_name(target) == NULL)
474                         continue;
475                 if (strcmp(id, target_name(target)) == 0)
476                         return target;
477         }
478
479         /* It's OK to remove this fallback sometime after August 2010 or so */
480
481         /* no match, try as number */
482         unsigned num;
483         if (parse_uint(id, &num) != ERROR_OK)
484                 return NULL;
485
486         for (target = all_targets; target; target = target->next) {
487                 if (target->target_number == (int)num) {
488                         LOG_WARNING("use '%s' as target identifier, not '%u'",
489                                         target_name(target), num);
490                         return target;
491                 }
492         }
493
494         return NULL;
495 }
496
497 /* returns a pointer to the n-th configured target */
498 struct target *get_target_by_num(int num)
499 {
500         struct target *target = all_targets;
501
502         while (target) {
503                 if (target->target_number == num)
504                         return target;
505                 target = target->next;
506         }
507
508         return NULL;
509 }
510
511 struct target *get_current_target(struct command_context *cmd_ctx)
512 {
513         struct target *target = cmd_ctx->current_target_override
514                 ? cmd_ctx->current_target_override
515                 : cmd_ctx->current_target;
516
517         if (target == NULL) {
518                 LOG_ERROR("BUG: current_target out of bounds");
519                 exit(-1);
520         }
521
522         return target;
523 }
524
525 int target_poll(struct target *target)
526 {
527         int retval;
528
529         /* We can't poll until after examine */
530         if (!target_was_examined(target)) {
531                 /* Fail silently lest we pollute the log */
532                 return ERROR_FAIL;
533         }
534
535         retval = target->type->poll(target);
536         if (retval != ERROR_OK)
537                 return retval;
538
539         if (target->halt_issued) {
540                 if (target->state == TARGET_HALTED)
541                         target->halt_issued = false;
542                 else {
543                         int64_t t = timeval_ms() - target->halt_issued_time;
544                         if (t > DEFAULT_HALT_TIMEOUT) {
545                                 target->halt_issued = false;
546                                 LOG_INFO("Halt timed out, wake up GDB.");
547                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
548                         }
549                 }
550         }
551
552         return ERROR_OK;
553 }
554
555 int target_halt(struct target *target)
556 {
557         int retval;
558         /* We can't poll until after examine */
559         if (!target_was_examined(target)) {
560                 LOG_ERROR("Target not examined yet");
561                 return ERROR_FAIL;
562         }
563
564         retval = target->type->halt(target);
565         if (retval != ERROR_OK)
566                 return retval;
567
568         target->halt_issued = true;
569         target->halt_issued_time = timeval_ms();
570
571         return ERROR_OK;
572 }
573
574 /**
575  * Make the target (re)start executing using its saved execution
576  * context (possibly with some modifications).
577  *
578  * @param target Which target should start executing.
579  * @param current True to use the target's saved program counter instead
580  *      of the address parameter
581  * @param address Optionally used as the program counter.
582  * @param handle_breakpoints True iff breakpoints at the resumption PC
583  *      should be skipped.  (For example, maybe execution was stopped by
584  *      such a breakpoint, in which case it would be counterprodutive to
585  *      let it re-trigger.
586  * @param debug_execution False if all working areas allocated by OpenOCD
587  *      should be released and/or restored to their original contents.
588  *      (This would for example be true to run some downloaded "helper"
589  *      algorithm code, which resides in one such working buffer and uses
590  *      another for data storage.)
591  *
592  * @todo Resolve the ambiguity about what the "debug_execution" flag
593  * signifies.  For example, Target implementations don't agree on how
594  * it relates to invalidation of the register cache, or to whether
595  * breakpoints and watchpoints should be enabled.  (It would seem wrong
596  * to enable breakpoints when running downloaded "helper" algorithms
597  * (debug_execution true), since the breakpoints would be set to match
598  * target firmware being debugged, not the helper algorithm.... and
599  * enabling them could cause such helpers to malfunction (for example,
600  * by overwriting data with a breakpoint instruction.  On the other
601  * hand the infrastructure for running such helpers might use this
602  * procedure but rely on hardware breakpoint to detect termination.)
603  */
604 int target_resume(struct target *target, int current, target_addr_t address,
605                 int handle_breakpoints, int debug_execution)
606 {
607         int retval;
608
609         /* We can't poll until after examine */
610         if (!target_was_examined(target)) {
611                 LOG_ERROR("Target not examined yet");
612                 return ERROR_FAIL;
613         }
614
615         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
616
617         /* note that resume *must* be asynchronous. The CPU can halt before
618          * we poll. The CPU can even halt at the current PC as a result of
619          * a software breakpoint being inserted by (a bug?) the application.
620          */
621         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
622         if (retval != ERROR_OK)
623                 return retval;
624
625         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
626
627         return retval;
628 }
629
630 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
631 {
632         char buf[100];
633         int retval;
634         Jim_Nvp *n;
635         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
636         if (n->name == NULL) {
637                 LOG_ERROR("invalid reset mode");
638                 return ERROR_FAIL;
639         }
640
641         struct target *target;
642         for (target = all_targets; target; target = target->next)
643                 target_call_reset_callbacks(target, reset_mode);
644
645         /* disable polling during reset to make reset event scripts
646          * more predictable, i.e. dr/irscan & pathmove in events will
647          * not have JTAG operations injected into the middle of a sequence.
648          */
649         bool save_poll = jtag_poll_get_enabled();
650
651         jtag_poll_set_enabled(false);
652
653         sprintf(buf, "ocd_process_reset %s", n->name);
654         retval = Jim_Eval(cmd_ctx->interp, buf);
655
656         jtag_poll_set_enabled(save_poll);
657
658         if (retval != JIM_OK) {
659                 Jim_MakeErrorMessage(cmd_ctx->interp);
660                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
661                 return ERROR_FAIL;
662         }
663
664         /* We want any events to be processed before the prompt */
665         retval = target_call_timer_callbacks_now();
666
667         for (target = all_targets; target; target = target->next) {
668                 target->type->check_reset(target);
669                 target->running_alg = false;
670         }
671
672         return retval;
673 }
674
675 static int identity_virt2phys(struct target *target,
676                 target_addr_t virtual, target_addr_t *physical)
677 {
678         *physical = virtual;
679         return ERROR_OK;
680 }
681
682 static int no_mmu(struct target *target, int *enabled)
683 {
684         *enabled = 0;
685         return ERROR_OK;
686 }
687
688 static int default_examine(struct target *target)
689 {
690         target_set_examined(target);
691         return ERROR_OK;
692 }
693
694 /* no check by default */
695 static int default_check_reset(struct target *target)
696 {
697         return ERROR_OK;
698 }
699
700 int target_examine_one(struct target *target)
701 {
702         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
703
704         int retval = target->type->examine(target);
705         if (retval != ERROR_OK)
706                 return retval;
707
708         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
709
710         return ERROR_OK;
711 }
712
713 static int jtag_enable_callback(enum jtag_event event, void *priv)
714 {
715         struct target *target = priv;
716
717         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
718                 return ERROR_OK;
719
720         jtag_unregister_event_callback(jtag_enable_callback, target);
721
722         return target_examine_one(target);
723 }
724
725 /* Targets that correctly implement init + examine, i.e.
726  * no communication with target during init:
727  *
728  * XScale
729  */
730 int target_examine(void)
731 {
732         int retval = ERROR_OK;
733         struct target *target;
734
735         for (target = all_targets; target; target = target->next) {
736                 /* defer examination, but don't skip it */
737                 if (!target->tap->enabled) {
738                         jtag_register_event_callback(jtag_enable_callback,
739                                         target);
740                         continue;
741                 }
742
743                 if (target->defer_examine)
744                         continue;
745
746                 retval = target_examine_one(target);
747                 if (retval != ERROR_OK)
748                         return retval;
749         }
750         return retval;
751 }
752
753 const char *target_type_name(struct target *target)
754 {
755         return target->type->name;
756 }
757
758 static int target_soft_reset_halt(struct target *target)
759 {
760         if (!target_was_examined(target)) {
761                 LOG_ERROR("Target not examined yet");
762                 return ERROR_FAIL;
763         }
764         if (!target->type->soft_reset_halt) {
765                 LOG_ERROR("Target %s does not support soft_reset_halt",
766                                 target_name(target));
767                 return ERROR_FAIL;
768         }
769         return target->type->soft_reset_halt(target);
770 }
771
772 /**
773  * Downloads a target-specific native code algorithm to the target,
774  * and executes it.  * Note that some targets may need to set up, enable,
775  * and tear down a breakpoint (hard or * soft) to detect algorithm
776  * termination, while others may support  lower overhead schemes where
777  * soft breakpoints embedded in the algorithm automatically terminate the
778  * algorithm.
779  *
780  * @param target used to run the algorithm
781  * @param arch_info target-specific description of the algorithm.
782  */
783 int target_run_algorithm(struct target *target,
784                 int num_mem_params, struct mem_param *mem_params,
785                 int num_reg_params, struct reg_param *reg_param,
786                 uint32_t entry_point, uint32_t exit_point,
787                 int timeout_ms, void *arch_info)
788 {
789         int retval = ERROR_FAIL;
790
791         if (!target_was_examined(target)) {
792                 LOG_ERROR("Target not examined yet");
793                 goto done;
794         }
795         if (!target->type->run_algorithm) {
796                 LOG_ERROR("Target type '%s' does not support %s",
797                                 target_type_name(target), __func__);
798                 goto done;
799         }
800
801         target->running_alg = true;
802         retval = target->type->run_algorithm(target,
803                         num_mem_params, mem_params,
804                         num_reg_params, reg_param,
805                         entry_point, exit_point, timeout_ms, arch_info);
806         target->running_alg = false;
807
808 done:
809         return retval;
810 }
811
812 /**
813  * Executes a target-specific native code algorithm and leaves it running.
814  *
815  * @param target used to run the algorithm
816  * @param arch_info target-specific description of the algorithm.
817  */
818 int target_start_algorithm(struct target *target,
819                 int num_mem_params, struct mem_param *mem_params,
820                 int num_reg_params, struct reg_param *reg_params,
821                 uint32_t entry_point, uint32_t exit_point,
822                 void *arch_info)
823 {
824         int retval = ERROR_FAIL;
825
826         if (!target_was_examined(target)) {
827                 LOG_ERROR("Target not examined yet");
828                 goto done;
829         }
830         if (!target->type->start_algorithm) {
831                 LOG_ERROR("Target type '%s' does not support %s",
832                                 target_type_name(target), __func__);
833                 goto done;
834         }
835         if (target->running_alg) {
836                 LOG_ERROR("Target is already running an algorithm");
837                 goto done;
838         }
839
840         target->running_alg = true;
841         retval = target->type->start_algorithm(target,
842                         num_mem_params, mem_params,
843                         num_reg_params, reg_params,
844                         entry_point, exit_point, arch_info);
845
846 done:
847         return retval;
848 }
849
850 /**
851  * Waits for an algorithm started with target_start_algorithm() to complete.
852  *
853  * @param target used to run the algorithm
854  * @param arch_info target-specific description of the algorithm.
855  */
856 int target_wait_algorithm(struct target *target,
857                 int num_mem_params, struct mem_param *mem_params,
858                 int num_reg_params, struct reg_param *reg_params,
859                 uint32_t exit_point, int timeout_ms,
860                 void *arch_info)
861 {
862         int retval = ERROR_FAIL;
863
864         if (!target->type->wait_algorithm) {
865                 LOG_ERROR("Target type '%s' does not support %s",
866                                 target_type_name(target), __func__);
867                 goto done;
868         }
869         if (!target->running_alg) {
870                 LOG_ERROR("Target is not running an algorithm");
871                 goto done;
872         }
873
874         retval = target->type->wait_algorithm(target,
875                         num_mem_params, mem_params,
876                         num_reg_params, reg_params,
877                         exit_point, timeout_ms, arch_info);
878         if (retval != ERROR_TARGET_TIMEOUT)
879                 target->running_alg = false;
880
881 done:
882         return retval;
883 }
884
885 /**
886  * Streams data to a circular buffer on target intended for consumption by code
887  * running asynchronously on target.
888  *
889  * This is intended for applications where target-specific native code runs
890  * on the target, receives data from the circular buffer, does something with
891  * it (most likely writing it to a flash memory), and advances the circular
892  * buffer pointer.
893  *
894  * This assumes that the helper algorithm has already been loaded to the target,
895  * but has not been started yet. Given memory and register parameters are passed
896  * to the algorithm.
897  *
898  * The buffer is defined by (buffer_start, buffer_size) arguments and has the
899  * following format:
900  *
901  *     [buffer_start + 0, buffer_start + 4):
902  *         Write Pointer address (aka head). Written and updated by this
903  *         routine when new data is written to the circular buffer.
904  *     [buffer_start + 4, buffer_start + 8):
905  *         Read Pointer address (aka tail). Updated by code running on the
906  *         target after it consumes data.
907  *     [buffer_start + 8, buffer_start + buffer_size):
908  *         Circular buffer contents.
909  *
910  * See contrib/loaders/flash/stm32f1x.S for an example.
911  *
912  * @param target used to run the algorithm
913  * @param buffer address on the host where data to be sent is located
914  * @param count number of blocks to send
915  * @param block_size size in bytes of each block
916  * @param num_mem_params count of memory-based params to pass to algorithm
917  * @param mem_params memory-based params to pass to algorithm
918  * @param num_reg_params count of register-based params to pass to algorithm
919  * @param reg_params memory-based params to pass to algorithm
920  * @param buffer_start address on the target of the circular buffer structure
921  * @param buffer_size size of the circular buffer structure
922  * @param entry_point address on the target to execute to start the algorithm
923  * @param exit_point address at which to set a breakpoint to catch the
924  *     end of the algorithm; can be 0 if target triggers a breakpoint itself
925  */
926
927 int target_run_flash_async_algorithm(struct target *target,
928                 const uint8_t *buffer, uint32_t count, int block_size,
929                 int num_mem_params, struct mem_param *mem_params,
930                 int num_reg_params, struct reg_param *reg_params,
931                 uint32_t buffer_start, uint32_t buffer_size,
932                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
933 {
934         int retval;
935         int timeout = 0;
936
937         const uint8_t *buffer_orig = buffer;
938
939         /* Set up working area. First word is write pointer, second word is read pointer,
940          * rest is fifo data area. */
941         uint32_t wp_addr = buffer_start;
942         uint32_t rp_addr = buffer_start + 4;
943         uint32_t fifo_start_addr = buffer_start + 8;
944         uint32_t fifo_end_addr = buffer_start + buffer_size;
945
946         uint32_t wp = fifo_start_addr;
947         uint32_t rp = fifo_start_addr;
948
949         /* validate block_size is 2^n */
950         assert(!block_size || !(block_size & (block_size - 1)));
951
952         retval = target_write_u32(target, wp_addr, wp);
953         if (retval != ERROR_OK)
954                 return retval;
955         retval = target_write_u32(target, rp_addr, rp);
956         if (retval != ERROR_OK)
957                 return retval;
958
959         /* Start up algorithm on target and let it idle while writing the first chunk */
960         retval = target_start_algorithm(target, num_mem_params, mem_params,
961                         num_reg_params, reg_params,
962                         entry_point,
963                         exit_point,
964                         arch_info);
965
966         if (retval != ERROR_OK) {
967                 LOG_ERROR("error starting target flash write algorithm");
968                 return retval;
969         }
970
971         while (count > 0) {
972
973                 retval = target_read_u32(target, rp_addr, &rp);
974                 if (retval != ERROR_OK) {
975                         LOG_ERROR("failed to get read pointer");
976                         break;
977                 }
978
979                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
980                         (size_t) (buffer - buffer_orig), count, wp, rp);
981
982                 if (rp == 0) {
983                         LOG_ERROR("flash write algorithm aborted by target");
984                         retval = ERROR_FLASH_OPERATION_FAILED;
985                         break;
986                 }
987
988                 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
989                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
990                         break;
991                 }
992
993                 /* Count the number of bytes available in the fifo without
994                  * crossing the wrap around. Make sure to not fill it completely,
995                  * because that would make wp == rp and that's the empty condition. */
996                 uint32_t thisrun_bytes;
997                 if (rp > wp)
998                         thisrun_bytes = rp - wp - block_size;
999                 else if (rp > fifo_start_addr)
1000                         thisrun_bytes = fifo_end_addr - wp;
1001                 else
1002                         thisrun_bytes = fifo_end_addr - wp - block_size;
1003
1004                 if (thisrun_bytes == 0) {
1005                         /* Throttle polling a bit if transfer is (much) faster than flash
1006                          * programming. The exact delay shouldn't matter as long as it's
1007                          * less than buffer size / flash speed. This is very unlikely to
1008                          * run when using high latency connections such as USB. */
1009                         alive_sleep(10);
1010
1011                         /* to stop an infinite loop on some targets check and increment a timeout
1012                          * this issue was observed on a stellaris using the new ICDI interface */
1013                         if (timeout++ >= 500) {
1014                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1015                                 return ERROR_FLASH_OPERATION_FAILED;
1016                         }
1017                         continue;
1018                 }
1019
1020                 /* reset our timeout */
1021                 timeout = 0;
1022
1023                 /* Limit to the amount of data we actually want to write */
1024                 if (thisrun_bytes > count * block_size)
1025                         thisrun_bytes = count * block_size;
1026
1027                 /* Write data to fifo */
1028                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1029                 if (retval != ERROR_OK)
1030                         break;
1031
1032                 /* Update counters and wrap write pointer */
1033                 buffer += thisrun_bytes;
1034                 count -= thisrun_bytes / block_size;
1035                 wp += thisrun_bytes;
1036                 if (wp >= fifo_end_addr)
1037                         wp = fifo_start_addr;
1038
1039                 /* Store updated write pointer to target */
1040                 retval = target_write_u32(target, wp_addr, wp);
1041                 if (retval != ERROR_OK)
1042                         break;
1043         }
1044
1045         if (retval != ERROR_OK) {
1046                 /* abort flash write algorithm on target */
1047                 target_write_u32(target, wp_addr, 0);
1048         }
1049
1050         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1051                         num_reg_params, reg_params,
1052                         exit_point,
1053                         10000,
1054                         arch_info);
1055
1056         if (retval2 != ERROR_OK) {
1057                 LOG_ERROR("error waiting for target flash write algorithm");
1058                 retval = retval2;
1059         }
1060
1061         if (retval == ERROR_OK) {
1062                 /* check if algorithm set rp = 0 after fifo writer loop finished */
1063                 retval = target_read_u32(target, rp_addr, &rp);
1064                 if (retval == ERROR_OK && rp == 0) {
1065                         LOG_ERROR("flash write algorithm aborted by target");
1066                         retval = ERROR_FLASH_OPERATION_FAILED;
1067                 }
1068         }
1069
1070         return retval;
1071 }
1072
1073 int target_read_memory(struct target *target,
1074                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1075 {
1076         if (!target_was_examined(target)) {
1077                 LOG_ERROR("Target not examined yet");
1078                 return ERROR_FAIL;
1079         }
1080         if (!target->type->read_memory) {
1081                 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1082                 return ERROR_FAIL;
1083         }
1084         return target->type->read_memory(target, address, size, count, buffer);
1085 }
1086
1087 int target_read_phys_memory(struct target *target,
1088                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1089 {
1090         if (!target_was_examined(target)) {
1091                 LOG_ERROR("Target not examined yet");
1092                 return ERROR_FAIL;
1093         }
1094         if (!target->type->read_phys_memory) {
1095                 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1096                 return ERROR_FAIL;
1097         }
1098         return target->type->read_phys_memory(target, address, size, count, buffer);
1099 }
1100
1101 int target_write_memory(struct target *target,
1102                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1103 {
1104         if (!target_was_examined(target)) {
1105                 LOG_ERROR("Target not examined yet");
1106                 return ERROR_FAIL;
1107         }
1108         if (!target->type->write_memory) {
1109                 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1110                 return ERROR_FAIL;
1111         }
1112         return target->type->write_memory(target, address, size, count, buffer);
1113 }
1114
1115 int target_write_phys_memory(struct target *target,
1116                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1117 {
1118         if (!target_was_examined(target)) {
1119                 LOG_ERROR("Target not examined yet");
1120                 return ERROR_FAIL;
1121         }
1122         if (!target->type->write_phys_memory) {
1123                 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1124                 return ERROR_FAIL;
1125         }
1126         return target->type->write_phys_memory(target, address, size, count, buffer);
1127 }
1128
1129 int target_add_breakpoint(struct target *target,
1130                 struct breakpoint *breakpoint)
1131 {
1132         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1133                 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1134                 return ERROR_TARGET_NOT_HALTED;
1135         }
1136         return target->type->add_breakpoint(target, breakpoint);
1137 }
1138
1139 int target_add_context_breakpoint(struct target *target,
1140                 struct breakpoint *breakpoint)
1141 {
1142         if (target->state != TARGET_HALTED) {
1143                 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1144                 return ERROR_TARGET_NOT_HALTED;
1145         }
1146         return target->type->add_context_breakpoint(target, breakpoint);
1147 }
1148
1149 int target_add_hybrid_breakpoint(struct target *target,
1150                 struct breakpoint *breakpoint)
1151 {
1152         if (target->state != TARGET_HALTED) {
1153                 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1154                 return ERROR_TARGET_NOT_HALTED;
1155         }
1156         return target->type->add_hybrid_breakpoint(target, breakpoint);
1157 }
1158
1159 int target_remove_breakpoint(struct target *target,
1160                 struct breakpoint *breakpoint)
1161 {
1162         return target->type->remove_breakpoint(target, breakpoint);
1163 }
1164
1165 int target_add_watchpoint(struct target *target,
1166                 struct watchpoint *watchpoint)
1167 {
1168         if (target->state != TARGET_HALTED) {
1169                 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1170                 return ERROR_TARGET_NOT_HALTED;
1171         }
1172         return target->type->add_watchpoint(target, watchpoint);
1173 }
1174 int target_remove_watchpoint(struct target *target,
1175                 struct watchpoint *watchpoint)
1176 {
1177         return target->type->remove_watchpoint(target, watchpoint);
1178 }
1179 int target_hit_watchpoint(struct target *target,
1180                 struct watchpoint **hit_watchpoint)
1181 {
1182         if (target->state != TARGET_HALTED) {
1183                 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1184                 return ERROR_TARGET_NOT_HALTED;
1185         }
1186
1187         if (target->type->hit_watchpoint == NULL) {
1188                 /* For backward compatible, if hit_watchpoint is not implemented,
1189                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1190                  * information. */
1191                 return ERROR_FAIL;
1192         }
1193
1194         return target->type->hit_watchpoint(target, hit_watchpoint);
1195 }
1196
1197 int target_get_gdb_reg_list(struct target *target,
1198                 struct reg **reg_list[], int *reg_list_size,
1199                 enum target_register_class reg_class)
1200 {
1201         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1202 }
1203 int target_step(struct target *target,
1204                 int current, target_addr_t address, int handle_breakpoints)
1205 {
1206         return target->type->step(target, current, address, handle_breakpoints);
1207 }
1208
1209 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1210 {
1211         if (target->state != TARGET_HALTED) {
1212                 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1213                 return ERROR_TARGET_NOT_HALTED;
1214         }
1215         return target->type->get_gdb_fileio_info(target, fileio_info);
1216 }
1217
1218 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1219 {
1220         if (target->state != TARGET_HALTED) {
1221                 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1222                 return ERROR_TARGET_NOT_HALTED;
1223         }
1224         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1225 }
1226
1227 int target_profiling(struct target *target, uint32_t *samples,
1228                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1229 {
1230         if (target->state != TARGET_HALTED) {
1231                 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1232                 return ERROR_TARGET_NOT_HALTED;
1233         }
1234         return target->type->profiling(target, samples, max_num_samples,
1235                         num_samples, seconds);
1236 }
1237
1238 /**
1239  * Reset the @c examined flag for the given target.
1240  * Pure paranoia -- targets are zeroed on allocation.
1241  */
1242 static void target_reset_examined(struct target *target)
1243 {
1244         target->examined = false;
1245 }
1246
1247 static int handle_target(void *priv);
1248
1249 static int target_init_one(struct command_context *cmd_ctx,
1250                 struct target *target)
1251 {
1252         target_reset_examined(target);
1253
1254         struct target_type *type = target->type;
1255         if (type->examine == NULL)
1256                 type->examine = default_examine;
1257
1258         if (type->check_reset == NULL)
1259                 type->check_reset = default_check_reset;
1260
1261         assert(type->init_target != NULL);
1262
1263         int retval = type->init_target(cmd_ctx, target);
1264         if (ERROR_OK != retval) {
1265                 LOG_ERROR("target '%s' init failed", target_name(target));
1266                 return retval;
1267         }
1268
1269         /* Sanity-check MMU support ... stub in what we must, to help
1270          * implement it in stages, but warn if we need to do so.
1271          */
1272         if (type->mmu) {
1273                 if (type->virt2phys == NULL) {
1274                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1275                         type->virt2phys = identity_virt2phys;
1276                 }
1277         } else {
1278                 /* Make sure no-MMU targets all behave the same:  make no
1279                  * distinction between physical and virtual addresses, and
1280                  * ensure that virt2phys() is always an identity mapping.
1281                  */
1282                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1283                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1284
1285                 type->mmu = no_mmu;
1286                 type->write_phys_memory = type->write_memory;
1287                 type->read_phys_memory = type->read_memory;
1288                 type->virt2phys = identity_virt2phys;
1289         }
1290
1291         if (target->type->read_buffer == NULL)
1292                 target->type->read_buffer = target_read_buffer_default;
1293
1294         if (target->type->write_buffer == NULL)
1295                 target->type->write_buffer = target_write_buffer_default;
1296
1297         if (target->type->get_gdb_fileio_info == NULL)
1298                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1299
1300         if (target->type->gdb_fileio_end == NULL)
1301                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1302
1303         if (target->type->profiling == NULL)
1304                 target->type->profiling = target_profiling_default;
1305
1306         return ERROR_OK;
1307 }
1308
1309 static int target_init(struct command_context *cmd_ctx)
1310 {
1311         struct target *target;
1312         int retval;
1313
1314         for (target = all_targets; target; target = target->next) {
1315                 retval = target_init_one(cmd_ctx, target);
1316                 if (ERROR_OK != retval)
1317                         return retval;
1318         }
1319
1320         if (!all_targets)
1321                 return ERROR_OK;
1322
1323         retval = target_register_user_commands(cmd_ctx);
1324         if (ERROR_OK != retval)
1325                 return retval;
1326
1327         retval = target_register_timer_callback(&handle_target,
1328                         polling_interval, 1, cmd_ctx->interp);
1329         if (ERROR_OK != retval)
1330                 return retval;
1331
1332         return ERROR_OK;
1333 }
1334
1335 COMMAND_HANDLER(handle_target_init_command)
1336 {
1337         int retval;
1338
1339         if (CMD_ARGC != 0)
1340                 return ERROR_COMMAND_SYNTAX_ERROR;
1341
1342         static bool target_initialized;
1343         if (target_initialized) {
1344                 LOG_INFO("'target init' has already been called");
1345                 return ERROR_OK;
1346         }
1347         target_initialized = true;
1348
1349         retval = command_run_line(CMD_CTX, "init_targets");
1350         if (ERROR_OK != retval)
1351                 return retval;
1352
1353         retval = command_run_line(CMD_CTX, "init_target_events");
1354         if (ERROR_OK != retval)
1355                 return retval;
1356
1357         retval = command_run_line(CMD_CTX, "init_board");
1358         if (ERROR_OK != retval)
1359                 return retval;
1360
1361         LOG_DEBUG("Initializing targets...");
1362         return target_init(CMD_CTX);
1363 }
1364
1365 int target_register_event_callback(int (*callback)(struct target *target,
1366                 enum target_event event, void *priv), void *priv)
1367 {
1368         struct target_event_callback **callbacks_p = &target_event_callbacks;
1369
1370         if (callback == NULL)
1371                 return ERROR_COMMAND_SYNTAX_ERROR;
1372
1373         if (*callbacks_p) {
1374                 while ((*callbacks_p)->next)
1375                         callbacks_p = &((*callbacks_p)->next);
1376                 callbacks_p = &((*callbacks_p)->next);
1377         }
1378
1379         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1380         (*callbacks_p)->callback = callback;
1381         (*callbacks_p)->priv = priv;
1382         (*callbacks_p)->next = NULL;
1383
1384         return ERROR_OK;
1385 }
1386
1387 int target_register_reset_callback(int (*callback)(struct target *target,
1388                 enum target_reset_mode reset_mode, void *priv), void *priv)
1389 {
1390         struct target_reset_callback *entry;
1391
1392         if (callback == NULL)
1393                 return ERROR_COMMAND_SYNTAX_ERROR;
1394
1395         entry = malloc(sizeof(struct target_reset_callback));
1396         if (entry == NULL) {
1397                 LOG_ERROR("error allocating buffer for reset callback entry");
1398                 return ERROR_COMMAND_SYNTAX_ERROR;
1399         }
1400
1401         entry->callback = callback;
1402         entry->priv = priv;
1403         list_add(&entry->list, &target_reset_callback_list);
1404
1405
1406         return ERROR_OK;
1407 }
1408
1409 int target_register_trace_callback(int (*callback)(struct target *target,
1410                 size_t len, uint8_t *data, void *priv), void *priv)
1411 {
1412         struct target_trace_callback *entry;
1413
1414         if (callback == NULL)
1415                 return ERROR_COMMAND_SYNTAX_ERROR;
1416
1417         entry = malloc(sizeof(struct target_trace_callback));
1418         if (entry == NULL) {
1419                 LOG_ERROR("error allocating buffer for trace callback entry");
1420                 return ERROR_COMMAND_SYNTAX_ERROR;
1421         }
1422
1423         entry->callback = callback;
1424         entry->priv = priv;
1425         list_add(&entry->list, &target_trace_callback_list);
1426
1427
1428         return ERROR_OK;
1429 }
1430
1431 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1432 {
1433         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1434
1435         if (callback == NULL)
1436                 return ERROR_COMMAND_SYNTAX_ERROR;
1437
1438         if (*callbacks_p) {
1439                 while ((*callbacks_p)->next)
1440                         callbacks_p = &((*callbacks_p)->next);
1441                 callbacks_p = &((*callbacks_p)->next);
1442         }
1443
1444         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1445         (*callbacks_p)->callback = callback;
1446         (*callbacks_p)->periodic = periodic;
1447         (*callbacks_p)->time_ms = time_ms;
1448         (*callbacks_p)->removed = false;
1449
1450         gettimeofday(&(*callbacks_p)->when, NULL);
1451         timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1452
1453         (*callbacks_p)->priv = priv;
1454         (*callbacks_p)->next = NULL;
1455
1456         return ERROR_OK;
1457 }
1458
1459 int target_unregister_event_callback(int (*callback)(struct target *target,
1460                 enum target_event event, void *priv), void *priv)
1461 {
1462         struct target_event_callback **p = &target_event_callbacks;
1463         struct target_event_callback *c = target_event_callbacks;
1464
1465         if (callback == NULL)
1466                 return ERROR_COMMAND_SYNTAX_ERROR;
1467
1468         while (c) {
1469                 struct target_event_callback *next = c->next;
1470                 if ((c->callback == callback) && (c->priv == priv)) {
1471                         *p = next;
1472                         free(c);
1473                         return ERROR_OK;
1474                 } else
1475                         p = &(c->next);
1476                 c = next;
1477         }
1478
1479         return ERROR_OK;
1480 }
1481
1482 int target_unregister_reset_callback(int (*callback)(struct target *target,
1483                 enum target_reset_mode reset_mode, void *priv), void *priv)
1484 {
1485         struct target_reset_callback *entry;
1486
1487         if (callback == NULL)
1488                 return ERROR_COMMAND_SYNTAX_ERROR;
1489
1490         list_for_each_entry(entry, &target_reset_callback_list, list) {
1491                 if (entry->callback == callback && entry->priv == priv) {
1492                         list_del(&entry->list);
1493                         free(entry);
1494                         break;
1495                 }
1496         }
1497
1498         return ERROR_OK;
1499 }
1500
1501 int target_unregister_trace_callback(int (*callback)(struct target *target,
1502                 size_t len, uint8_t *data, void *priv), void *priv)
1503 {
1504         struct target_trace_callback *entry;
1505
1506         if (callback == NULL)
1507                 return ERROR_COMMAND_SYNTAX_ERROR;
1508
1509         list_for_each_entry(entry, &target_trace_callback_list, list) {
1510                 if (entry->callback == callback && entry->priv == priv) {
1511                         list_del(&entry->list);
1512                         free(entry);
1513                         break;
1514                 }
1515         }
1516
1517         return ERROR_OK;
1518 }
1519
1520 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1521 {
1522         if (callback == NULL)
1523                 return ERROR_COMMAND_SYNTAX_ERROR;
1524
1525         for (struct target_timer_callback *c = target_timer_callbacks;
1526              c; c = c->next) {
1527                 if ((c->callback == callback) && (c->priv == priv)) {
1528                         c->removed = true;
1529                         return ERROR_OK;
1530                 }
1531         }
1532
1533         return ERROR_FAIL;
1534 }
1535
1536 int target_call_event_callbacks(struct target *target, enum target_event event)
1537 {
1538         struct target_event_callback *callback = target_event_callbacks;
1539         struct target_event_callback *next_callback;
1540
1541         if (event == TARGET_EVENT_HALTED) {
1542                 /* execute early halted first */
1543                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1544         }
1545
1546         LOG_DEBUG("target event %i (%s)", event,
1547                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1548
1549         target_handle_event(target, event);
1550
1551         while (callback) {
1552                 next_callback = callback->next;
1553                 callback->callback(target, event, callback->priv);
1554                 callback = next_callback;
1555         }
1556
1557         return ERROR_OK;
1558 }
1559
1560 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1561 {
1562         struct target_reset_callback *callback;
1563
1564         LOG_DEBUG("target reset %i (%s)", reset_mode,
1565                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1566
1567         list_for_each_entry(callback, &target_reset_callback_list, list)
1568                 callback->callback(target, reset_mode, callback->priv);
1569
1570         return ERROR_OK;
1571 }
1572
1573 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1574 {
1575         struct target_trace_callback *callback;
1576
1577         list_for_each_entry(callback, &target_trace_callback_list, list)
1578                 callback->callback(target, len, data, callback->priv);
1579
1580         return ERROR_OK;
1581 }
1582
1583 static int target_timer_callback_periodic_restart(
1584                 struct target_timer_callback *cb, struct timeval *now)
1585 {
1586         cb->when = *now;
1587         timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1588         return ERROR_OK;
1589 }
1590
1591 static int target_call_timer_callback(struct target_timer_callback *cb,
1592                 struct timeval *now)
1593 {
1594         cb->callback(cb->priv);
1595
1596         if (cb->periodic)
1597                 return target_timer_callback_periodic_restart(cb, now);
1598
1599         return target_unregister_timer_callback(cb->callback, cb->priv);
1600 }
1601
1602 static int target_call_timer_callbacks_check_time(int checktime)
1603 {
1604         static bool callback_processing;
1605
1606         /* Do not allow nesting */
1607         if (callback_processing)
1608                 return ERROR_OK;
1609
1610         callback_processing = true;
1611
1612         keep_alive();
1613
1614         struct timeval now;
1615         gettimeofday(&now, NULL);
1616
1617         /* Store an address of the place containing a pointer to the
1618          * next item; initially, that's a standalone "root of the
1619          * list" variable. */
1620         struct target_timer_callback **callback = &target_timer_callbacks;
1621         while (*callback) {
1622                 if ((*callback)->removed) {
1623                         struct target_timer_callback *p = *callback;
1624                         *callback = (*callback)->next;
1625                         free(p);
1626                         continue;
1627                 }
1628
1629                 bool call_it = (*callback)->callback &&
1630                         ((!checktime && (*callback)->periodic) ||
1631                          timeval_compare(&now, &(*callback)->when) >= 0);
1632
1633                 if (call_it)
1634                         target_call_timer_callback(*callback, &now);
1635
1636                 callback = &(*callback)->next;
1637         }
1638
1639         callback_processing = false;
1640         return ERROR_OK;
1641 }
1642
1643 int target_call_timer_callbacks(void)
1644 {
1645         return target_call_timer_callbacks_check_time(1);
1646 }
1647
1648 /* invoke periodic callbacks immediately */
1649 int target_call_timer_callbacks_now(void)
1650 {
1651         return target_call_timer_callbacks_check_time(0);
1652 }
1653
1654 /* Prints the working area layout for debug purposes */
1655 static void print_wa_layout(struct target *target)
1656 {
1657         struct working_area *c = target->working_areas;
1658
1659         while (c) {
1660                 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1661                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1662                         c->address, c->address + c->size - 1, c->size);
1663                 c = c->next;
1664         }
1665 }
1666
1667 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1668 static void target_split_working_area(struct working_area *area, uint32_t size)
1669 {
1670         assert(area->free); /* Shouldn't split an allocated area */
1671         assert(size <= area->size); /* Caller should guarantee this */
1672
1673         /* Split only if not already the right size */
1674         if (size < area->size) {
1675                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1676
1677                 if (new_wa == NULL)
1678                         return;
1679
1680                 new_wa->next = area->next;
1681                 new_wa->size = area->size - size;
1682                 new_wa->address = area->address + size;
1683                 new_wa->backup = NULL;
1684                 new_wa->user = NULL;
1685                 new_wa->free = true;
1686
1687                 area->next = new_wa;
1688                 area->size = size;
1689
1690                 /* If backup memory was allocated to this area, it has the wrong size
1691                  * now so free it and it will be reallocated if/when needed */
1692                 if (area->backup) {
1693                         free(area->backup);
1694                         area->backup = NULL;
1695                 }
1696         }
1697 }
1698
1699 /* Merge all adjacent free areas into one */
1700 static void target_merge_working_areas(struct target *target)
1701 {
1702         struct working_area *c = target->working_areas;
1703
1704         while (c && c->next) {
1705                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1706
1707                 /* Find two adjacent free areas */
1708                 if (c->free && c->next->free) {
1709                         /* Merge the last into the first */
1710                         c->size += c->next->size;
1711
1712                         /* Remove the last */
1713                         struct working_area *to_be_freed = c->next;
1714                         c->next = c->next->next;
1715                         if (to_be_freed->backup)
1716                                 free(to_be_freed->backup);
1717                         free(to_be_freed);
1718
1719                         /* If backup memory was allocated to the remaining area, it's has
1720                          * the wrong size now */
1721                         if (c->backup) {
1722                                 free(c->backup);
1723                                 c->backup = NULL;
1724                         }
1725                 } else {
1726                         c = c->next;
1727                 }
1728         }
1729 }
1730
1731 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1732 {
1733         /* Reevaluate working area address based on MMU state*/
1734         if (target->working_areas == NULL) {
1735                 int retval;
1736                 int enabled;
1737
1738                 retval = target->type->mmu(target, &enabled);
1739                 if (retval != ERROR_OK)
1740                         return retval;
1741
1742                 if (!enabled) {
1743                         if (target->working_area_phys_spec) {
1744                                 LOG_DEBUG("MMU disabled, using physical "
1745                                         "address for working memory " TARGET_ADDR_FMT,
1746                                         target->working_area_phys);
1747                                 target->working_area = target->working_area_phys;
1748                         } else {
1749                                 LOG_ERROR("No working memory available. "
1750                                         "Specify -work-area-phys to target.");
1751                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1752                         }
1753                 } else {
1754                         if (target->working_area_virt_spec) {
1755                                 LOG_DEBUG("MMU enabled, using virtual "
1756                                         "address for working memory " TARGET_ADDR_FMT,
1757                                         target->working_area_virt);
1758                                 target->working_area = target->working_area_virt;
1759                         } else {
1760                                 LOG_ERROR("No working memory available. "
1761                                         "Specify -work-area-virt to target.");
1762                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1763                         }
1764                 }
1765
1766                 /* Set up initial working area on first call */
1767                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1768                 if (new_wa) {
1769                         new_wa->next = NULL;
1770                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1771                         new_wa->address = target->working_area;
1772                         new_wa->backup = NULL;
1773                         new_wa->user = NULL;
1774                         new_wa->free = true;
1775                 }
1776
1777                 target->working_areas = new_wa;
1778         }
1779
1780         /* only allocate multiples of 4 byte */
1781         if (size % 4)
1782                 size = (size + 3) & (~3UL);
1783
1784         struct working_area *c = target->working_areas;
1785
1786         /* Find the first large enough working area */
1787         while (c) {
1788                 if (c->free && c->size >= size)
1789                         break;
1790                 c = c->next;
1791         }
1792
1793         if (c == NULL)
1794                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1795
1796         /* Split the working area into the requested size */
1797         target_split_working_area(c, size);
1798
1799         LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1800                           size, c->address);
1801
1802         if (target->backup_working_area) {
1803                 if (c->backup == NULL) {
1804                         c->backup = malloc(c->size);
1805                         if (c->backup == NULL)
1806                                 return ERROR_FAIL;
1807                 }
1808
1809                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1810                 if (retval != ERROR_OK)
1811                         return retval;
1812         }
1813
1814         /* mark as used, and return the new (reused) area */
1815         c->free = false;
1816         *area = c;
1817
1818         /* user pointer */
1819         c->user = area;
1820
1821         print_wa_layout(target);
1822
1823         return ERROR_OK;
1824 }
1825
1826 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1827 {
1828         int retval;
1829
1830         retval = target_alloc_working_area_try(target, size, area);
1831         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1832                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1833         return retval;
1834
1835 }
1836
1837 static int target_restore_working_area(struct target *target, struct working_area *area)
1838 {
1839         int retval = ERROR_OK;
1840
1841         if (target->backup_working_area && area->backup != NULL) {
1842                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1843                 if (retval != ERROR_OK)
1844                         LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1845                                         area->size, area->address);
1846         }
1847
1848         return retval;
1849 }
1850
1851 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1852 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1853 {
1854         int retval = ERROR_OK;
1855
1856         if (area->free)
1857                 return retval;
1858
1859         if (restore) {
1860                 retval = target_restore_working_area(target, area);
1861                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1862                 if (retval != ERROR_OK)
1863                         return retval;
1864         }
1865
1866         area->free = true;
1867
1868         LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1869                         area->size, area->address);
1870
1871         /* mark user pointer invalid */
1872         /* TODO: Is this really safe? It points to some previous caller's memory.
1873          * How could we know that the area pointer is still in that place and not
1874          * some other vital data? What's the purpose of this, anyway? */
1875         *area->user = NULL;
1876         area->user = NULL;
1877
1878         target_merge_working_areas(target);
1879
1880         print_wa_layout(target);
1881
1882         return retval;
1883 }
1884
1885 int target_free_working_area(struct target *target, struct working_area *area)
1886 {
1887         return target_free_working_area_restore(target, area, 1);
1888 }
1889
1890 static void target_destroy(struct target *target)
1891 {
1892         if (target->type->deinit_target)
1893                 target->type->deinit_target(target);
1894
1895         free(target->type);
1896         free(target->trace_info);
1897         free(target->cmd_name);
1898         free(target);
1899 }
1900
1901 void target_quit(void)
1902 {
1903         struct target_event_callback *pe = target_event_callbacks;
1904         while (pe) {
1905                 struct target_event_callback *t = pe->next;
1906                 free(pe);
1907                 pe = t;
1908         }
1909         target_event_callbacks = NULL;
1910
1911         struct target_timer_callback *pt = target_timer_callbacks;
1912         while (pt) {
1913                 struct target_timer_callback *t = pt->next;
1914                 free(pt);
1915                 pt = t;
1916         }
1917         target_timer_callbacks = NULL;
1918
1919         for (struct target *target = all_targets; target;) {
1920                 struct target *tmp;
1921
1922                 tmp = target->next;
1923                 target_destroy(target);
1924                 target = tmp;
1925         }
1926
1927         all_targets = NULL;
1928 }
1929
1930 /* free resources and restore memory, if restoring memory fails,
1931  * free up resources anyway
1932  */
1933 static void target_free_all_working_areas_restore(struct target *target, int restore)
1934 {
1935         struct working_area *c = target->working_areas;
1936
1937         LOG_DEBUG("freeing all working areas");
1938
1939         /* Loop through all areas, restoring the allocated ones and marking them as free */
1940         while (c) {
1941                 if (!c->free) {
1942                         if (restore)
1943                                 target_restore_working_area(target, c);
1944                         c->free = true;
1945                         *c->user = NULL; /* Same as above */
1946                         c->user = NULL;
1947                 }
1948                 c = c->next;
1949         }
1950
1951         /* Run a merge pass to combine all areas into one */
1952         target_merge_working_areas(target);
1953
1954         print_wa_layout(target);
1955 }
1956
1957 void target_free_all_working_areas(struct target *target)
1958 {
1959         target_free_all_working_areas_restore(target, 1);
1960 }
1961
1962 /* Find the largest number of bytes that can be allocated */
1963 uint32_t target_get_working_area_avail(struct target *target)
1964 {
1965         struct working_area *c = target->working_areas;
1966         uint32_t max_size = 0;
1967
1968         if (c == NULL)
1969                 return target->working_area_size;
1970
1971         while (c) {
1972                 if (c->free && max_size < c->size)
1973                         max_size = c->size;
1974
1975                 c = c->next;
1976         }
1977
1978         return max_size;
1979 }
1980
1981 int target_arch_state(struct target *target)
1982 {
1983         int retval;
1984         if (target == NULL) {
1985                 LOG_WARNING("No target has been configured");
1986                 return ERROR_OK;
1987         }
1988
1989         if (target->state != TARGET_HALTED)
1990                 return ERROR_OK;
1991
1992         retval = target->type->arch_state(target);
1993         return retval;
1994 }
1995
1996 static int target_get_gdb_fileio_info_default(struct target *target,
1997                 struct gdb_fileio_info *fileio_info)
1998 {
1999         /* If target does not support semi-hosting function, target
2000            has no need to provide .get_gdb_fileio_info callback.
2001            It just return ERROR_FAIL and gdb_server will return "Txx"
2002            as target halted every time.  */
2003         return ERROR_FAIL;
2004 }
2005
2006 static int target_gdb_fileio_end_default(struct target *target,
2007                 int retcode, int fileio_errno, bool ctrl_c)
2008 {
2009         return ERROR_OK;
2010 }
2011
2012 static int target_profiling_default(struct target *target, uint32_t *samples,
2013                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2014 {
2015         struct timeval timeout, now;
2016
2017         gettimeofday(&timeout, NULL);
2018         timeval_add_time(&timeout, seconds, 0);
2019
2020         LOG_INFO("Starting profiling. Halting and resuming the"
2021                         " target as often as we can...");
2022
2023         uint32_t sample_count = 0;
2024         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2025         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2026
2027         int retval = ERROR_OK;
2028         for (;;) {
2029                 target_poll(target);
2030                 if (target->state == TARGET_HALTED) {
2031                         uint32_t t = buf_get_u32(reg->value, 0, 32);
2032                         samples[sample_count++] = t;
2033                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
2034                         retval = target_resume(target, 1, 0, 0, 0);
2035                         target_poll(target);
2036                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2037                 } else if (target->state == TARGET_RUNNING) {
2038                         /* We want to quickly sample the PC. */
2039                         retval = target_halt(target);
2040                 } else {
2041                         LOG_INFO("Target not halted or running");
2042                         retval = ERROR_OK;
2043                         break;
2044                 }
2045
2046                 if (retval != ERROR_OK)
2047                         break;
2048
2049                 gettimeofday(&now, NULL);
2050                 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2051                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2052                         break;
2053                 }
2054         }
2055
2056         *num_samples = sample_count;
2057         return retval;
2058 }
2059
2060 /* Single aligned words are guaranteed to use 16 or 32 bit access
2061  * mode respectively, otherwise data is handled as quickly as
2062  * possible
2063  */
2064 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2065 {
2066         LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2067                           size, address);
2068
2069         if (!target_was_examined(target)) {
2070                 LOG_ERROR("Target not examined yet");
2071                 return ERROR_FAIL;
2072         }
2073
2074         if (size == 0)
2075                 return ERROR_OK;
2076
2077         if ((address + size - 1) < address) {
2078                 /* GDB can request this when e.g. PC is 0xfffffffc */
2079                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2080                                   address,
2081                                   size);
2082                 return ERROR_FAIL;
2083         }
2084
2085         return target->type->write_buffer(target, address, size, buffer);
2086 }
2087
2088 static int target_write_buffer_default(struct target *target,
2089         target_addr_t address, uint32_t count, const uint8_t *buffer)
2090 {
2091         uint32_t size;
2092
2093         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2094          * will have something to do with the size we leave to it. */
2095         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2096                 if (address & size) {
2097                         int retval = target_write_memory(target, address, size, 1, buffer);
2098                         if (retval != ERROR_OK)
2099                                 return retval;
2100                         address += size;
2101                         count -= size;
2102                         buffer += size;
2103                 }
2104         }
2105
2106         /* Write the data with as large access size as possible. */
2107         for (; size > 0; size /= 2) {
2108                 uint32_t aligned = count - count % size;
2109                 if (aligned > 0) {
2110                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2111                         if (retval != ERROR_OK)
2112                                 return retval;
2113                         address += aligned;
2114                         count -= aligned;
2115                         buffer += aligned;
2116                 }
2117         }
2118
2119         return ERROR_OK;
2120 }
2121
2122 /* Single aligned words are guaranteed to use 16 or 32 bit access
2123  * mode respectively, otherwise data is handled as quickly as
2124  * possible
2125  */
2126 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2127 {
2128         LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2129                           size, address);
2130
2131         if (!target_was_examined(target)) {
2132                 LOG_ERROR("Target not examined yet");
2133                 return ERROR_FAIL;
2134         }
2135
2136         if (size == 0)
2137                 return ERROR_OK;
2138
2139         if ((address + size - 1) < address) {
2140                 /* GDB can request this when e.g. PC is 0xfffffffc */
2141                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2142                                   address,
2143                                   size);
2144                 return ERROR_FAIL;
2145         }
2146
2147         return target->type->read_buffer(target, address, size, buffer);
2148 }
2149
2150 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2151 {
2152         uint32_t size;
2153
2154         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2155          * will have something to do with the size we leave to it. */
2156         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2157                 if (address & size) {
2158                         int retval = target_read_memory(target, address, size, 1, buffer);
2159                         if (retval != ERROR_OK)
2160                                 return retval;
2161                         address += size;
2162                         count -= size;
2163                         buffer += size;
2164                 }
2165         }
2166
2167         /* Read the data with as large access size as possible. */
2168         for (; size > 0; size /= 2) {
2169                 uint32_t aligned = count - count % size;
2170                 if (aligned > 0) {
2171                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2172                         if (retval != ERROR_OK)
2173                                 return retval;
2174                         address += aligned;
2175                         count -= aligned;
2176                         buffer += aligned;
2177                 }
2178         }
2179
2180         return ERROR_OK;
2181 }
2182
2183 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2184 {
2185         uint8_t *buffer;
2186         int retval;
2187         uint32_t i;
2188         uint32_t checksum = 0;
2189         if (!target_was_examined(target)) {
2190                 LOG_ERROR("Target not examined yet");
2191                 return ERROR_FAIL;
2192         }
2193
2194         retval = target->type->checksum_memory(target, address, size, &checksum);
2195         if (retval != ERROR_OK) {
2196                 buffer = malloc(size);
2197                 if (buffer == NULL) {
2198                         LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2199                         return ERROR_COMMAND_SYNTAX_ERROR;
2200                 }
2201                 retval = target_read_buffer(target, address, size, buffer);
2202                 if (retval != ERROR_OK) {
2203                         free(buffer);
2204                         return retval;
2205                 }
2206
2207                 /* convert to target endianness */
2208                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2209                         uint32_t target_data;
2210                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2211                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2212                 }
2213
2214                 retval = image_calculate_checksum(buffer, size, &checksum);
2215                 free(buffer);
2216         }
2217
2218         *crc = checksum;
2219
2220         return retval;
2221 }
2222
2223 int target_blank_check_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* blank,
2224         uint8_t erased_value)
2225 {
2226         int retval;
2227         if (!target_was_examined(target)) {
2228                 LOG_ERROR("Target not examined yet");
2229                 return ERROR_FAIL;
2230         }
2231
2232         if (target->type->blank_check_memory == 0)
2233                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2234
2235         retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2236
2237         return retval;
2238 }
2239
2240 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2241 {
2242         uint8_t value_buf[8];
2243         if (!target_was_examined(target)) {
2244                 LOG_ERROR("Target not examined yet");
2245                 return ERROR_FAIL;
2246         }
2247
2248         int retval = target_read_memory(target, address, 8, 1, value_buf);
2249
2250         if (retval == ERROR_OK) {
2251                 *value = target_buffer_get_u64(target, value_buf);
2252                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2253                                   address,
2254                                   *value);
2255         } else {
2256                 *value = 0x0;
2257                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2258                                   address);
2259         }
2260
2261         return retval;
2262 }
2263
2264 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2265 {
2266         uint8_t value_buf[4];
2267         if (!target_was_examined(target)) {
2268                 LOG_ERROR("Target not examined yet");
2269                 return ERROR_FAIL;
2270         }
2271
2272         int retval = target_read_memory(target, address, 4, 1, value_buf);
2273
2274         if (retval == ERROR_OK) {
2275                 *value = target_buffer_get_u32(target, value_buf);
2276                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2277                                   address,
2278                                   *value);
2279         } else {
2280                 *value = 0x0;
2281                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2282                                   address);
2283         }
2284
2285         return retval;
2286 }
2287
2288 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2289 {
2290         uint8_t value_buf[2];
2291         if (!target_was_examined(target)) {
2292                 LOG_ERROR("Target not examined yet");
2293                 return ERROR_FAIL;
2294         }
2295
2296         int retval = target_read_memory(target, address, 2, 1, value_buf);
2297
2298         if (retval == ERROR_OK) {
2299                 *value = target_buffer_get_u16(target, value_buf);
2300                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2301                                   address,
2302                                   *value);
2303         } else {
2304                 *value = 0x0;
2305                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2306                                   address);
2307         }
2308
2309         return retval;
2310 }
2311
2312 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2313 {
2314         if (!target_was_examined(target)) {
2315                 LOG_ERROR("Target not examined yet");
2316                 return ERROR_FAIL;
2317         }
2318
2319         int retval = target_read_memory(target, address, 1, 1, value);
2320
2321         if (retval == ERROR_OK) {
2322                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2323                                   address,
2324                                   *value);
2325         } else {
2326                 *value = 0x0;
2327                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2328                                   address);
2329         }
2330
2331         return retval;
2332 }
2333
2334 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2335 {
2336         int retval;
2337         uint8_t value_buf[8];
2338         if (!target_was_examined(target)) {
2339                 LOG_ERROR("Target not examined yet");
2340                 return ERROR_FAIL;
2341         }
2342
2343         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2344                           address,
2345                           value);
2346
2347         target_buffer_set_u64(target, value_buf, value);
2348         retval = target_write_memory(target, address, 8, 1, value_buf);
2349         if (retval != ERROR_OK)
2350                 LOG_DEBUG("failed: %i", retval);
2351
2352         return retval;
2353 }
2354
2355 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2356 {
2357         int retval;
2358         uint8_t value_buf[4];
2359         if (!target_was_examined(target)) {
2360                 LOG_ERROR("Target not examined yet");
2361                 return ERROR_FAIL;
2362         }
2363
2364         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2365                           address,
2366                           value);
2367
2368         target_buffer_set_u32(target, value_buf, value);
2369         retval = target_write_memory(target, address, 4, 1, value_buf);
2370         if (retval != ERROR_OK)
2371                 LOG_DEBUG("failed: %i", retval);
2372
2373         return retval;
2374 }
2375
2376 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2377 {
2378         int retval;
2379         uint8_t value_buf[2];
2380         if (!target_was_examined(target)) {
2381                 LOG_ERROR("Target not examined yet");
2382                 return ERROR_FAIL;
2383         }
2384
2385         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2386                           address,
2387                           value);
2388
2389         target_buffer_set_u16(target, value_buf, value);
2390         retval = target_write_memory(target, address, 2, 1, value_buf);
2391         if (retval != ERROR_OK)
2392                 LOG_DEBUG("failed: %i", retval);
2393
2394         return retval;
2395 }
2396
2397 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2398 {
2399         int retval;
2400         if (!target_was_examined(target)) {
2401                 LOG_ERROR("Target not examined yet");
2402                 return ERROR_FAIL;
2403         }
2404
2405         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2406                           address, value);
2407
2408         retval = target_write_memory(target, address, 1, 1, &value);
2409         if (retval != ERROR_OK)
2410                 LOG_DEBUG("failed: %i", retval);
2411
2412         return retval;
2413 }
2414
2415 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2416 {
2417         int retval;
2418         uint8_t value_buf[8];
2419         if (!target_was_examined(target)) {
2420                 LOG_ERROR("Target not examined yet");
2421                 return ERROR_FAIL;
2422         }
2423
2424         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2425                           address,
2426                           value);
2427
2428         target_buffer_set_u64(target, value_buf, value);
2429         retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2430         if (retval != ERROR_OK)
2431                 LOG_DEBUG("failed: %i", retval);
2432
2433         return retval;
2434 }
2435
2436 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2437 {
2438         int retval;
2439         uint8_t value_buf[4];
2440         if (!target_was_examined(target)) {
2441                 LOG_ERROR("Target not examined yet");
2442                 return ERROR_FAIL;
2443         }
2444
2445         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2446                           address,
2447                           value);
2448
2449         target_buffer_set_u32(target, value_buf, value);
2450         retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2451         if (retval != ERROR_OK)
2452                 LOG_DEBUG("failed: %i", retval);
2453
2454         return retval;
2455 }
2456
2457 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2458 {
2459         int retval;
2460         uint8_t value_buf[2];
2461         if (!target_was_examined(target)) {
2462                 LOG_ERROR("Target not examined yet");
2463                 return ERROR_FAIL;
2464         }
2465
2466         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2467                           address,
2468                           value);
2469
2470         target_buffer_set_u16(target, value_buf, value);
2471         retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2472         if (retval != ERROR_OK)
2473                 LOG_DEBUG("failed: %i", retval);
2474
2475         return retval;
2476 }
2477
2478 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2479 {
2480         int retval;
2481         if (!target_was_examined(target)) {
2482                 LOG_ERROR("Target not examined yet");
2483                 return ERROR_FAIL;
2484         }
2485
2486         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2487                           address, value);
2488
2489         retval = target_write_phys_memory(target, address, 1, 1, &value);
2490         if (retval != ERROR_OK)
2491                 LOG_DEBUG("failed: %i", retval);
2492
2493         return retval;
2494 }
2495
2496 static int find_target(struct command_context *cmd_ctx, const char *name)
2497 {
2498         struct target *target = get_target(name);
2499         if (target == NULL) {
2500                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2501                 return ERROR_FAIL;
2502         }
2503         if (!target->tap->enabled) {
2504                 LOG_USER("Target: TAP %s is disabled, "
2505                          "can't be the current target\n",
2506                          target->tap->dotted_name);
2507                 return ERROR_FAIL;
2508         }
2509
2510         cmd_ctx->current_target = target;
2511         if (cmd_ctx->current_target_override)
2512                 cmd_ctx->current_target_override = target;
2513
2514         return ERROR_OK;
2515 }
2516
2517
2518 COMMAND_HANDLER(handle_targets_command)
2519 {
2520         int retval = ERROR_OK;
2521         if (CMD_ARGC == 1) {
2522                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2523                 if (retval == ERROR_OK) {
2524                         /* we're done! */
2525                         return retval;
2526                 }
2527         }
2528
2529         struct target *target = all_targets;
2530         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2531         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2532         while (target) {
2533                 const char *state;
2534                 char marker = ' ';
2535
2536                 if (target->tap->enabled)
2537                         state = target_state_name(target);
2538                 else
2539                         state = "tap-disabled";
2540
2541                 if (CMD_CTX->current_target == target)
2542                         marker = '*';
2543
2544                 /* keep columns lined up to match the headers above */
2545                 command_print(CMD_CTX,
2546                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2547                                 target->target_number,
2548                                 marker,
2549                                 target_name(target),
2550                                 target_type_name(target),
2551                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2552                                         target->endianness)->name,
2553                                 target->tap->dotted_name,
2554                                 state);
2555                 target = target->next;
2556         }
2557
2558         return retval;
2559 }
2560
2561 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2562
2563 static int powerDropout;
2564 static int srstAsserted;
2565
2566 static int runPowerRestore;
2567 static int runPowerDropout;
2568 static int runSrstAsserted;
2569 static int runSrstDeasserted;
2570
2571 static int sense_handler(void)
2572 {
2573         static int prevSrstAsserted;
2574         static int prevPowerdropout;
2575
2576         int retval = jtag_power_dropout(&powerDropout);
2577         if (retval != ERROR_OK)
2578                 return retval;
2579
2580         int powerRestored;
2581         powerRestored = prevPowerdropout && !powerDropout;
2582         if (powerRestored)
2583                 runPowerRestore = 1;
2584
2585         int64_t current = timeval_ms();
2586         static int64_t lastPower;
2587         bool waitMore = lastPower + 2000 > current;
2588         if (powerDropout && !waitMore) {
2589                 runPowerDropout = 1;
2590                 lastPower = current;
2591         }
2592
2593         retval = jtag_srst_asserted(&srstAsserted);
2594         if (retval != ERROR_OK)
2595                 return retval;
2596
2597         int srstDeasserted;
2598         srstDeasserted = prevSrstAsserted && !srstAsserted;
2599
2600         static int64_t lastSrst;
2601         waitMore = lastSrst + 2000 > current;
2602         if (srstDeasserted && !waitMore) {
2603                 runSrstDeasserted = 1;
2604                 lastSrst = current;
2605         }
2606
2607         if (!prevSrstAsserted && srstAsserted)
2608                 runSrstAsserted = 1;
2609
2610         prevSrstAsserted = srstAsserted;
2611         prevPowerdropout = powerDropout;
2612
2613         if (srstDeasserted || powerRestored) {
2614                 /* Other than logging the event we can't do anything here.
2615                  * Issuing a reset is a particularly bad idea as we might
2616                  * be inside a reset already.
2617                  */
2618         }
2619
2620         return ERROR_OK;
2621 }
2622
2623 /* process target state changes */
2624 static int handle_target(void *priv)
2625 {
2626         Jim_Interp *interp = (Jim_Interp *)priv;
2627         int retval = ERROR_OK;
2628
2629         if (!is_jtag_poll_safe()) {
2630                 /* polling is disabled currently */
2631                 return ERROR_OK;
2632         }
2633
2634         /* we do not want to recurse here... */
2635         static int recursive;
2636         if (!recursive) {
2637                 recursive = 1;
2638                 sense_handler();
2639                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2640                  * We need to avoid an infinite loop/recursion here and we do that by
2641                  * clearing the flags after running these events.
2642                  */
2643                 int did_something = 0;
2644                 if (runSrstAsserted) {
2645                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2646                         Jim_Eval(interp, "srst_asserted");
2647                         did_something = 1;
2648                 }
2649                 if (runSrstDeasserted) {
2650                         Jim_Eval(interp, "srst_deasserted");
2651                         did_something = 1;
2652                 }
2653                 if (runPowerDropout) {
2654                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2655                         Jim_Eval(interp, "power_dropout");
2656                         did_something = 1;
2657                 }
2658                 if (runPowerRestore) {
2659                         Jim_Eval(interp, "power_restore");
2660                         did_something = 1;
2661                 }
2662
2663                 if (did_something) {
2664                         /* clear detect flags */
2665                         sense_handler();
2666                 }
2667
2668                 /* clear action flags */
2669
2670                 runSrstAsserted = 0;
2671                 runSrstDeasserted = 0;
2672                 runPowerRestore = 0;
2673                 runPowerDropout = 0;
2674
2675                 recursive = 0;
2676         }
2677
2678         /* Poll targets for state changes unless that's globally disabled.
2679          * Skip targets that are currently disabled.
2680          */
2681         for (struct target *target = all_targets;
2682                         is_jtag_poll_safe() && target;
2683                         target = target->next) {
2684
2685                 if (!target_was_examined(target))
2686                         continue;
2687
2688                 if (!target->tap->enabled)
2689                         continue;
2690
2691                 if (target->backoff.times > target->backoff.count) {
2692                         /* do not poll this time as we failed previously */
2693                         target->backoff.count++;
2694                         continue;
2695                 }
2696                 target->backoff.count = 0;
2697
2698                 /* only poll target if we've got power and srst isn't asserted */
2699                 if (!powerDropout && !srstAsserted) {
2700                         /* polling may fail silently until the target has been examined */
2701                         retval = target_poll(target);
2702                         if (retval != ERROR_OK) {
2703                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2704                                 if (target->backoff.times * polling_interval < 5000) {
2705                                         target->backoff.times *= 2;
2706                                         target->backoff.times++;
2707                                 }
2708
2709                                 /* Tell GDB to halt the debugger. This allows the user to
2710                                  * run monitor commands to handle the situation.
2711                                  */
2712                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2713                         }
2714                         if (target->backoff.times > 0) {
2715                                 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2716                                 target_reset_examined(target);
2717                                 retval = target_examine_one(target);
2718                                 /* Target examination could have failed due to unstable connection,
2719                                  * but we set the examined flag anyway to repoll it later */
2720                                 if (retval != ERROR_OK) {
2721                                         target->examined = true;
2722                                         LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2723                                                  target->backoff.times * polling_interval);
2724                                         return retval;
2725                                 }
2726                         }
2727
2728                         /* Since we succeeded, we reset backoff count */
2729                         target->backoff.times = 0;
2730                 }
2731         }
2732
2733         return retval;
2734 }
2735
2736 COMMAND_HANDLER(handle_reg_command)
2737 {
2738         struct target *target;
2739         struct reg *reg = NULL;
2740         unsigned count = 0;
2741         char *value;
2742
2743         LOG_DEBUG("-");
2744
2745         target = get_current_target(CMD_CTX);
2746
2747         /* list all available registers for the current target */
2748         if (CMD_ARGC == 0) {
2749                 struct reg_cache *cache = target->reg_cache;
2750
2751                 count = 0;
2752                 while (cache) {
2753                         unsigned i;
2754
2755                         command_print(CMD_CTX, "===== %s", cache->name);
2756
2757                         for (i = 0, reg = cache->reg_list;
2758                                         i < cache->num_regs;
2759                                         i++, reg++, count++) {
2760                                 /* only print cached values if they are valid */
2761                                 if (reg->valid) {
2762                                         value = buf_to_str(reg->value,
2763                                                         reg->size, 16);
2764                                         command_print(CMD_CTX,
2765                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2766                                                         count, reg->name,
2767                                                         reg->size, value,
2768                                                         reg->dirty
2769                                                                 ? " (dirty)"
2770                                                                 : "");
2771                                         free(value);
2772                                 } else {
2773                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2774                                                           count, reg->name,
2775                                                           reg->size) ;
2776                                 }
2777                         }
2778                         cache = cache->next;
2779                 }
2780
2781                 return ERROR_OK;
2782         }
2783
2784         /* access a single register by its ordinal number */
2785         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2786                 unsigned num;
2787                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2788
2789                 struct reg_cache *cache = target->reg_cache;
2790                 count = 0;
2791                 while (cache) {
2792                         unsigned i;
2793                         for (i = 0; i < cache->num_regs; i++) {
2794                                 if (count++ == num) {
2795                                         reg = &cache->reg_list[i];
2796                                         break;
2797                                 }
2798                         }
2799                         if (reg)
2800                                 break;
2801                         cache = cache->next;
2802                 }
2803
2804                 if (!reg) {
2805                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2806                                         "has only %i registers (0 - %i)", num, count, count - 1);
2807                         return ERROR_OK;
2808                 }
2809         } else {
2810                 /* access a single register by its name */
2811                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2812
2813                 if (!reg) {
2814                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2815                         return ERROR_OK;
2816                 }
2817         }
2818
2819         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2820
2821         /* display a register */
2822         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2823                         && (CMD_ARGV[1][0] <= '9')))) {
2824                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2825                         reg->valid = 0;
2826
2827                 if (reg->valid == 0)
2828                         reg->type->get(reg);
2829                 value = buf_to_str(reg->value, reg->size, 16);
2830                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2831                 free(value);
2832                 return ERROR_OK;
2833         }
2834
2835         /* set register value */
2836         if (CMD_ARGC == 2) {
2837                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2838                 if (buf == NULL)
2839                         return ERROR_FAIL;
2840                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2841
2842                 reg->type->set(reg, buf);
2843
2844                 value = buf_to_str(reg->value, reg->size, 16);
2845                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2846                 free(value);
2847
2848                 free(buf);
2849
2850                 return ERROR_OK;
2851         }
2852
2853         return ERROR_COMMAND_SYNTAX_ERROR;
2854 }
2855
2856 COMMAND_HANDLER(handle_poll_command)
2857 {
2858         int retval = ERROR_OK;
2859         struct target *target = get_current_target(CMD_CTX);
2860
2861         if (CMD_ARGC == 0) {
2862                 command_print(CMD_CTX, "background polling: %s",
2863                                 jtag_poll_get_enabled() ? "on" : "off");
2864                 command_print(CMD_CTX, "TAP: %s (%s)",
2865                                 target->tap->dotted_name,
2866                                 target->tap->enabled ? "enabled" : "disabled");
2867                 if (!target->tap->enabled)
2868                         return ERROR_OK;
2869                 retval = target_poll(target);
2870                 if (retval != ERROR_OK)
2871                         return retval;
2872                 retval = target_arch_state(target);
2873                 if (retval != ERROR_OK)
2874                         return retval;
2875         } else if (CMD_ARGC == 1) {
2876                 bool enable;
2877                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2878                 jtag_poll_set_enabled(enable);
2879         } else
2880                 return ERROR_COMMAND_SYNTAX_ERROR;
2881
2882         return retval;
2883 }
2884
2885 COMMAND_HANDLER(handle_wait_halt_command)
2886 {
2887         if (CMD_ARGC > 1)
2888                 return ERROR_COMMAND_SYNTAX_ERROR;
2889
2890         unsigned ms = DEFAULT_HALT_TIMEOUT;
2891         if (1 == CMD_ARGC) {
2892                 int retval = parse_uint(CMD_ARGV[0], &ms);
2893                 if (ERROR_OK != retval)
2894                         return ERROR_COMMAND_SYNTAX_ERROR;
2895         }
2896
2897         struct target *target = get_current_target(CMD_CTX);
2898         return target_wait_state(target, TARGET_HALTED, ms);
2899 }
2900
2901 /* wait for target state to change. The trick here is to have a low
2902  * latency for short waits and not to suck up all the CPU time
2903  * on longer waits.
2904  *
2905  * After 500ms, keep_alive() is invoked
2906  */
2907 int target_wait_state(struct target *target, enum target_state state, int ms)
2908 {
2909         int retval;
2910         int64_t then = 0, cur;
2911         bool once = true;
2912
2913         for (;;) {
2914                 retval = target_poll(target);
2915                 if (retval != ERROR_OK)
2916                         return retval;
2917                 if (target->state == state)
2918                         break;
2919                 cur = timeval_ms();
2920                 if (once) {
2921                         once = false;
2922                         then = timeval_ms();
2923                         LOG_DEBUG("waiting for target %s...",
2924                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2925                 }
2926
2927                 if (cur-then > 500)
2928                         keep_alive();
2929
2930                 if ((cur-then) > ms) {
2931                         LOG_ERROR("timed out while waiting for target %s",
2932                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2933                         return ERROR_FAIL;
2934                 }
2935         }
2936
2937         return ERROR_OK;
2938 }
2939
2940 COMMAND_HANDLER(handle_halt_command)
2941 {
2942         LOG_DEBUG("-");
2943
2944         struct target *target = get_current_target(CMD_CTX);
2945         int retval = target_halt(target);
2946         if (ERROR_OK != retval)
2947                 return retval;
2948
2949         if (CMD_ARGC == 1) {
2950                 unsigned wait_local;
2951                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2952                 if (ERROR_OK != retval)
2953                         return ERROR_COMMAND_SYNTAX_ERROR;
2954                 if (!wait_local)
2955                         return ERROR_OK;
2956         }
2957
2958         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2959 }
2960
2961 COMMAND_HANDLER(handle_soft_reset_halt_command)
2962 {
2963         struct target *target = get_current_target(CMD_CTX);
2964
2965         LOG_USER("requesting target halt and executing a soft reset");
2966
2967         target_soft_reset_halt(target);
2968
2969         return ERROR_OK;
2970 }
2971
2972 COMMAND_HANDLER(handle_reset_command)
2973 {
2974         if (CMD_ARGC > 1)
2975                 return ERROR_COMMAND_SYNTAX_ERROR;
2976
2977         enum target_reset_mode reset_mode = RESET_RUN;
2978         if (CMD_ARGC == 1) {
2979                 const Jim_Nvp *n;
2980                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2981                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2982                         return ERROR_COMMAND_SYNTAX_ERROR;
2983                 reset_mode = n->value;
2984         }
2985
2986         /* reset *all* targets */
2987         return target_process_reset(CMD_CTX, reset_mode);
2988 }
2989
2990
2991 COMMAND_HANDLER(handle_resume_command)
2992 {
2993         int current = 1;
2994         if (CMD_ARGC > 1)
2995                 return ERROR_COMMAND_SYNTAX_ERROR;
2996
2997         struct target *target = get_current_target(CMD_CTX);
2998
2999         /* with no CMD_ARGV, resume from current pc, addr = 0,
3000          * with one arguments, addr = CMD_ARGV[0],
3001          * handle breakpoints, not debugging */
3002         target_addr_t addr = 0;
3003         if (CMD_ARGC == 1) {
3004                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3005                 current = 0;
3006         }
3007
3008         return target_resume(target, current, addr, 1, 0);
3009 }
3010
3011 COMMAND_HANDLER(handle_step_command)
3012 {
3013         if (CMD_ARGC > 1)
3014                 return ERROR_COMMAND_SYNTAX_ERROR;
3015
3016         LOG_DEBUG("-");
3017
3018         /* with no CMD_ARGV, step from current pc, addr = 0,
3019          * with one argument addr = CMD_ARGV[0],
3020          * handle breakpoints, debugging */
3021         target_addr_t addr = 0;
3022         int current_pc = 1;
3023         if (CMD_ARGC == 1) {
3024                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3025                 current_pc = 0;
3026         }
3027
3028         struct target *target = get_current_target(CMD_CTX);
3029
3030         return target->type->step(target, current_pc, addr, 1);
3031 }
3032
3033 static void handle_md_output(struct command_context *cmd_ctx,
3034                 struct target *target, target_addr_t address, unsigned size,
3035                 unsigned count, const uint8_t *buffer)
3036 {
3037         const unsigned line_bytecnt = 32;
3038         unsigned line_modulo = line_bytecnt / size;
3039
3040         char output[line_bytecnt * 4 + 1];
3041         unsigned output_len = 0;
3042
3043         const char *value_fmt;
3044         switch (size) {
3045         case 8:
3046                 value_fmt = "%16.16"PRIx64" ";
3047                 break;
3048         case 4:
3049                 value_fmt = "%8.8"PRIx64" ";
3050                 break;
3051         case 2:
3052                 value_fmt = "%4.4"PRIx64" ";
3053                 break;
3054         case 1:
3055                 value_fmt = "%2.2"PRIx64" ";
3056                 break;
3057         default:
3058                 /* "can't happen", caller checked */
3059                 LOG_ERROR("invalid memory read size: %u", size);
3060                 return;
3061         }
3062
3063         for (unsigned i = 0; i < count; i++) {
3064                 if (i % line_modulo == 0) {
3065                         output_len += snprintf(output + output_len,
3066                                         sizeof(output) - output_len,
3067                                         TARGET_ADDR_FMT ": ",
3068                                         (address + (i * size)));
3069                 }
3070
3071                 uint64_t value = 0;
3072                 const uint8_t *value_ptr = buffer + i * size;
3073                 switch (size) {
3074                 case 8:
3075                         value = target_buffer_get_u64(target, value_ptr);
3076                         break;
3077                 case 4:
3078                         value = target_buffer_get_u32(target, value_ptr);
3079                         break;
3080                 case 2:
3081                         value = target_buffer_get_u16(target, value_ptr);
3082                         break;
3083                 case 1:
3084                         value = *value_ptr;
3085                 }
3086                 output_len += snprintf(output + output_len,
3087                                 sizeof(output) - output_len,
3088                                 value_fmt, value);
3089
3090                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3091                         command_print(cmd_ctx, "%s", output);
3092                         output_len = 0;
3093                 }
3094         }
3095 }
3096
3097 COMMAND_HANDLER(handle_md_command)
3098 {
3099         if (CMD_ARGC < 1)
3100                 return ERROR_COMMAND_SYNTAX_ERROR;
3101
3102         unsigned size = 0;
3103         switch (CMD_NAME[2]) {
3104         case 'd':
3105                 size = 8;
3106                 break;
3107         case 'w':
3108                 size = 4;
3109                 break;
3110         case 'h':
3111                 size = 2;
3112                 break;
3113         case 'b':
3114                 size = 1;
3115                 break;
3116         default:
3117                 return ERROR_COMMAND_SYNTAX_ERROR;
3118         }
3119
3120         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3121         int (*fn)(struct target *target,
3122                         target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3123         if (physical) {
3124                 CMD_ARGC--;
3125                 CMD_ARGV++;
3126                 fn = target_read_phys_memory;
3127         } else
3128                 fn = target_read_memory;
3129         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3130                 return ERROR_COMMAND_SYNTAX_ERROR;
3131
3132         target_addr_t address;
3133         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3134
3135         unsigned count = 1;
3136         if (CMD_ARGC == 2)
3137                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3138
3139         uint8_t *buffer = calloc(count, size);
3140         if (buffer == NULL) {
3141                 LOG_ERROR("Failed to allocate md read buffer");
3142                 return ERROR_FAIL;
3143         }
3144
3145         struct target *target = get_current_target(CMD_CTX);
3146         int retval = fn(target, address, size, count, buffer);
3147         if (ERROR_OK == retval)
3148                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3149
3150         free(buffer);
3151
3152         return retval;
3153 }
3154
3155 typedef int (*target_write_fn)(struct target *target,
3156                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3157
3158 static int target_fill_mem(struct target *target,
3159                 target_addr_t address,
3160                 target_write_fn fn,
3161                 unsigned data_size,
3162                 /* value */
3163                 uint64_t b,
3164                 /* count */
3165                 unsigned c)
3166 {
3167         /* We have to write in reasonably large chunks to be able
3168          * to fill large memory areas with any sane speed */
3169         const unsigned chunk_size = 16384;
3170         uint8_t *target_buf = malloc(chunk_size * data_size);
3171         if (target_buf == NULL) {
3172                 LOG_ERROR("Out of memory");
3173                 return ERROR_FAIL;
3174         }
3175
3176         for (unsigned i = 0; i < chunk_size; i++) {
3177                 switch (data_size) {
3178                 case 8:
3179                         target_buffer_set_u64(target, target_buf + i * data_size, b);
3180                         break;
3181                 case 4:
3182                         target_buffer_set_u32(target, target_buf + i * data_size, b);
3183                         break;
3184                 case 2:
3185                         target_buffer_set_u16(target, target_buf + i * data_size, b);
3186                         break;
3187                 case 1:
3188                         target_buffer_set_u8(target, target_buf + i * data_size, b);
3189                         break;
3190                 default:
3191                         exit(-1);
3192                 }
3193         }
3194
3195         int retval = ERROR_OK;
3196
3197         for (unsigned x = 0; x < c; x += chunk_size) {
3198                 unsigned current;
3199                 current = c - x;
3200                 if (current > chunk_size)
3201                         current = chunk_size;
3202                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3203                 if (retval != ERROR_OK)
3204                         break;
3205                 /* avoid GDB timeouts */
3206                 keep_alive();
3207         }
3208         free(target_buf);
3209
3210         return retval;
3211 }
3212
3213
3214 COMMAND_HANDLER(handle_mw_command)
3215 {
3216         if (CMD_ARGC < 2)
3217                 return ERROR_COMMAND_SYNTAX_ERROR;
3218         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3219         target_write_fn fn;
3220         if (physical) {
3221                 CMD_ARGC--;
3222                 CMD_ARGV++;
3223                 fn = target_write_phys_memory;
3224         } else
3225                 fn = target_write_memory;
3226         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3227                 return ERROR_COMMAND_SYNTAX_ERROR;
3228
3229         target_addr_t address;
3230         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3231
3232         target_addr_t value;
3233         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3234
3235         unsigned count = 1;
3236         if (CMD_ARGC == 3)
3237                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3238
3239         struct target *target = get_current_target(CMD_CTX);
3240         unsigned wordsize;
3241         switch (CMD_NAME[2]) {
3242                 case 'd':
3243                         wordsize = 8;
3244                         break;
3245                 case 'w':
3246                         wordsize = 4;
3247                         break;
3248                 case 'h':
3249                         wordsize = 2;
3250                         break;
3251                 case 'b':
3252                         wordsize = 1;
3253                         break;
3254                 default:
3255                         return ERROR_COMMAND_SYNTAX_ERROR;
3256         }
3257
3258         return target_fill_mem(target, address, fn, wordsize, value, count);
3259 }
3260
3261 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3262                 target_addr_t *min_address, target_addr_t *max_address)
3263 {
3264         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3265                 return ERROR_COMMAND_SYNTAX_ERROR;
3266
3267         /* a base address isn't always necessary,
3268          * default to 0x0 (i.e. don't relocate) */
3269         if (CMD_ARGC >= 2) {
3270                 target_addr_t addr;
3271                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3272                 image->base_address = addr;
3273                 image->base_address_set = 1;
3274         } else
3275                 image->base_address_set = 0;
3276
3277         image->start_address_set = 0;
3278
3279         if (CMD_ARGC >= 4)
3280                 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3281         if (CMD_ARGC == 5) {
3282                 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3283                 /* use size (given) to find max (required) */
3284                 *max_address += *min_address;
3285         }
3286
3287         if (*min_address > *max_address)
3288                 return ERROR_COMMAND_SYNTAX_ERROR;
3289
3290         return ERROR_OK;
3291 }
3292
3293 COMMAND_HANDLER(handle_load_image_command)
3294 {
3295         uint8_t *buffer;
3296         size_t buf_cnt;
3297         uint32_t image_size;
3298         target_addr_t min_address = 0;
3299         target_addr_t max_address = -1;
3300         int i;
3301         struct image image;
3302
3303         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3304                         &image, &min_address, &max_address);
3305         if (ERROR_OK != retval)
3306                 return retval;
3307
3308         struct target *target = get_current_target(CMD_CTX);
3309
3310         struct duration bench;
3311         duration_start(&bench);
3312
3313         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3314                 return ERROR_FAIL;
3315
3316         image_size = 0x0;
3317         retval = ERROR_OK;
3318         for (i = 0; i < image.num_sections; i++) {
3319                 buffer = malloc(image.sections[i].size);
3320                 if (buffer == NULL) {
3321                         command_print(CMD_CTX,
3322                                                   "error allocating buffer for section (%d bytes)",
3323                                                   (int)(image.sections[i].size));
3324                         retval = ERROR_FAIL;
3325                         break;
3326                 }
3327
3328                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3329                 if (retval != ERROR_OK) {
3330                         free(buffer);
3331                         break;
3332                 }
3333
3334                 uint32_t offset = 0;
3335                 uint32_t length = buf_cnt;
3336
3337                 /* DANGER!!! beware of unsigned comparision here!!! */
3338
3339                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3340                                 (image.sections[i].base_address < max_address)) {
3341
3342                         if (image.sections[i].base_address < min_address) {
3343                                 /* clip addresses below */
3344                                 offset += min_address-image.sections[i].base_address;
3345                                 length -= offset;
3346                         }
3347
3348                         if (image.sections[i].base_address + buf_cnt > max_address)
3349                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3350
3351                         retval = target_write_buffer(target,
3352                                         image.sections[i].base_address + offset, length, buffer + offset);
3353                         if (retval != ERROR_OK) {
3354                                 free(buffer);
3355                                 break;
3356                         }
3357                         image_size += length;
3358                         command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3359                                         (unsigned int)length,
3360                                         image.sections[i].base_address + offset);
3361                 }
3362
3363                 free(buffer);
3364         }
3365
3366         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3367                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3368                                 "in %fs (%0.3f KiB/s)", image_size,
3369                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3370         }
3371
3372         image_close(&image);
3373
3374         return retval;
3375
3376 }
3377
3378 COMMAND_HANDLER(handle_dump_image_command)
3379 {
3380         struct fileio *fileio;
3381         uint8_t *buffer;
3382         int retval, retvaltemp;
3383         target_addr_t address, size;
3384         struct duration bench;
3385         struct target *target = get_current_target(CMD_CTX);
3386
3387         if (CMD_ARGC != 3)
3388                 return ERROR_COMMAND_SYNTAX_ERROR;
3389
3390         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3391         COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3392
3393         uint32_t buf_size = (size > 4096) ? 4096 : size;
3394         buffer = malloc(buf_size);
3395         if (!buffer)
3396                 return ERROR_FAIL;
3397
3398         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3399         if (retval != ERROR_OK) {
3400                 free(buffer);
3401                 return retval;
3402         }
3403
3404         duration_start(&bench);
3405
3406         while (size > 0) {
3407                 size_t size_written;
3408                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3409                 retval = target_read_buffer(target, address, this_run_size, buffer);
3410                 if (retval != ERROR_OK)
3411                         break;
3412
3413                 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3414                 if (retval != ERROR_OK)
3415                         break;
3416
3417                 size -= this_run_size;
3418                 address += this_run_size;
3419         }
3420
3421         free(buffer);
3422
3423         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3424                 size_t filesize;
3425                 retval = fileio_size(fileio, &filesize);
3426                 if (retval != ERROR_OK)
3427                         return retval;
3428                 command_print(CMD_CTX,
3429                                 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3430                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3431         }
3432
3433         retvaltemp = fileio_close(fileio);
3434         if (retvaltemp != ERROR_OK)
3435                 return retvaltemp;
3436
3437         return retval;
3438 }
3439
3440 enum verify_mode {
3441         IMAGE_TEST = 0,
3442         IMAGE_VERIFY = 1,
3443         IMAGE_CHECKSUM_ONLY = 2
3444 };
3445
3446 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3447 {
3448         uint8_t *buffer;
3449         size_t buf_cnt;
3450         uint32_t image_size;
3451         int i;
3452         int retval;
3453         uint32_t checksum = 0;
3454         uint32_t mem_checksum = 0;
3455
3456         struct image image;
3457
3458         struct target *target = get_current_target(CMD_CTX);
3459
3460         if (CMD_ARGC < 1)
3461                 return ERROR_COMMAND_SYNTAX_ERROR;
3462
3463         if (!target) {
3464                 LOG_ERROR("no target selected");
3465                 return ERROR_FAIL;
3466         }
3467
3468         struct duration bench;
3469         duration_start(&bench);
3470
3471         if (CMD_ARGC >= 2) {
3472                 target_addr_t addr;
3473                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3474                 image.base_address = addr;
3475                 image.base_address_set = 1;
3476         } else {
3477                 image.base_address_set = 0;
3478                 image.base_address = 0x0;
3479         }
3480
3481         image.start_address_set = 0;
3482
3483         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3484         if (retval != ERROR_OK)
3485                 return retval;
3486
3487         image_size = 0x0;
3488         int diffs = 0;
3489         retval = ERROR_OK;
3490         for (i = 0; i < image.num_sections; i++) {
3491                 buffer = malloc(image.sections[i].size);
3492                 if (buffer == NULL) {
3493                         command_print(CMD_CTX,
3494                                         "error allocating buffer for section (%d bytes)",
3495                                         (int)(image.sections[i].size));
3496                         break;
3497                 }
3498                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3499                 if (retval != ERROR_OK) {
3500                         free(buffer);
3501                         break;
3502                 }
3503
3504                 if (verify >= IMAGE_VERIFY) {
3505                         /* calculate checksum of image */
3506                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3507                         if (retval != ERROR_OK) {
3508                                 free(buffer);
3509                                 break;
3510                         }
3511
3512                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3513                         if (retval != ERROR_OK) {
3514                                 free(buffer);
3515                                 break;
3516                         }
3517                         if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3518                                 LOG_ERROR("checksum mismatch");
3519                                 free(buffer);
3520                                 retval = ERROR_FAIL;
3521                                 goto done;
3522                         }
3523                         if (checksum != mem_checksum) {
3524                                 /* failed crc checksum, fall back to a binary compare */
3525                                 uint8_t *data;
3526
3527                                 if (diffs == 0)
3528                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3529
3530                                 data = malloc(buf_cnt);
3531
3532                                 /* Can we use 32bit word accesses? */
3533                                 int size = 1;
3534                                 int count = buf_cnt;
3535                                 if ((count % 4) == 0) {
3536                                         size *= 4;
3537                                         count /= 4;
3538                                 }
3539                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3540                                 if (retval == ERROR_OK) {
3541                                         uint32_t t;
3542                                         for (t = 0; t < buf_cnt; t++) {
3543                                                 if (data[t] != buffer[t]) {
3544                                                         command_print(CMD_CTX,
3545                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3546                                                                                   diffs,
3547                                                                                   (unsigned)(t + image.sections[i].base_address),
3548                                                                                   data[t],
3549                                                                                   buffer[t]);
3550                                                         if (diffs++ >= 127) {
3551                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3552                                                                 free(data);
3553                                                                 free(buffer);
3554                                                                 goto done;
3555                                                         }
3556                                                 }
3557                                                 keep_alive();
3558                                         }
3559                                 }
3560                                 free(data);
3561                         }
3562                 } else {
3563                         command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3564                                                   image.sections[i].base_address,
3565                                                   buf_cnt);
3566                 }
3567
3568                 free(buffer);
3569                 image_size += buf_cnt;
3570         }
3571         if (diffs > 0)
3572                 command_print(CMD_CTX, "No more differences found.");
3573 done:
3574         if (diffs > 0)
3575                 retval = ERROR_FAIL;
3576         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3577                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3578                                 "in %fs (%0.3f KiB/s)", image_size,
3579                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3580         }
3581
3582         image_close(&image);
3583
3584         return retval;
3585 }
3586
3587 COMMAND_HANDLER(handle_verify_image_checksum_command)
3588 {
3589         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3590 }
3591
3592 COMMAND_HANDLER(handle_verify_image_command)
3593 {
3594         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3595 }
3596
3597 COMMAND_HANDLER(handle_test_image_command)
3598 {
3599         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3600 }
3601
3602 static int handle_bp_command_list(struct command_context *cmd_ctx)
3603 {
3604         struct target *target = get_current_target(cmd_ctx);
3605         struct breakpoint *breakpoint = target->breakpoints;
3606         while (breakpoint) {
3607                 if (breakpoint->type == BKPT_SOFT) {
3608                         char *buf = buf_to_str(breakpoint->orig_instr,
3609                                         breakpoint->length, 16);
3610                         command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3611                                         breakpoint->address,
3612                                         breakpoint->length,
3613                                         breakpoint->set, buf);
3614                         free(buf);
3615                 } else {
3616                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3617                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3618                                                         breakpoint->asid,
3619                                                         breakpoint->length, breakpoint->set);
3620                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3621                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3622                                                         breakpoint->address,
3623                                                         breakpoint->length, breakpoint->set);
3624                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3625                                                         breakpoint->asid);
3626                         } else
3627                                 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3628                                                         breakpoint->address,
3629                                                         breakpoint->length, breakpoint->set);
3630                 }
3631
3632                 breakpoint = breakpoint->next;
3633         }
3634         return ERROR_OK;
3635 }
3636
3637 static int handle_bp_command_set(struct command_context *cmd_ctx,
3638                 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3639 {
3640         struct target *target = get_current_target(cmd_ctx);
3641         int retval;
3642
3643         if (asid == 0) {
3644                 retval = breakpoint_add(target, addr, length, hw);
3645                 if (ERROR_OK == retval)
3646                         command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3647                 else {
3648                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3649                         return retval;
3650                 }
3651         } else if (addr == 0) {
3652                 if (target->type->add_context_breakpoint == NULL) {
3653                         LOG_WARNING("Context breakpoint not available");
3654                         return ERROR_OK;
3655                 }
3656                 retval = context_breakpoint_add(target, asid, length, hw);
3657                 if (ERROR_OK == retval)
3658                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3659                 else {
3660                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3661                         return retval;
3662                 }
3663         } else {
3664                 if (target->type->add_hybrid_breakpoint == NULL) {
3665                         LOG_WARNING("Hybrid breakpoint not available");
3666                         return ERROR_OK;
3667                 }
3668                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3669                 if (ERROR_OK == retval)
3670                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3671                 else {
3672                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3673                         return retval;
3674                 }
3675         }
3676         return ERROR_OK;
3677 }
3678
3679 COMMAND_HANDLER(handle_bp_command)
3680 {
3681         target_addr_t addr;
3682         uint32_t asid;
3683         uint32_t length;
3684         int hw = BKPT_SOFT;
3685
3686         switch (CMD_ARGC) {
3687                 case 0:
3688                         return handle_bp_command_list(CMD_CTX);
3689
3690                 case 2:
3691                         asid = 0;
3692                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3693                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3694                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3695
3696                 case 3:
3697                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3698                                 hw = BKPT_HARD;
3699                                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3700                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3701                                 asid = 0;
3702                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3703                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3704                                 hw = BKPT_HARD;
3705                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3706                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3707                                 addr = 0;
3708                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3709                         }
3710                         /* fallthrough */
3711                 case 4:
3712                         hw = BKPT_HARD;
3713                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3714                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3715                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3716                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3717
3718                 default:
3719                         return ERROR_COMMAND_SYNTAX_ERROR;
3720         }
3721 }
3722
3723 COMMAND_HANDLER(handle_rbp_command)
3724 {
3725         if (CMD_ARGC != 1)
3726                 return ERROR_COMMAND_SYNTAX_ERROR;
3727
3728         target_addr_t addr;
3729         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3730
3731         struct target *target = get_current_target(CMD_CTX);
3732         breakpoint_remove(target, addr);
3733
3734         return ERROR_OK;
3735 }
3736
3737 COMMAND_HANDLER(handle_wp_command)
3738 {
3739         struct target *target = get_current_target(CMD_CTX);
3740
3741         if (CMD_ARGC == 0) {
3742                 struct watchpoint *watchpoint = target->watchpoints;
3743
3744                 while (watchpoint) {
3745                         command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3746                                         ", len: 0x%8.8" PRIx32
3747                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3748                                         ", mask: 0x%8.8" PRIx32,
3749                                         watchpoint->address,
3750                                         watchpoint->length,
3751                                         (int)watchpoint->rw,
3752                                         watchpoint->value,
3753                                         watchpoint->mask);
3754                         watchpoint = watchpoint->next;
3755                 }
3756                 return ERROR_OK;
3757         }
3758
3759         enum watchpoint_rw type = WPT_ACCESS;
3760         uint32_t addr = 0;
3761         uint32_t length = 0;
3762         uint32_t data_value = 0x0;
3763         uint32_t data_mask = 0xffffffff;
3764
3765         switch (CMD_ARGC) {
3766         case 5:
3767                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3768                 /* fall through */
3769         case 4:
3770                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3771                 /* fall through */
3772         case 3:
3773                 switch (CMD_ARGV[2][0]) {
3774                 case 'r':
3775                         type = WPT_READ;
3776                         break;
3777                 case 'w':
3778                         type = WPT_WRITE;
3779                         break;
3780                 case 'a':
3781                         type = WPT_ACCESS;
3782                         break;
3783                 default:
3784                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3785                         return ERROR_COMMAND_SYNTAX_ERROR;
3786                 }
3787                 /* fall through */
3788         case 2:
3789                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3790                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3791                 break;
3792
3793         default:
3794                 return ERROR_COMMAND_SYNTAX_ERROR;
3795         }
3796
3797         int retval = watchpoint_add(target, addr, length, type,
3798                         data_value, data_mask);
3799         if (ERROR_OK != retval)
3800                 LOG_ERROR("Failure setting watchpoints");
3801
3802         return retval;
3803 }
3804
3805 COMMAND_HANDLER(handle_rwp_command)
3806 {
3807         if (CMD_ARGC != 1)
3808                 return ERROR_COMMAND_SYNTAX_ERROR;
3809
3810         uint32_t addr;
3811         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3812
3813         struct target *target = get_current_target(CMD_CTX);
3814         watchpoint_remove(target, addr);
3815
3816         return ERROR_OK;
3817 }
3818
3819 /**
3820  * Translate a virtual address to a physical address.
3821  *
3822  * The low-level target implementation must have logged a detailed error
3823  * which is forwarded to telnet/GDB session.
3824  */
3825 COMMAND_HANDLER(handle_virt2phys_command)
3826 {
3827         if (CMD_ARGC != 1)
3828                 return ERROR_COMMAND_SYNTAX_ERROR;
3829
3830         target_addr_t va;
3831         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3832         target_addr_t pa;
3833
3834         struct target *target = get_current_target(CMD_CTX);
3835         int retval = target->type->virt2phys(target, va, &pa);
3836         if (retval == ERROR_OK)
3837                 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3838
3839         return retval;
3840 }
3841
3842 static void writeData(FILE *f, const void *data, size_t len)
3843 {
3844         size_t written = fwrite(data, 1, len, f);
3845         if (written != len)
3846                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3847 }
3848
3849 static void writeLong(FILE *f, int l, struct target *target)
3850 {
3851         uint8_t val[4];
3852
3853         target_buffer_set_u32(target, val, l);
3854         writeData(f, val, 4);
3855 }
3856
3857 static void writeString(FILE *f, char *s)
3858 {
3859         writeData(f, s, strlen(s));
3860 }
3861
3862 typedef unsigned char UNIT[2];  /* unit of profiling */
3863
3864 /* Dump a gmon.out histogram file. */
3865 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3866                         uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3867 {
3868         uint32_t i;
3869         FILE *f = fopen(filename, "w");
3870         if (f == NULL)
3871                 return;
3872         writeString(f, "gmon");
3873         writeLong(f, 0x00000001, target); /* Version */
3874         writeLong(f, 0, target); /* padding */
3875         writeLong(f, 0, target); /* padding */
3876         writeLong(f, 0, target); /* padding */
3877
3878         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3879         writeData(f, &zero, 1);
3880
3881         /* figure out bucket size */
3882         uint32_t min;
3883         uint32_t max;
3884         if (with_range) {
3885                 min = start_address;
3886                 max = end_address;
3887         } else {
3888                 min = samples[0];
3889                 max = samples[0];
3890                 for (i = 0; i < sampleNum; i++) {
3891                         if (min > samples[i])
3892                                 min = samples[i];
3893                         if (max < samples[i])
3894                                 max = samples[i];
3895                 }
3896
3897                 /* max should be (largest sample + 1)
3898                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3899                 max++;
3900         }
3901
3902         int addressSpace = max - min;
3903         assert(addressSpace >= 2);
3904
3905         /* FIXME: What is the reasonable number of buckets?
3906          * The profiling result will be more accurate if there are enough buckets. */
3907         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3908         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3909         if (numBuckets > maxBuckets)
3910                 numBuckets = maxBuckets;
3911         int *buckets = malloc(sizeof(int) * numBuckets);
3912         if (buckets == NULL) {
3913                 fclose(f);
3914                 return;
3915         }
3916         memset(buckets, 0, sizeof(int) * numBuckets);
3917         for (i = 0; i < sampleNum; i++) {
3918                 uint32_t address = samples[i];
3919
3920                 if ((address < min) || (max <= address))
3921                         continue;
3922
3923                 long long a = address - min;
3924                 long long b = numBuckets;
3925                 long long c = addressSpace;
3926                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3927                 buckets[index_t]++;
3928         }
3929
3930         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3931         writeLong(f, min, target);                      /* low_pc */
3932         writeLong(f, max, target);                      /* high_pc */
3933         writeLong(f, numBuckets, target);       /* # of buckets */
3934         float sample_rate = sampleNum / (duration_ms / 1000.0);
3935         writeLong(f, sample_rate, target);
3936         writeString(f, "seconds");
3937         for (i = 0; i < (15-strlen("seconds")); i++)
3938                 writeData(f, &zero, 1);
3939         writeString(f, "s");
3940
3941         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3942
3943         char *data = malloc(2 * numBuckets);
3944         if (data != NULL) {
3945                 for (i = 0; i < numBuckets; i++) {
3946                         int val;
3947                         val = buckets[i];
3948                         if (val > 65535)
3949                                 val = 65535;
3950                         data[i * 2] = val&0xff;
3951                         data[i * 2 + 1] = (val >> 8) & 0xff;
3952                 }
3953                 free(buckets);
3954                 writeData(f, data, numBuckets * 2);
3955                 free(data);
3956         } else
3957                 free(buckets);
3958
3959         fclose(f);
3960 }
3961
3962 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3963  * which will be used as a random sampling of PC */
3964 COMMAND_HANDLER(handle_profile_command)
3965 {
3966         struct target *target = get_current_target(CMD_CTX);
3967
3968         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3969                 return ERROR_COMMAND_SYNTAX_ERROR;
3970
3971         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3972         uint32_t offset;
3973         uint32_t num_of_samples;
3974         int retval = ERROR_OK;
3975
3976         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3977
3978         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3979         if (samples == NULL) {
3980                 LOG_ERROR("No memory to store samples.");
3981                 return ERROR_FAIL;
3982         }
3983
3984         uint64_t timestart_ms = timeval_ms();
3985         /**
3986          * Some cores let us sample the PC without the
3987          * annoying halt/resume step; for example, ARMv7 PCSR.
3988          * Provide a way to use that more efficient mechanism.
3989          */
3990         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3991                                 &num_of_samples, offset);
3992         if (retval != ERROR_OK) {
3993                 free(samples);
3994                 return retval;
3995         }
3996         uint32_t duration_ms = timeval_ms() - timestart_ms;
3997
3998         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3999
4000         retval = target_poll(target);
4001         if (retval != ERROR_OK) {
4002                 free(samples);
4003                 return retval;
4004         }
4005         if (target->state == TARGET_RUNNING) {
4006                 retval = target_halt(target);
4007                 if (retval != ERROR_OK) {
4008                         free(samples);
4009                         return retval;
4010                 }
4011         }
4012
4013         retval = target_poll(target);
4014         if (retval != ERROR_OK) {
4015                 free(samples);
4016                 return retval;
4017         }
4018
4019         uint32_t start_address = 0;
4020         uint32_t end_address = 0;
4021         bool with_range = false;
4022         if (CMD_ARGC == 4) {
4023                 with_range = true;
4024                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4025                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4026         }
4027
4028         write_gmon(samples, num_of_samples, CMD_ARGV[1],
4029                    with_range, start_address, end_address, target, duration_ms);
4030         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4031
4032         free(samples);
4033         return retval;
4034 }
4035
4036 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4037 {
4038         char *namebuf;
4039         Jim_Obj *nameObjPtr, *valObjPtr;
4040         int result;
4041
4042         namebuf = alloc_printf("%s(%d)", varname, idx);
4043         if (!namebuf)
4044                 return JIM_ERR;
4045
4046         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4047         valObjPtr = Jim_NewIntObj(interp, val);
4048         if (!nameObjPtr || !valObjPtr) {
4049                 free(namebuf);
4050                 return JIM_ERR;
4051         }
4052
4053         Jim_IncrRefCount(nameObjPtr);
4054         Jim_IncrRefCount(valObjPtr);
4055         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4056         Jim_DecrRefCount(interp, nameObjPtr);
4057         Jim_DecrRefCount(interp, valObjPtr);
4058         free(namebuf);
4059         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4060         return result;
4061 }
4062
4063 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4064 {
4065         struct command_context *context;
4066         struct target *target;
4067
4068         context = current_command_context(interp);
4069         assert(context != NULL);
4070
4071         target = get_current_target(context);
4072         if (target == NULL) {
4073                 LOG_ERROR("mem2array: no current target");
4074                 return JIM_ERR;
4075         }
4076
4077         return target_mem2array(interp, target, argc - 1, argv + 1);
4078 }
4079
4080 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4081 {
4082         long l;
4083         uint32_t width;
4084         int len;
4085         uint32_t addr;
4086         uint32_t count;
4087         uint32_t v;
4088         const char *varname;
4089         const char *phys;
4090         bool is_phys;
4091         int  n, e, retval;
4092         uint32_t i;
4093
4094         /* argv[1] = name of array to receive the data
4095          * argv[2] = desired width
4096          * argv[3] = memory address
4097          * argv[4] = count of times to read
4098          */
4099         if (argc < 4 || argc > 5) {
4100                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
4101                 return JIM_ERR;
4102         }
4103         varname = Jim_GetString(argv[0], &len);
4104         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4105
4106         e = Jim_GetLong(interp, argv[1], &l);
4107         width = l;
4108         if (e != JIM_OK)
4109                 return e;
4110
4111         e = Jim_GetLong(interp, argv[2], &l);
4112         addr = l;
4113         if (e != JIM_OK)
4114                 return e;
4115         e = Jim_GetLong(interp, argv[3], &l);
4116         len = l;
4117         if (e != JIM_OK)
4118                 return e;
4119         is_phys = false;
4120         if (argc > 4) {
4121                 phys = Jim_GetString(argv[4], &n);
4122                 if (!strncmp(phys, "phys", n))
4123                         is_phys = true;
4124                 else
4125                         return JIM_ERR;
4126         }
4127         switch (width) {
4128                 case 8:
4129                         width = 1;
4130                         break;
4131                 case 16:
4132                         width = 2;
4133                         break;
4134                 case 32:
4135                         width = 4;
4136                         break;
4137                 default:
4138                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4139                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4140                         return JIM_ERR;
4141         }
4142         if (len == 0) {
4143                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4144                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4145                 return JIM_ERR;
4146         }
4147         if ((addr + (len * width)) < addr) {
4148                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4149                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4150                 return JIM_ERR;
4151         }
4152         /* absurd transfer size? */
4153         if (len > 65536) {
4154                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4155                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4156                 return JIM_ERR;
4157         }
4158
4159         if ((width == 1) ||
4160                 ((width == 2) && ((addr & 1) == 0)) ||
4161                 ((width == 4) && ((addr & 3) == 0))) {
4162                 /* all is well */
4163         } else {
4164                 char buf[100];
4165                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4166                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4167                                 addr,
4168                                 width);
4169                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4170                 return JIM_ERR;
4171         }
4172
4173         /* Transfer loop */
4174
4175         /* index counter */
4176         n = 0;
4177
4178         size_t buffersize = 4096;
4179         uint8_t *buffer = malloc(buffersize);
4180         if (buffer == NULL)
4181                 return JIM_ERR;
4182
4183         /* assume ok */
4184         e = JIM_OK;
4185         while (len) {
4186                 /* Slurp... in buffer size chunks */
4187
4188                 count = len; /* in objects.. */
4189                 if (count > (buffersize / width))
4190                         count = (buffersize / width);
4191
4192                 if (is_phys)
4193                         retval = target_read_phys_memory(target, addr, width, count, buffer);
4194                 else
4195                         retval = target_read_memory(target, addr, width, count, buffer);
4196                 if (retval != ERROR_OK) {
4197                         /* BOO !*/
4198                         LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4199                                           addr,
4200                                           width,
4201                                           count);
4202                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4203                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4204                         e = JIM_ERR;
4205                         break;
4206                 } else {
4207                         v = 0; /* shut up gcc */
4208                         for (i = 0; i < count ; i++, n++) {
4209                                 switch (width) {
4210                                         case 4:
4211                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
4212                                                 break;
4213                                         case 2:
4214                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
4215                                                 break;
4216                                         case 1:
4217                                                 v = buffer[i] & 0x0ff;
4218                                                 break;
4219                                 }
4220                                 new_int_array_element(interp, varname, n, v);
4221                         }
4222                         len -= count;
4223                         addr += count * width;
4224                 }
4225         }
4226
4227         free(buffer);
4228
4229         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4230
4231         return e;
4232 }
4233
4234 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4235 {
4236         char *namebuf;
4237         Jim_Obj *nameObjPtr, *valObjPtr;
4238         int result;
4239         long l;
4240
4241         namebuf = alloc_printf("%s(%d)", varname, idx);
4242         if (!namebuf)
4243                 return JIM_ERR;
4244
4245         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4246         if (!nameObjPtr) {
4247                 free(namebuf);
4248                 return JIM_ERR;
4249         }
4250
4251         Jim_IncrRefCount(nameObjPtr);
4252         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4253         Jim_DecrRefCount(interp, nameObjPtr);
4254         free(namebuf);
4255         if (valObjPtr == NULL)
4256                 return JIM_ERR;
4257
4258         result = Jim_GetLong(interp, valObjPtr, &l);
4259         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4260         *val = l;
4261         return result;
4262 }
4263
4264 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4265 {
4266         struct command_context *context;
4267         struct target *target;
4268
4269         context = current_command_context(interp);
4270         assert(context != NULL);
4271
4272         target = get_current_target(context);
4273         if (target == NULL) {
4274                 LOG_ERROR("array2mem: no current target");
4275                 return JIM_ERR;
4276         }
4277
4278         return target_array2mem(interp, target, argc-1, argv + 1);
4279 }
4280
4281 static int target_array2mem(Jim_Interp *interp, struct target *target,
4282                 int argc, Jim_Obj *const *argv)
4283 {
4284         long l;
4285         uint32_t width;
4286         int len;
4287         uint32_t addr;
4288         uint32_t count;
4289         uint32_t v;
4290         const char *varname;
4291         const char *phys;
4292         bool is_phys;
4293         int  n, e, retval;
4294         uint32_t i;
4295
4296         /* argv[1] = name of array to get the data
4297          * argv[2] = desired width
4298          * argv[3] = memory address
4299          * argv[4] = count to write
4300          */
4301         if (argc < 4 || argc > 5) {
4302                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4303                 return JIM_ERR;
4304         }
4305         varname = Jim_GetString(argv[0], &len);
4306         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4307
4308         e = Jim_GetLong(interp, argv[1], &l);
4309         width = l;
4310         if (e != JIM_OK)
4311                 return e;
4312
4313         e = Jim_GetLong(interp, argv[2], &l);
4314         addr = l;
4315         if (e != JIM_OK)
4316                 return e;
4317         e = Jim_GetLong(interp, argv[3], &l);
4318         len = l;
4319         if (e != JIM_OK)
4320                 return e;
4321         is_phys = false;
4322         if (argc > 4) {
4323                 phys = Jim_GetString(argv[4], &n);
4324                 if (!strncmp(phys, "phys", n))
4325                         is_phys = true;
4326                 else
4327                         return JIM_ERR;
4328         }
4329         switch (width) {
4330                 case 8:
4331                         width = 1;
4332                         break;
4333                 case 16:
4334                         width = 2;
4335                         break;
4336                 case 32:
4337                         width = 4;
4338                         break;
4339                 default:
4340                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4341                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4342                                         "Invalid width param, must be 8/16/32", NULL);
4343                         return JIM_ERR;
4344         }
4345         if (len == 0) {
4346                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4347                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4348                                 "array2mem: zero width read?", NULL);
4349                 return JIM_ERR;
4350         }
4351         if ((addr + (len * width)) < addr) {
4352                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4353                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4354                                 "array2mem: addr + len - wraps to zero?", NULL);
4355                 return JIM_ERR;
4356         }
4357         /* absurd transfer size? */
4358         if (len > 65536) {
4359                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4360                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4361                                 "array2mem: absurd > 64K item request", NULL);
4362                 return JIM_ERR;
4363         }
4364
4365         if ((width == 1) ||
4366                 ((width == 2) && ((addr & 1) == 0)) ||
4367                 ((width == 4) && ((addr & 3) == 0))) {
4368                 /* all is well */
4369         } else {
4370                 char buf[100];
4371                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4372                 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4373                                 addr,
4374                                 width);
4375                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4376                 return JIM_ERR;
4377         }
4378
4379         /* Transfer loop */
4380
4381         /* index counter */
4382         n = 0;
4383         /* assume ok */
4384         e = JIM_OK;
4385
4386         size_t buffersize = 4096;
4387         uint8_t *buffer = malloc(buffersize);
4388         if (buffer == NULL)
4389                 return JIM_ERR;
4390
4391         while (len) {
4392                 /* Slurp... in buffer size chunks */
4393
4394                 count = len; /* in objects.. */
4395                 if (count > (buffersize / width))
4396                         count = (buffersize / width);
4397
4398                 v = 0; /* shut up gcc */
4399                 for (i = 0; i < count; i++, n++) {
4400                         get_int_array_element(interp, varname, n, &v);
4401                         switch (width) {
4402                         case 4:
4403                                 target_buffer_set_u32(target, &buffer[i * width], v);
4404                                 break;
4405                         case 2:
4406                                 target_buffer_set_u16(target, &buffer[i * width], v);
4407                                 break;
4408                         case 1:
4409                                 buffer[i] = v & 0x0ff;
4410                                 break;
4411                         }
4412                 }
4413                 len -= count;
4414
4415                 if (is_phys)
4416                         retval = target_write_phys_memory(target, addr, width, count, buffer);
4417                 else
4418                         retval = target_write_memory(target, addr, width, count, buffer);
4419                 if (retval != ERROR_OK) {
4420                         /* BOO !*/
4421                         LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4422                                           addr,
4423                                           width,
4424                                           count);
4425                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4426                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4427                         e = JIM_ERR;
4428                         break;
4429                 }
4430                 addr += count * width;
4431         }
4432
4433         free(buffer);
4434
4435         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4436
4437         return e;
4438 }
4439
4440 /* FIX? should we propagate errors here rather than printing them
4441  * and continuing?
4442  */
4443 void target_handle_event(struct target *target, enum target_event e)
4444 {
4445         struct target_event_action *teap;
4446
4447         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4448                 if (teap->event == e) {
4449                         LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4450                                            target->target_number,
4451                                            target_name(target),
4452                                            target_type_name(target),
4453                                            e,
4454                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4455                                            Jim_GetString(teap->body, NULL));
4456
4457                         /* Override current target by the target an event
4458                          * is issued from (lot of scripts need it).
4459                          * Return back to previous override as soon
4460                          * as the handler processing is done */
4461                         struct command_context *cmd_ctx = current_command_context(teap->interp);
4462                         struct target *saved_target_override = cmd_ctx->current_target_override;
4463                         cmd_ctx->current_target_override = target;
4464
4465                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4466                                 Jim_MakeErrorMessage(teap->interp);
4467                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4468                         }
4469
4470                         cmd_ctx->current_target_override = saved_target_override;
4471                 }
4472         }
4473 }
4474
4475 /**
4476  * Returns true only if the target has a handler for the specified event.
4477  */
4478 bool target_has_event_action(struct target *target, enum target_event event)
4479 {
4480         struct target_event_action *teap;
4481
4482         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4483                 if (teap->event == event)
4484                         return true;
4485         }
4486         return false;
4487 }
4488
4489 enum target_cfg_param {
4490         TCFG_TYPE,
4491         TCFG_EVENT,
4492         TCFG_WORK_AREA_VIRT,
4493         TCFG_WORK_AREA_PHYS,
4494         TCFG_WORK_AREA_SIZE,
4495         TCFG_WORK_AREA_BACKUP,
4496         TCFG_ENDIAN,
4497         TCFG_COREID,
4498         TCFG_CHAIN_POSITION,
4499         TCFG_DBGBASE,
4500         TCFG_CTIBASE,
4501         TCFG_RTOS,
4502         TCFG_DEFER_EXAMINE,
4503 };
4504
4505 static Jim_Nvp nvp_config_opts[] = {
4506         { .name = "-type",             .value = TCFG_TYPE },
4507         { .name = "-event",            .value = TCFG_EVENT },
4508         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4509         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4510         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4511         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4512         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4513         { .name = "-coreid",           .value = TCFG_COREID },
4514         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4515         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4516         { .name = "-ctibase",          .value = TCFG_CTIBASE },
4517         { .name = "-rtos",             .value = TCFG_RTOS },
4518         { .name = "-defer-examine",    .value = TCFG_DEFER_EXAMINE },
4519         { .name = NULL, .value = -1 }
4520 };
4521
4522 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4523 {
4524         Jim_Nvp *n;
4525         Jim_Obj *o;
4526         jim_wide w;
4527         int e;
4528
4529         /* parse config or cget options ... */
4530         while (goi->argc > 0) {
4531                 Jim_SetEmptyResult(goi->interp);
4532                 /* Jim_GetOpt_Debug(goi); */
4533
4534                 if (target->type->target_jim_configure) {
4535                         /* target defines a configure function */
4536                         /* target gets first dibs on parameters */
4537                         e = (*(target->type->target_jim_configure))(target, goi);
4538                         if (e == JIM_OK) {
4539                                 /* more? */
4540                                 continue;
4541                         }
4542                         if (e == JIM_ERR) {
4543                                 /* An error */
4544                                 return e;
4545                         }
4546                         /* otherwise we 'continue' below */
4547                 }
4548                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4549                 if (e != JIM_OK) {
4550                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4551                         return e;
4552                 }
4553                 switch (n->value) {
4554                 case TCFG_TYPE:
4555                         /* not setable */
4556                         if (goi->isconfigure) {
4557                                 Jim_SetResultFormatted(goi->interp,
4558                                                 "not settable: %s", n->name);
4559                                 return JIM_ERR;
4560                         } else {
4561 no_params:
4562                                 if (goi->argc != 0) {
4563                                         Jim_WrongNumArgs(goi->interp,
4564                                                         goi->argc, goi->argv,
4565                                                         "NO PARAMS");
4566                                         return JIM_ERR;
4567                                 }
4568                         }
4569                         Jim_SetResultString(goi->interp,
4570                                         target_type_name(target), -1);
4571                         /* loop for more */
4572                         break;
4573                 case TCFG_EVENT:
4574                         if (goi->argc == 0) {
4575                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4576                                 return JIM_ERR;
4577                         }
4578
4579                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4580                         if (e != JIM_OK) {
4581                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4582                                 return e;
4583                         }
4584
4585                         if (goi->isconfigure) {
4586                                 if (goi->argc != 1) {
4587                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4588                                         return JIM_ERR;
4589                                 }
4590                         } else {
4591                                 if (goi->argc != 0) {
4592                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4593                                         return JIM_ERR;
4594                                 }
4595                         }
4596
4597                         {
4598                                 struct target_event_action *teap;
4599
4600                                 teap = target->event_action;
4601                                 /* replace existing? */
4602                                 while (teap) {
4603                                         if (teap->event == (enum target_event)n->value)
4604                                                 break;
4605                                         teap = teap->next;
4606                                 }
4607
4608                                 if (goi->isconfigure) {
4609                                         bool replace = true;
4610                                         if (teap == NULL) {
4611                                                 /* create new */
4612                                                 teap = calloc(1, sizeof(*teap));
4613                                                 replace = false;
4614                                         }
4615                                         teap->event = n->value;
4616                                         teap->interp = goi->interp;
4617                                         Jim_GetOpt_Obj(goi, &o);
4618                                         if (teap->body)
4619                                                 Jim_DecrRefCount(teap->interp, teap->body);
4620                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4621                                         /*
4622                                          * FIXME:
4623                                          *     Tcl/TK - "tk events" have a nice feature.
4624                                          *     See the "BIND" command.
4625                                          *    We should support that here.
4626                                          *     You can specify %X and %Y in the event code.
4627                                          *     The idea is: %T - target name.
4628                                          *     The idea is: %N - target number
4629                                          *     The idea is: %E - event name.
4630                                          */
4631                                         Jim_IncrRefCount(teap->body);
4632
4633                                         if (!replace) {
4634                                                 /* add to head of event list */
4635                                                 teap->next = target->event_action;
4636                                                 target->event_action = teap;
4637                                         }
4638                                         Jim_SetEmptyResult(goi->interp);
4639                                 } else {
4640                                         /* get */
4641                                         if (teap == NULL)
4642                                                 Jim_SetEmptyResult(goi->interp);
4643                                         else
4644                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4645                                 }
4646                         }
4647                         /* loop for more */
4648                         break;
4649
4650                 case TCFG_WORK_AREA_VIRT:
4651                         if (goi->isconfigure) {
4652                                 target_free_all_working_areas(target);
4653                                 e = Jim_GetOpt_Wide(goi, &w);
4654                                 if (e != JIM_OK)
4655                                         return e;
4656                                 target->working_area_virt = w;
4657                                 target->working_area_virt_spec = true;
4658                         } else {
4659                                 if (goi->argc != 0)
4660                                         goto no_params;
4661                         }
4662                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4663                         /* loop for more */
4664                         break;
4665
4666                 case TCFG_WORK_AREA_PHYS:
4667                         if (goi->isconfigure) {
4668                                 target_free_all_working_areas(target);
4669                                 e = Jim_GetOpt_Wide(goi, &w);
4670                                 if (e != JIM_OK)
4671                                         return e;
4672                                 target->working_area_phys = w;
4673                                 target->working_area_phys_spec = true;
4674                         } else {
4675                                 if (goi->argc != 0)
4676                                         goto no_params;
4677                         }
4678                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4679                         /* loop for more */
4680                         break;
4681
4682                 case TCFG_WORK_AREA_SIZE:
4683                         if (goi->isconfigure) {
4684                                 target_free_all_working_areas(target);
4685                                 e = Jim_GetOpt_Wide(goi, &w);
4686                                 if (e != JIM_OK)
4687                                         return e;
4688                                 target->working_area_size = w;
4689                         } else {
4690                                 if (goi->argc != 0)
4691                                         goto no_params;
4692                         }
4693                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4694                         /* loop for more */
4695                         break;
4696
4697                 case TCFG_WORK_AREA_BACKUP:
4698                         if (goi->isconfigure) {
4699                                 target_free_all_working_areas(target);
4700                                 e = Jim_GetOpt_Wide(goi, &w);
4701                                 if (e != JIM_OK)
4702                                         return e;
4703                                 /* make this exactly 1 or 0 */
4704                                 target->backup_working_area = (!!w);
4705                         } else {
4706                                 if (goi->argc != 0)
4707                                         goto no_params;
4708                         }
4709                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4710                         /* loop for more e*/
4711                         break;
4712
4713
4714                 case TCFG_ENDIAN:
4715                         if (goi->isconfigure) {
4716                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4717                                 if (e != JIM_OK) {
4718                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4719                                         return e;
4720                                 }
4721                                 target->endianness = n->value;
4722                         } else {
4723                                 if (goi->argc != 0)
4724                                         goto no_params;
4725                         }
4726                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4727                         if (n->name == NULL) {
4728                                 target->endianness = TARGET_LITTLE_ENDIAN;
4729                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4730                         }
4731                         Jim_SetResultString(goi->interp, n->name, -1);
4732                         /* loop for more */
4733                         break;
4734
4735                 case TCFG_COREID:
4736                         if (goi->isconfigure) {
4737                                 e = Jim_GetOpt_Wide(goi, &w);
4738                                 if (e != JIM_OK)
4739                                         return e;
4740                                 target->coreid = (int32_t)w;
4741                         } else {
4742                                 if (goi->argc != 0)
4743                                         goto no_params;
4744                         }
4745                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4746                         /* loop for more */
4747                         break;
4748
4749                 case TCFG_CHAIN_POSITION:
4750                         if (goi->isconfigure) {
4751                                 Jim_Obj *o_t;
4752                                 struct jtag_tap *tap;
4753                                 target_free_all_working_areas(target);
4754                                 e = Jim_GetOpt_Obj(goi, &o_t);
4755                                 if (e != JIM_OK)
4756                                         return e;
4757                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4758                                 if (tap == NULL)
4759                                         return JIM_ERR;
4760                                 /* make this exactly 1 or 0 */
4761                                 target->tap = tap;
4762                         } else {
4763                                 if (goi->argc != 0)
4764                                         goto no_params;
4765                         }
4766                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4767                         /* loop for more e*/
4768                         break;
4769                 case TCFG_DBGBASE:
4770                         if (goi->isconfigure) {
4771                                 e = Jim_GetOpt_Wide(goi, &w);
4772                                 if (e != JIM_OK)
4773                                         return e;
4774                                 target->dbgbase = (uint32_t)w;
4775                                 target->dbgbase_set = true;
4776                         } else {
4777                                 if (goi->argc != 0)
4778                                         goto no_params;
4779                         }
4780                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4781                         /* loop for more */
4782                         break;
4783                 case TCFG_CTIBASE:
4784                         if (goi->isconfigure) {
4785                                 e = Jim_GetOpt_Wide(goi, &w);
4786                                 if (e != JIM_OK)
4787                                         return e;
4788                                 target->ctibase = (uint32_t)w;
4789                                 target->ctibase_set = true;
4790                         } else {
4791                                 if (goi->argc != 0)
4792                                         goto no_params;
4793                         }
4794                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->ctibase));
4795                         /* loop for more */
4796                         break;
4797                 case TCFG_RTOS:
4798                         /* RTOS */
4799                         {
4800                                 int result = rtos_create(goi, target);
4801                                 if (result != JIM_OK)
4802                                         return result;
4803                         }
4804                         /* loop for more */
4805                         break;
4806
4807                 case TCFG_DEFER_EXAMINE:
4808                         /* DEFER_EXAMINE */
4809                         target->defer_examine = true;
4810                         /* loop for more */
4811                         break;
4812
4813                 }
4814         } /* while (goi->argc) */
4815
4816
4817                 /* done - we return */
4818         return JIM_OK;
4819 }
4820
4821 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4822 {
4823         Jim_GetOptInfo goi;
4824
4825         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4826         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4827         if (goi.argc < 1) {
4828                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4829                                  "missing: -option ...");
4830                 return JIM_ERR;
4831         }
4832         struct target *target = Jim_CmdPrivData(goi.interp);
4833         return target_configure(&goi, target);
4834 }
4835
4836 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4837 {
4838         const char *cmd_name = Jim_GetString(argv[0], NULL);
4839
4840         Jim_GetOptInfo goi;
4841         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4842
4843         if (goi.argc < 2 || goi.argc > 4) {
4844                 Jim_SetResultFormatted(goi.interp,
4845                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4846                 return JIM_ERR;
4847         }
4848
4849         target_write_fn fn;
4850         fn = target_write_memory;
4851
4852         int e;
4853         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4854                 /* consume it */
4855                 struct Jim_Obj *obj;
4856                 e = Jim_GetOpt_Obj(&goi, &obj);
4857                 if (e != JIM_OK)
4858                         return e;
4859
4860                 fn = target_write_phys_memory;
4861         }
4862
4863         jim_wide a;
4864         e = Jim_GetOpt_Wide(&goi, &a);
4865         if (e != JIM_OK)
4866                 return e;
4867
4868         jim_wide b;
4869         e = Jim_GetOpt_Wide(&goi, &b);
4870         if (e != JIM_OK)
4871                 return e;
4872
4873         jim_wide c = 1;
4874         if (goi.argc == 1) {
4875                 e = Jim_GetOpt_Wide(&goi, &c);
4876                 if (e != JIM_OK)
4877                         return e;
4878         }
4879
4880         /* all args must be consumed */
4881         if (goi.argc != 0)
4882                 return JIM_ERR;
4883
4884         struct target *target = Jim_CmdPrivData(goi.interp);
4885         unsigned data_size;
4886         if (strcasecmp(cmd_name, "mww") == 0)
4887                 data_size = 4;
4888         else if (strcasecmp(cmd_name, "mwh") == 0)
4889                 data_size = 2;
4890         else if (strcasecmp(cmd_name, "mwb") == 0)
4891                 data_size = 1;
4892         else {
4893                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4894                 return JIM_ERR;
4895         }
4896
4897         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4898 }
4899
4900 /**
4901 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4902 *
4903 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4904 *         mdh [phys] <address> [<count>] - for 16 bit reads
4905 *         mdb [phys] <address> [<count>] - for  8 bit reads
4906 *
4907 *  Count defaults to 1.
4908 *
4909 *  Calls target_read_memory or target_read_phys_memory depending on
4910 *  the presence of the "phys" argument
4911 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4912 *  to int representation in base16.
4913 *  Also outputs read data in a human readable form using command_print
4914 *
4915 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4916 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4917 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4918 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4919 *  on success, with [<count>] number of elements.
4920 *
4921 *  In case of little endian target:
4922 *      Example1: "mdw 0x00000000"  returns "10123456"
4923 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4924 *      Example3: "mdb 0x00000000" returns "56"
4925 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4926 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4927 **/
4928 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4929 {
4930         const char *cmd_name = Jim_GetString(argv[0], NULL);
4931
4932         Jim_GetOptInfo goi;
4933         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4934
4935         if ((goi.argc < 1) || (goi.argc > 3)) {
4936                 Jim_SetResultFormatted(goi.interp,
4937                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4938                 return JIM_ERR;
4939         }
4940
4941         int (*fn)(struct target *target,
4942                         target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4943         fn = target_read_memory;
4944
4945         int e;
4946         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4947                 /* consume it */
4948                 struct Jim_Obj *obj;
4949                 e = Jim_GetOpt_Obj(&goi, &obj);
4950                 if (e != JIM_OK)
4951                         return e;
4952
4953                 fn = target_read_phys_memory;
4954         }
4955
4956         /* Read address parameter */
4957         jim_wide addr;
4958         e = Jim_GetOpt_Wide(&goi, &addr);
4959         if (e != JIM_OK)
4960                 return JIM_ERR;
4961
4962         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4963         jim_wide count;
4964         if (goi.argc == 1) {
4965                 e = Jim_GetOpt_Wide(&goi, &count);
4966                 if (e != JIM_OK)
4967                         return JIM_ERR;
4968         } else
4969                 count = 1;
4970
4971         /* all args must be consumed */
4972         if (goi.argc != 0)
4973                 return JIM_ERR;
4974
4975         jim_wide dwidth = 1; /* shut up gcc */
4976         if (strcasecmp(cmd_name, "mdw") == 0)
4977                 dwidth = 4;
4978         else if (strcasecmp(cmd_name, "mdh") == 0)
4979                 dwidth = 2;
4980         else if (strcasecmp(cmd_name, "mdb") == 0)
4981                 dwidth = 1;
4982         else {
4983                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4984                 return JIM_ERR;
4985         }
4986
4987         /* convert count to "bytes" */
4988         int bytes = count * dwidth;
4989
4990         struct target *target = Jim_CmdPrivData(goi.interp);
4991         uint8_t  target_buf[32];
4992         jim_wide x, y, z;
4993         while (bytes > 0) {
4994                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4995
4996                 /* Try to read out next block */
4997                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4998
4999                 if (e != ERROR_OK) {
5000                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
5001                         return JIM_ERR;
5002                 }
5003
5004                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
5005                 switch (dwidth) {
5006                 case 4:
5007                         for (x = 0; x < 16 && x < y; x += 4) {
5008                                 z = target_buffer_get_u32(target, &(target_buf[x]));
5009                                 command_print_sameline(NULL, "%08x ", (int)(z));
5010                         }
5011                         for (; (x < 16) ; x += 4)
5012                                 command_print_sameline(NULL, "         ");
5013                         break;
5014                 case 2:
5015                         for (x = 0; x < 16 && x < y; x += 2) {
5016                                 z = target_buffer_get_u16(target, &(target_buf[x]));
5017                                 command_print_sameline(NULL, "%04x ", (int)(z));
5018                         }
5019                         for (; (x < 16) ; x += 2)
5020                                 command_print_sameline(NULL, "     ");
5021                         break;
5022                 case 1:
5023                 default:
5024                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
5025                                 z = target_buffer_get_u8(target, &(target_buf[x]));
5026                                 command_print_sameline(NULL, "%02x ", (int)(z));
5027                         }
5028                         for (; (x < 16) ; x += 1)
5029                                 command_print_sameline(NULL, "   ");
5030                         break;
5031                 }
5032                 /* ascii-ify the bytes */
5033                 for (x = 0 ; x < y ; x++) {
5034                         if ((target_buf[x] >= 0x20) &&
5035                                 (target_buf[x] <= 0x7e)) {
5036                                 /* good */
5037                         } else {
5038                                 /* smack it */
5039                                 target_buf[x] = '.';
5040                         }
5041                 }
5042                 /* space pad  */
5043                 while (x < 16) {
5044                         target_buf[x] = ' ';
5045                         x++;
5046                 }
5047                 /* terminate */
5048                 target_buf[16] = 0;
5049                 /* print - with a newline */
5050                 command_print_sameline(NULL, "%s\n", target_buf);
5051                 /* NEXT... */
5052                 bytes -= 16;
5053                 addr += 16;
5054         }
5055         return JIM_OK;
5056 }
5057
5058 static int jim_target_mem2array(Jim_Interp *interp,
5059                 int argc, Jim_Obj *const *argv)
5060 {
5061         struct target *target = Jim_CmdPrivData(interp);
5062         return target_mem2array(interp, target, argc - 1, argv + 1);
5063 }
5064
5065 static int jim_target_array2mem(Jim_Interp *interp,
5066                 int argc, Jim_Obj *const *argv)
5067 {
5068         struct target *target = Jim_CmdPrivData(interp);
5069         return target_array2mem(interp, target, argc - 1, argv + 1);
5070 }
5071
5072 static int jim_target_tap_disabled(Jim_Interp *interp)
5073 {
5074         Jim_SetResultFormatted(interp, "[TAP is disabled]");
5075         return JIM_ERR;
5076 }
5077
5078 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5079 {
5080         bool allow_defer = false;
5081
5082         Jim_GetOptInfo goi;
5083         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5084         if (goi.argc > 1) {
5085                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5086                 Jim_SetResultFormatted(goi.interp,
5087                                 "usage: %s ['allow-defer']", cmd_name);
5088                 return JIM_ERR;
5089         }
5090         if (goi.argc > 0 &&
5091             strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5092                 /* consume it */
5093                 struct Jim_Obj *obj;
5094                 int e = Jim_GetOpt_Obj(&goi, &obj);
5095                 if (e != JIM_OK)
5096                         return e;
5097                 allow_defer = true;
5098         }
5099
5100         struct target *target = Jim_CmdPrivData(interp);
5101         if (!target->tap->enabled)
5102                 return jim_target_tap_disabled(interp);
5103
5104         if (allow_defer && target->defer_examine) {
5105                 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5106                 LOG_INFO("Use arp_examine command to examine it manually!");
5107                 return JIM_OK;
5108         }
5109
5110         int e = target->type->examine(target);
5111         if (e != ERROR_OK)
5112                 return JIM_ERR;
5113         return JIM_OK;
5114 }
5115
5116 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5117 {
5118         struct target *target = Jim_CmdPrivData(interp);
5119
5120         Jim_SetResultBool(interp, target_was_examined(target));
5121         return JIM_OK;
5122 }
5123
5124 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5125 {
5126         struct target *target = Jim_CmdPrivData(interp);
5127
5128         Jim_SetResultBool(interp, target->defer_examine);
5129         return JIM_OK;
5130 }
5131
5132 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5133 {
5134         if (argc != 1) {
5135                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5136                 return JIM_ERR;
5137         }
5138         struct target *target = Jim_CmdPrivData(interp);
5139
5140         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5141                 return JIM_ERR;
5142
5143         return JIM_OK;
5144 }
5145
5146 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5147 {
5148         if (argc != 1) {
5149                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5150                 return JIM_ERR;
5151         }
5152         struct target *target = Jim_CmdPrivData(interp);
5153         if (!target->tap->enabled)
5154                 return jim_target_tap_disabled(interp);
5155
5156         int e;
5157         if (!(target_was_examined(target)))
5158                 e = ERROR_TARGET_NOT_EXAMINED;
5159         else
5160                 e = target->type->poll(target);
5161         if (e != ERROR_OK)
5162                 return JIM_ERR;
5163         return JIM_OK;
5164 }
5165
5166 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5167 {
5168         Jim_GetOptInfo goi;
5169         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5170
5171         if (goi.argc != 2) {
5172                 Jim_WrongNumArgs(interp, 0, argv,
5173                                 "([tT]|[fF]|assert|deassert) BOOL");
5174                 return JIM_ERR;
5175         }
5176
5177         Jim_Nvp *n;
5178         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5179         if (e != JIM_OK) {
5180                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5181                 return e;
5182         }
5183         /* the halt or not param */
5184         jim_wide a;
5185         e = Jim_GetOpt_Wide(&goi, &a);
5186         if (e != JIM_OK)
5187                 return e;
5188
5189         struct target *target = Jim_CmdPrivData(goi.interp);
5190         if (!target->tap->enabled)
5191                 return jim_target_tap_disabled(interp);
5192
5193         if (!target->type->assert_reset || !target->type->deassert_reset) {
5194                 Jim_SetResultFormatted(interp,
5195                                 "No target-specific reset for %s",
5196                                 target_name(target));
5197                 return JIM_ERR;
5198         }
5199
5200         if (target->defer_examine)
5201                 target_reset_examined(target);
5202
5203         /* determine if we should halt or not. */
5204         target->reset_halt = !!a;
5205         /* When this happens - all workareas are invalid. */
5206         target_free_all_working_areas_restore(target, 0);
5207
5208         /* do the assert */
5209         if (n->value == NVP_ASSERT)
5210                 e = target->type->assert_reset(target);
5211         else
5212                 e = target->type->deassert_reset(target);
5213         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5214 }
5215
5216 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5217 {
5218         if (argc != 1) {
5219                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5220                 return JIM_ERR;
5221         }
5222         struct target *target = Jim_CmdPrivData(interp);
5223         if (!target->tap->enabled)
5224                 return jim_target_tap_disabled(interp);
5225         int e = target->type->halt(target);
5226         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5227 }
5228
5229 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5230 {
5231         Jim_GetOptInfo goi;
5232         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5233
5234         /* params:  <name>  statename timeoutmsecs */
5235         if (goi.argc != 2) {
5236                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5237                 Jim_SetResultFormatted(goi.interp,
5238                                 "%s <state_name> <timeout_in_msec>", cmd_name);
5239                 return JIM_ERR;
5240         }
5241
5242         Jim_Nvp *n;
5243         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5244         if (e != JIM_OK) {
5245                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5246                 return e;
5247         }
5248         jim_wide a;
5249         e = Jim_GetOpt_Wide(&goi, &a);
5250         if (e != JIM_OK)
5251                 return e;
5252         struct target *target = Jim_CmdPrivData(interp);
5253         if (!target->tap->enabled)
5254                 return jim_target_tap_disabled(interp);
5255
5256         e = target_wait_state(target, n->value, a);
5257         if (e != ERROR_OK) {
5258                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5259                 Jim_SetResultFormatted(goi.interp,
5260                                 "target: %s wait %s fails (%#s) %s",
5261                                 target_name(target), n->name,
5262                                 eObj, target_strerror_safe(e));
5263                 Jim_FreeNewObj(interp, eObj);
5264                 return JIM_ERR;
5265         }
5266         return JIM_OK;
5267 }
5268 /* List for human, Events defined for this target.
5269  * scripts/programs should use 'name cget -event NAME'
5270  */
5271 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5272 {
5273         struct command_context *cmd_ctx = current_command_context(interp);
5274         assert(cmd_ctx != NULL);
5275
5276         struct target *target = Jim_CmdPrivData(interp);
5277         struct target_event_action *teap = target->event_action;
5278         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5279                                    target->target_number,
5280                                    target_name(target));
5281         command_print(cmd_ctx, "%-25s | Body", "Event");
5282         command_print(cmd_ctx, "------------------------- | "
5283                         "----------------------------------------");
5284         while (teap) {
5285                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5286                 command_print(cmd_ctx, "%-25s | %s",
5287                                 opt->name, Jim_GetString(teap->body, NULL));
5288                 teap = teap->next;
5289         }
5290         command_print(cmd_ctx, "***END***");
5291         return JIM_OK;
5292 }
5293 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5294 {
5295         if (argc != 1) {
5296                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5297                 return JIM_ERR;
5298         }
5299         struct target *target = Jim_CmdPrivData(interp);
5300         Jim_SetResultString(interp, target_state_name(target), -1);
5301         return JIM_OK;
5302 }
5303 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5304 {
5305         Jim_GetOptInfo goi;
5306         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5307         if (goi.argc != 1) {
5308                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5309                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5310                 return JIM_ERR;
5311         }
5312         Jim_Nvp *n;
5313         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5314         if (e != JIM_OK) {
5315                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5316                 return e;
5317         }
5318         struct target *target = Jim_CmdPrivData(interp);
5319         target_handle_event(target, n->value);
5320         return JIM_OK;
5321 }
5322
5323 static const struct command_registration target_instance_command_handlers[] = {
5324         {
5325                 .name = "configure",
5326                 .mode = COMMAND_CONFIG,
5327                 .jim_handler = jim_target_configure,
5328                 .help  = "configure a new target for use",
5329                 .usage = "[target_attribute ...]",
5330         },
5331         {
5332                 .name = "cget",
5333                 .mode = COMMAND_ANY,
5334                 .jim_handler = jim_target_configure,
5335                 .help  = "returns the specified target attribute",
5336                 .usage = "target_attribute",
5337         },
5338         {
5339                 .name = "mww",
5340                 .mode = COMMAND_EXEC,
5341                 .jim_handler = jim_target_mw,
5342                 .help = "Write 32-bit word(s) to target memory",
5343                 .usage = "address data [count]",
5344         },
5345         {
5346                 .name = "mwh",
5347                 .mode = COMMAND_EXEC,
5348                 .jim_handler = jim_target_mw,
5349                 .help = "Write 16-bit half-word(s) to target memory",
5350                 .usage = "address data [count]",
5351         },
5352         {
5353                 .name = "mwb",
5354                 .mode = COMMAND_EXEC,
5355                 .jim_handler = jim_target_mw,
5356                 .help = "Write byte(s) to target memory",
5357                 .usage = "address data [count]",
5358         },
5359         {
5360                 .name = "mdw",
5361                 .mode = COMMAND_EXEC,
5362                 .jim_handler = jim_target_md,
5363                 .help = "Display target memory as 32-bit words",
5364                 .usage = "address [count]",
5365         },
5366         {
5367                 .name = "mdh",
5368                 .mode = COMMAND_EXEC,
5369                 .jim_handler = jim_target_md,
5370                 .help = "Display target memory as 16-bit half-words",
5371                 .usage = "address [count]",
5372         },
5373         {
5374                 .name = "mdb",
5375                 .mode = COMMAND_EXEC,
5376                 .jim_handler = jim_target_md,
5377                 .help = "Display target memory as 8-bit bytes",
5378                 .usage = "address [count]",
5379         },
5380         {
5381                 .name = "array2mem",
5382                 .mode = COMMAND_EXEC,
5383                 .jim_handler = jim_target_array2mem,
5384                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5385                         "to target memory",
5386                 .usage = "arrayname bitwidth address count",
5387         },
5388         {
5389                 .name = "mem2array",
5390                 .mode = COMMAND_EXEC,
5391                 .jim_handler = jim_target_mem2array,
5392                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5393                         "from target memory",
5394                 .usage = "arrayname bitwidth address count",
5395         },
5396         {
5397                 .name = "eventlist",
5398                 .mode = COMMAND_EXEC,
5399                 .jim_handler = jim_target_event_list,
5400                 .help = "displays a table of events defined for this target",
5401         },
5402         {
5403                 .name = "curstate",
5404                 .mode = COMMAND_EXEC,
5405                 .jim_handler = jim_target_current_state,
5406                 .help = "displays the current state of this target",
5407         },
5408         {
5409                 .name = "arp_examine",
5410                 .mode = COMMAND_EXEC,
5411                 .jim_handler = jim_target_examine,
5412                 .help = "used internally for reset processing",
5413                 .usage = "arp_examine ['allow-defer']",
5414         },
5415         {
5416                 .name = "was_examined",
5417                 .mode = COMMAND_EXEC,
5418                 .jim_handler = jim_target_was_examined,
5419                 .help = "used internally for reset processing",
5420                 .usage = "was_examined",
5421         },
5422         {
5423                 .name = "examine_deferred",
5424                 .mode = COMMAND_EXEC,
5425                 .jim_handler = jim_target_examine_deferred,
5426                 .help = "used internally for reset processing",
5427                 .usage = "examine_deferred",
5428         },
5429         {
5430                 .name = "arp_halt_gdb",
5431                 .mode = COMMAND_EXEC,
5432                 .jim_handler = jim_target_halt_gdb,
5433                 .help = "used internally for reset processing to halt GDB",
5434         },
5435         {
5436                 .name = "arp_poll",
5437                 .mode = COMMAND_EXEC,
5438                 .jim_handler = jim_target_poll,
5439                 .help = "used internally for reset processing",
5440         },
5441         {
5442                 .name = "arp_reset",
5443                 .mode = COMMAND_EXEC,
5444                 .jim_handler = jim_target_reset,
5445                 .help = "used internally for reset processing",
5446         },
5447         {
5448                 .name = "arp_halt",
5449                 .mode = COMMAND_EXEC,
5450                 .jim_handler = jim_target_halt,
5451                 .help = "used internally for reset processing",
5452         },
5453         {
5454                 .name = "arp_waitstate",
5455                 .mode = COMMAND_EXEC,
5456                 .jim_handler = jim_target_wait_state,
5457                 .help = "used internally for reset processing",
5458         },
5459         {
5460                 .name = "invoke-event",
5461                 .mode = COMMAND_EXEC,
5462                 .jim_handler = jim_target_invoke_event,
5463                 .help = "invoke handler for specified event",
5464                 .usage = "event_name",
5465         },
5466         COMMAND_REGISTRATION_DONE
5467 };
5468
5469 static int target_create(Jim_GetOptInfo *goi)
5470 {
5471         Jim_Obj *new_cmd;
5472         Jim_Cmd *cmd;
5473         const char *cp;
5474         int e;
5475         int x;
5476         struct target *target;
5477         struct command_context *cmd_ctx;
5478
5479         cmd_ctx = current_command_context(goi->interp);
5480         assert(cmd_ctx != NULL);
5481
5482         if (goi->argc < 3) {
5483                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5484                 return JIM_ERR;
5485         }
5486
5487         /* COMMAND */
5488         Jim_GetOpt_Obj(goi, &new_cmd);
5489         /* does this command exist? */
5490         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5491         if (cmd) {
5492                 cp = Jim_GetString(new_cmd, NULL);
5493                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5494                 return JIM_ERR;
5495         }
5496
5497         /* TYPE */
5498         e = Jim_GetOpt_String(goi, &cp, NULL);
5499         if (e != JIM_OK)
5500                 return e;
5501         struct transport *tr = get_current_transport();
5502         if (tr->override_target) {
5503                 e = tr->override_target(&cp);
5504                 if (e != ERROR_OK) {
5505                         LOG_ERROR("The selected transport doesn't support this target");
5506                         return JIM_ERR;
5507                 }
5508                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5509         }
5510         /* now does target type exist */
5511         for (x = 0 ; target_types[x] ; x++) {
5512                 if (0 == strcmp(cp, target_types[x]->name)) {
5513                         /* found */
5514                         break;
5515                 }
5516
5517                 /* check for deprecated name */
5518                 if (target_types[x]->deprecated_name) {
5519                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5520                                 /* found */
5521                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5522                                 break;
5523                         }
5524                 }
5525         }
5526         if (target_types[x] == NULL) {
5527                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5528                 for (x = 0 ; target_types[x] ; x++) {
5529                         if (target_types[x + 1]) {
5530                                 Jim_AppendStrings(goi->interp,
5531                                                                    Jim_GetResult(goi->interp),
5532                                                                    target_types[x]->name,
5533                                                                    ", ", NULL);
5534                         } else {
5535                                 Jim_AppendStrings(goi->interp,
5536                                                                    Jim_GetResult(goi->interp),
5537                                                                    " or ",
5538                                                                    target_types[x]->name, NULL);
5539                         }
5540                 }
5541                 return JIM_ERR;
5542         }
5543
5544         /* Create it */
5545         target = calloc(1, sizeof(struct target));
5546         /* set target number */
5547         target->target_number = new_target_number();
5548         cmd_ctx->current_target = target;
5549
5550         /* allocate memory for each unique target type */
5551         target->type = calloc(1, sizeof(struct target_type));
5552
5553         memcpy(target->type, target_types[x], sizeof(struct target_type));
5554
5555         /* will be set by "-endian" */
5556         target->endianness = TARGET_ENDIAN_UNKNOWN;
5557
5558         /* default to first core, override with -coreid */
5559         target->coreid = 0;
5560
5561         target->working_area        = 0x0;
5562         target->working_area_size   = 0x0;
5563         target->working_areas       = NULL;
5564         target->backup_working_area = 0;
5565
5566         target->state               = TARGET_UNKNOWN;
5567         target->debug_reason        = DBG_REASON_UNDEFINED;
5568         target->reg_cache           = NULL;
5569         target->breakpoints         = NULL;
5570         target->watchpoints         = NULL;
5571         target->next                = NULL;
5572         target->arch_info           = NULL;
5573
5574         target->display             = 1;
5575
5576         target->halt_issued                     = false;
5577
5578         /* initialize trace information */
5579         target->trace_info = calloc(1, sizeof(struct trace));
5580
5581         target->dbgmsg          = NULL;
5582         target->dbg_msg_enabled = 0;
5583
5584         target->endianness = TARGET_ENDIAN_UNKNOWN;
5585
5586         target->rtos = NULL;
5587         target->rtos_auto_detect = false;
5588
5589         /* Do the rest as "configure" options */
5590         goi->isconfigure = 1;
5591         e = target_configure(goi, target);
5592
5593         if (target->tap == NULL) {
5594                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5595                 e = JIM_ERR;
5596         }
5597
5598         if (e != JIM_OK) {
5599                 free(target->type);
5600                 free(target);
5601                 return e;
5602         }
5603
5604         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5605                 /* default endian to little if not specified */
5606                 target->endianness = TARGET_LITTLE_ENDIAN;
5607         }
5608
5609         cp = Jim_GetString(new_cmd, NULL);
5610         target->cmd_name = strdup(cp);
5611
5612         /* create the target specific commands */
5613         if (target->type->commands) {
5614                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5615                 if (ERROR_OK != e)
5616                         LOG_ERROR("unable to register '%s' commands", cp);
5617         }
5618         if (target->type->target_create)
5619                 (*(target->type->target_create))(target, goi->interp);
5620
5621         /* append to end of list */
5622         {
5623                 struct target **tpp;
5624                 tpp = &(all_targets);
5625                 while (*tpp)
5626                         tpp = &((*tpp)->next);
5627                 *tpp = target;
5628         }
5629
5630         /* now - create the new target name command */
5631         const struct command_registration target_subcommands[] = {
5632                 {
5633                         .chain = target_instance_command_handlers,
5634                 },
5635                 {
5636                         .chain = target->type->commands,
5637                 },
5638                 COMMAND_REGISTRATION_DONE
5639         };
5640         const struct command_registration target_commands[] = {
5641                 {
5642                         .name = cp,
5643                         .mode = COMMAND_ANY,
5644                         .help = "target command group",
5645                         .usage = "",
5646                         .chain = target_subcommands,
5647                 },
5648                 COMMAND_REGISTRATION_DONE
5649         };
5650         e = register_commands(cmd_ctx, NULL, target_commands);
5651         if (ERROR_OK != e)
5652                 return JIM_ERR;
5653
5654         struct command *c = command_find_in_context(cmd_ctx, cp);
5655         assert(c);
5656         command_set_handler_data(c, target);
5657
5658         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5659 }
5660
5661 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5662 {
5663         if (argc != 1) {
5664                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5665                 return JIM_ERR;
5666         }
5667         struct command_context *cmd_ctx = current_command_context(interp);
5668         assert(cmd_ctx != NULL);
5669
5670         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5671         return JIM_OK;
5672 }
5673
5674 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5675 {
5676         if (argc != 1) {
5677                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5678                 return JIM_ERR;
5679         }
5680         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5681         for (unsigned x = 0; NULL != target_types[x]; x++) {
5682                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5683                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5684         }
5685         return JIM_OK;
5686 }
5687
5688 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5689 {
5690         if (argc != 1) {
5691                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5692                 return JIM_ERR;
5693         }
5694         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5695         struct target *target = all_targets;
5696         while (target) {
5697                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5698                         Jim_NewStringObj(interp, target_name(target), -1));
5699                 target = target->next;
5700         }
5701         return JIM_OK;
5702 }
5703
5704 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5705 {
5706         int i;
5707         const char *targetname;
5708         int retval, len;
5709         struct target *target = (struct target *) NULL;
5710         struct target_list *head, *curr, *new;
5711         curr = (struct target_list *) NULL;
5712         head = (struct target_list *) NULL;
5713
5714         retval = 0;
5715         LOG_DEBUG("%d", argc);
5716         /* argv[1] = target to associate in smp
5717          * argv[2] = target to assoicate in smp
5718          * argv[3] ...
5719          */
5720
5721         for (i = 1; i < argc; i++) {
5722
5723                 targetname = Jim_GetString(argv[i], &len);
5724                 target = get_target(targetname);
5725                 LOG_DEBUG("%s ", targetname);
5726                 if (target) {
5727                         new = malloc(sizeof(struct target_list));
5728                         new->target = target;
5729                         new->next = (struct target_list *)NULL;
5730                         if (head == (struct target_list *)NULL) {
5731                                 head = new;
5732                                 curr = head;
5733                         } else {
5734                                 curr->next = new;
5735                                 curr = new;
5736                         }
5737                 }
5738         }
5739         /*  now parse the list of cpu and put the target in smp mode*/
5740         curr = head;
5741
5742         while (curr != (struct target_list *)NULL) {
5743                 target = curr->target;
5744                 target->smp = 1;
5745                 target->head = head;
5746                 curr = curr->next;
5747         }
5748
5749         if (target && target->rtos)
5750                 retval = rtos_smp_init(head->target);
5751
5752         return retval;
5753 }
5754
5755
5756 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5757 {
5758         Jim_GetOptInfo goi;
5759         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5760         if (goi.argc < 3) {
5761                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5762                         "<name> <target_type> [<target_options> ...]");
5763                 return JIM_ERR;
5764         }
5765         return target_create(&goi);
5766 }
5767
5768 static const struct command_registration target_subcommand_handlers[] = {
5769         {
5770                 .name = "init",
5771                 .mode = COMMAND_CONFIG,
5772                 .handler = handle_target_init_command,
5773                 .help = "initialize targets",
5774         },
5775         {
5776                 .name = "create",
5777                 /* REVISIT this should be COMMAND_CONFIG ... */
5778                 .mode = COMMAND_ANY,
5779                 .jim_handler = jim_target_create,
5780                 .usage = "name type '-chain-position' name [options ...]",
5781                 .help = "Creates and selects a new target",
5782         },
5783         {
5784                 .name = "current",
5785                 .mode = COMMAND_ANY,
5786                 .jim_handler = jim_target_current,
5787                 .help = "Returns the currently selected target",
5788         },
5789         {
5790                 .name = "types",
5791                 .mode = COMMAND_ANY,
5792                 .jim_handler = jim_target_types,
5793                 .help = "Returns the available target types as "
5794                                 "a list of strings",
5795         },
5796         {
5797                 .name = "names",
5798                 .mode = COMMAND_ANY,
5799                 .jim_handler = jim_target_names,
5800                 .help = "Returns the names of all targets as a list of strings",
5801         },
5802         {
5803                 .name = "smp",
5804                 .mode = COMMAND_ANY,
5805                 .jim_handler = jim_target_smp,
5806                 .usage = "targetname1 targetname2 ...",
5807                 .help = "gather several target in a smp list"
5808         },
5809
5810         COMMAND_REGISTRATION_DONE
5811 };
5812
5813 struct FastLoad {
5814         target_addr_t address;
5815         uint8_t *data;
5816         int length;
5817
5818 };
5819
5820 static int fastload_num;
5821 static struct FastLoad *fastload;
5822
5823 static void free_fastload(void)
5824 {
5825         if (fastload != NULL) {
5826                 int i;
5827                 for (i = 0; i < fastload_num; i++) {
5828                         if (fastload[i].data)
5829                                 free(fastload[i].data);
5830                 }
5831                 free(fastload);
5832                 fastload = NULL;
5833         }
5834 }
5835
5836 COMMAND_HANDLER(handle_fast_load_image_command)
5837 {
5838         uint8_t *buffer;
5839         size_t buf_cnt;
5840         uint32_t image_size;
5841         target_addr_t min_address = 0;
5842         target_addr_t max_address = -1;
5843         int i;
5844
5845         struct image image;
5846
5847         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5848                         &image, &min_address, &max_address);
5849         if (ERROR_OK != retval)
5850                 return retval;
5851
5852         struct duration bench;
5853         duration_start(&bench);
5854
5855         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5856         if (retval != ERROR_OK)
5857                 return retval;
5858
5859         image_size = 0x0;
5860         retval = ERROR_OK;
5861         fastload_num = image.num_sections;
5862         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5863         if (fastload == NULL) {
5864                 command_print(CMD_CTX, "out of memory");
5865                 image_close(&image);
5866                 return ERROR_FAIL;
5867         }
5868         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5869         for (i = 0; i < image.num_sections; i++) {
5870                 buffer = malloc(image.sections[i].size);
5871                 if (buffer == NULL) {
5872                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5873                                                   (int)(image.sections[i].size));
5874                         retval = ERROR_FAIL;
5875                         break;
5876                 }
5877
5878                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5879                 if (retval != ERROR_OK) {
5880                         free(buffer);
5881                         break;
5882                 }
5883
5884                 uint32_t offset = 0;
5885                 uint32_t length = buf_cnt;
5886
5887                 /* DANGER!!! beware of unsigned comparision here!!! */
5888
5889                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5890                                 (image.sections[i].base_address < max_address)) {
5891                         if (image.sections[i].base_address < min_address) {
5892                                 /* clip addresses below */
5893                                 offset += min_address-image.sections[i].base_address;
5894                                 length -= offset;
5895                         }
5896
5897                         if (image.sections[i].base_address + buf_cnt > max_address)
5898                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5899
5900                         fastload[i].address = image.sections[i].base_address + offset;
5901                         fastload[i].data = malloc(length);
5902                         if (fastload[i].data == NULL) {
5903                                 free(buffer);
5904                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5905                                                           length);
5906                                 retval = ERROR_FAIL;
5907                                 break;
5908                         }
5909                         memcpy(fastload[i].data, buffer + offset, length);
5910                         fastload[i].length = length;
5911
5912                         image_size += length;
5913                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5914                                                   (unsigned int)length,
5915                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5916                 }
5917
5918                 free(buffer);
5919         }
5920
5921         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5922                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5923                                 "in %fs (%0.3f KiB/s)", image_size,
5924                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5925
5926                 command_print(CMD_CTX,
5927                                 "WARNING: image has not been loaded to target!"
5928                                 "You can issue a 'fast_load' to finish loading.");
5929         }
5930
5931         image_close(&image);
5932
5933         if (retval != ERROR_OK)
5934                 free_fastload();
5935
5936         return retval;
5937 }
5938
5939 COMMAND_HANDLER(handle_fast_load_command)
5940 {
5941         if (CMD_ARGC > 0)
5942                 return ERROR_COMMAND_SYNTAX_ERROR;
5943         if (fastload == NULL) {
5944                 LOG_ERROR("No image in memory");
5945                 return ERROR_FAIL;
5946         }
5947         int i;
5948         int64_t ms = timeval_ms();
5949         int size = 0;
5950         int retval = ERROR_OK;
5951         for (i = 0; i < fastload_num; i++) {
5952                 struct target *target = get_current_target(CMD_CTX);
5953                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5954                                           (unsigned int)(fastload[i].address),
5955                                           (unsigned int)(fastload[i].length));
5956                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5957                 if (retval != ERROR_OK)
5958                         break;
5959                 size += fastload[i].length;
5960         }
5961         if (retval == ERROR_OK) {
5962                 int64_t after = timeval_ms();
5963                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5964         }
5965         return retval;
5966 }
5967
5968 static const struct command_registration target_command_handlers[] = {
5969         {
5970                 .name = "targets",
5971                 .handler = handle_targets_command,
5972                 .mode = COMMAND_ANY,
5973                 .help = "change current default target (one parameter) "
5974                         "or prints table of all targets (no parameters)",
5975                 .usage = "[target]",
5976         },
5977         {
5978                 .name = "target",
5979                 .mode = COMMAND_CONFIG,
5980                 .help = "configure target",
5981
5982                 .chain = target_subcommand_handlers,
5983         },
5984         COMMAND_REGISTRATION_DONE
5985 };
5986
5987 int target_register_commands(struct command_context *cmd_ctx)
5988 {
5989         return register_commands(cmd_ctx, NULL, target_command_handlers);
5990 }
5991
5992 static bool target_reset_nag = true;
5993
5994 bool get_target_reset_nag(void)
5995 {
5996         return target_reset_nag;
5997 }
5998
5999 COMMAND_HANDLER(handle_target_reset_nag)
6000 {
6001         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
6002                         &target_reset_nag, "Nag after each reset about options to improve "
6003                         "performance");
6004 }
6005
6006 COMMAND_HANDLER(handle_ps_command)
6007 {
6008         struct target *target = get_current_target(CMD_CTX);
6009         char *display;
6010         if (target->state != TARGET_HALTED) {
6011                 LOG_INFO("target not halted !!");
6012                 return ERROR_OK;
6013         }
6014
6015         if ((target->rtos) && (target->rtos->type)
6016                         && (target->rtos->type->ps_command)) {
6017                 display = target->rtos->type->ps_command(target);
6018                 command_print(CMD_CTX, "%s", display);
6019                 free(display);
6020                 return ERROR_OK;
6021         } else {
6022                 LOG_INFO("failed");
6023                 return ERROR_TARGET_FAILURE;
6024         }
6025 }
6026
6027 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
6028 {
6029         if (text != NULL)
6030                 command_print_sameline(cmd_ctx, "%s", text);
6031         for (int i = 0; i < size; i++)
6032                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
6033         command_print(cmd_ctx, " ");
6034 }
6035
6036 COMMAND_HANDLER(handle_test_mem_access_command)
6037 {
6038         struct target *target = get_current_target(CMD_CTX);
6039         uint32_t test_size;
6040         int retval = ERROR_OK;
6041
6042         if (target->state != TARGET_HALTED) {
6043                 LOG_INFO("target not halted !!");
6044                 return ERROR_FAIL;
6045         }
6046
6047         if (CMD_ARGC != 1)
6048                 return ERROR_COMMAND_SYNTAX_ERROR;
6049
6050         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6051
6052         /* Test reads */
6053         size_t num_bytes = test_size + 4;
6054
6055         struct working_area *wa = NULL;
6056         retval = target_alloc_working_area(target, num_bytes, &wa);
6057         if (retval != ERROR_OK) {
6058                 LOG_ERROR("Not enough working area");
6059                 return ERROR_FAIL;
6060         }
6061
6062         uint8_t *test_pattern = malloc(num_bytes);
6063
6064         for (size_t i = 0; i < num_bytes; i++)
6065                 test_pattern[i] = rand();
6066
6067         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6068         if (retval != ERROR_OK) {
6069                 LOG_ERROR("Test pattern write failed");
6070                 goto out;
6071         }
6072
6073         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6074                 for (int size = 1; size <= 4; size *= 2) {
6075                         for (int offset = 0; offset < 4; offset++) {
6076                                 uint32_t count = test_size / size;
6077                                 size_t host_bufsiz = (count + 2) * size + host_offset;
6078                                 uint8_t *read_ref = malloc(host_bufsiz);
6079                                 uint8_t *read_buf = malloc(host_bufsiz);
6080
6081                                 for (size_t i = 0; i < host_bufsiz; i++) {
6082                                         read_ref[i] = rand();
6083                                         read_buf[i] = read_ref[i];
6084                                 }
6085                                 command_print_sameline(CMD_CTX,
6086                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6087                                                 size, offset, host_offset ? "un" : "");
6088
6089                                 struct duration bench;
6090                                 duration_start(&bench);
6091
6092                                 retval = target_read_memory(target, wa->address + offset, size, count,
6093                                                 read_buf + size + host_offset);
6094
6095                                 duration_measure(&bench);
6096
6097                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6098                                         command_print(CMD_CTX, "Unsupported alignment");
6099                                         goto next;
6100                                 } else if (retval != ERROR_OK) {
6101                                         command_print(CMD_CTX, "Memory read failed");
6102                                         goto next;
6103                                 }
6104
6105                                 /* replay on host */
6106                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6107
6108                                 /* check result */
6109                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
6110                                 if (result == 0) {
6111                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6112                                                         duration_elapsed(&bench),
6113                                                         duration_kbps(&bench, count * size));
6114                                 } else {
6115                                         command_print(CMD_CTX, "Compare failed");
6116                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6117                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6118                                 }
6119 next:
6120                                 free(read_ref);
6121                                 free(read_buf);
6122                         }
6123                 }
6124         }
6125
6126 out:
6127         free(test_pattern);
6128
6129         if (wa != NULL)
6130                 target_free_working_area(target, wa);
6131
6132         /* Test writes */
6133         num_bytes = test_size + 4 + 4 + 4;
6134
6135         retval = target_alloc_working_area(target, num_bytes, &wa);
6136         if (retval != ERROR_OK) {
6137                 LOG_ERROR("Not enough working area");
6138                 return ERROR_FAIL;
6139         }
6140
6141         test_pattern = malloc(num_bytes);
6142
6143         for (size_t i = 0; i < num_bytes; i++)
6144                 test_pattern[i] = rand();
6145
6146         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6147                 for (int size = 1; size <= 4; size *= 2) {
6148                         for (int offset = 0; offset < 4; offset++) {
6149                                 uint32_t count = test_size / size;
6150                                 size_t host_bufsiz = count * size + host_offset;
6151                                 uint8_t *read_ref = malloc(num_bytes);
6152                                 uint8_t *read_buf = malloc(num_bytes);
6153                                 uint8_t *write_buf = malloc(host_bufsiz);
6154
6155                                 for (size_t i = 0; i < host_bufsiz; i++)
6156                                         write_buf[i] = rand();
6157                                 command_print_sameline(CMD_CTX,
6158                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6159                                                 size, offset, host_offset ? "un" : "");
6160
6161                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6162                                 if (retval != ERROR_OK) {
6163                                         command_print(CMD_CTX, "Test pattern write failed");
6164                                         goto nextw;
6165                                 }
6166
6167                                 /* replay on host */
6168                                 memcpy(read_ref, test_pattern, num_bytes);
6169                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6170
6171                                 struct duration bench;
6172                                 duration_start(&bench);
6173
6174                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
6175                                                 write_buf + host_offset);
6176
6177                                 duration_measure(&bench);
6178
6179                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6180                                         command_print(CMD_CTX, "Unsupported alignment");
6181                                         goto nextw;
6182                                 } else if (retval != ERROR_OK) {
6183                                         command_print(CMD_CTX, "Memory write failed");
6184                                         goto nextw;
6185                                 }
6186
6187                                 /* read back */
6188                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6189                                 if (retval != ERROR_OK) {
6190                                         command_print(CMD_CTX, "Test pattern write failed");
6191                                         goto nextw;
6192                                 }
6193
6194                                 /* check result */
6195                                 int result = memcmp(read_ref, read_buf, num_bytes);
6196                                 if (result == 0) {
6197                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6198                                                         duration_elapsed(&bench),
6199                                                         duration_kbps(&bench, count * size));
6200                                 } else {
6201                                         command_print(CMD_CTX, "Compare failed");
6202                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6203                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6204                                 }
6205 nextw:
6206                                 free(read_ref);
6207                                 free(read_buf);
6208                         }
6209                 }
6210         }
6211
6212         free(test_pattern);
6213
6214         if (wa != NULL)
6215                 target_free_working_area(target, wa);
6216         return retval;
6217 }
6218
6219 static const struct command_registration target_exec_command_handlers[] = {
6220         {
6221                 .name = "fast_load_image",
6222                 .handler = handle_fast_load_image_command,
6223                 .mode = COMMAND_ANY,
6224                 .help = "Load image into server memory for later use by "
6225                         "fast_load; primarily for profiling",
6226                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6227                         "[min_address [max_length]]",
6228         },
6229         {
6230                 .name = "fast_load",
6231                 .handler = handle_fast_load_command,
6232                 .mode = COMMAND_EXEC,
6233                 .help = "loads active fast load image to current target "
6234                         "- mainly for profiling purposes",
6235                 .usage = "",
6236         },
6237         {
6238                 .name = "profile",
6239                 .handler = handle_profile_command,
6240                 .mode = COMMAND_EXEC,
6241                 .usage = "seconds filename [start end]",
6242                 .help = "profiling samples the CPU PC",
6243         },
6244         /** @todo don't register virt2phys() unless target supports it */
6245         {
6246                 .name = "virt2phys",
6247                 .handler = handle_virt2phys_command,
6248                 .mode = COMMAND_ANY,
6249                 .help = "translate a virtual address into a physical address",
6250                 .usage = "virtual_address",
6251         },
6252         {
6253                 .name = "reg",
6254                 .handler = handle_reg_command,
6255                 .mode = COMMAND_EXEC,
6256                 .help = "display (reread from target with \"force\") or set a register; "
6257                         "with no arguments, displays all registers and their values",
6258                 .usage = "[(register_number|register_name) [(value|'force')]]",
6259         },
6260         {
6261                 .name = "poll",
6262                 .handler = handle_poll_command,
6263                 .mode = COMMAND_EXEC,
6264                 .help = "poll target state; or reconfigure background polling",
6265                 .usage = "['on'|'off']",
6266         },
6267         {
6268                 .name = "wait_halt",
6269                 .handler = handle_wait_halt_command,
6270                 .mode = COMMAND_EXEC,
6271                 .help = "wait up to the specified number of milliseconds "
6272                         "(default 5000) for a previously requested halt",
6273                 .usage = "[milliseconds]",
6274         },
6275         {
6276                 .name = "halt",
6277                 .handler = handle_halt_command,
6278                 .mode = COMMAND_EXEC,
6279                 .help = "request target to halt, then wait up to the specified"
6280                         "number of milliseconds (default 5000) for it to complete",
6281                 .usage = "[milliseconds]",
6282         },
6283         {
6284                 .name = "resume",
6285                 .handler = handle_resume_command,
6286                 .mode = COMMAND_EXEC,
6287                 .help = "resume target execution from current PC or address",
6288                 .usage = "[address]",
6289         },
6290         {
6291                 .name = "reset",
6292                 .handler = handle_reset_command,
6293                 .mode = COMMAND_EXEC,
6294                 .usage = "[run|halt|init]",
6295                 .help = "Reset all targets into the specified mode."
6296                         "Default reset mode is run, if not given.",
6297         },
6298         {
6299                 .name = "soft_reset_halt",
6300                 .handler = handle_soft_reset_halt_command,
6301                 .mode = COMMAND_EXEC,
6302                 .usage = "",
6303                 .help = "halt the target and do a soft reset",
6304         },
6305         {
6306                 .name = "step",
6307                 .handler = handle_step_command,
6308                 .mode = COMMAND_EXEC,
6309                 .help = "step one instruction from current PC or address",
6310                 .usage = "[address]",
6311         },
6312         {
6313                 .name = "mdd",
6314                 .handler = handle_md_command,
6315                 .mode = COMMAND_EXEC,
6316                 .help = "display memory words",
6317                 .usage = "['phys'] address [count]",
6318         },
6319         {
6320                 .name = "mdw",
6321                 .handler = handle_md_command,
6322                 .mode = COMMAND_EXEC,
6323                 .help = "display memory words",
6324                 .usage = "['phys'] address [count]",
6325         },
6326         {
6327                 .name = "mdh",
6328                 .handler = handle_md_command,
6329                 .mode = COMMAND_EXEC,
6330                 .help = "display memory half-words",
6331                 .usage = "['phys'] address [count]",
6332         },
6333         {
6334                 .name = "mdb",
6335                 .handler = handle_md_command,
6336                 .mode = COMMAND_EXEC,
6337                 .help = "display memory bytes",
6338                 .usage = "['phys'] address [count]",
6339         },
6340         {
6341                 .name = "mwd",
6342                 .handler = handle_mw_command,
6343                 .mode = COMMAND_EXEC,
6344                 .help = "write memory word",
6345                 .usage = "['phys'] address value [count]",
6346         },
6347         {
6348                 .name = "mww",
6349                 .handler = handle_mw_command,
6350                 .mode = COMMAND_EXEC,
6351                 .help = "write memory word",
6352                 .usage = "['phys'] address value [count]",
6353         },
6354         {
6355                 .name = "mwh",
6356                 .handler = handle_mw_command,
6357                 .mode = COMMAND_EXEC,
6358                 .help = "write memory half-word",
6359                 .usage = "['phys'] address value [count]",
6360         },
6361         {
6362                 .name = "mwb",
6363                 .handler = handle_mw_command,
6364                 .mode = COMMAND_EXEC,
6365                 .help = "write memory byte",
6366                 .usage = "['phys'] address value [count]",
6367         },
6368         {
6369                 .name = "bp",
6370                 .handler = handle_bp_command,
6371                 .mode = COMMAND_EXEC,
6372                 .help = "list or set hardware or software breakpoint",
6373                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6374         },
6375         {
6376                 .name = "rbp",
6377                 .handler = handle_rbp_command,
6378                 .mode = COMMAND_EXEC,
6379                 .help = "remove breakpoint",
6380                 .usage = "address",
6381         },
6382         {
6383                 .name = "wp",
6384                 .handler = handle_wp_command,
6385                 .mode = COMMAND_EXEC,
6386                 .help = "list (no params) or create watchpoints",
6387                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6388         },
6389         {
6390                 .name = "rwp",
6391                 .handler = handle_rwp_command,
6392                 .mode = COMMAND_EXEC,
6393                 .help = "remove watchpoint",
6394                 .usage = "address",
6395         },
6396         {
6397                 .name = "load_image",
6398                 .handler = handle_load_image_command,
6399                 .mode = COMMAND_EXEC,
6400                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6401                         "[min_address] [max_length]",
6402         },
6403         {
6404                 .name = "dump_image",
6405                 .handler = handle_dump_image_command,
6406                 .mode = COMMAND_EXEC,
6407                 .usage = "filename address size",
6408         },
6409         {
6410                 .name = "verify_image_checksum",
6411                 .handler = handle_verify_image_checksum_command,
6412                 .mode = COMMAND_EXEC,
6413                 .usage = "filename [offset [type]]",
6414         },
6415         {
6416                 .name = "verify_image",
6417                 .handler = handle_verify_image_command,
6418                 .mode = COMMAND_EXEC,
6419                 .usage = "filename [offset [type]]",
6420         },
6421         {
6422                 .name = "test_image",
6423                 .handler = handle_test_image_command,
6424                 .mode = COMMAND_EXEC,
6425                 .usage = "filename [offset [type]]",
6426         },
6427         {
6428                 .name = "mem2array",
6429                 .mode = COMMAND_EXEC,
6430                 .jim_handler = jim_mem2array,
6431                 .help = "read 8/16/32 bit memory and return as a TCL array "
6432                         "for script processing",
6433                 .usage = "arrayname bitwidth address count",
6434         },
6435         {
6436                 .name = "array2mem",
6437                 .mode = COMMAND_EXEC,
6438                 .jim_handler = jim_array2mem,
6439                 .help = "convert a TCL array to memory locations "
6440                         "and write the 8/16/32 bit values",
6441                 .usage = "arrayname bitwidth address count",
6442         },
6443         {
6444                 .name = "reset_nag",
6445                 .handler = handle_target_reset_nag,
6446                 .mode = COMMAND_ANY,
6447                 .help = "Nag after each reset about options that could have been "
6448                                 "enabled to improve performance. ",
6449                 .usage = "['enable'|'disable']",
6450         },
6451         {
6452                 .name = "ps",
6453                 .handler = handle_ps_command,
6454                 .mode = COMMAND_EXEC,
6455                 .help = "list all tasks ",
6456                 .usage = " ",
6457         },
6458         {
6459                 .name = "test_mem_access",
6460                 .handler = handle_test_mem_access_command,
6461                 .mode = COMMAND_EXEC,
6462                 .help = "Test the target's memory access functions",
6463                 .usage = "size",
6464         },
6465
6466         COMMAND_REGISTRATION_DONE
6467 };
6468 static int target_register_user_commands(struct command_context *cmd_ctx)
6469 {
6470         int retval = ERROR_OK;
6471         retval = target_request_register_commands(cmd_ctx);
6472         if (retval != ERROR_OK)
6473                 return retval;
6474
6475         retval = trace_register_commands(cmd_ctx);
6476         if (retval != ERROR_OK)
6477                 return retval;
6478
6479
6480         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6481 }