]> git.sur5r.net Git - openocd/blob - src/target/target.c
target, flash: prepare infrastructure for multi-block blank check
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63                 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65                 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type avr_target;
98 extern struct target_type dsp563xx_target;
99 extern struct target_type dsp5680xx_target;
100 extern struct target_type testee_target;
101 extern struct target_type avr32_ap7k_target;
102 extern struct target_type hla_target;
103 extern struct target_type nds32_v2_target;
104 extern struct target_type nds32_v3_target;
105 extern struct target_type nds32_v3m_target;
106 extern struct target_type or1k_target;
107 extern struct target_type quark_x10xx_target;
108 extern struct target_type quark_d20xx_target;
109 extern struct target_type stm8_target;
110
111 static struct target_type *target_types[] = {
112         &arm7tdmi_target,
113         &arm9tdmi_target,
114         &arm920t_target,
115         &arm720t_target,
116         &arm966e_target,
117         &arm946e_target,
118         &arm926ejs_target,
119         &fa526_target,
120         &feroceon_target,
121         &dragonite_target,
122         &xscale_target,
123         &cortexm_target,
124         &cortexa_target,
125         &cortexr4_target,
126         &arm11_target,
127         &ls1_sap_target,
128         &mips_m4k_target,
129         &avr_target,
130         &dsp563xx_target,
131         &dsp5680xx_target,
132         &testee_target,
133         &avr32_ap7k_target,
134         &hla_target,
135         &nds32_v2_target,
136         &nds32_v3_target,
137         &nds32_v3m_target,
138         &or1k_target,
139         &quark_x10xx_target,
140         &quark_d20xx_target,
141         &stm8_target,
142 #if BUILD_TARGET64
143         &aarch64_target,
144 #endif
145         NULL,
146 };
147
148 struct target *all_targets;
149 static struct target_event_callback *target_event_callbacks;
150 static struct target_timer_callback *target_timer_callbacks;
151 LIST_HEAD(target_reset_callback_list);
152 LIST_HEAD(target_trace_callback_list);
153 static const int polling_interval = 100;
154
155 static const Jim_Nvp nvp_assert[] = {
156         { .name = "assert", NVP_ASSERT },
157         { .name = "deassert", NVP_DEASSERT },
158         { .name = "T", NVP_ASSERT },
159         { .name = "F", NVP_DEASSERT },
160         { .name = "t", NVP_ASSERT },
161         { .name = "f", NVP_DEASSERT },
162         { .name = NULL, .value = -1 }
163 };
164
165 static const Jim_Nvp nvp_error_target[] = {
166         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
167         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
168         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
169         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
170         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
171         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
172         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
173         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
174         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
175         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
176         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
177         { .value = -1, .name = NULL }
178 };
179
180 static const char *target_strerror_safe(int err)
181 {
182         const Jim_Nvp *n;
183
184         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
185         if (n->name == NULL)
186                 return "unknown";
187         else
188                 return n->name;
189 }
190
191 static const Jim_Nvp nvp_target_event[] = {
192
193         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
194         { .value = TARGET_EVENT_HALTED, .name = "halted" },
195         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
196         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
197         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
198
199         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
200         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
201
202         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
203         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
204         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
205         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
206         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
207         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
208         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
209         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
210
211         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
212         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
213
214         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
215         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
216
217         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
218         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
219
220         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
221         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
222
223         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
224         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
225
226         { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
227
228         { .name = NULL, .value = -1 }
229 };
230
231 static const Jim_Nvp nvp_target_state[] = {
232         { .name = "unknown", .value = TARGET_UNKNOWN },
233         { .name = "running", .value = TARGET_RUNNING },
234         { .name = "halted",  .value = TARGET_HALTED },
235         { .name = "reset",   .value = TARGET_RESET },
236         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
237         { .name = NULL, .value = -1 },
238 };
239
240 static const Jim_Nvp nvp_target_debug_reason[] = {
241         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
242         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
243         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
244         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
245         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
246         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
247         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
248         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
249         { .name = NULL, .value = -1 },
250 };
251
252 static const Jim_Nvp nvp_target_endian[] = {
253         { .name = "big",    .value = TARGET_BIG_ENDIAN },
254         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
255         { .name = "be",     .value = TARGET_BIG_ENDIAN },
256         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
257         { .name = NULL,     .value = -1 },
258 };
259
260 static const Jim_Nvp nvp_reset_modes[] = {
261         { .name = "unknown", .value = RESET_UNKNOWN },
262         { .name = "run"    , .value = RESET_RUN },
263         { .name = "halt"   , .value = RESET_HALT },
264         { .name = "init"   , .value = RESET_INIT },
265         { .name = NULL     , .value = -1 },
266 };
267
268 const char *debug_reason_name(struct target *t)
269 {
270         const char *cp;
271
272         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
273                         t->debug_reason)->name;
274         if (!cp) {
275                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
276                 cp = "(*BUG*unknown*BUG*)";
277         }
278         return cp;
279 }
280
281 const char *target_state_name(struct target *t)
282 {
283         const char *cp;
284         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
285         if (!cp) {
286                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
287                 cp = "(*BUG*unknown*BUG*)";
288         }
289
290         if (!target_was_examined(t) && t->defer_examine)
291                 cp = "examine deferred";
292
293         return cp;
294 }
295
296 const char *target_event_name(enum target_event event)
297 {
298         const char *cp;
299         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
300         if (!cp) {
301                 LOG_ERROR("Invalid target event: %d", (int)(event));
302                 cp = "(*BUG*unknown*BUG*)";
303         }
304         return cp;
305 }
306
307 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
308 {
309         const char *cp;
310         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
311         if (!cp) {
312                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
313                 cp = "(*BUG*unknown*BUG*)";
314         }
315         return cp;
316 }
317
318 /* determine the number of the new target */
319 static int new_target_number(void)
320 {
321         struct target *t;
322         int x;
323
324         /* number is 0 based */
325         x = -1;
326         t = all_targets;
327         while (t) {
328                 if (x < t->target_number)
329                         x = t->target_number;
330                 t = t->next;
331         }
332         return x + 1;
333 }
334
335 /* read a uint64_t from a buffer in target memory endianness */
336 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
337 {
338         if (target->endianness == TARGET_LITTLE_ENDIAN)
339                 return le_to_h_u64(buffer);
340         else
341                 return be_to_h_u64(buffer);
342 }
343
344 /* read a uint32_t from a buffer in target memory endianness */
345 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
346 {
347         if (target->endianness == TARGET_LITTLE_ENDIAN)
348                 return le_to_h_u32(buffer);
349         else
350                 return be_to_h_u32(buffer);
351 }
352
353 /* read a uint24_t from a buffer in target memory endianness */
354 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
355 {
356         if (target->endianness == TARGET_LITTLE_ENDIAN)
357                 return le_to_h_u24(buffer);
358         else
359                 return be_to_h_u24(buffer);
360 }
361
362 /* read a uint16_t from a buffer in target memory endianness */
363 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
364 {
365         if (target->endianness == TARGET_LITTLE_ENDIAN)
366                 return le_to_h_u16(buffer);
367         else
368                 return be_to_h_u16(buffer);
369 }
370
371 /* read a uint8_t from a buffer in target memory endianness */
372 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
373 {
374         return *buffer & 0x0ff;
375 }
376
377 /* write a uint64_t to a buffer in target memory endianness */
378 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
379 {
380         if (target->endianness == TARGET_LITTLE_ENDIAN)
381                 h_u64_to_le(buffer, value);
382         else
383                 h_u64_to_be(buffer, value);
384 }
385
386 /* write a uint32_t to a buffer in target memory endianness */
387 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
388 {
389         if (target->endianness == TARGET_LITTLE_ENDIAN)
390                 h_u32_to_le(buffer, value);
391         else
392                 h_u32_to_be(buffer, value);
393 }
394
395 /* write a uint24_t to a buffer in target memory endianness */
396 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
397 {
398         if (target->endianness == TARGET_LITTLE_ENDIAN)
399                 h_u24_to_le(buffer, value);
400         else
401                 h_u24_to_be(buffer, value);
402 }
403
404 /* write a uint16_t to a buffer in target memory endianness */
405 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
406 {
407         if (target->endianness == TARGET_LITTLE_ENDIAN)
408                 h_u16_to_le(buffer, value);
409         else
410                 h_u16_to_be(buffer, value);
411 }
412
413 /* write a uint8_t to a buffer in target memory endianness */
414 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
415 {
416         *buffer = value;
417 }
418
419 /* write a uint64_t array to a buffer in target memory endianness */
420 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
421 {
422         uint32_t i;
423         for (i = 0; i < count; i++)
424                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
425 }
426
427 /* write a uint32_t array to a buffer in target memory endianness */
428 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
429 {
430         uint32_t i;
431         for (i = 0; i < count; i++)
432                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
433 }
434
435 /* write a uint16_t array to a buffer in target memory endianness */
436 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
437 {
438         uint32_t i;
439         for (i = 0; i < count; i++)
440                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
441 }
442
443 /* write a uint64_t array to a buffer in target memory endianness */
444 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
445 {
446         uint32_t i;
447         for (i = 0; i < count; i++)
448                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
449 }
450
451 /* write a uint32_t array to a buffer in target memory endianness */
452 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
453 {
454         uint32_t i;
455         for (i = 0; i < count; i++)
456                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
457 }
458
459 /* write a uint16_t array to a buffer in target memory endianness */
460 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
461 {
462         uint32_t i;
463         for (i = 0; i < count; i++)
464                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
465 }
466
467 /* return a pointer to a configured target; id is name or number */
468 struct target *get_target(const char *id)
469 {
470         struct target *target;
471
472         /* try as tcltarget name */
473         for (target = all_targets; target; target = target->next) {
474                 if (target_name(target) == NULL)
475                         continue;
476                 if (strcmp(id, target_name(target)) == 0)
477                         return target;
478         }
479
480         /* It's OK to remove this fallback sometime after August 2010 or so */
481
482         /* no match, try as number */
483         unsigned num;
484         if (parse_uint(id, &num) != ERROR_OK)
485                 return NULL;
486
487         for (target = all_targets; target; target = target->next) {
488                 if (target->target_number == (int)num) {
489                         LOG_WARNING("use '%s' as target identifier, not '%u'",
490                                         target_name(target), num);
491                         return target;
492                 }
493         }
494
495         return NULL;
496 }
497
498 /* returns a pointer to the n-th configured target */
499 struct target *get_target_by_num(int num)
500 {
501         struct target *target = all_targets;
502
503         while (target) {
504                 if (target->target_number == num)
505                         return target;
506                 target = target->next;
507         }
508
509         return NULL;
510 }
511
512 struct target *get_current_target(struct command_context *cmd_ctx)
513 {
514         struct target *target = cmd_ctx->current_target_override
515                 ? cmd_ctx->current_target_override
516                 : cmd_ctx->current_target;
517
518         if (target == NULL) {
519                 LOG_ERROR("BUG: current_target out of bounds");
520                 exit(-1);
521         }
522
523         return target;
524 }
525
526 int target_poll(struct target *target)
527 {
528         int retval;
529
530         /* We can't poll until after examine */
531         if (!target_was_examined(target)) {
532                 /* Fail silently lest we pollute the log */
533                 return ERROR_FAIL;
534         }
535
536         retval = target->type->poll(target);
537         if (retval != ERROR_OK)
538                 return retval;
539
540         if (target->halt_issued) {
541                 if (target->state == TARGET_HALTED)
542                         target->halt_issued = false;
543                 else {
544                         int64_t t = timeval_ms() - target->halt_issued_time;
545                         if (t > DEFAULT_HALT_TIMEOUT) {
546                                 target->halt_issued = false;
547                                 LOG_INFO("Halt timed out, wake up GDB.");
548                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
549                         }
550                 }
551         }
552
553         return ERROR_OK;
554 }
555
556 int target_halt(struct target *target)
557 {
558         int retval;
559         /* We can't poll until after examine */
560         if (!target_was_examined(target)) {
561                 LOG_ERROR("Target not examined yet");
562                 return ERROR_FAIL;
563         }
564
565         retval = target->type->halt(target);
566         if (retval != ERROR_OK)
567                 return retval;
568
569         target->halt_issued = true;
570         target->halt_issued_time = timeval_ms();
571
572         return ERROR_OK;
573 }
574
575 /**
576  * Make the target (re)start executing using its saved execution
577  * context (possibly with some modifications).
578  *
579  * @param target Which target should start executing.
580  * @param current True to use the target's saved program counter instead
581  *      of the address parameter
582  * @param address Optionally used as the program counter.
583  * @param handle_breakpoints True iff breakpoints at the resumption PC
584  *      should be skipped.  (For example, maybe execution was stopped by
585  *      such a breakpoint, in which case it would be counterprodutive to
586  *      let it re-trigger.
587  * @param debug_execution False if all working areas allocated by OpenOCD
588  *      should be released and/or restored to their original contents.
589  *      (This would for example be true to run some downloaded "helper"
590  *      algorithm code, which resides in one such working buffer and uses
591  *      another for data storage.)
592  *
593  * @todo Resolve the ambiguity about what the "debug_execution" flag
594  * signifies.  For example, Target implementations don't agree on how
595  * it relates to invalidation of the register cache, or to whether
596  * breakpoints and watchpoints should be enabled.  (It would seem wrong
597  * to enable breakpoints when running downloaded "helper" algorithms
598  * (debug_execution true), since the breakpoints would be set to match
599  * target firmware being debugged, not the helper algorithm.... and
600  * enabling them could cause such helpers to malfunction (for example,
601  * by overwriting data with a breakpoint instruction.  On the other
602  * hand the infrastructure for running such helpers might use this
603  * procedure but rely on hardware breakpoint to detect termination.)
604  */
605 int target_resume(struct target *target, int current, target_addr_t address,
606                 int handle_breakpoints, int debug_execution)
607 {
608         int retval;
609
610         /* We can't poll until after examine */
611         if (!target_was_examined(target)) {
612                 LOG_ERROR("Target not examined yet");
613                 return ERROR_FAIL;
614         }
615
616         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
617
618         /* note that resume *must* be asynchronous. The CPU can halt before
619          * we poll. The CPU can even halt at the current PC as a result of
620          * a software breakpoint being inserted by (a bug?) the application.
621          */
622         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
623         if (retval != ERROR_OK)
624                 return retval;
625
626         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
627
628         return retval;
629 }
630
631 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
632 {
633         char buf[100];
634         int retval;
635         Jim_Nvp *n;
636         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
637         if (n->name == NULL) {
638                 LOG_ERROR("invalid reset mode");
639                 return ERROR_FAIL;
640         }
641
642         struct target *target;
643         for (target = all_targets; target; target = target->next)
644                 target_call_reset_callbacks(target, reset_mode);
645
646         /* disable polling during reset to make reset event scripts
647          * more predictable, i.e. dr/irscan & pathmove in events will
648          * not have JTAG operations injected into the middle of a sequence.
649          */
650         bool save_poll = jtag_poll_get_enabled();
651
652         jtag_poll_set_enabled(false);
653
654         sprintf(buf, "ocd_process_reset %s", n->name);
655         retval = Jim_Eval(cmd_ctx->interp, buf);
656
657         jtag_poll_set_enabled(save_poll);
658
659         if (retval != JIM_OK) {
660                 Jim_MakeErrorMessage(cmd_ctx->interp);
661                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
662                 return ERROR_FAIL;
663         }
664
665         /* We want any events to be processed before the prompt */
666         retval = target_call_timer_callbacks_now();
667
668         for (target = all_targets; target; target = target->next) {
669                 target->type->check_reset(target);
670                 target->running_alg = false;
671         }
672
673         return retval;
674 }
675
676 static int identity_virt2phys(struct target *target,
677                 target_addr_t virtual, target_addr_t *physical)
678 {
679         *physical = virtual;
680         return ERROR_OK;
681 }
682
683 static int no_mmu(struct target *target, int *enabled)
684 {
685         *enabled = 0;
686         return ERROR_OK;
687 }
688
689 static int default_examine(struct target *target)
690 {
691         target_set_examined(target);
692         return ERROR_OK;
693 }
694
695 /* no check by default */
696 static int default_check_reset(struct target *target)
697 {
698         return ERROR_OK;
699 }
700
701 int target_examine_one(struct target *target)
702 {
703         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
704
705         int retval = target->type->examine(target);
706         if (retval != ERROR_OK)
707                 return retval;
708
709         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
710
711         return ERROR_OK;
712 }
713
714 static int jtag_enable_callback(enum jtag_event event, void *priv)
715 {
716         struct target *target = priv;
717
718         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
719                 return ERROR_OK;
720
721         jtag_unregister_event_callback(jtag_enable_callback, target);
722
723         return target_examine_one(target);
724 }
725
726 /* Targets that correctly implement init + examine, i.e.
727  * no communication with target during init:
728  *
729  * XScale
730  */
731 int target_examine(void)
732 {
733         int retval = ERROR_OK;
734         struct target *target;
735
736         for (target = all_targets; target; target = target->next) {
737                 /* defer examination, but don't skip it */
738                 if (!target->tap->enabled) {
739                         jtag_register_event_callback(jtag_enable_callback,
740                                         target);
741                         continue;
742                 }
743
744                 if (target->defer_examine)
745                         continue;
746
747                 retval = target_examine_one(target);
748                 if (retval != ERROR_OK)
749                         return retval;
750         }
751         return retval;
752 }
753
754 const char *target_type_name(struct target *target)
755 {
756         return target->type->name;
757 }
758
759 static int target_soft_reset_halt(struct target *target)
760 {
761         if (!target_was_examined(target)) {
762                 LOG_ERROR("Target not examined yet");
763                 return ERROR_FAIL;
764         }
765         if (!target->type->soft_reset_halt) {
766                 LOG_ERROR("Target %s does not support soft_reset_halt",
767                                 target_name(target));
768                 return ERROR_FAIL;
769         }
770         return target->type->soft_reset_halt(target);
771 }
772
773 /**
774  * Downloads a target-specific native code algorithm to the target,
775  * and executes it.  * Note that some targets may need to set up, enable,
776  * and tear down a breakpoint (hard or * soft) to detect algorithm
777  * termination, while others may support  lower overhead schemes where
778  * soft breakpoints embedded in the algorithm automatically terminate the
779  * algorithm.
780  *
781  * @param target used to run the algorithm
782  * @param arch_info target-specific description of the algorithm.
783  */
784 int target_run_algorithm(struct target *target,
785                 int num_mem_params, struct mem_param *mem_params,
786                 int num_reg_params, struct reg_param *reg_param,
787                 uint32_t entry_point, uint32_t exit_point,
788                 int timeout_ms, void *arch_info)
789 {
790         int retval = ERROR_FAIL;
791
792         if (!target_was_examined(target)) {
793                 LOG_ERROR("Target not examined yet");
794                 goto done;
795         }
796         if (!target->type->run_algorithm) {
797                 LOG_ERROR("Target type '%s' does not support %s",
798                                 target_type_name(target), __func__);
799                 goto done;
800         }
801
802         target->running_alg = true;
803         retval = target->type->run_algorithm(target,
804                         num_mem_params, mem_params,
805                         num_reg_params, reg_param,
806                         entry_point, exit_point, timeout_ms, arch_info);
807         target->running_alg = false;
808
809 done:
810         return retval;
811 }
812
813 /**
814  * Executes a target-specific native code algorithm and leaves it running.
815  *
816  * @param target used to run the algorithm
817  * @param arch_info target-specific description of the algorithm.
818  */
819 int target_start_algorithm(struct target *target,
820                 int num_mem_params, struct mem_param *mem_params,
821                 int num_reg_params, struct reg_param *reg_params,
822                 uint32_t entry_point, uint32_t exit_point,
823                 void *arch_info)
824 {
825         int retval = ERROR_FAIL;
826
827         if (!target_was_examined(target)) {
828                 LOG_ERROR("Target not examined yet");
829                 goto done;
830         }
831         if (!target->type->start_algorithm) {
832                 LOG_ERROR("Target type '%s' does not support %s",
833                                 target_type_name(target), __func__);
834                 goto done;
835         }
836         if (target->running_alg) {
837                 LOG_ERROR("Target is already running an algorithm");
838                 goto done;
839         }
840
841         target->running_alg = true;
842         retval = target->type->start_algorithm(target,
843                         num_mem_params, mem_params,
844                         num_reg_params, reg_params,
845                         entry_point, exit_point, arch_info);
846
847 done:
848         return retval;
849 }
850
851 /**
852  * Waits for an algorithm started with target_start_algorithm() to complete.
853  *
854  * @param target used to run the algorithm
855  * @param arch_info target-specific description of the algorithm.
856  */
857 int target_wait_algorithm(struct target *target,
858                 int num_mem_params, struct mem_param *mem_params,
859                 int num_reg_params, struct reg_param *reg_params,
860                 uint32_t exit_point, int timeout_ms,
861                 void *arch_info)
862 {
863         int retval = ERROR_FAIL;
864
865         if (!target->type->wait_algorithm) {
866                 LOG_ERROR("Target type '%s' does not support %s",
867                                 target_type_name(target), __func__);
868                 goto done;
869         }
870         if (!target->running_alg) {
871                 LOG_ERROR("Target is not running an algorithm");
872                 goto done;
873         }
874
875         retval = target->type->wait_algorithm(target,
876                         num_mem_params, mem_params,
877                         num_reg_params, reg_params,
878                         exit_point, timeout_ms, arch_info);
879         if (retval != ERROR_TARGET_TIMEOUT)
880                 target->running_alg = false;
881
882 done:
883         return retval;
884 }
885
886 /**
887  * Streams data to a circular buffer on target intended for consumption by code
888  * running asynchronously on target.
889  *
890  * This is intended for applications where target-specific native code runs
891  * on the target, receives data from the circular buffer, does something with
892  * it (most likely writing it to a flash memory), and advances the circular
893  * buffer pointer.
894  *
895  * This assumes that the helper algorithm has already been loaded to the target,
896  * but has not been started yet. Given memory and register parameters are passed
897  * to the algorithm.
898  *
899  * The buffer is defined by (buffer_start, buffer_size) arguments and has the
900  * following format:
901  *
902  *     [buffer_start + 0, buffer_start + 4):
903  *         Write Pointer address (aka head). Written and updated by this
904  *         routine when new data is written to the circular buffer.
905  *     [buffer_start + 4, buffer_start + 8):
906  *         Read Pointer address (aka tail). Updated by code running on the
907  *         target after it consumes data.
908  *     [buffer_start + 8, buffer_start + buffer_size):
909  *         Circular buffer contents.
910  *
911  * See contrib/loaders/flash/stm32f1x.S for an example.
912  *
913  * @param target used to run the algorithm
914  * @param buffer address on the host where data to be sent is located
915  * @param count number of blocks to send
916  * @param block_size size in bytes of each block
917  * @param num_mem_params count of memory-based params to pass to algorithm
918  * @param mem_params memory-based params to pass to algorithm
919  * @param num_reg_params count of register-based params to pass to algorithm
920  * @param reg_params memory-based params to pass to algorithm
921  * @param buffer_start address on the target of the circular buffer structure
922  * @param buffer_size size of the circular buffer structure
923  * @param entry_point address on the target to execute to start the algorithm
924  * @param exit_point address at which to set a breakpoint to catch the
925  *     end of the algorithm; can be 0 if target triggers a breakpoint itself
926  */
927
928 int target_run_flash_async_algorithm(struct target *target,
929                 const uint8_t *buffer, uint32_t count, int block_size,
930                 int num_mem_params, struct mem_param *mem_params,
931                 int num_reg_params, struct reg_param *reg_params,
932                 uint32_t buffer_start, uint32_t buffer_size,
933                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
934 {
935         int retval;
936         int timeout = 0;
937
938         const uint8_t *buffer_orig = buffer;
939
940         /* Set up working area. First word is write pointer, second word is read pointer,
941          * rest is fifo data area. */
942         uint32_t wp_addr = buffer_start;
943         uint32_t rp_addr = buffer_start + 4;
944         uint32_t fifo_start_addr = buffer_start + 8;
945         uint32_t fifo_end_addr = buffer_start + buffer_size;
946
947         uint32_t wp = fifo_start_addr;
948         uint32_t rp = fifo_start_addr;
949
950         /* validate block_size is 2^n */
951         assert(!block_size || !(block_size & (block_size - 1)));
952
953         retval = target_write_u32(target, wp_addr, wp);
954         if (retval != ERROR_OK)
955                 return retval;
956         retval = target_write_u32(target, rp_addr, rp);
957         if (retval != ERROR_OK)
958                 return retval;
959
960         /* Start up algorithm on target and let it idle while writing the first chunk */
961         retval = target_start_algorithm(target, num_mem_params, mem_params,
962                         num_reg_params, reg_params,
963                         entry_point,
964                         exit_point,
965                         arch_info);
966
967         if (retval != ERROR_OK) {
968                 LOG_ERROR("error starting target flash write algorithm");
969                 return retval;
970         }
971
972         while (count > 0) {
973
974                 retval = target_read_u32(target, rp_addr, &rp);
975                 if (retval != ERROR_OK) {
976                         LOG_ERROR("failed to get read pointer");
977                         break;
978                 }
979
980                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
981                         (size_t) (buffer - buffer_orig), count, wp, rp);
982
983                 if (rp == 0) {
984                         LOG_ERROR("flash write algorithm aborted by target");
985                         retval = ERROR_FLASH_OPERATION_FAILED;
986                         break;
987                 }
988
989                 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
990                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
991                         break;
992                 }
993
994                 /* Count the number of bytes available in the fifo without
995                  * crossing the wrap around. Make sure to not fill it completely,
996                  * because that would make wp == rp and that's the empty condition. */
997                 uint32_t thisrun_bytes;
998                 if (rp > wp)
999                         thisrun_bytes = rp - wp - block_size;
1000                 else if (rp > fifo_start_addr)
1001                         thisrun_bytes = fifo_end_addr - wp;
1002                 else
1003                         thisrun_bytes = fifo_end_addr - wp - block_size;
1004
1005                 if (thisrun_bytes == 0) {
1006                         /* Throttle polling a bit if transfer is (much) faster than flash
1007                          * programming. The exact delay shouldn't matter as long as it's
1008                          * less than buffer size / flash speed. This is very unlikely to
1009                          * run when using high latency connections such as USB. */
1010                         alive_sleep(10);
1011
1012                         /* to stop an infinite loop on some targets check and increment a timeout
1013                          * this issue was observed on a stellaris using the new ICDI interface */
1014                         if (timeout++ >= 500) {
1015                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1016                                 return ERROR_FLASH_OPERATION_FAILED;
1017                         }
1018                         continue;
1019                 }
1020
1021                 /* reset our timeout */
1022                 timeout = 0;
1023
1024                 /* Limit to the amount of data we actually want to write */
1025                 if (thisrun_bytes > count * block_size)
1026                         thisrun_bytes = count * block_size;
1027
1028                 /* Write data to fifo */
1029                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1030                 if (retval != ERROR_OK)
1031                         break;
1032
1033                 /* Update counters and wrap write pointer */
1034                 buffer += thisrun_bytes;
1035                 count -= thisrun_bytes / block_size;
1036                 wp += thisrun_bytes;
1037                 if (wp >= fifo_end_addr)
1038                         wp = fifo_start_addr;
1039
1040                 /* Store updated write pointer to target */
1041                 retval = target_write_u32(target, wp_addr, wp);
1042                 if (retval != ERROR_OK)
1043                         break;
1044         }
1045
1046         if (retval != ERROR_OK) {
1047                 /* abort flash write algorithm on target */
1048                 target_write_u32(target, wp_addr, 0);
1049         }
1050
1051         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1052                         num_reg_params, reg_params,
1053                         exit_point,
1054                         10000,
1055                         arch_info);
1056
1057         if (retval2 != ERROR_OK) {
1058                 LOG_ERROR("error waiting for target flash write algorithm");
1059                 retval = retval2;
1060         }
1061
1062         if (retval == ERROR_OK) {
1063                 /* check if algorithm set rp = 0 after fifo writer loop finished */
1064                 retval = target_read_u32(target, rp_addr, &rp);
1065                 if (retval == ERROR_OK && rp == 0) {
1066                         LOG_ERROR("flash write algorithm aborted by target");
1067                         retval = ERROR_FLASH_OPERATION_FAILED;
1068                 }
1069         }
1070
1071         return retval;
1072 }
1073
1074 int target_read_memory(struct target *target,
1075                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1076 {
1077         if (!target_was_examined(target)) {
1078                 LOG_ERROR("Target not examined yet");
1079                 return ERROR_FAIL;
1080         }
1081         if (!target->type->read_memory) {
1082                 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1083                 return ERROR_FAIL;
1084         }
1085         return target->type->read_memory(target, address, size, count, buffer);
1086 }
1087
1088 int target_read_phys_memory(struct target *target,
1089                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1090 {
1091         if (!target_was_examined(target)) {
1092                 LOG_ERROR("Target not examined yet");
1093                 return ERROR_FAIL;
1094         }
1095         if (!target->type->read_phys_memory) {
1096                 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1097                 return ERROR_FAIL;
1098         }
1099         return target->type->read_phys_memory(target, address, size, count, buffer);
1100 }
1101
1102 int target_write_memory(struct target *target,
1103                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1104 {
1105         if (!target_was_examined(target)) {
1106                 LOG_ERROR("Target not examined yet");
1107                 return ERROR_FAIL;
1108         }
1109         if (!target->type->write_memory) {
1110                 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1111                 return ERROR_FAIL;
1112         }
1113         return target->type->write_memory(target, address, size, count, buffer);
1114 }
1115
1116 int target_write_phys_memory(struct target *target,
1117                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1118 {
1119         if (!target_was_examined(target)) {
1120                 LOG_ERROR("Target not examined yet");
1121                 return ERROR_FAIL;
1122         }
1123         if (!target->type->write_phys_memory) {
1124                 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1125                 return ERROR_FAIL;
1126         }
1127         return target->type->write_phys_memory(target, address, size, count, buffer);
1128 }
1129
1130 int target_add_breakpoint(struct target *target,
1131                 struct breakpoint *breakpoint)
1132 {
1133         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1134                 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1135                 return ERROR_TARGET_NOT_HALTED;
1136         }
1137         return target->type->add_breakpoint(target, breakpoint);
1138 }
1139
1140 int target_add_context_breakpoint(struct target *target,
1141                 struct breakpoint *breakpoint)
1142 {
1143         if (target->state != TARGET_HALTED) {
1144                 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1145                 return ERROR_TARGET_NOT_HALTED;
1146         }
1147         return target->type->add_context_breakpoint(target, breakpoint);
1148 }
1149
1150 int target_add_hybrid_breakpoint(struct target *target,
1151                 struct breakpoint *breakpoint)
1152 {
1153         if (target->state != TARGET_HALTED) {
1154                 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1155                 return ERROR_TARGET_NOT_HALTED;
1156         }
1157         return target->type->add_hybrid_breakpoint(target, breakpoint);
1158 }
1159
1160 int target_remove_breakpoint(struct target *target,
1161                 struct breakpoint *breakpoint)
1162 {
1163         return target->type->remove_breakpoint(target, breakpoint);
1164 }
1165
1166 int target_add_watchpoint(struct target *target,
1167                 struct watchpoint *watchpoint)
1168 {
1169         if (target->state != TARGET_HALTED) {
1170                 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1171                 return ERROR_TARGET_NOT_HALTED;
1172         }
1173         return target->type->add_watchpoint(target, watchpoint);
1174 }
1175 int target_remove_watchpoint(struct target *target,
1176                 struct watchpoint *watchpoint)
1177 {
1178         return target->type->remove_watchpoint(target, watchpoint);
1179 }
1180 int target_hit_watchpoint(struct target *target,
1181                 struct watchpoint **hit_watchpoint)
1182 {
1183         if (target->state != TARGET_HALTED) {
1184                 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1185                 return ERROR_TARGET_NOT_HALTED;
1186         }
1187
1188         if (target->type->hit_watchpoint == NULL) {
1189                 /* For backward compatible, if hit_watchpoint is not implemented,
1190                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1191                  * information. */
1192                 return ERROR_FAIL;
1193         }
1194
1195         return target->type->hit_watchpoint(target, hit_watchpoint);
1196 }
1197
1198 int target_get_gdb_reg_list(struct target *target,
1199                 struct reg **reg_list[], int *reg_list_size,
1200                 enum target_register_class reg_class)
1201 {
1202         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1203 }
1204 int target_step(struct target *target,
1205                 int current, target_addr_t address, int handle_breakpoints)
1206 {
1207         return target->type->step(target, current, address, handle_breakpoints);
1208 }
1209
1210 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1211 {
1212         if (target->state != TARGET_HALTED) {
1213                 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1214                 return ERROR_TARGET_NOT_HALTED;
1215         }
1216         return target->type->get_gdb_fileio_info(target, fileio_info);
1217 }
1218
1219 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1220 {
1221         if (target->state != TARGET_HALTED) {
1222                 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1223                 return ERROR_TARGET_NOT_HALTED;
1224         }
1225         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1226 }
1227
1228 int target_profiling(struct target *target, uint32_t *samples,
1229                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1230 {
1231         if (target->state != TARGET_HALTED) {
1232                 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1233                 return ERROR_TARGET_NOT_HALTED;
1234         }
1235         return target->type->profiling(target, samples, max_num_samples,
1236                         num_samples, seconds);
1237 }
1238
1239 /**
1240  * Reset the @c examined flag for the given target.
1241  * Pure paranoia -- targets are zeroed on allocation.
1242  */
1243 static void target_reset_examined(struct target *target)
1244 {
1245         target->examined = false;
1246 }
1247
1248 static int handle_target(void *priv);
1249
1250 static int target_init_one(struct command_context *cmd_ctx,
1251                 struct target *target)
1252 {
1253         target_reset_examined(target);
1254
1255         struct target_type *type = target->type;
1256         if (type->examine == NULL)
1257                 type->examine = default_examine;
1258
1259         if (type->check_reset == NULL)
1260                 type->check_reset = default_check_reset;
1261
1262         assert(type->init_target != NULL);
1263
1264         int retval = type->init_target(cmd_ctx, target);
1265         if (ERROR_OK != retval) {
1266                 LOG_ERROR("target '%s' init failed", target_name(target));
1267                 return retval;
1268         }
1269
1270         /* Sanity-check MMU support ... stub in what we must, to help
1271          * implement it in stages, but warn if we need to do so.
1272          */
1273         if (type->mmu) {
1274                 if (type->virt2phys == NULL) {
1275                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1276                         type->virt2phys = identity_virt2phys;
1277                 }
1278         } else {
1279                 /* Make sure no-MMU targets all behave the same:  make no
1280                  * distinction between physical and virtual addresses, and
1281                  * ensure that virt2phys() is always an identity mapping.
1282                  */
1283                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1284                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1285
1286                 type->mmu = no_mmu;
1287                 type->write_phys_memory = type->write_memory;
1288                 type->read_phys_memory = type->read_memory;
1289                 type->virt2phys = identity_virt2phys;
1290         }
1291
1292         if (target->type->read_buffer == NULL)
1293                 target->type->read_buffer = target_read_buffer_default;
1294
1295         if (target->type->write_buffer == NULL)
1296                 target->type->write_buffer = target_write_buffer_default;
1297
1298         if (target->type->get_gdb_fileio_info == NULL)
1299                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1300
1301         if (target->type->gdb_fileio_end == NULL)
1302                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1303
1304         if (target->type->profiling == NULL)
1305                 target->type->profiling = target_profiling_default;
1306
1307         return ERROR_OK;
1308 }
1309
1310 static int target_init(struct command_context *cmd_ctx)
1311 {
1312         struct target *target;
1313         int retval;
1314
1315         for (target = all_targets; target; target = target->next) {
1316                 retval = target_init_one(cmd_ctx, target);
1317                 if (ERROR_OK != retval)
1318                         return retval;
1319         }
1320
1321         if (!all_targets)
1322                 return ERROR_OK;
1323
1324         retval = target_register_user_commands(cmd_ctx);
1325         if (ERROR_OK != retval)
1326                 return retval;
1327
1328         retval = target_register_timer_callback(&handle_target,
1329                         polling_interval, 1, cmd_ctx->interp);
1330         if (ERROR_OK != retval)
1331                 return retval;
1332
1333         return ERROR_OK;
1334 }
1335
1336 COMMAND_HANDLER(handle_target_init_command)
1337 {
1338         int retval;
1339
1340         if (CMD_ARGC != 0)
1341                 return ERROR_COMMAND_SYNTAX_ERROR;
1342
1343         static bool target_initialized;
1344         if (target_initialized) {
1345                 LOG_INFO("'target init' has already been called");
1346                 return ERROR_OK;
1347         }
1348         target_initialized = true;
1349
1350         retval = command_run_line(CMD_CTX, "init_targets");
1351         if (ERROR_OK != retval)
1352                 return retval;
1353
1354         retval = command_run_line(CMD_CTX, "init_target_events");
1355         if (ERROR_OK != retval)
1356                 return retval;
1357
1358         retval = command_run_line(CMD_CTX, "init_board");
1359         if (ERROR_OK != retval)
1360                 return retval;
1361
1362         LOG_DEBUG("Initializing targets...");
1363         return target_init(CMD_CTX);
1364 }
1365
1366 int target_register_event_callback(int (*callback)(struct target *target,
1367                 enum target_event event, void *priv), void *priv)
1368 {
1369         struct target_event_callback **callbacks_p = &target_event_callbacks;
1370
1371         if (callback == NULL)
1372                 return ERROR_COMMAND_SYNTAX_ERROR;
1373
1374         if (*callbacks_p) {
1375                 while ((*callbacks_p)->next)
1376                         callbacks_p = &((*callbacks_p)->next);
1377                 callbacks_p = &((*callbacks_p)->next);
1378         }
1379
1380         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1381         (*callbacks_p)->callback = callback;
1382         (*callbacks_p)->priv = priv;
1383         (*callbacks_p)->next = NULL;
1384
1385         return ERROR_OK;
1386 }
1387
1388 int target_register_reset_callback(int (*callback)(struct target *target,
1389                 enum target_reset_mode reset_mode, void *priv), void *priv)
1390 {
1391         struct target_reset_callback *entry;
1392
1393         if (callback == NULL)
1394                 return ERROR_COMMAND_SYNTAX_ERROR;
1395
1396         entry = malloc(sizeof(struct target_reset_callback));
1397         if (entry == NULL) {
1398                 LOG_ERROR("error allocating buffer for reset callback entry");
1399                 return ERROR_COMMAND_SYNTAX_ERROR;
1400         }
1401
1402         entry->callback = callback;
1403         entry->priv = priv;
1404         list_add(&entry->list, &target_reset_callback_list);
1405
1406
1407         return ERROR_OK;
1408 }
1409
1410 int target_register_trace_callback(int (*callback)(struct target *target,
1411                 size_t len, uint8_t *data, void *priv), void *priv)
1412 {
1413         struct target_trace_callback *entry;
1414
1415         if (callback == NULL)
1416                 return ERROR_COMMAND_SYNTAX_ERROR;
1417
1418         entry = malloc(sizeof(struct target_trace_callback));
1419         if (entry == NULL) {
1420                 LOG_ERROR("error allocating buffer for trace callback entry");
1421                 return ERROR_COMMAND_SYNTAX_ERROR;
1422         }
1423
1424         entry->callback = callback;
1425         entry->priv = priv;
1426         list_add(&entry->list, &target_trace_callback_list);
1427
1428
1429         return ERROR_OK;
1430 }
1431
1432 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1433 {
1434         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1435
1436         if (callback == NULL)
1437                 return ERROR_COMMAND_SYNTAX_ERROR;
1438
1439         if (*callbacks_p) {
1440                 while ((*callbacks_p)->next)
1441                         callbacks_p = &((*callbacks_p)->next);
1442                 callbacks_p = &((*callbacks_p)->next);
1443         }
1444
1445         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1446         (*callbacks_p)->callback = callback;
1447         (*callbacks_p)->periodic = periodic;
1448         (*callbacks_p)->time_ms = time_ms;
1449         (*callbacks_p)->removed = false;
1450
1451         gettimeofday(&(*callbacks_p)->when, NULL);
1452         timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1453
1454         (*callbacks_p)->priv = priv;
1455         (*callbacks_p)->next = NULL;
1456
1457         return ERROR_OK;
1458 }
1459
1460 int target_unregister_event_callback(int (*callback)(struct target *target,
1461                 enum target_event event, void *priv), void *priv)
1462 {
1463         struct target_event_callback **p = &target_event_callbacks;
1464         struct target_event_callback *c = target_event_callbacks;
1465
1466         if (callback == NULL)
1467                 return ERROR_COMMAND_SYNTAX_ERROR;
1468
1469         while (c) {
1470                 struct target_event_callback *next = c->next;
1471                 if ((c->callback == callback) && (c->priv == priv)) {
1472                         *p = next;
1473                         free(c);
1474                         return ERROR_OK;
1475                 } else
1476                         p = &(c->next);
1477                 c = next;
1478         }
1479
1480         return ERROR_OK;
1481 }
1482
1483 int target_unregister_reset_callback(int (*callback)(struct target *target,
1484                 enum target_reset_mode reset_mode, void *priv), void *priv)
1485 {
1486         struct target_reset_callback *entry;
1487
1488         if (callback == NULL)
1489                 return ERROR_COMMAND_SYNTAX_ERROR;
1490
1491         list_for_each_entry(entry, &target_reset_callback_list, list) {
1492                 if (entry->callback == callback && entry->priv == priv) {
1493                         list_del(&entry->list);
1494                         free(entry);
1495                         break;
1496                 }
1497         }
1498
1499         return ERROR_OK;
1500 }
1501
1502 int target_unregister_trace_callback(int (*callback)(struct target *target,
1503                 size_t len, uint8_t *data, void *priv), void *priv)
1504 {
1505         struct target_trace_callback *entry;
1506
1507         if (callback == NULL)
1508                 return ERROR_COMMAND_SYNTAX_ERROR;
1509
1510         list_for_each_entry(entry, &target_trace_callback_list, list) {
1511                 if (entry->callback == callback && entry->priv == priv) {
1512                         list_del(&entry->list);
1513                         free(entry);
1514                         break;
1515                 }
1516         }
1517
1518         return ERROR_OK;
1519 }
1520
1521 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1522 {
1523         if (callback == NULL)
1524                 return ERROR_COMMAND_SYNTAX_ERROR;
1525
1526         for (struct target_timer_callback *c = target_timer_callbacks;
1527              c; c = c->next) {
1528                 if ((c->callback == callback) && (c->priv == priv)) {
1529                         c->removed = true;
1530                         return ERROR_OK;
1531                 }
1532         }
1533
1534         return ERROR_FAIL;
1535 }
1536
1537 int target_call_event_callbacks(struct target *target, enum target_event event)
1538 {
1539         struct target_event_callback *callback = target_event_callbacks;
1540         struct target_event_callback *next_callback;
1541
1542         if (event == TARGET_EVENT_HALTED) {
1543                 /* execute early halted first */
1544                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1545         }
1546
1547         LOG_DEBUG("target event %i (%s)", event,
1548                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1549
1550         target_handle_event(target, event);
1551
1552         while (callback) {
1553                 next_callback = callback->next;
1554                 callback->callback(target, event, callback->priv);
1555                 callback = next_callback;
1556         }
1557
1558         return ERROR_OK;
1559 }
1560
1561 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1562 {
1563         struct target_reset_callback *callback;
1564
1565         LOG_DEBUG("target reset %i (%s)", reset_mode,
1566                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1567
1568         list_for_each_entry(callback, &target_reset_callback_list, list)
1569                 callback->callback(target, reset_mode, callback->priv);
1570
1571         return ERROR_OK;
1572 }
1573
1574 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1575 {
1576         struct target_trace_callback *callback;
1577
1578         list_for_each_entry(callback, &target_trace_callback_list, list)
1579                 callback->callback(target, len, data, callback->priv);
1580
1581         return ERROR_OK;
1582 }
1583
1584 static int target_timer_callback_periodic_restart(
1585                 struct target_timer_callback *cb, struct timeval *now)
1586 {
1587         cb->when = *now;
1588         timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1589         return ERROR_OK;
1590 }
1591
1592 static int target_call_timer_callback(struct target_timer_callback *cb,
1593                 struct timeval *now)
1594 {
1595         cb->callback(cb->priv);
1596
1597         if (cb->periodic)
1598                 return target_timer_callback_periodic_restart(cb, now);
1599
1600         return target_unregister_timer_callback(cb->callback, cb->priv);
1601 }
1602
1603 static int target_call_timer_callbacks_check_time(int checktime)
1604 {
1605         static bool callback_processing;
1606
1607         /* Do not allow nesting */
1608         if (callback_processing)
1609                 return ERROR_OK;
1610
1611         callback_processing = true;
1612
1613         keep_alive();
1614
1615         struct timeval now;
1616         gettimeofday(&now, NULL);
1617
1618         /* Store an address of the place containing a pointer to the
1619          * next item; initially, that's a standalone "root of the
1620          * list" variable. */
1621         struct target_timer_callback **callback = &target_timer_callbacks;
1622         while (*callback) {
1623                 if ((*callback)->removed) {
1624                         struct target_timer_callback *p = *callback;
1625                         *callback = (*callback)->next;
1626                         free(p);
1627                         continue;
1628                 }
1629
1630                 bool call_it = (*callback)->callback &&
1631                         ((!checktime && (*callback)->periodic) ||
1632                          timeval_compare(&now, &(*callback)->when) >= 0);
1633
1634                 if (call_it)
1635                         target_call_timer_callback(*callback, &now);
1636
1637                 callback = &(*callback)->next;
1638         }
1639
1640         callback_processing = false;
1641         return ERROR_OK;
1642 }
1643
1644 int target_call_timer_callbacks(void)
1645 {
1646         return target_call_timer_callbacks_check_time(1);
1647 }
1648
1649 /* invoke periodic callbacks immediately */
1650 int target_call_timer_callbacks_now(void)
1651 {
1652         return target_call_timer_callbacks_check_time(0);
1653 }
1654
1655 /* Prints the working area layout for debug purposes */
1656 static void print_wa_layout(struct target *target)
1657 {
1658         struct working_area *c = target->working_areas;
1659
1660         while (c) {
1661                 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1662                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1663                         c->address, c->address + c->size - 1, c->size);
1664                 c = c->next;
1665         }
1666 }
1667
1668 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1669 static void target_split_working_area(struct working_area *area, uint32_t size)
1670 {
1671         assert(area->free); /* Shouldn't split an allocated area */
1672         assert(size <= area->size); /* Caller should guarantee this */
1673
1674         /* Split only if not already the right size */
1675         if (size < area->size) {
1676                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1677
1678                 if (new_wa == NULL)
1679                         return;
1680
1681                 new_wa->next = area->next;
1682                 new_wa->size = area->size - size;
1683                 new_wa->address = area->address + size;
1684                 new_wa->backup = NULL;
1685                 new_wa->user = NULL;
1686                 new_wa->free = true;
1687
1688                 area->next = new_wa;
1689                 area->size = size;
1690
1691                 /* If backup memory was allocated to this area, it has the wrong size
1692                  * now so free it and it will be reallocated if/when needed */
1693                 if (area->backup) {
1694                         free(area->backup);
1695                         area->backup = NULL;
1696                 }
1697         }
1698 }
1699
1700 /* Merge all adjacent free areas into one */
1701 static void target_merge_working_areas(struct target *target)
1702 {
1703         struct working_area *c = target->working_areas;
1704
1705         while (c && c->next) {
1706                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1707
1708                 /* Find two adjacent free areas */
1709                 if (c->free && c->next->free) {
1710                         /* Merge the last into the first */
1711                         c->size += c->next->size;
1712
1713                         /* Remove the last */
1714                         struct working_area *to_be_freed = c->next;
1715                         c->next = c->next->next;
1716                         if (to_be_freed->backup)
1717                                 free(to_be_freed->backup);
1718                         free(to_be_freed);
1719
1720                         /* If backup memory was allocated to the remaining area, it's has
1721                          * the wrong size now */
1722                         if (c->backup) {
1723                                 free(c->backup);
1724                                 c->backup = NULL;
1725                         }
1726                 } else {
1727                         c = c->next;
1728                 }
1729         }
1730 }
1731
1732 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1733 {
1734         /* Reevaluate working area address based on MMU state*/
1735         if (target->working_areas == NULL) {
1736                 int retval;
1737                 int enabled;
1738
1739                 retval = target->type->mmu(target, &enabled);
1740                 if (retval != ERROR_OK)
1741                         return retval;
1742
1743                 if (!enabled) {
1744                         if (target->working_area_phys_spec) {
1745                                 LOG_DEBUG("MMU disabled, using physical "
1746                                         "address for working memory " TARGET_ADDR_FMT,
1747                                         target->working_area_phys);
1748                                 target->working_area = target->working_area_phys;
1749                         } else {
1750                                 LOG_ERROR("No working memory available. "
1751                                         "Specify -work-area-phys to target.");
1752                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1753                         }
1754                 } else {
1755                         if (target->working_area_virt_spec) {
1756                                 LOG_DEBUG("MMU enabled, using virtual "
1757                                         "address for working memory " TARGET_ADDR_FMT,
1758                                         target->working_area_virt);
1759                                 target->working_area = target->working_area_virt;
1760                         } else {
1761                                 LOG_ERROR("No working memory available. "
1762                                         "Specify -work-area-virt to target.");
1763                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1764                         }
1765                 }
1766
1767                 /* Set up initial working area on first call */
1768                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1769                 if (new_wa) {
1770                         new_wa->next = NULL;
1771                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1772                         new_wa->address = target->working_area;
1773                         new_wa->backup = NULL;
1774                         new_wa->user = NULL;
1775                         new_wa->free = true;
1776                 }
1777
1778                 target->working_areas = new_wa;
1779         }
1780
1781         /* only allocate multiples of 4 byte */
1782         if (size % 4)
1783                 size = (size + 3) & (~3UL);
1784
1785         struct working_area *c = target->working_areas;
1786
1787         /* Find the first large enough working area */
1788         while (c) {
1789                 if (c->free && c->size >= size)
1790                         break;
1791                 c = c->next;
1792         }
1793
1794         if (c == NULL)
1795                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1796
1797         /* Split the working area into the requested size */
1798         target_split_working_area(c, size);
1799
1800         LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1801                           size, c->address);
1802
1803         if (target->backup_working_area) {
1804                 if (c->backup == NULL) {
1805                         c->backup = malloc(c->size);
1806                         if (c->backup == NULL)
1807                                 return ERROR_FAIL;
1808                 }
1809
1810                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1811                 if (retval != ERROR_OK)
1812                         return retval;
1813         }
1814
1815         /* mark as used, and return the new (reused) area */
1816         c->free = false;
1817         *area = c;
1818
1819         /* user pointer */
1820         c->user = area;
1821
1822         print_wa_layout(target);
1823
1824         return ERROR_OK;
1825 }
1826
1827 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1828 {
1829         int retval;
1830
1831         retval = target_alloc_working_area_try(target, size, area);
1832         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1833                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1834         return retval;
1835
1836 }
1837
1838 static int target_restore_working_area(struct target *target, struct working_area *area)
1839 {
1840         int retval = ERROR_OK;
1841
1842         if (target->backup_working_area && area->backup != NULL) {
1843                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1844                 if (retval != ERROR_OK)
1845                         LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1846                                         area->size, area->address);
1847         }
1848
1849         return retval;
1850 }
1851
1852 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1853 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1854 {
1855         int retval = ERROR_OK;
1856
1857         if (area->free)
1858                 return retval;
1859
1860         if (restore) {
1861                 retval = target_restore_working_area(target, area);
1862                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1863                 if (retval != ERROR_OK)
1864                         return retval;
1865         }
1866
1867         area->free = true;
1868
1869         LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1870                         area->size, area->address);
1871
1872         /* mark user pointer invalid */
1873         /* TODO: Is this really safe? It points to some previous caller's memory.
1874          * How could we know that the area pointer is still in that place and not
1875          * some other vital data? What's the purpose of this, anyway? */
1876         *area->user = NULL;
1877         area->user = NULL;
1878
1879         target_merge_working_areas(target);
1880
1881         print_wa_layout(target);
1882
1883         return retval;
1884 }
1885
1886 int target_free_working_area(struct target *target, struct working_area *area)
1887 {
1888         return target_free_working_area_restore(target, area, 1);
1889 }
1890
1891 static void target_destroy(struct target *target)
1892 {
1893         if (target->type->deinit_target)
1894                 target->type->deinit_target(target);
1895
1896         jtag_unregister_event_callback(jtag_enable_callback, target);
1897
1898         struct target_event_action *teap = target->event_action;
1899         while (teap) {
1900                 struct target_event_action *next = teap->next;
1901                 Jim_DecrRefCount(teap->interp, teap->body);
1902                 free(teap);
1903                 teap = next;
1904         }
1905
1906         target_free_all_working_areas(target);
1907         /* Now we have none or only one working area marked as free */
1908         if (target->working_areas) {
1909                 free(target->working_areas->backup);
1910                 free(target->working_areas);
1911         }
1912
1913         /* release the targets SMP list */
1914         if (target->smp) {
1915                 struct target_list *head = target->head;
1916                 while (head != NULL) {
1917                         struct target_list *pos = head->next;
1918                         head->target->smp = 0;
1919                         free(head);
1920                         head = pos;
1921                 }
1922                 target->smp = 0;
1923         }
1924
1925         free(target->type);
1926         free(target->trace_info);
1927         free(target->fileio_info);
1928         free(target->cmd_name);
1929         free(target);
1930 }
1931
1932 void target_quit(void)
1933 {
1934         struct target_event_callback *pe = target_event_callbacks;
1935         while (pe) {
1936                 struct target_event_callback *t = pe->next;
1937                 free(pe);
1938                 pe = t;
1939         }
1940         target_event_callbacks = NULL;
1941
1942         struct target_timer_callback *pt = target_timer_callbacks;
1943         while (pt) {
1944                 struct target_timer_callback *t = pt->next;
1945                 free(pt);
1946                 pt = t;
1947         }
1948         target_timer_callbacks = NULL;
1949
1950         for (struct target *target = all_targets; target;) {
1951                 struct target *tmp;
1952
1953                 tmp = target->next;
1954                 target_destroy(target);
1955                 target = tmp;
1956         }
1957
1958         all_targets = NULL;
1959 }
1960
1961 /* free resources and restore memory, if restoring memory fails,
1962  * free up resources anyway
1963  */
1964 static void target_free_all_working_areas_restore(struct target *target, int restore)
1965 {
1966         struct working_area *c = target->working_areas;
1967
1968         LOG_DEBUG("freeing all working areas");
1969
1970         /* Loop through all areas, restoring the allocated ones and marking them as free */
1971         while (c) {
1972                 if (!c->free) {
1973                         if (restore)
1974                                 target_restore_working_area(target, c);
1975                         c->free = true;
1976                         *c->user = NULL; /* Same as above */
1977                         c->user = NULL;
1978                 }
1979                 c = c->next;
1980         }
1981
1982         /* Run a merge pass to combine all areas into one */
1983         target_merge_working_areas(target);
1984
1985         print_wa_layout(target);
1986 }
1987
1988 void target_free_all_working_areas(struct target *target)
1989 {
1990         target_free_all_working_areas_restore(target, 1);
1991 }
1992
1993 /* Find the largest number of bytes that can be allocated */
1994 uint32_t target_get_working_area_avail(struct target *target)
1995 {
1996         struct working_area *c = target->working_areas;
1997         uint32_t max_size = 0;
1998
1999         if (c == NULL)
2000                 return target->working_area_size;
2001
2002         while (c) {
2003                 if (c->free && max_size < c->size)
2004                         max_size = c->size;
2005
2006                 c = c->next;
2007         }
2008
2009         return max_size;
2010 }
2011
2012 int target_arch_state(struct target *target)
2013 {
2014         int retval;
2015         if (target == NULL) {
2016                 LOG_WARNING("No target has been configured");
2017                 return ERROR_OK;
2018         }
2019
2020         if (target->state != TARGET_HALTED)
2021                 return ERROR_OK;
2022
2023         retval = target->type->arch_state(target);
2024         return retval;
2025 }
2026
2027 static int target_get_gdb_fileio_info_default(struct target *target,
2028                 struct gdb_fileio_info *fileio_info)
2029 {
2030         /* If target does not support semi-hosting function, target
2031            has no need to provide .get_gdb_fileio_info callback.
2032            It just return ERROR_FAIL and gdb_server will return "Txx"
2033            as target halted every time.  */
2034         return ERROR_FAIL;
2035 }
2036
2037 static int target_gdb_fileio_end_default(struct target *target,
2038                 int retcode, int fileio_errno, bool ctrl_c)
2039 {
2040         return ERROR_OK;
2041 }
2042
2043 static int target_profiling_default(struct target *target, uint32_t *samples,
2044                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2045 {
2046         struct timeval timeout, now;
2047
2048         gettimeofday(&timeout, NULL);
2049         timeval_add_time(&timeout, seconds, 0);
2050
2051         LOG_INFO("Starting profiling. Halting and resuming the"
2052                         " target as often as we can...");
2053
2054         uint32_t sample_count = 0;
2055         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2056         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2057
2058         int retval = ERROR_OK;
2059         for (;;) {
2060                 target_poll(target);
2061                 if (target->state == TARGET_HALTED) {
2062                         uint32_t t = buf_get_u32(reg->value, 0, 32);
2063                         samples[sample_count++] = t;
2064                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
2065                         retval = target_resume(target, 1, 0, 0, 0);
2066                         target_poll(target);
2067                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2068                 } else if (target->state == TARGET_RUNNING) {
2069                         /* We want to quickly sample the PC. */
2070                         retval = target_halt(target);
2071                 } else {
2072                         LOG_INFO("Target not halted or running");
2073                         retval = ERROR_OK;
2074                         break;
2075                 }
2076
2077                 if (retval != ERROR_OK)
2078                         break;
2079
2080                 gettimeofday(&now, NULL);
2081                 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2082                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2083                         break;
2084                 }
2085         }
2086
2087         *num_samples = sample_count;
2088         return retval;
2089 }
2090
2091 /* Single aligned words are guaranteed to use 16 or 32 bit access
2092  * mode respectively, otherwise data is handled as quickly as
2093  * possible
2094  */
2095 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2096 {
2097         LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2098                           size, address);
2099
2100         if (!target_was_examined(target)) {
2101                 LOG_ERROR("Target not examined yet");
2102                 return ERROR_FAIL;
2103         }
2104
2105         if (size == 0)
2106                 return ERROR_OK;
2107
2108         if ((address + size - 1) < address) {
2109                 /* GDB can request this when e.g. PC is 0xfffffffc */
2110                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2111                                   address,
2112                                   size);
2113                 return ERROR_FAIL;
2114         }
2115
2116         return target->type->write_buffer(target, address, size, buffer);
2117 }
2118
2119 static int target_write_buffer_default(struct target *target,
2120         target_addr_t address, uint32_t count, const uint8_t *buffer)
2121 {
2122         uint32_t size;
2123
2124         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2125          * will have something to do with the size we leave to it. */
2126         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2127                 if (address & size) {
2128                         int retval = target_write_memory(target, address, size, 1, buffer);
2129                         if (retval != ERROR_OK)
2130                                 return retval;
2131                         address += size;
2132                         count -= size;
2133                         buffer += size;
2134                 }
2135         }
2136
2137         /* Write the data with as large access size as possible. */
2138         for (; size > 0; size /= 2) {
2139                 uint32_t aligned = count - count % size;
2140                 if (aligned > 0) {
2141                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2142                         if (retval != ERROR_OK)
2143                                 return retval;
2144                         address += aligned;
2145                         count -= aligned;
2146                         buffer += aligned;
2147                 }
2148         }
2149
2150         return ERROR_OK;
2151 }
2152
2153 /* Single aligned words are guaranteed to use 16 or 32 bit access
2154  * mode respectively, otherwise data is handled as quickly as
2155  * possible
2156  */
2157 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2158 {
2159         LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2160                           size, address);
2161
2162         if (!target_was_examined(target)) {
2163                 LOG_ERROR("Target not examined yet");
2164                 return ERROR_FAIL;
2165         }
2166
2167         if (size == 0)
2168                 return ERROR_OK;
2169
2170         if ((address + size - 1) < address) {
2171                 /* GDB can request this when e.g. PC is 0xfffffffc */
2172                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2173                                   address,
2174                                   size);
2175                 return ERROR_FAIL;
2176         }
2177
2178         return target->type->read_buffer(target, address, size, buffer);
2179 }
2180
2181 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2182 {
2183         uint32_t size;
2184
2185         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2186          * will have something to do with the size we leave to it. */
2187         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2188                 if (address & size) {
2189                         int retval = target_read_memory(target, address, size, 1, buffer);
2190                         if (retval != ERROR_OK)
2191                                 return retval;
2192                         address += size;
2193                         count -= size;
2194                         buffer += size;
2195                 }
2196         }
2197
2198         /* Read the data with as large access size as possible. */
2199         for (; size > 0; size /= 2) {
2200                 uint32_t aligned = count - count % size;
2201                 if (aligned > 0) {
2202                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2203                         if (retval != ERROR_OK)
2204                                 return retval;
2205                         address += aligned;
2206                         count -= aligned;
2207                         buffer += aligned;
2208                 }
2209         }
2210
2211         return ERROR_OK;
2212 }
2213
2214 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2215 {
2216         uint8_t *buffer;
2217         int retval;
2218         uint32_t i;
2219         uint32_t checksum = 0;
2220         if (!target_was_examined(target)) {
2221                 LOG_ERROR("Target not examined yet");
2222                 return ERROR_FAIL;
2223         }
2224
2225         retval = target->type->checksum_memory(target, address, size, &checksum);
2226         if (retval != ERROR_OK) {
2227                 buffer = malloc(size);
2228                 if (buffer == NULL) {
2229                         LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2230                         return ERROR_COMMAND_SYNTAX_ERROR;
2231                 }
2232                 retval = target_read_buffer(target, address, size, buffer);
2233                 if (retval != ERROR_OK) {
2234                         free(buffer);
2235                         return retval;
2236                 }
2237
2238                 /* convert to target endianness */
2239                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2240                         uint32_t target_data;
2241                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2242                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2243                 }
2244
2245                 retval = image_calculate_checksum(buffer, size, &checksum);
2246                 free(buffer);
2247         }
2248
2249         *crc = checksum;
2250
2251         return retval;
2252 }
2253
2254 int target_blank_check_memory(struct target *target,
2255         struct target_memory_check_block *blocks, int num_blocks,
2256         uint8_t erased_value)
2257 {
2258         if (!target_was_examined(target)) {
2259                 LOG_ERROR("Target not examined yet");
2260                 return ERROR_FAIL;
2261         }
2262
2263         if (target->type->blank_check_memory == NULL)
2264                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2265
2266         return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2267 }
2268
2269 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2270 {
2271         uint8_t value_buf[8];
2272         if (!target_was_examined(target)) {
2273                 LOG_ERROR("Target not examined yet");
2274                 return ERROR_FAIL;
2275         }
2276
2277         int retval = target_read_memory(target, address, 8, 1, value_buf);
2278
2279         if (retval == ERROR_OK) {
2280                 *value = target_buffer_get_u64(target, value_buf);
2281                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2282                                   address,
2283                                   *value);
2284         } else {
2285                 *value = 0x0;
2286                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2287                                   address);
2288         }
2289
2290         return retval;
2291 }
2292
2293 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2294 {
2295         uint8_t value_buf[4];
2296         if (!target_was_examined(target)) {
2297                 LOG_ERROR("Target not examined yet");
2298                 return ERROR_FAIL;
2299         }
2300
2301         int retval = target_read_memory(target, address, 4, 1, value_buf);
2302
2303         if (retval == ERROR_OK) {
2304                 *value = target_buffer_get_u32(target, value_buf);
2305                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2306                                   address,
2307                                   *value);
2308         } else {
2309                 *value = 0x0;
2310                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2311                                   address);
2312         }
2313
2314         return retval;
2315 }
2316
2317 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2318 {
2319         uint8_t value_buf[2];
2320         if (!target_was_examined(target)) {
2321                 LOG_ERROR("Target not examined yet");
2322                 return ERROR_FAIL;
2323         }
2324
2325         int retval = target_read_memory(target, address, 2, 1, value_buf);
2326
2327         if (retval == ERROR_OK) {
2328                 *value = target_buffer_get_u16(target, value_buf);
2329                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2330                                   address,
2331                                   *value);
2332         } else {
2333                 *value = 0x0;
2334                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2335                                   address);
2336         }
2337
2338         return retval;
2339 }
2340
2341 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2342 {
2343         if (!target_was_examined(target)) {
2344                 LOG_ERROR("Target not examined yet");
2345                 return ERROR_FAIL;
2346         }
2347
2348         int retval = target_read_memory(target, address, 1, 1, value);
2349
2350         if (retval == ERROR_OK) {
2351                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2352                                   address,
2353                                   *value);
2354         } else {
2355                 *value = 0x0;
2356                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2357                                   address);
2358         }
2359
2360         return retval;
2361 }
2362
2363 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2364 {
2365         int retval;
2366         uint8_t value_buf[8];
2367         if (!target_was_examined(target)) {
2368                 LOG_ERROR("Target not examined yet");
2369                 return ERROR_FAIL;
2370         }
2371
2372         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2373                           address,
2374                           value);
2375
2376         target_buffer_set_u64(target, value_buf, value);
2377         retval = target_write_memory(target, address, 8, 1, value_buf);
2378         if (retval != ERROR_OK)
2379                 LOG_DEBUG("failed: %i", retval);
2380
2381         return retval;
2382 }
2383
2384 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2385 {
2386         int retval;
2387         uint8_t value_buf[4];
2388         if (!target_was_examined(target)) {
2389                 LOG_ERROR("Target not examined yet");
2390                 return ERROR_FAIL;
2391         }
2392
2393         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2394                           address,
2395                           value);
2396
2397         target_buffer_set_u32(target, value_buf, value);
2398         retval = target_write_memory(target, address, 4, 1, value_buf);
2399         if (retval != ERROR_OK)
2400                 LOG_DEBUG("failed: %i", retval);
2401
2402         return retval;
2403 }
2404
2405 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2406 {
2407         int retval;
2408         uint8_t value_buf[2];
2409         if (!target_was_examined(target)) {
2410                 LOG_ERROR("Target not examined yet");
2411                 return ERROR_FAIL;
2412         }
2413
2414         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2415                           address,
2416                           value);
2417
2418         target_buffer_set_u16(target, value_buf, value);
2419         retval = target_write_memory(target, address, 2, 1, value_buf);
2420         if (retval != ERROR_OK)
2421                 LOG_DEBUG("failed: %i", retval);
2422
2423         return retval;
2424 }
2425
2426 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2427 {
2428         int retval;
2429         if (!target_was_examined(target)) {
2430                 LOG_ERROR("Target not examined yet");
2431                 return ERROR_FAIL;
2432         }
2433
2434         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2435                           address, value);
2436
2437         retval = target_write_memory(target, address, 1, 1, &value);
2438         if (retval != ERROR_OK)
2439                 LOG_DEBUG("failed: %i", retval);
2440
2441         return retval;
2442 }
2443
2444 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2445 {
2446         int retval;
2447         uint8_t value_buf[8];
2448         if (!target_was_examined(target)) {
2449                 LOG_ERROR("Target not examined yet");
2450                 return ERROR_FAIL;
2451         }
2452
2453         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2454                           address,
2455                           value);
2456
2457         target_buffer_set_u64(target, value_buf, value);
2458         retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2459         if (retval != ERROR_OK)
2460                 LOG_DEBUG("failed: %i", retval);
2461
2462         return retval;
2463 }
2464
2465 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2466 {
2467         int retval;
2468         uint8_t value_buf[4];
2469         if (!target_was_examined(target)) {
2470                 LOG_ERROR("Target not examined yet");
2471                 return ERROR_FAIL;
2472         }
2473
2474         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2475                           address,
2476                           value);
2477
2478         target_buffer_set_u32(target, value_buf, value);
2479         retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2480         if (retval != ERROR_OK)
2481                 LOG_DEBUG("failed: %i", retval);
2482
2483         return retval;
2484 }
2485
2486 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2487 {
2488         int retval;
2489         uint8_t value_buf[2];
2490         if (!target_was_examined(target)) {
2491                 LOG_ERROR("Target not examined yet");
2492                 return ERROR_FAIL;
2493         }
2494
2495         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2496                           address,
2497                           value);
2498
2499         target_buffer_set_u16(target, value_buf, value);
2500         retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2501         if (retval != ERROR_OK)
2502                 LOG_DEBUG("failed: %i", retval);
2503
2504         return retval;
2505 }
2506
2507 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2508 {
2509         int retval;
2510         if (!target_was_examined(target)) {
2511                 LOG_ERROR("Target not examined yet");
2512                 return ERROR_FAIL;
2513         }
2514
2515         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2516                           address, value);
2517
2518         retval = target_write_phys_memory(target, address, 1, 1, &value);
2519         if (retval != ERROR_OK)
2520                 LOG_DEBUG("failed: %i", retval);
2521
2522         return retval;
2523 }
2524
2525 static int find_target(struct command_context *cmd_ctx, const char *name)
2526 {
2527         struct target *target = get_target(name);
2528         if (target == NULL) {
2529                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2530                 return ERROR_FAIL;
2531         }
2532         if (!target->tap->enabled) {
2533                 LOG_USER("Target: TAP %s is disabled, "
2534                          "can't be the current target\n",
2535                          target->tap->dotted_name);
2536                 return ERROR_FAIL;
2537         }
2538
2539         cmd_ctx->current_target = target;
2540         if (cmd_ctx->current_target_override)
2541                 cmd_ctx->current_target_override = target;
2542
2543         return ERROR_OK;
2544 }
2545
2546
2547 COMMAND_HANDLER(handle_targets_command)
2548 {
2549         int retval = ERROR_OK;
2550         if (CMD_ARGC == 1) {
2551                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2552                 if (retval == ERROR_OK) {
2553                         /* we're done! */
2554                         return retval;
2555                 }
2556         }
2557
2558         struct target *target = all_targets;
2559         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2560         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2561         while (target) {
2562                 const char *state;
2563                 char marker = ' ';
2564
2565                 if (target->tap->enabled)
2566                         state = target_state_name(target);
2567                 else
2568                         state = "tap-disabled";
2569
2570                 if (CMD_CTX->current_target == target)
2571                         marker = '*';
2572
2573                 /* keep columns lined up to match the headers above */
2574                 command_print(CMD_CTX,
2575                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2576                                 target->target_number,
2577                                 marker,
2578                                 target_name(target),
2579                                 target_type_name(target),
2580                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2581                                         target->endianness)->name,
2582                                 target->tap->dotted_name,
2583                                 state);
2584                 target = target->next;
2585         }
2586
2587         return retval;
2588 }
2589
2590 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2591
2592 static int powerDropout;
2593 static int srstAsserted;
2594
2595 static int runPowerRestore;
2596 static int runPowerDropout;
2597 static int runSrstAsserted;
2598 static int runSrstDeasserted;
2599
2600 static int sense_handler(void)
2601 {
2602         static int prevSrstAsserted;
2603         static int prevPowerdropout;
2604
2605         int retval = jtag_power_dropout(&powerDropout);
2606         if (retval != ERROR_OK)
2607                 return retval;
2608
2609         int powerRestored;
2610         powerRestored = prevPowerdropout && !powerDropout;
2611         if (powerRestored)
2612                 runPowerRestore = 1;
2613
2614         int64_t current = timeval_ms();
2615         static int64_t lastPower;
2616         bool waitMore = lastPower + 2000 > current;
2617         if (powerDropout && !waitMore) {
2618                 runPowerDropout = 1;
2619                 lastPower = current;
2620         }
2621
2622         retval = jtag_srst_asserted(&srstAsserted);
2623         if (retval != ERROR_OK)
2624                 return retval;
2625
2626         int srstDeasserted;
2627         srstDeasserted = prevSrstAsserted && !srstAsserted;
2628
2629         static int64_t lastSrst;
2630         waitMore = lastSrst + 2000 > current;
2631         if (srstDeasserted && !waitMore) {
2632                 runSrstDeasserted = 1;
2633                 lastSrst = current;
2634         }
2635
2636         if (!prevSrstAsserted && srstAsserted)
2637                 runSrstAsserted = 1;
2638
2639         prevSrstAsserted = srstAsserted;
2640         prevPowerdropout = powerDropout;
2641
2642         if (srstDeasserted || powerRestored) {
2643                 /* Other than logging the event we can't do anything here.
2644                  * Issuing a reset is a particularly bad idea as we might
2645                  * be inside a reset already.
2646                  */
2647         }
2648
2649         return ERROR_OK;
2650 }
2651
2652 /* process target state changes */
2653 static int handle_target(void *priv)
2654 {
2655         Jim_Interp *interp = (Jim_Interp *)priv;
2656         int retval = ERROR_OK;
2657
2658         if (!is_jtag_poll_safe()) {
2659                 /* polling is disabled currently */
2660                 return ERROR_OK;
2661         }
2662
2663         /* we do not want to recurse here... */
2664         static int recursive;
2665         if (!recursive) {
2666                 recursive = 1;
2667                 sense_handler();
2668                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2669                  * We need to avoid an infinite loop/recursion here and we do that by
2670                  * clearing the flags after running these events.
2671                  */
2672                 int did_something = 0;
2673                 if (runSrstAsserted) {
2674                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2675                         Jim_Eval(interp, "srst_asserted");
2676                         did_something = 1;
2677                 }
2678                 if (runSrstDeasserted) {
2679                         Jim_Eval(interp, "srst_deasserted");
2680                         did_something = 1;
2681                 }
2682                 if (runPowerDropout) {
2683                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2684                         Jim_Eval(interp, "power_dropout");
2685                         did_something = 1;
2686                 }
2687                 if (runPowerRestore) {
2688                         Jim_Eval(interp, "power_restore");
2689                         did_something = 1;
2690                 }
2691
2692                 if (did_something) {
2693                         /* clear detect flags */
2694                         sense_handler();
2695                 }
2696
2697                 /* clear action flags */
2698
2699                 runSrstAsserted = 0;
2700                 runSrstDeasserted = 0;
2701                 runPowerRestore = 0;
2702                 runPowerDropout = 0;
2703
2704                 recursive = 0;
2705         }
2706
2707         /* Poll targets for state changes unless that's globally disabled.
2708          * Skip targets that are currently disabled.
2709          */
2710         for (struct target *target = all_targets;
2711                         is_jtag_poll_safe() && target;
2712                         target = target->next) {
2713
2714                 if (!target_was_examined(target))
2715                         continue;
2716
2717                 if (!target->tap->enabled)
2718                         continue;
2719
2720                 if (target->backoff.times > target->backoff.count) {
2721                         /* do not poll this time as we failed previously */
2722                         target->backoff.count++;
2723                         continue;
2724                 }
2725                 target->backoff.count = 0;
2726
2727                 /* only poll target if we've got power and srst isn't asserted */
2728                 if (!powerDropout && !srstAsserted) {
2729                         /* polling may fail silently until the target has been examined */
2730                         retval = target_poll(target);
2731                         if (retval != ERROR_OK) {
2732                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2733                                 if (target->backoff.times * polling_interval < 5000) {
2734                                         target->backoff.times *= 2;
2735                                         target->backoff.times++;
2736                                 }
2737
2738                                 /* Tell GDB to halt the debugger. This allows the user to
2739                                  * run monitor commands to handle the situation.
2740                                  */
2741                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2742                         }
2743                         if (target->backoff.times > 0) {
2744                                 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2745                                 target_reset_examined(target);
2746                                 retval = target_examine_one(target);
2747                                 /* Target examination could have failed due to unstable connection,
2748                                  * but we set the examined flag anyway to repoll it later */
2749                                 if (retval != ERROR_OK) {
2750                                         target->examined = true;
2751                                         LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2752                                                  target->backoff.times * polling_interval);
2753                                         return retval;
2754                                 }
2755                         }
2756
2757                         /* Since we succeeded, we reset backoff count */
2758                         target->backoff.times = 0;
2759                 }
2760         }
2761
2762         return retval;
2763 }
2764
2765 COMMAND_HANDLER(handle_reg_command)
2766 {
2767         struct target *target;
2768         struct reg *reg = NULL;
2769         unsigned count = 0;
2770         char *value;
2771
2772         LOG_DEBUG("-");
2773
2774         target = get_current_target(CMD_CTX);
2775
2776         /* list all available registers for the current target */
2777         if (CMD_ARGC == 0) {
2778                 struct reg_cache *cache = target->reg_cache;
2779
2780                 count = 0;
2781                 while (cache) {
2782                         unsigned i;
2783
2784                         command_print(CMD_CTX, "===== %s", cache->name);
2785
2786                         for (i = 0, reg = cache->reg_list;
2787                                         i < cache->num_regs;
2788                                         i++, reg++, count++) {
2789                                 /* only print cached values if they are valid */
2790                                 if (reg->valid) {
2791                                         value = buf_to_str(reg->value,
2792                                                         reg->size, 16);
2793                                         command_print(CMD_CTX,
2794                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2795                                                         count, reg->name,
2796                                                         reg->size, value,
2797                                                         reg->dirty
2798                                                                 ? " (dirty)"
2799                                                                 : "");
2800                                         free(value);
2801                                 } else {
2802                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2803                                                           count, reg->name,
2804                                                           reg->size) ;
2805                                 }
2806                         }
2807                         cache = cache->next;
2808                 }
2809
2810                 return ERROR_OK;
2811         }
2812
2813         /* access a single register by its ordinal number */
2814         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2815                 unsigned num;
2816                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2817
2818                 struct reg_cache *cache = target->reg_cache;
2819                 count = 0;
2820                 while (cache) {
2821                         unsigned i;
2822                         for (i = 0; i < cache->num_regs; i++) {
2823                                 if (count++ == num) {
2824                                         reg = &cache->reg_list[i];
2825                                         break;
2826                                 }
2827                         }
2828                         if (reg)
2829                                 break;
2830                         cache = cache->next;
2831                 }
2832
2833                 if (!reg) {
2834                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2835                                         "has only %i registers (0 - %i)", num, count, count - 1);
2836                         return ERROR_OK;
2837                 }
2838         } else {
2839                 /* access a single register by its name */
2840                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2841
2842                 if (!reg) {
2843                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2844                         return ERROR_OK;
2845                 }
2846         }
2847
2848         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2849
2850         /* display a register */
2851         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2852                         && (CMD_ARGV[1][0] <= '9')))) {
2853                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2854                         reg->valid = 0;
2855
2856                 if (reg->valid == 0)
2857                         reg->type->get(reg);
2858                 value = buf_to_str(reg->value, reg->size, 16);
2859                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2860                 free(value);
2861                 return ERROR_OK;
2862         }
2863
2864         /* set register value */
2865         if (CMD_ARGC == 2) {
2866                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2867                 if (buf == NULL)
2868                         return ERROR_FAIL;
2869                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2870
2871                 reg->type->set(reg, buf);
2872
2873                 value = buf_to_str(reg->value, reg->size, 16);
2874                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2875                 free(value);
2876
2877                 free(buf);
2878
2879                 return ERROR_OK;
2880         }
2881
2882         return ERROR_COMMAND_SYNTAX_ERROR;
2883 }
2884
2885 COMMAND_HANDLER(handle_poll_command)
2886 {
2887         int retval = ERROR_OK;
2888         struct target *target = get_current_target(CMD_CTX);
2889
2890         if (CMD_ARGC == 0) {
2891                 command_print(CMD_CTX, "background polling: %s",
2892                                 jtag_poll_get_enabled() ? "on" : "off");
2893                 command_print(CMD_CTX, "TAP: %s (%s)",
2894                                 target->tap->dotted_name,
2895                                 target->tap->enabled ? "enabled" : "disabled");
2896                 if (!target->tap->enabled)
2897                         return ERROR_OK;
2898                 retval = target_poll(target);
2899                 if (retval != ERROR_OK)
2900                         return retval;
2901                 retval = target_arch_state(target);
2902                 if (retval != ERROR_OK)
2903                         return retval;
2904         } else if (CMD_ARGC == 1) {
2905                 bool enable;
2906                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2907                 jtag_poll_set_enabled(enable);
2908         } else
2909                 return ERROR_COMMAND_SYNTAX_ERROR;
2910
2911         return retval;
2912 }
2913
2914 COMMAND_HANDLER(handle_wait_halt_command)
2915 {
2916         if (CMD_ARGC > 1)
2917                 return ERROR_COMMAND_SYNTAX_ERROR;
2918
2919         unsigned ms = DEFAULT_HALT_TIMEOUT;
2920         if (1 == CMD_ARGC) {
2921                 int retval = parse_uint(CMD_ARGV[0], &ms);
2922                 if (ERROR_OK != retval)
2923                         return ERROR_COMMAND_SYNTAX_ERROR;
2924         }
2925
2926         struct target *target = get_current_target(CMD_CTX);
2927         return target_wait_state(target, TARGET_HALTED, ms);
2928 }
2929
2930 /* wait for target state to change. The trick here is to have a low
2931  * latency for short waits and not to suck up all the CPU time
2932  * on longer waits.
2933  *
2934  * After 500ms, keep_alive() is invoked
2935  */
2936 int target_wait_state(struct target *target, enum target_state state, int ms)
2937 {
2938         int retval;
2939         int64_t then = 0, cur;
2940         bool once = true;
2941
2942         for (;;) {
2943                 retval = target_poll(target);
2944                 if (retval != ERROR_OK)
2945                         return retval;
2946                 if (target->state == state)
2947                         break;
2948                 cur = timeval_ms();
2949                 if (once) {
2950                         once = false;
2951                         then = timeval_ms();
2952                         LOG_DEBUG("waiting for target %s...",
2953                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2954                 }
2955
2956                 if (cur-then > 500)
2957                         keep_alive();
2958
2959                 if ((cur-then) > ms) {
2960                         LOG_ERROR("timed out while waiting for target %s",
2961                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2962                         return ERROR_FAIL;
2963                 }
2964         }
2965
2966         return ERROR_OK;
2967 }
2968
2969 COMMAND_HANDLER(handle_halt_command)
2970 {
2971         LOG_DEBUG("-");
2972
2973         struct target *target = get_current_target(CMD_CTX);
2974
2975         target->verbose_halt_msg = true;
2976
2977         int retval = target_halt(target);
2978         if (ERROR_OK != retval)
2979                 return retval;
2980
2981         if (CMD_ARGC == 1) {
2982                 unsigned wait_local;
2983                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2984                 if (ERROR_OK != retval)
2985                         return ERROR_COMMAND_SYNTAX_ERROR;
2986                 if (!wait_local)
2987                         return ERROR_OK;
2988         }
2989
2990         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2991 }
2992
2993 COMMAND_HANDLER(handle_soft_reset_halt_command)
2994 {
2995         struct target *target = get_current_target(CMD_CTX);
2996
2997         LOG_USER("requesting target halt and executing a soft reset");
2998
2999         target_soft_reset_halt(target);
3000
3001         return ERROR_OK;
3002 }
3003
3004 COMMAND_HANDLER(handle_reset_command)
3005 {
3006         if (CMD_ARGC > 1)
3007                 return ERROR_COMMAND_SYNTAX_ERROR;
3008
3009         enum target_reset_mode reset_mode = RESET_RUN;
3010         if (CMD_ARGC == 1) {
3011                 const Jim_Nvp *n;
3012                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3013                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3014                         return ERROR_COMMAND_SYNTAX_ERROR;
3015                 reset_mode = n->value;
3016         }
3017
3018         /* reset *all* targets */
3019         return target_process_reset(CMD_CTX, reset_mode);
3020 }
3021
3022
3023 COMMAND_HANDLER(handle_resume_command)
3024 {
3025         int current = 1;
3026         if (CMD_ARGC > 1)
3027                 return ERROR_COMMAND_SYNTAX_ERROR;
3028
3029         struct target *target = get_current_target(CMD_CTX);
3030
3031         /* with no CMD_ARGV, resume from current pc, addr = 0,
3032          * with one arguments, addr = CMD_ARGV[0],
3033          * handle breakpoints, not debugging */
3034         target_addr_t addr = 0;
3035         if (CMD_ARGC == 1) {
3036                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3037                 current = 0;
3038         }
3039
3040         return target_resume(target, current, addr, 1, 0);
3041 }
3042
3043 COMMAND_HANDLER(handle_step_command)
3044 {
3045         if (CMD_ARGC > 1)
3046                 return ERROR_COMMAND_SYNTAX_ERROR;
3047
3048         LOG_DEBUG("-");
3049
3050         /* with no CMD_ARGV, step from current pc, addr = 0,
3051          * with one argument addr = CMD_ARGV[0],
3052          * handle breakpoints, debugging */
3053         target_addr_t addr = 0;
3054         int current_pc = 1;
3055         if (CMD_ARGC == 1) {
3056                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3057                 current_pc = 0;
3058         }
3059
3060         struct target *target = get_current_target(CMD_CTX);
3061
3062         return target->type->step(target, current_pc, addr, 1);
3063 }
3064
3065 static void handle_md_output(struct command_context *cmd_ctx,
3066                 struct target *target, target_addr_t address, unsigned size,
3067                 unsigned count, const uint8_t *buffer)
3068 {
3069         const unsigned line_bytecnt = 32;
3070         unsigned line_modulo = line_bytecnt / size;
3071
3072         char output[line_bytecnt * 4 + 1];
3073         unsigned output_len = 0;
3074
3075         const char *value_fmt;
3076         switch (size) {
3077         case 8:
3078                 value_fmt = "%16.16"PRIx64" ";
3079                 break;
3080         case 4:
3081                 value_fmt = "%8.8"PRIx64" ";
3082                 break;
3083         case 2:
3084                 value_fmt = "%4.4"PRIx64" ";
3085                 break;
3086         case 1:
3087                 value_fmt = "%2.2"PRIx64" ";
3088                 break;
3089         default:
3090                 /* "can't happen", caller checked */
3091                 LOG_ERROR("invalid memory read size: %u", size);
3092                 return;
3093         }
3094
3095         for (unsigned i = 0; i < count; i++) {
3096                 if (i % line_modulo == 0) {
3097                         output_len += snprintf(output + output_len,
3098                                         sizeof(output) - output_len,
3099                                         TARGET_ADDR_FMT ": ",
3100                                         (address + (i * size)));
3101                 }
3102
3103                 uint64_t value = 0;
3104                 const uint8_t *value_ptr = buffer + i * size;
3105                 switch (size) {
3106                 case 8:
3107                         value = target_buffer_get_u64(target, value_ptr);
3108                         break;
3109                 case 4:
3110                         value = target_buffer_get_u32(target, value_ptr);
3111                         break;
3112                 case 2:
3113                         value = target_buffer_get_u16(target, value_ptr);
3114                         break;
3115                 case 1:
3116                         value = *value_ptr;
3117                 }
3118                 output_len += snprintf(output + output_len,
3119                                 sizeof(output) - output_len,
3120                                 value_fmt, value);
3121
3122                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3123                         command_print(cmd_ctx, "%s", output);
3124                         output_len = 0;
3125                 }
3126         }
3127 }
3128
3129 COMMAND_HANDLER(handle_md_command)
3130 {
3131         if (CMD_ARGC < 1)
3132                 return ERROR_COMMAND_SYNTAX_ERROR;
3133
3134         unsigned size = 0;
3135         switch (CMD_NAME[2]) {
3136         case 'd':
3137                 size = 8;
3138                 break;
3139         case 'w':
3140                 size = 4;
3141                 break;
3142         case 'h':
3143                 size = 2;
3144                 break;
3145         case 'b':
3146                 size = 1;
3147                 break;
3148         default:
3149                 return ERROR_COMMAND_SYNTAX_ERROR;
3150         }
3151
3152         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3153         int (*fn)(struct target *target,
3154                         target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3155         if (physical) {
3156                 CMD_ARGC--;
3157                 CMD_ARGV++;
3158                 fn = target_read_phys_memory;
3159         } else
3160                 fn = target_read_memory;
3161         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3162                 return ERROR_COMMAND_SYNTAX_ERROR;
3163
3164         target_addr_t address;
3165         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3166
3167         unsigned count = 1;
3168         if (CMD_ARGC == 2)
3169                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3170
3171         uint8_t *buffer = calloc(count, size);
3172         if (buffer == NULL) {
3173                 LOG_ERROR("Failed to allocate md read buffer");
3174                 return ERROR_FAIL;
3175         }
3176
3177         struct target *target = get_current_target(CMD_CTX);
3178         int retval = fn(target, address, size, count, buffer);
3179         if (ERROR_OK == retval)
3180                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3181
3182         free(buffer);
3183
3184         return retval;
3185 }
3186
3187 typedef int (*target_write_fn)(struct target *target,
3188                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3189
3190 static int target_fill_mem(struct target *target,
3191                 target_addr_t address,
3192                 target_write_fn fn,
3193                 unsigned data_size,
3194                 /* value */
3195                 uint64_t b,
3196                 /* count */
3197                 unsigned c)
3198 {
3199         /* We have to write in reasonably large chunks to be able
3200          * to fill large memory areas with any sane speed */
3201         const unsigned chunk_size = 16384;
3202         uint8_t *target_buf = malloc(chunk_size * data_size);
3203         if (target_buf == NULL) {
3204                 LOG_ERROR("Out of memory");
3205                 return ERROR_FAIL;
3206         }
3207
3208         for (unsigned i = 0; i < chunk_size; i++) {
3209                 switch (data_size) {
3210                 case 8:
3211                         target_buffer_set_u64(target, target_buf + i * data_size, b);
3212                         break;
3213                 case 4:
3214                         target_buffer_set_u32(target, target_buf + i * data_size, b);
3215                         break;
3216                 case 2:
3217                         target_buffer_set_u16(target, target_buf + i * data_size, b);
3218                         break;
3219                 case 1:
3220                         target_buffer_set_u8(target, target_buf + i * data_size, b);
3221                         break;
3222                 default:
3223                         exit(-1);
3224                 }
3225         }
3226
3227         int retval = ERROR_OK;
3228
3229         for (unsigned x = 0; x < c; x += chunk_size) {
3230                 unsigned current;
3231                 current = c - x;
3232                 if (current > chunk_size)
3233                         current = chunk_size;
3234                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3235                 if (retval != ERROR_OK)
3236                         break;
3237                 /* avoid GDB timeouts */
3238                 keep_alive();
3239         }
3240         free(target_buf);
3241
3242         return retval;
3243 }
3244
3245
3246 COMMAND_HANDLER(handle_mw_command)
3247 {
3248         if (CMD_ARGC < 2)
3249                 return ERROR_COMMAND_SYNTAX_ERROR;
3250         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3251         target_write_fn fn;
3252         if (physical) {
3253                 CMD_ARGC--;
3254                 CMD_ARGV++;
3255                 fn = target_write_phys_memory;
3256         } else
3257                 fn = target_write_memory;
3258         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3259                 return ERROR_COMMAND_SYNTAX_ERROR;
3260
3261         target_addr_t address;
3262         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3263
3264         target_addr_t value;
3265         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3266
3267         unsigned count = 1;
3268         if (CMD_ARGC == 3)
3269                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3270
3271         struct target *target = get_current_target(CMD_CTX);
3272         unsigned wordsize;
3273         switch (CMD_NAME[2]) {
3274                 case 'd':
3275                         wordsize = 8;
3276                         break;
3277                 case 'w':
3278                         wordsize = 4;
3279                         break;
3280                 case 'h':
3281                         wordsize = 2;
3282                         break;
3283                 case 'b':
3284                         wordsize = 1;
3285                         break;
3286                 default:
3287                         return ERROR_COMMAND_SYNTAX_ERROR;
3288         }
3289
3290         return target_fill_mem(target, address, fn, wordsize, value, count);
3291 }
3292
3293 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3294                 target_addr_t *min_address, target_addr_t *max_address)
3295 {
3296         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3297                 return ERROR_COMMAND_SYNTAX_ERROR;
3298
3299         /* a base address isn't always necessary,
3300          * default to 0x0 (i.e. don't relocate) */
3301         if (CMD_ARGC >= 2) {
3302                 target_addr_t addr;
3303                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3304                 image->base_address = addr;
3305                 image->base_address_set = 1;
3306         } else
3307                 image->base_address_set = 0;
3308
3309         image->start_address_set = 0;
3310
3311         if (CMD_ARGC >= 4)
3312                 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3313         if (CMD_ARGC == 5) {
3314                 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3315                 /* use size (given) to find max (required) */
3316                 *max_address += *min_address;
3317         }
3318
3319         if (*min_address > *max_address)
3320                 return ERROR_COMMAND_SYNTAX_ERROR;
3321
3322         return ERROR_OK;
3323 }
3324
3325 COMMAND_HANDLER(handle_load_image_command)
3326 {
3327         uint8_t *buffer;
3328         size_t buf_cnt;
3329         uint32_t image_size;
3330         target_addr_t min_address = 0;
3331         target_addr_t max_address = -1;
3332         int i;
3333         struct image image;
3334
3335         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3336                         &image, &min_address, &max_address);
3337         if (ERROR_OK != retval)
3338                 return retval;
3339
3340         struct target *target = get_current_target(CMD_CTX);
3341
3342         struct duration bench;
3343         duration_start(&bench);
3344
3345         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3346                 return ERROR_FAIL;
3347
3348         image_size = 0x0;
3349         retval = ERROR_OK;
3350         for (i = 0; i < image.num_sections; i++) {
3351                 buffer = malloc(image.sections[i].size);
3352                 if (buffer == NULL) {
3353                         command_print(CMD_CTX,
3354                                                   "error allocating buffer for section (%d bytes)",
3355                                                   (int)(image.sections[i].size));
3356                         retval = ERROR_FAIL;
3357                         break;
3358                 }
3359
3360                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3361                 if (retval != ERROR_OK) {
3362                         free(buffer);
3363                         break;
3364                 }
3365
3366                 uint32_t offset = 0;
3367                 uint32_t length = buf_cnt;
3368
3369                 /* DANGER!!! beware of unsigned comparision here!!! */
3370
3371                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3372                                 (image.sections[i].base_address < max_address)) {
3373
3374                         if (image.sections[i].base_address < min_address) {
3375                                 /* clip addresses below */
3376                                 offset += min_address-image.sections[i].base_address;
3377                                 length -= offset;
3378                         }
3379
3380                         if (image.sections[i].base_address + buf_cnt > max_address)
3381                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3382
3383                         retval = target_write_buffer(target,
3384                                         image.sections[i].base_address + offset, length, buffer + offset);
3385                         if (retval != ERROR_OK) {
3386                                 free(buffer);
3387                                 break;
3388                         }
3389                         image_size += length;
3390                         command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3391                                         (unsigned int)length,
3392                                         image.sections[i].base_address + offset);
3393                 }
3394
3395                 free(buffer);
3396         }
3397
3398         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3399                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3400                                 "in %fs (%0.3f KiB/s)", image_size,
3401                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3402         }
3403
3404         image_close(&image);
3405
3406         return retval;
3407
3408 }
3409
3410 COMMAND_HANDLER(handle_dump_image_command)
3411 {
3412         struct fileio *fileio;
3413         uint8_t *buffer;
3414         int retval, retvaltemp;
3415         target_addr_t address, size;
3416         struct duration bench;
3417         struct target *target = get_current_target(CMD_CTX);
3418
3419         if (CMD_ARGC != 3)
3420                 return ERROR_COMMAND_SYNTAX_ERROR;
3421
3422         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3423         COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3424
3425         uint32_t buf_size = (size > 4096) ? 4096 : size;
3426         buffer = malloc(buf_size);
3427         if (!buffer)
3428                 return ERROR_FAIL;
3429
3430         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3431         if (retval != ERROR_OK) {
3432                 free(buffer);
3433                 return retval;
3434         }
3435
3436         duration_start(&bench);
3437
3438         while (size > 0) {
3439                 size_t size_written;
3440                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3441                 retval = target_read_buffer(target, address, this_run_size, buffer);
3442                 if (retval != ERROR_OK)
3443                         break;
3444
3445                 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3446                 if (retval != ERROR_OK)
3447                         break;
3448
3449                 size -= this_run_size;
3450                 address += this_run_size;
3451         }
3452
3453         free(buffer);
3454
3455         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3456                 size_t filesize;
3457                 retval = fileio_size(fileio, &filesize);
3458                 if (retval != ERROR_OK)
3459                         return retval;
3460                 command_print(CMD_CTX,
3461                                 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3462                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3463         }
3464
3465         retvaltemp = fileio_close(fileio);
3466         if (retvaltemp != ERROR_OK)
3467                 return retvaltemp;
3468
3469         return retval;
3470 }
3471
3472 enum verify_mode {
3473         IMAGE_TEST = 0,
3474         IMAGE_VERIFY = 1,
3475         IMAGE_CHECKSUM_ONLY = 2
3476 };
3477
3478 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3479 {
3480         uint8_t *buffer;
3481         size_t buf_cnt;
3482         uint32_t image_size;
3483         int i;
3484         int retval;
3485         uint32_t checksum = 0;
3486         uint32_t mem_checksum = 0;
3487
3488         struct image image;
3489
3490         struct target *target = get_current_target(CMD_CTX);
3491
3492         if (CMD_ARGC < 1)
3493                 return ERROR_COMMAND_SYNTAX_ERROR;
3494
3495         if (!target) {
3496                 LOG_ERROR("no target selected");
3497                 return ERROR_FAIL;
3498         }
3499
3500         struct duration bench;
3501         duration_start(&bench);
3502
3503         if (CMD_ARGC >= 2) {
3504                 target_addr_t addr;
3505                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3506                 image.base_address = addr;
3507                 image.base_address_set = 1;
3508         } else {
3509                 image.base_address_set = 0;
3510                 image.base_address = 0x0;
3511         }
3512
3513         image.start_address_set = 0;
3514
3515         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3516         if (retval != ERROR_OK)
3517                 return retval;
3518
3519         image_size = 0x0;
3520         int diffs = 0;
3521         retval = ERROR_OK;
3522         for (i = 0; i < image.num_sections; i++) {
3523                 buffer = malloc(image.sections[i].size);
3524                 if (buffer == NULL) {
3525                         command_print(CMD_CTX,
3526                                         "error allocating buffer for section (%d bytes)",
3527                                         (int)(image.sections[i].size));
3528                         break;
3529                 }
3530                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3531                 if (retval != ERROR_OK) {
3532                         free(buffer);
3533                         break;
3534                 }
3535
3536                 if (verify >= IMAGE_VERIFY) {
3537                         /* calculate checksum of image */
3538                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3539                         if (retval != ERROR_OK) {
3540                                 free(buffer);
3541                                 break;
3542                         }
3543
3544                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3545                         if (retval != ERROR_OK) {
3546                                 free(buffer);
3547                                 break;
3548                         }
3549                         if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3550                                 LOG_ERROR("checksum mismatch");
3551                                 free(buffer);
3552                                 retval = ERROR_FAIL;
3553                                 goto done;
3554                         }
3555                         if (checksum != mem_checksum) {
3556                                 /* failed crc checksum, fall back to a binary compare */
3557                                 uint8_t *data;
3558
3559                                 if (diffs == 0)
3560                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3561
3562                                 data = malloc(buf_cnt);
3563
3564                                 /* Can we use 32bit word accesses? */
3565                                 int size = 1;
3566                                 int count = buf_cnt;
3567                                 if ((count % 4) == 0) {
3568                                         size *= 4;
3569                                         count /= 4;
3570                                 }
3571                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3572                                 if (retval == ERROR_OK) {
3573                                         uint32_t t;
3574                                         for (t = 0; t < buf_cnt; t++) {
3575                                                 if (data[t] != buffer[t]) {
3576                                                         command_print(CMD_CTX,
3577                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3578                                                                                   diffs,
3579                                                                                   (unsigned)(t + image.sections[i].base_address),
3580                                                                                   data[t],
3581                                                                                   buffer[t]);
3582                                                         if (diffs++ >= 127) {
3583                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3584                                                                 free(data);
3585                                                                 free(buffer);
3586                                                                 goto done;
3587                                                         }
3588                                                 }
3589                                                 keep_alive();
3590                                         }
3591                                 }
3592                                 free(data);
3593                         }
3594                 } else {
3595                         command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3596                                                   image.sections[i].base_address,
3597                                                   buf_cnt);
3598                 }
3599
3600                 free(buffer);
3601                 image_size += buf_cnt;
3602         }
3603         if (diffs > 0)
3604                 command_print(CMD_CTX, "No more differences found.");
3605 done:
3606         if (diffs > 0)
3607                 retval = ERROR_FAIL;
3608         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3609                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3610                                 "in %fs (%0.3f KiB/s)", image_size,
3611                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3612         }
3613
3614         image_close(&image);
3615
3616         return retval;
3617 }
3618
3619 COMMAND_HANDLER(handle_verify_image_checksum_command)
3620 {
3621         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3622 }
3623
3624 COMMAND_HANDLER(handle_verify_image_command)
3625 {
3626         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3627 }
3628
3629 COMMAND_HANDLER(handle_test_image_command)
3630 {
3631         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3632 }
3633
3634 static int handle_bp_command_list(struct command_context *cmd_ctx)
3635 {
3636         struct target *target = get_current_target(cmd_ctx);
3637         struct breakpoint *breakpoint = target->breakpoints;
3638         while (breakpoint) {
3639                 if (breakpoint->type == BKPT_SOFT) {
3640                         char *buf = buf_to_str(breakpoint->orig_instr,
3641                                         breakpoint->length, 16);
3642                         command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3643                                         breakpoint->address,
3644                                         breakpoint->length,
3645                                         breakpoint->set, buf);
3646                         free(buf);
3647                 } else {
3648                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3649                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3650                                                         breakpoint->asid,
3651                                                         breakpoint->length, breakpoint->set);
3652                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3653                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3654                                                         breakpoint->address,
3655                                                         breakpoint->length, breakpoint->set);
3656                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3657                                                         breakpoint->asid);
3658                         } else
3659                                 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3660                                                         breakpoint->address,
3661                                                         breakpoint->length, breakpoint->set);
3662                 }
3663
3664                 breakpoint = breakpoint->next;
3665         }
3666         return ERROR_OK;
3667 }
3668
3669 static int handle_bp_command_set(struct command_context *cmd_ctx,
3670                 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3671 {
3672         struct target *target = get_current_target(cmd_ctx);
3673         int retval;
3674
3675         if (asid == 0) {
3676                 retval = breakpoint_add(target, addr, length, hw);
3677                 if (ERROR_OK == retval)
3678                         command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3679                 else {
3680                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3681                         return retval;
3682                 }
3683         } else if (addr == 0) {
3684                 if (target->type->add_context_breakpoint == NULL) {
3685                         LOG_WARNING("Context breakpoint not available");
3686                         return ERROR_OK;
3687                 }
3688                 retval = context_breakpoint_add(target, asid, length, hw);
3689                 if (ERROR_OK == retval)
3690                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3691                 else {
3692                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3693                         return retval;
3694                 }
3695         } else {
3696                 if (target->type->add_hybrid_breakpoint == NULL) {
3697                         LOG_WARNING("Hybrid breakpoint not available");
3698                         return ERROR_OK;
3699                 }
3700                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3701                 if (ERROR_OK == retval)
3702                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3703                 else {
3704                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3705                         return retval;
3706                 }
3707         }
3708         return ERROR_OK;
3709 }
3710
3711 COMMAND_HANDLER(handle_bp_command)
3712 {
3713         target_addr_t addr;
3714         uint32_t asid;
3715         uint32_t length;
3716         int hw = BKPT_SOFT;
3717
3718         switch (CMD_ARGC) {
3719                 case 0:
3720                         return handle_bp_command_list(CMD_CTX);
3721
3722                 case 2:
3723                         asid = 0;
3724                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3725                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3726                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3727
3728                 case 3:
3729                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3730                                 hw = BKPT_HARD;
3731                                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3732                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3733                                 asid = 0;
3734                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3735                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3736                                 hw = BKPT_HARD;
3737                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3738                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3739                                 addr = 0;
3740                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3741                         }
3742                         /* fallthrough */
3743                 case 4:
3744                         hw = BKPT_HARD;
3745                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3746                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3747                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3748                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3749
3750                 default:
3751                         return ERROR_COMMAND_SYNTAX_ERROR;
3752         }
3753 }
3754
3755 COMMAND_HANDLER(handle_rbp_command)
3756 {
3757         if (CMD_ARGC != 1)
3758                 return ERROR_COMMAND_SYNTAX_ERROR;
3759
3760         target_addr_t addr;
3761         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3762
3763         struct target *target = get_current_target(CMD_CTX);
3764         breakpoint_remove(target, addr);
3765
3766         return ERROR_OK;
3767 }
3768
3769 COMMAND_HANDLER(handle_wp_command)
3770 {
3771         struct target *target = get_current_target(CMD_CTX);
3772
3773         if (CMD_ARGC == 0) {
3774                 struct watchpoint *watchpoint = target->watchpoints;
3775
3776                 while (watchpoint) {
3777                         command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3778                                         ", len: 0x%8.8" PRIx32
3779                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3780                                         ", mask: 0x%8.8" PRIx32,
3781                                         watchpoint->address,
3782                                         watchpoint->length,
3783                                         (int)watchpoint->rw,
3784                                         watchpoint->value,
3785                                         watchpoint->mask);
3786                         watchpoint = watchpoint->next;
3787                 }
3788                 return ERROR_OK;
3789         }
3790
3791         enum watchpoint_rw type = WPT_ACCESS;
3792         uint32_t addr = 0;
3793         uint32_t length = 0;
3794         uint32_t data_value = 0x0;
3795         uint32_t data_mask = 0xffffffff;
3796
3797         switch (CMD_ARGC) {
3798         case 5:
3799                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3800                 /* fall through */
3801         case 4:
3802                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3803                 /* fall through */
3804         case 3:
3805                 switch (CMD_ARGV[2][0]) {
3806                 case 'r':
3807                         type = WPT_READ;
3808                         break;
3809                 case 'w':
3810                         type = WPT_WRITE;
3811                         break;
3812                 case 'a':
3813                         type = WPT_ACCESS;
3814                         break;
3815                 default:
3816                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3817                         return ERROR_COMMAND_SYNTAX_ERROR;
3818                 }
3819                 /* fall through */
3820         case 2:
3821                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3822                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3823                 break;
3824
3825         default:
3826                 return ERROR_COMMAND_SYNTAX_ERROR;
3827         }
3828
3829         int retval = watchpoint_add(target, addr, length, type,
3830                         data_value, data_mask);
3831         if (ERROR_OK != retval)
3832                 LOG_ERROR("Failure setting watchpoints");
3833
3834         return retval;
3835 }
3836
3837 COMMAND_HANDLER(handle_rwp_command)
3838 {
3839         if (CMD_ARGC != 1)
3840                 return ERROR_COMMAND_SYNTAX_ERROR;
3841
3842         uint32_t addr;
3843         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3844
3845         struct target *target = get_current_target(CMD_CTX);
3846         watchpoint_remove(target, addr);
3847
3848         return ERROR_OK;
3849 }
3850
3851 /**
3852  * Translate a virtual address to a physical address.
3853  *
3854  * The low-level target implementation must have logged a detailed error
3855  * which is forwarded to telnet/GDB session.
3856  */
3857 COMMAND_HANDLER(handle_virt2phys_command)
3858 {
3859         if (CMD_ARGC != 1)
3860                 return ERROR_COMMAND_SYNTAX_ERROR;
3861
3862         target_addr_t va;
3863         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3864         target_addr_t pa;
3865
3866         struct target *target = get_current_target(CMD_CTX);
3867         int retval = target->type->virt2phys(target, va, &pa);
3868         if (retval == ERROR_OK)
3869                 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3870
3871         return retval;
3872 }
3873
3874 static void writeData(FILE *f, const void *data, size_t len)
3875 {
3876         size_t written = fwrite(data, 1, len, f);
3877         if (written != len)
3878                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3879 }
3880
3881 static void writeLong(FILE *f, int l, struct target *target)
3882 {
3883         uint8_t val[4];
3884
3885         target_buffer_set_u32(target, val, l);
3886         writeData(f, val, 4);
3887 }
3888
3889 static void writeString(FILE *f, char *s)
3890 {
3891         writeData(f, s, strlen(s));
3892 }
3893
3894 typedef unsigned char UNIT[2];  /* unit of profiling */
3895
3896 /* Dump a gmon.out histogram file. */
3897 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3898                         uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3899 {
3900         uint32_t i;
3901         FILE *f = fopen(filename, "w");
3902         if (f == NULL)
3903                 return;
3904         writeString(f, "gmon");
3905         writeLong(f, 0x00000001, target); /* Version */
3906         writeLong(f, 0, target); /* padding */
3907         writeLong(f, 0, target); /* padding */
3908         writeLong(f, 0, target); /* padding */
3909
3910         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3911         writeData(f, &zero, 1);
3912
3913         /* figure out bucket size */
3914         uint32_t min;
3915         uint32_t max;
3916         if (with_range) {
3917                 min = start_address;
3918                 max = end_address;
3919         } else {
3920                 min = samples[0];
3921                 max = samples[0];
3922                 for (i = 0; i < sampleNum; i++) {
3923                         if (min > samples[i])
3924                                 min = samples[i];
3925                         if (max < samples[i])
3926                                 max = samples[i];
3927                 }
3928
3929                 /* max should be (largest sample + 1)
3930                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3931                 max++;
3932         }
3933
3934         int addressSpace = max - min;
3935         assert(addressSpace >= 2);
3936
3937         /* FIXME: What is the reasonable number of buckets?
3938          * The profiling result will be more accurate if there are enough buckets. */
3939         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3940         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3941         if (numBuckets > maxBuckets)
3942                 numBuckets = maxBuckets;
3943         int *buckets = malloc(sizeof(int) * numBuckets);
3944         if (buckets == NULL) {
3945                 fclose(f);
3946                 return;
3947         }
3948         memset(buckets, 0, sizeof(int) * numBuckets);
3949         for (i = 0; i < sampleNum; i++) {
3950                 uint32_t address = samples[i];
3951
3952                 if ((address < min) || (max <= address))
3953                         continue;
3954
3955                 long long a = address - min;
3956                 long long b = numBuckets;
3957                 long long c = addressSpace;
3958                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3959                 buckets[index_t]++;
3960         }
3961
3962         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3963         writeLong(f, min, target);                      /* low_pc */
3964         writeLong(f, max, target);                      /* high_pc */
3965         writeLong(f, numBuckets, target);       /* # of buckets */
3966         float sample_rate = sampleNum / (duration_ms / 1000.0);
3967         writeLong(f, sample_rate, target);
3968         writeString(f, "seconds");
3969         for (i = 0; i < (15-strlen("seconds")); i++)
3970                 writeData(f, &zero, 1);
3971         writeString(f, "s");
3972
3973         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3974
3975         char *data = malloc(2 * numBuckets);
3976         if (data != NULL) {
3977                 for (i = 0; i < numBuckets; i++) {
3978                         int val;
3979                         val = buckets[i];
3980                         if (val > 65535)
3981                                 val = 65535;
3982                         data[i * 2] = val&0xff;
3983                         data[i * 2 + 1] = (val >> 8) & 0xff;
3984                 }
3985                 free(buckets);
3986                 writeData(f, data, numBuckets * 2);
3987                 free(data);
3988         } else
3989                 free(buckets);
3990
3991         fclose(f);
3992 }
3993
3994 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3995  * which will be used as a random sampling of PC */
3996 COMMAND_HANDLER(handle_profile_command)
3997 {
3998         struct target *target = get_current_target(CMD_CTX);
3999
4000         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4001                 return ERROR_COMMAND_SYNTAX_ERROR;
4002
4003         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
4004         uint32_t offset;
4005         uint32_t num_of_samples;
4006         int retval = ERROR_OK;
4007
4008         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4009
4010         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4011         if (samples == NULL) {
4012                 LOG_ERROR("No memory to store samples.");
4013                 return ERROR_FAIL;
4014         }
4015
4016         uint64_t timestart_ms = timeval_ms();
4017         /**
4018          * Some cores let us sample the PC without the
4019          * annoying halt/resume step; for example, ARMv7 PCSR.
4020          * Provide a way to use that more efficient mechanism.
4021          */
4022         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4023                                 &num_of_samples, offset);
4024         if (retval != ERROR_OK) {
4025                 free(samples);
4026                 return retval;
4027         }
4028         uint32_t duration_ms = timeval_ms() - timestart_ms;
4029
4030         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4031
4032         retval = target_poll(target);
4033         if (retval != ERROR_OK) {
4034                 free(samples);
4035                 return retval;
4036         }
4037         if (target->state == TARGET_RUNNING) {
4038                 retval = target_halt(target);
4039                 if (retval != ERROR_OK) {
4040                         free(samples);
4041                         return retval;
4042                 }
4043         }
4044
4045         retval = target_poll(target);
4046         if (retval != ERROR_OK) {
4047                 free(samples);
4048                 return retval;
4049         }
4050
4051         uint32_t start_address = 0;
4052         uint32_t end_address = 0;
4053         bool with_range = false;
4054         if (CMD_ARGC == 4) {
4055                 with_range = true;
4056                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4057                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4058         }
4059
4060         write_gmon(samples, num_of_samples, CMD_ARGV[1],
4061                    with_range, start_address, end_address, target, duration_ms);
4062         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4063
4064         free(samples);
4065         return retval;
4066 }
4067
4068 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4069 {
4070         char *namebuf;
4071         Jim_Obj *nameObjPtr, *valObjPtr;
4072         int result;
4073
4074         namebuf = alloc_printf("%s(%d)", varname, idx);
4075         if (!namebuf)
4076                 return JIM_ERR;
4077
4078         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4079         valObjPtr = Jim_NewIntObj(interp, val);
4080         if (!nameObjPtr || !valObjPtr) {
4081                 free(namebuf);
4082                 return JIM_ERR;
4083         }
4084
4085         Jim_IncrRefCount(nameObjPtr);
4086         Jim_IncrRefCount(valObjPtr);
4087         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4088         Jim_DecrRefCount(interp, nameObjPtr);
4089         Jim_DecrRefCount(interp, valObjPtr);
4090         free(namebuf);
4091         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4092         return result;
4093 }
4094
4095 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4096 {
4097         struct command_context *context;
4098         struct target *target;
4099
4100         context = current_command_context(interp);
4101         assert(context != NULL);
4102
4103         target = get_current_target(context);
4104         if (target == NULL) {
4105                 LOG_ERROR("mem2array: no current target");
4106                 return JIM_ERR;
4107         }
4108
4109         return target_mem2array(interp, target, argc - 1, argv + 1);
4110 }
4111
4112 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4113 {
4114         long l;
4115         uint32_t width;
4116         int len;
4117         uint32_t addr;
4118         uint32_t count;
4119         uint32_t v;
4120         const char *varname;
4121         const char *phys;
4122         bool is_phys;
4123         int  n, e, retval;
4124         uint32_t i;
4125
4126         /* argv[1] = name of array to receive the data
4127          * argv[2] = desired width
4128          * argv[3] = memory address
4129          * argv[4] = count of times to read
4130          */
4131         if (argc < 4 || argc > 5) {
4132                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
4133                 return JIM_ERR;
4134         }
4135         varname = Jim_GetString(argv[0], &len);
4136         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4137
4138         e = Jim_GetLong(interp, argv[1], &l);
4139         width = l;
4140         if (e != JIM_OK)
4141                 return e;
4142
4143         e = Jim_GetLong(interp, argv[2], &l);
4144         addr = l;
4145         if (e != JIM_OK)
4146                 return e;
4147         e = Jim_GetLong(interp, argv[3], &l);
4148         len = l;
4149         if (e != JIM_OK)
4150                 return e;
4151         is_phys = false;
4152         if (argc > 4) {
4153                 phys = Jim_GetString(argv[4], &n);
4154                 if (!strncmp(phys, "phys", n))
4155                         is_phys = true;
4156                 else
4157                         return JIM_ERR;
4158         }
4159         switch (width) {
4160                 case 8:
4161                         width = 1;
4162                         break;
4163                 case 16:
4164                         width = 2;
4165                         break;
4166                 case 32:
4167                         width = 4;
4168                         break;
4169                 default:
4170                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4171                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4172                         return JIM_ERR;
4173         }
4174         if (len == 0) {
4175                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4176                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4177                 return JIM_ERR;
4178         }
4179         if ((addr + (len * width)) < addr) {
4180                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4181                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4182                 return JIM_ERR;
4183         }
4184         /* absurd transfer size? */
4185         if (len > 65536) {
4186                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4187                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4188                 return JIM_ERR;
4189         }
4190
4191         if ((width == 1) ||
4192                 ((width == 2) && ((addr & 1) == 0)) ||
4193                 ((width == 4) && ((addr & 3) == 0))) {
4194                 /* all is well */
4195         } else {
4196                 char buf[100];
4197                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4198                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4199                                 addr,
4200                                 width);
4201                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4202                 return JIM_ERR;
4203         }
4204
4205         /* Transfer loop */
4206
4207         /* index counter */
4208         n = 0;
4209
4210         size_t buffersize = 4096;
4211         uint8_t *buffer = malloc(buffersize);
4212         if (buffer == NULL)
4213                 return JIM_ERR;
4214
4215         /* assume ok */
4216         e = JIM_OK;
4217         while (len) {
4218                 /* Slurp... in buffer size chunks */
4219
4220                 count = len; /* in objects.. */
4221                 if (count > (buffersize / width))
4222                         count = (buffersize / width);
4223
4224                 if (is_phys)
4225                         retval = target_read_phys_memory(target, addr, width, count, buffer);
4226                 else
4227                         retval = target_read_memory(target, addr, width, count, buffer);
4228                 if (retval != ERROR_OK) {
4229                         /* BOO !*/
4230                         LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4231                                           addr,
4232                                           width,
4233                                           count);
4234                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4235                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4236                         e = JIM_ERR;
4237                         break;
4238                 } else {
4239                         v = 0; /* shut up gcc */
4240                         for (i = 0; i < count ; i++, n++) {
4241                                 switch (width) {
4242                                         case 4:
4243                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
4244                                                 break;
4245                                         case 2:
4246                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
4247                                                 break;
4248                                         case 1:
4249                                                 v = buffer[i] & 0x0ff;
4250                                                 break;
4251                                 }
4252                                 new_int_array_element(interp, varname, n, v);
4253                         }
4254                         len -= count;
4255                         addr += count * width;
4256                 }
4257         }
4258
4259         free(buffer);
4260
4261         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4262
4263         return e;
4264 }
4265
4266 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4267 {
4268         char *namebuf;
4269         Jim_Obj *nameObjPtr, *valObjPtr;
4270         int result;
4271         long l;
4272
4273         namebuf = alloc_printf("%s(%d)", varname, idx);
4274         if (!namebuf)
4275                 return JIM_ERR;
4276
4277         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4278         if (!nameObjPtr) {
4279                 free(namebuf);
4280                 return JIM_ERR;
4281         }
4282
4283         Jim_IncrRefCount(nameObjPtr);
4284         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4285         Jim_DecrRefCount(interp, nameObjPtr);
4286         free(namebuf);
4287         if (valObjPtr == NULL)
4288                 return JIM_ERR;
4289
4290         result = Jim_GetLong(interp, valObjPtr, &l);
4291         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4292         *val = l;
4293         return result;
4294 }
4295
4296 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4297 {
4298         struct command_context *context;
4299         struct target *target;
4300
4301         context = current_command_context(interp);
4302         assert(context != NULL);
4303
4304         target = get_current_target(context);
4305         if (target == NULL) {
4306                 LOG_ERROR("array2mem: no current target");
4307                 return JIM_ERR;
4308         }
4309
4310         return target_array2mem(interp, target, argc-1, argv + 1);
4311 }
4312
4313 static int target_array2mem(Jim_Interp *interp, struct target *target,
4314                 int argc, Jim_Obj *const *argv)
4315 {
4316         long l;
4317         uint32_t width;
4318         int len;
4319         uint32_t addr;
4320         uint32_t count;
4321         uint32_t v;
4322         const char *varname;
4323         const char *phys;
4324         bool is_phys;
4325         int  n, e, retval;
4326         uint32_t i;
4327
4328         /* argv[1] = name of array to get the data
4329          * argv[2] = desired width
4330          * argv[3] = memory address
4331          * argv[4] = count to write
4332          */
4333         if (argc < 4 || argc > 5) {
4334                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4335                 return JIM_ERR;
4336         }
4337         varname = Jim_GetString(argv[0], &len);
4338         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4339
4340         e = Jim_GetLong(interp, argv[1], &l);
4341         width = l;
4342         if (e != JIM_OK)
4343                 return e;
4344
4345         e = Jim_GetLong(interp, argv[2], &l);
4346         addr = l;
4347         if (e != JIM_OK)
4348                 return e;
4349         e = Jim_GetLong(interp, argv[3], &l);
4350         len = l;
4351         if (e != JIM_OK)
4352                 return e;
4353         is_phys = false;
4354         if (argc > 4) {
4355                 phys = Jim_GetString(argv[4], &n);
4356                 if (!strncmp(phys, "phys", n))
4357                         is_phys = true;
4358                 else
4359                         return JIM_ERR;
4360         }
4361         switch (width) {
4362                 case 8:
4363                         width = 1;
4364                         break;
4365                 case 16:
4366                         width = 2;
4367                         break;
4368                 case 32:
4369                         width = 4;
4370                         break;
4371                 default:
4372                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4373                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4374                                         "Invalid width param, must be 8/16/32", NULL);
4375                         return JIM_ERR;
4376         }
4377         if (len == 0) {
4378                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4379                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4380                                 "array2mem: zero width read?", NULL);
4381                 return JIM_ERR;
4382         }
4383         if ((addr + (len * width)) < addr) {
4384                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4385                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4386                                 "array2mem: addr + len - wraps to zero?", NULL);
4387                 return JIM_ERR;
4388         }
4389         /* absurd transfer size? */
4390         if (len > 65536) {
4391                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4392                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4393                                 "array2mem: absurd > 64K item request", NULL);
4394                 return JIM_ERR;
4395         }
4396
4397         if ((width == 1) ||
4398                 ((width == 2) && ((addr & 1) == 0)) ||
4399                 ((width == 4) && ((addr & 3) == 0))) {
4400                 /* all is well */
4401         } else {
4402                 char buf[100];
4403                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4404                 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4405                                 addr,
4406                                 width);
4407                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4408                 return JIM_ERR;
4409         }
4410
4411         /* Transfer loop */
4412
4413         /* index counter */
4414         n = 0;
4415         /* assume ok */
4416         e = JIM_OK;
4417
4418         size_t buffersize = 4096;
4419         uint8_t *buffer = malloc(buffersize);
4420         if (buffer == NULL)
4421                 return JIM_ERR;
4422
4423         while (len) {
4424                 /* Slurp... in buffer size chunks */
4425
4426                 count = len; /* in objects.. */
4427                 if (count > (buffersize / width))
4428                         count = (buffersize / width);
4429
4430                 v = 0; /* shut up gcc */
4431                 for (i = 0; i < count; i++, n++) {
4432                         get_int_array_element(interp, varname, n, &v);
4433                         switch (width) {
4434                         case 4:
4435                                 target_buffer_set_u32(target, &buffer[i * width], v);
4436                                 break;
4437                         case 2:
4438                                 target_buffer_set_u16(target, &buffer[i * width], v);
4439                                 break;
4440                         case 1:
4441                                 buffer[i] = v & 0x0ff;
4442                                 break;
4443                         }
4444                 }
4445                 len -= count;
4446
4447                 if (is_phys)
4448                         retval = target_write_phys_memory(target, addr, width, count, buffer);
4449                 else
4450                         retval = target_write_memory(target, addr, width, count, buffer);
4451                 if (retval != ERROR_OK) {
4452                         /* BOO !*/
4453                         LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4454                                           addr,
4455                                           width,
4456                                           count);
4457                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4458                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4459                         e = JIM_ERR;
4460                         break;
4461                 }
4462                 addr += count * width;
4463         }
4464
4465         free(buffer);
4466
4467         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4468
4469         return e;
4470 }
4471
4472 /* FIX? should we propagate errors here rather than printing them
4473  * and continuing?
4474  */
4475 void target_handle_event(struct target *target, enum target_event e)
4476 {
4477         struct target_event_action *teap;
4478
4479         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4480                 if (teap->event == e) {
4481                         LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4482                                            target->target_number,
4483                                            target_name(target),
4484                                            target_type_name(target),
4485                                            e,
4486                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4487                                            Jim_GetString(teap->body, NULL));
4488
4489                         /* Override current target by the target an event
4490                          * is issued from (lot of scripts need it).
4491                          * Return back to previous override as soon
4492                          * as the handler processing is done */
4493                         struct command_context *cmd_ctx = current_command_context(teap->interp);
4494                         struct target *saved_target_override = cmd_ctx->current_target_override;
4495                         cmd_ctx->current_target_override = target;
4496
4497                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4498                                 Jim_MakeErrorMessage(teap->interp);
4499                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4500                         }
4501
4502                         cmd_ctx->current_target_override = saved_target_override;
4503                 }
4504         }
4505 }
4506
4507 /**
4508  * Returns true only if the target has a handler for the specified event.
4509  */
4510 bool target_has_event_action(struct target *target, enum target_event event)
4511 {
4512         struct target_event_action *teap;
4513
4514         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4515                 if (teap->event == event)
4516                         return true;
4517         }
4518         return false;
4519 }
4520
4521 enum target_cfg_param {
4522         TCFG_TYPE,
4523         TCFG_EVENT,
4524         TCFG_WORK_AREA_VIRT,
4525         TCFG_WORK_AREA_PHYS,
4526         TCFG_WORK_AREA_SIZE,
4527         TCFG_WORK_AREA_BACKUP,
4528         TCFG_ENDIAN,
4529         TCFG_COREID,
4530         TCFG_CHAIN_POSITION,
4531         TCFG_DBGBASE,
4532         TCFG_RTOS,
4533         TCFG_DEFER_EXAMINE,
4534 };
4535
4536 static Jim_Nvp nvp_config_opts[] = {
4537         { .name = "-type",             .value = TCFG_TYPE },
4538         { .name = "-event",            .value = TCFG_EVENT },
4539         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4540         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4541         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4542         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4543         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4544         { .name = "-coreid",           .value = TCFG_COREID },
4545         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4546         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4547         { .name = "-rtos",             .value = TCFG_RTOS },
4548         { .name = "-defer-examine",    .value = TCFG_DEFER_EXAMINE },
4549         { .name = NULL, .value = -1 }
4550 };
4551
4552 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4553 {
4554         Jim_Nvp *n;
4555         Jim_Obj *o;
4556         jim_wide w;
4557         int e;
4558
4559         /* parse config or cget options ... */
4560         while (goi->argc > 0) {
4561                 Jim_SetEmptyResult(goi->interp);
4562                 /* Jim_GetOpt_Debug(goi); */
4563
4564                 if (target->type->target_jim_configure) {
4565                         /* target defines a configure function */
4566                         /* target gets first dibs on parameters */
4567                         e = (*(target->type->target_jim_configure))(target, goi);
4568                         if (e == JIM_OK) {
4569                                 /* more? */
4570                                 continue;
4571                         }
4572                         if (e == JIM_ERR) {
4573                                 /* An error */
4574                                 return e;
4575                         }
4576                         /* otherwise we 'continue' below */
4577                 }
4578                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4579                 if (e != JIM_OK) {
4580                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4581                         return e;
4582                 }
4583                 switch (n->value) {
4584                 case TCFG_TYPE:
4585                         /* not setable */
4586                         if (goi->isconfigure) {
4587                                 Jim_SetResultFormatted(goi->interp,
4588                                                 "not settable: %s", n->name);
4589                                 return JIM_ERR;
4590                         } else {
4591 no_params:
4592                                 if (goi->argc != 0) {
4593                                         Jim_WrongNumArgs(goi->interp,
4594                                                         goi->argc, goi->argv,
4595                                                         "NO PARAMS");
4596                                         return JIM_ERR;
4597                                 }
4598                         }
4599                         Jim_SetResultString(goi->interp,
4600                                         target_type_name(target), -1);
4601                         /* loop for more */
4602                         break;
4603                 case TCFG_EVENT:
4604                         if (goi->argc == 0) {
4605                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4606                                 return JIM_ERR;
4607                         }
4608
4609                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4610                         if (e != JIM_OK) {
4611                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4612                                 return e;
4613                         }
4614
4615                         if (goi->isconfigure) {
4616                                 if (goi->argc != 1) {
4617                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4618                                         return JIM_ERR;
4619                                 }
4620                         } else {
4621                                 if (goi->argc != 0) {
4622                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4623                                         return JIM_ERR;
4624                                 }
4625                         }
4626
4627                         {
4628                                 struct target_event_action *teap;
4629
4630                                 teap = target->event_action;
4631                                 /* replace existing? */
4632                                 while (teap) {
4633                                         if (teap->event == (enum target_event)n->value)
4634                                                 break;
4635                                         teap = teap->next;
4636                                 }
4637
4638                                 if (goi->isconfigure) {
4639                                         bool replace = true;
4640                                         if (teap == NULL) {
4641                                                 /* create new */
4642                                                 teap = calloc(1, sizeof(*teap));
4643                                                 replace = false;
4644                                         }
4645                                         teap->event = n->value;
4646                                         teap->interp = goi->interp;
4647                                         Jim_GetOpt_Obj(goi, &o);
4648                                         if (teap->body)
4649                                                 Jim_DecrRefCount(teap->interp, teap->body);
4650                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4651                                         /*
4652                                          * FIXME:
4653                                          *     Tcl/TK - "tk events" have a nice feature.
4654                                          *     See the "BIND" command.
4655                                          *    We should support that here.
4656                                          *     You can specify %X and %Y in the event code.
4657                                          *     The idea is: %T - target name.
4658                                          *     The idea is: %N - target number
4659                                          *     The idea is: %E - event name.
4660                                          */
4661                                         Jim_IncrRefCount(teap->body);
4662
4663                                         if (!replace) {
4664                                                 /* add to head of event list */
4665                                                 teap->next = target->event_action;
4666                                                 target->event_action = teap;
4667                                         }
4668                                         Jim_SetEmptyResult(goi->interp);
4669                                 } else {
4670                                         /* get */
4671                                         if (teap == NULL)
4672                                                 Jim_SetEmptyResult(goi->interp);
4673                                         else
4674                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4675                                 }
4676                         }
4677                         /* loop for more */
4678                         break;
4679
4680                 case TCFG_WORK_AREA_VIRT:
4681                         if (goi->isconfigure) {
4682                                 target_free_all_working_areas(target);
4683                                 e = Jim_GetOpt_Wide(goi, &w);
4684                                 if (e != JIM_OK)
4685                                         return e;
4686                                 target->working_area_virt = w;
4687                                 target->working_area_virt_spec = true;
4688                         } else {
4689                                 if (goi->argc != 0)
4690                                         goto no_params;
4691                         }
4692                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4693                         /* loop for more */
4694                         break;
4695
4696                 case TCFG_WORK_AREA_PHYS:
4697                         if (goi->isconfigure) {
4698                                 target_free_all_working_areas(target);
4699                                 e = Jim_GetOpt_Wide(goi, &w);
4700                                 if (e != JIM_OK)
4701                                         return e;
4702                                 target->working_area_phys = w;
4703                                 target->working_area_phys_spec = true;
4704                         } else {
4705                                 if (goi->argc != 0)
4706                                         goto no_params;
4707                         }
4708                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4709                         /* loop for more */
4710                         break;
4711
4712                 case TCFG_WORK_AREA_SIZE:
4713                         if (goi->isconfigure) {
4714                                 target_free_all_working_areas(target);
4715                                 e = Jim_GetOpt_Wide(goi, &w);
4716                                 if (e != JIM_OK)
4717                                         return e;
4718                                 target->working_area_size = w;
4719                         } else {
4720                                 if (goi->argc != 0)
4721                                         goto no_params;
4722                         }
4723                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4724                         /* loop for more */
4725                         break;
4726
4727                 case TCFG_WORK_AREA_BACKUP:
4728                         if (goi->isconfigure) {
4729                                 target_free_all_working_areas(target);
4730                                 e = Jim_GetOpt_Wide(goi, &w);
4731                                 if (e != JIM_OK)
4732                                         return e;
4733                                 /* make this exactly 1 or 0 */
4734                                 target->backup_working_area = (!!w);
4735                         } else {
4736                                 if (goi->argc != 0)
4737                                         goto no_params;
4738                         }
4739                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4740                         /* loop for more e*/
4741                         break;
4742
4743
4744                 case TCFG_ENDIAN:
4745                         if (goi->isconfigure) {
4746                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4747                                 if (e != JIM_OK) {
4748                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4749                                         return e;
4750                                 }
4751                                 target->endianness = n->value;
4752                         } else {
4753                                 if (goi->argc != 0)
4754                                         goto no_params;
4755                         }
4756                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4757                         if (n->name == NULL) {
4758                                 target->endianness = TARGET_LITTLE_ENDIAN;
4759                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4760                         }
4761                         Jim_SetResultString(goi->interp, n->name, -1);
4762                         /* loop for more */
4763                         break;
4764
4765                 case TCFG_COREID:
4766                         if (goi->isconfigure) {
4767                                 e = Jim_GetOpt_Wide(goi, &w);
4768                                 if (e != JIM_OK)
4769                                         return e;
4770                                 target->coreid = (int32_t)w;
4771                         } else {
4772                                 if (goi->argc != 0)
4773                                         goto no_params;
4774                         }
4775                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4776                         /* loop for more */
4777                         break;
4778
4779                 case TCFG_CHAIN_POSITION:
4780                         if (goi->isconfigure) {
4781                                 Jim_Obj *o_t;
4782                                 struct jtag_tap *tap;
4783
4784                                 if (target->has_dap) {
4785                                         Jim_SetResultString(goi->interp,
4786                                                 "target requires -dap parameter instead of -chain-position!", -1);
4787                                         return JIM_ERR;
4788                                 }
4789
4790                                 target_free_all_working_areas(target);
4791                                 e = Jim_GetOpt_Obj(goi, &o_t);
4792                                 if (e != JIM_OK)
4793                                         return e;
4794                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4795                                 if (tap == NULL)
4796                                         return JIM_ERR;
4797                                 target->tap = tap;
4798                                 target->tap_configured = true;
4799                         } else {
4800                                 if (goi->argc != 0)
4801                                         goto no_params;
4802                         }
4803                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4804                         /* loop for more e*/
4805                         break;
4806                 case TCFG_DBGBASE:
4807                         if (goi->isconfigure) {
4808                                 e = Jim_GetOpt_Wide(goi, &w);
4809                                 if (e != JIM_OK)
4810                                         return e;
4811                                 target->dbgbase = (uint32_t)w;
4812                                 target->dbgbase_set = true;
4813                         } else {
4814                                 if (goi->argc != 0)
4815                                         goto no_params;
4816                         }
4817                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4818                         /* loop for more */
4819                         break;
4820                 case TCFG_RTOS:
4821                         /* RTOS */
4822                         {
4823                                 int result = rtos_create(goi, target);
4824                                 if (result != JIM_OK)
4825                                         return result;
4826                         }
4827                         /* loop for more */
4828                         break;
4829
4830                 case TCFG_DEFER_EXAMINE:
4831                         /* DEFER_EXAMINE */
4832                         target->defer_examine = true;
4833                         /* loop for more */
4834                         break;
4835
4836                 }
4837         } /* while (goi->argc) */
4838
4839
4840                 /* done - we return */
4841         return JIM_OK;
4842 }
4843
4844 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4845 {
4846         Jim_GetOptInfo goi;
4847
4848         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4849         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4850         if (goi.argc < 1) {
4851                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4852                                  "missing: -option ...");
4853                 return JIM_ERR;
4854         }
4855         struct target *target = Jim_CmdPrivData(goi.interp);
4856         return target_configure(&goi, target);
4857 }
4858
4859 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4860 {
4861         const char *cmd_name = Jim_GetString(argv[0], NULL);
4862
4863         Jim_GetOptInfo goi;
4864         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4865
4866         if (goi.argc < 2 || goi.argc > 4) {
4867                 Jim_SetResultFormatted(goi.interp,
4868                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4869                 return JIM_ERR;
4870         }
4871
4872         target_write_fn fn;
4873         fn = target_write_memory;
4874
4875         int e;
4876         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4877                 /* consume it */
4878                 struct Jim_Obj *obj;
4879                 e = Jim_GetOpt_Obj(&goi, &obj);
4880                 if (e != JIM_OK)
4881                         return e;
4882
4883                 fn = target_write_phys_memory;
4884         }
4885
4886         jim_wide a;
4887         e = Jim_GetOpt_Wide(&goi, &a);
4888         if (e != JIM_OK)
4889                 return e;
4890
4891         jim_wide b;
4892         e = Jim_GetOpt_Wide(&goi, &b);
4893         if (e != JIM_OK)
4894                 return e;
4895
4896         jim_wide c = 1;
4897         if (goi.argc == 1) {
4898                 e = Jim_GetOpt_Wide(&goi, &c);
4899                 if (e != JIM_OK)
4900                         return e;
4901         }
4902
4903         /* all args must be consumed */
4904         if (goi.argc != 0)
4905                 return JIM_ERR;
4906
4907         struct target *target = Jim_CmdPrivData(goi.interp);
4908         unsigned data_size;
4909         if (strcasecmp(cmd_name, "mww") == 0)
4910                 data_size = 4;
4911         else if (strcasecmp(cmd_name, "mwh") == 0)
4912                 data_size = 2;
4913         else if (strcasecmp(cmd_name, "mwb") == 0)
4914                 data_size = 1;
4915         else {
4916                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4917                 return JIM_ERR;
4918         }
4919
4920         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4921 }
4922
4923 /**
4924 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4925 *
4926 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4927 *         mdh [phys] <address> [<count>] - for 16 bit reads
4928 *         mdb [phys] <address> [<count>] - for  8 bit reads
4929 *
4930 *  Count defaults to 1.
4931 *
4932 *  Calls target_read_memory or target_read_phys_memory depending on
4933 *  the presence of the "phys" argument
4934 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4935 *  to int representation in base16.
4936 *  Also outputs read data in a human readable form using command_print
4937 *
4938 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4939 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4940 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4941 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4942 *  on success, with [<count>] number of elements.
4943 *
4944 *  In case of little endian target:
4945 *      Example1: "mdw 0x00000000"  returns "10123456"
4946 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4947 *      Example3: "mdb 0x00000000" returns "56"
4948 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4949 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4950 **/
4951 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4952 {
4953         const char *cmd_name = Jim_GetString(argv[0], NULL);
4954
4955         Jim_GetOptInfo goi;
4956         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4957
4958         if ((goi.argc < 1) || (goi.argc > 3)) {
4959                 Jim_SetResultFormatted(goi.interp,
4960                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4961                 return JIM_ERR;
4962         }
4963
4964         int (*fn)(struct target *target,
4965                         target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4966         fn = target_read_memory;
4967
4968         int e;
4969         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4970                 /* consume it */
4971                 struct Jim_Obj *obj;
4972                 e = Jim_GetOpt_Obj(&goi, &obj);
4973                 if (e != JIM_OK)
4974                         return e;
4975
4976                 fn = target_read_phys_memory;
4977         }
4978
4979         /* Read address parameter */
4980         jim_wide addr;
4981         e = Jim_GetOpt_Wide(&goi, &addr);
4982         if (e != JIM_OK)
4983                 return JIM_ERR;
4984
4985         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4986         jim_wide count;
4987         if (goi.argc == 1) {
4988                 e = Jim_GetOpt_Wide(&goi, &count);
4989                 if (e != JIM_OK)
4990                         return JIM_ERR;
4991         } else
4992                 count = 1;
4993
4994         /* all args must be consumed */
4995         if (goi.argc != 0)
4996                 return JIM_ERR;
4997
4998         jim_wide dwidth = 1; /* shut up gcc */
4999         if (strcasecmp(cmd_name, "mdw") == 0)
5000                 dwidth = 4;
5001         else if (strcasecmp(cmd_name, "mdh") == 0)
5002                 dwidth = 2;
5003         else if (strcasecmp(cmd_name, "mdb") == 0)
5004                 dwidth = 1;
5005         else {
5006                 LOG_ERROR("command '%s' unknown: ", cmd_name);
5007                 return JIM_ERR;
5008         }
5009
5010         /* convert count to "bytes" */
5011         int bytes = count * dwidth;
5012
5013         struct target *target = Jim_CmdPrivData(goi.interp);
5014         uint8_t  target_buf[32];
5015         jim_wide x, y, z;
5016         while (bytes > 0) {
5017                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
5018
5019                 /* Try to read out next block */
5020                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
5021
5022                 if (e != ERROR_OK) {
5023                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
5024                         return JIM_ERR;
5025                 }
5026
5027                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
5028                 switch (dwidth) {
5029                 case 4:
5030                         for (x = 0; x < 16 && x < y; x += 4) {
5031                                 z = target_buffer_get_u32(target, &(target_buf[x]));
5032                                 command_print_sameline(NULL, "%08x ", (int)(z));
5033                         }
5034                         for (; (x < 16) ; x += 4)
5035                                 command_print_sameline(NULL, "         ");
5036                         break;
5037                 case 2:
5038                         for (x = 0; x < 16 && x < y; x += 2) {
5039                                 z = target_buffer_get_u16(target, &(target_buf[x]));
5040                                 command_print_sameline(NULL, "%04x ", (int)(z));
5041                         }
5042                         for (; (x < 16) ; x += 2)
5043                                 command_print_sameline(NULL, "     ");
5044                         break;
5045                 case 1:
5046                 default:
5047                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
5048                                 z = target_buffer_get_u8(target, &(target_buf[x]));
5049                                 command_print_sameline(NULL, "%02x ", (int)(z));
5050                         }
5051                         for (; (x < 16) ; x += 1)
5052                                 command_print_sameline(NULL, "   ");
5053                         break;
5054                 }
5055                 /* ascii-ify the bytes */
5056                 for (x = 0 ; x < y ; x++) {
5057                         if ((target_buf[x] >= 0x20) &&
5058                                 (target_buf[x] <= 0x7e)) {
5059                                 /* good */
5060                         } else {
5061                                 /* smack it */
5062                                 target_buf[x] = '.';
5063                         }
5064                 }
5065                 /* space pad  */
5066                 while (x < 16) {
5067                         target_buf[x] = ' ';
5068                         x++;
5069                 }
5070                 /* terminate */
5071                 target_buf[16] = 0;
5072                 /* print - with a newline */
5073                 command_print_sameline(NULL, "%s\n", target_buf);
5074                 /* NEXT... */
5075                 bytes -= 16;
5076                 addr += 16;
5077         }
5078         return JIM_OK;
5079 }
5080
5081 static int jim_target_mem2array(Jim_Interp *interp,
5082                 int argc, Jim_Obj *const *argv)
5083 {
5084         struct target *target = Jim_CmdPrivData(interp);
5085         return target_mem2array(interp, target, argc - 1, argv + 1);
5086 }
5087
5088 static int jim_target_array2mem(Jim_Interp *interp,
5089                 int argc, Jim_Obj *const *argv)
5090 {
5091         struct target *target = Jim_CmdPrivData(interp);
5092         return target_array2mem(interp, target, argc - 1, argv + 1);
5093 }
5094
5095 static int jim_target_tap_disabled(Jim_Interp *interp)
5096 {
5097         Jim_SetResultFormatted(interp, "[TAP is disabled]");
5098         return JIM_ERR;
5099 }
5100
5101 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5102 {
5103         bool allow_defer = false;
5104
5105         Jim_GetOptInfo goi;
5106         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5107         if (goi.argc > 1) {
5108                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5109                 Jim_SetResultFormatted(goi.interp,
5110                                 "usage: %s ['allow-defer']", cmd_name);
5111                 return JIM_ERR;
5112         }
5113         if (goi.argc > 0 &&
5114             strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5115                 /* consume it */
5116                 struct Jim_Obj *obj;
5117                 int e = Jim_GetOpt_Obj(&goi, &obj);
5118                 if (e != JIM_OK)
5119                         return e;
5120                 allow_defer = true;
5121         }
5122
5123         struct target *target = Jim_CmdPrivData(interp);
5124         if (!target->tap->enabled)
5125                 return jim_target_tap_disabled(interp);
5126
5127         if (allow_defer && target->defer_examine) {
5128                 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5129                 LOG_INFO("Use arp_examine command to examine it manually!");
5130                 return JIM_OK;
5131         }
5132
5133         int e = target->type->examine(target);
5134         if (e != ERROR_OK)
5135                 return JIM_ERR;
5136         return JIM_OK;
5137 }
5138
5139 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5140 {
5141         struct target *target = Jim_CmdPrivData(interp);
5142
5143         Jim_SetResultBool(interp, target_was_examined(target));
5144         return JIM_OK;
5145 }
5146
5147 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5148 {
5149         struct target *target = Jim_CmdPrivData(interp);
5150
5151         Jim_SetResultBool(interp, target->defer_examine);
5152         return JIM_OK;
5153 }
5154
5155 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5156 {
5157         if (argc != 1) {
5158                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5159                 return JIM_ERR;
5160         }
5161         struct target *target = Jim_CmdPrivData(interp);
5162
5163         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5164                 return JIM_ERR;
5165
5166         return JIM_OK;
5167 }
5168
5169 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5170 {
5171         if (argc != 1) {
5172                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5173                 return JIM_ERR;
5174         }
5175         struct target *target = Jim_CmdPrivData(interp);
5176         if (!target->tap->enabled)
5177                 return jim_target_tap_disabled(interp);
5178
5179         int e;
5180         if (!(target_was_examined(target)))
5181                 e = ERROR_TARGET_NOT_EXAMINED;
5182         else
5183                 e = target->type->poll(target);
5184         if (e != ERROR_OK)
5185                 return JIM_ERR;
5186         return JIM_OK;
5187 }
5188
5189 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5190 {
5191         Jim_GetOptInfo goi;
5192         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5193
5194         if (goi.argc != 2) {
5195                 Jim_WrongNumArgs(interp, 0, argv,
5196                                 "([tT]|[fF]|assert|deassert) BOOL");
5197                 return JIM_ERR;
5198         }
5199
5200         Jim_Nvp *n;
5201         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5202         if (e != JIM_OK) {
5203                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5204                 return e;
5205         }
5206         /* the halt or not param */
5207         jim_wide a;
5208         e = Jim_GetOpt_Wide(&goi, &a);
5209         if (e != JIM_OK)
5210                 return e;
5211
5212         struct target *target = Jim_CmdPrivData(goi.interp);
5213         if (!target->tap->enabled)
5214                 return jim_target_tap_disabled(interp);
5215
5216         if (!target->type->assert_reset || !target->type->deassert_reset) {
5217                 Jim_SetResultFormatted(interp,
5218                                 "No target-specific reset for %s",
5219                                 target_name(target));
5220                 return JIM_ERR;
5221         }
5222
5223         if (target->defer_examine)
5224                 target_reset_examined(target);
5225
5226         /* determine if we should halt or not. */
5227         target->reset_halt = !!a;
5228         /* When this happens - all workareas are invalid. */
5229         target_free_all_working_areas_restore(target, 0);
5230
5231         /* do the assert */
5232         if (n->value == NVP_ASSERT)
5233                 e = target->type->assert_reset(target);
5234         else
5235                 e = target->type->deassert_reset(target);
5236         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5237 }
5238
5239 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5240 {
5241         if (argc != 1) {
5242                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5243                 return JIM_ERR;
5244         }
5245         struct target *target = Jim_CmdPrivData(interp);
5246         if (!target->tap->enabled)
5247                 return jim_target_tap_disabled(interp);
5248         int e = target->type->halt(target);
5249         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5250 }
5251
5252 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5253 {
5254         Jim_GetOptInfo goi;
5255         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5256
5257         /* params:  <name>  statename timeoutmsecs */
5258         if (goi.argc != 2) {
5259                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5260                 Jim_SetResultFormatted(goi.interp,
5261                                 "%s <state_name> <timeout_in_msec>", cmd_name);
5262                 return JIM_ERR;
5263         }
5264
5265         Jim_Nvp *n;
5266         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5267         if (e != JIM_OK) {
5268                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5269                 return e;
5270         }
5271         jim_wide a;
5272         e = Jim_GetOpt_Wide(&goi, &a);
5273         if (e != JIM_OK)
5274                 return e;
5275         struct target *target = Jim_CmdPrivData(interp);
5276         if (!target->tap->enabled)
5277                 return jim_target_tap_disabled(interp);
5278
5279         e = target_wait_state(target, n->value, a);
5280         if (e != ERROR_OK) {
5281                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5282                 Jim_SetResultFormatted(goi.interp,
5283                                 "target: %s wait %s fails (%#s) %s",
5284                                 target_name(target), n->name,
5285                                 eObj, target_strerror_safe(e));
5286                 Jim_FreeNewObj(interp, eObj);
5287                 return JIM_ERR;
5288         }
5289         return JIM_OK;
5290 }
5291 /* List for human, Events defined for this target.
5292  * scripts/programs should use 'name cget -event NAME'
5293  */
5294 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5295 {
5296         struct command_context *cmd_ctx = current_command_context(interp);
5297         assert(cmd_ctx != NULL);
5298
5299         struct target *target = Jim_CmdPrivData(interp);
5300         struct target_event_action *teap = target->event_action;
5301         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5302                                    target->target_number,
5303                                    target_name(target));
5304         command_print(cmd_ctx, "%-25s | Body", "Event");
5305         command_print(cmd_ctx, "------------------------- | "
5306                         "----------------------------------------");
5307         while (teap) {
5308                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5309                 command_print(cmd_ctx, "%-25s | %s",
5310                                 opt->name, Jim_GetString(teap->body, NULL));
5311                 teap = teap->next;
5312         }
5313         command_print(cmd_ctx, "***END***");
5314         return JIM_OK;
5315 }
5316 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5317 {
5318         if (argc != 1) {
5319                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5320                 return JIM_ERR;
5321         }
5322         struct target *target = Jim_CmdPrivData(interp);
5323         Jim_SetResultString(interp, target_state_name(target), -1);
5324         return JIM_OK;
5325 }
5326 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5327 {
5328         Jim_GetOptInfo goi;
5329         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5330         if (goi.argc != 1) {
5331                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5332                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5333                 return JIM_ERR;
5334         }
5335         Jim_Nvp *n;
5336         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5337         if (e != JIM_OK) {
5338                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5339                 return e;
5340         }
5341         struct target *target = Jim_CmdPrivData(interp);
5342         target_handle_event(target, n->value);
5343         return JIM_OK;
5344 }
5345
5346 static const struct command_registration target_instance_command_handlers[] = {
5347         {
5348                 .name = "configure",
5349                 .mode = COMMAND_CONFIG,
5350                 .jim_handler = jim_target_configure,
5351                 .help  = "configure a new target for use",
5352                 .usage = "[target_attribute ...]",
5353         },
5354         {
5355                 .name = "cget",
5356                 .mode = COMMAND_ANY,
5357                 .jim_handler = jim_target_configure,
5358                 .help  = "returns the specified target attribute",
5359                 .usage = "target_attribute",
5360         },
5361         {
5362                 .name = "mww",
5363                 .mode = COMMAND_EXEC,
5364                 .jim_handler = jim_target_mw,
5365                 .help = "Write 32-bit word(s) to target memory",
5366                 .usage = "address data [count]",
5367         },
5368         {
5369                 .name = "mwh",
5370                 .mode = COMMAND_EXEC,
5371                 .jim_handler = jim_target_mw,
5372                 .help = "Write 16-bit half-word(s) to target memory",
5373                 .usage = "address data [count]",
5374         },
5375         {
5376                 .name = "mwb",
5377                 .mode = COMMAND_EXEC,
5378                 .jim_handler = jim_target_mw,
5379                 .help = "Write byte(s) to target memory",
5380                 .usage = "address data [count]",
5381         },
5382         {
5383                 .name = "mdw",
5384                 .mode = COMMAND_EXEC,
5385                 .jim_handler = jim_target_md,
5386                 .help = "Display target memory as 32-bit words",
5387                 .usage = "address [count]",
5388         },
5389         {
5390                 .name = "mdh",
5391                 .mode = COMMAND_EXEC,
5392                 .jim_handler = jim_target_md,
5393                 .help = "Display target memory as 16-bit half-words",
5394                 .usage = "address [count]",
5395         },
5396         {
5397                 .name = "mdb",
5398                 .mode = COMMAND_EXEC,
5399                 .jim_handler = jim_target_md,
5400                 .help = "Display target memory as 8-bit bytes",
5401                 .usage = "address [count]",
5402         },
5403         {
5404                 .name = "array2mem",
5405                 .mode = COMMAND_EXEC,
5406                 .jim_handler = jim_target_array2mem,
5407                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5408                         "to target memory",
5409                 .usage = "arrayname bitwidth address count",
5410         },
5411         {
5412                 .name = "mem2array",
5413                 .mode = COMMAND_EXEC,
5414                 .jim_handler = jim_target_mem2array,
5415                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5416                         "from target memory",
5417                 .usage = "arrayname bitwidth address count",
5418         },
5419         {
5420                 .name = "eventlist",
5421                 .mode = COMMAND_EXEC,
5422                 .jim_handler = jim_target_event_list,
5423                 .help = "displays a table of events defined for this target",
5424         },
5425         {
5426                 .name = "curstate",
5427                 .mode = COMMAND_EXEC,
5428                 .jim_handler = jim_target_current_state,
5429                 .help = "displays the current state of this target",
5430         },
5431         {
5432                 .name = "arp_examine",
5433                 .mode = COMMAND_EXEC,
5434                 .jim_handler = jim_target_examine,
5435                 .help = "used internally for reset processing",
5436                 .usage = "arp_examine ['allow-defer']",
5437         },
5438         {
5439                 .name = "was_examined",
5440                 .mode = COMMAND_EXEC,
5441                 .jim_handler = jim_target_was_examined,
5442                 .help = "used internally for reset processing",
5443                 .usage = "was_examined",
5444         },
5445         {
5446                 .name = "examine_deferred",
5447                 .mode = COMMAND_EXEC,
5448                 .jim_handler = jim_target_examine_deferred,
5449                 .help = "used internally for reset processing",
5450                 .usage = "examine_deferred",
5451         },
5452         {
5453                 .name = "arp_halt_gdb",
5454                 .mode = COMMAND_EXEC,
5455                 .jim_handler = jim_target_halt_gdb,
5456                 .help = "used internally for reset processing to halt GDB",
5457         },
5458         {
5459                 .name = "arp_poll",
5460                 .mode = COMMAND_EXEC,
5461                 .jim_handler = jim_target_poll,
5462                 .help = "used internally for reset processing",
5463         },
5464         {
5465                 .name = "arp_reset",
5466                 .mode = COMMAND_EXEC,
5467                 .jim_handler = jim_target_reset,
5468                 .help = "used internally for reset processing",
5469         },
5470         {
5471                 .name = "arp_halt",
5472                 .mode = COMMAND_EXEC,
5473                 .jim_handler = jim_target_halt,
5474                 .help = "used internally for reset processing",
5475         },
5476         {
5477                 .name = "arp_waitstate",
5478                 .mode = COMMAND_EXEC,
5479                 .jim_handler = jim_target_wait_state,
5480                 .help = "used internally for reset processing",
5481         },
5482         {
5483                 .name = "invoke-event",
5484                 .mode = COMMAND_EXEC,
5485                 .jim_handler = jim_target_invoke_event,
5486                 .help = "invoke handler for specified event",
5487                 .usage = "event_name",
5488         },
5489         COMMAND_REGISTRATION_DONE
5490 };
5491
5492 static int target_create(Jim_GetOptInfo *goi)
5493 {
5494         Jim_Obj *new_cmd;
5495         Jim_Cmd *cmd;
5496         const char *cp;
5497         int e;
5498         int x;
5499         struct target *target;
5500         struct command_context *cmd_ctx;
5501
5502         cmd_ctx = current_command_context(goi->interp);
5503         assert(cmd_ctx != NULL);
5504
5505         if (goi->argc < 3) {
5506                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5507                 return JIM_ERR;
5508         }
5509
5510         /* COMMAND */
5511         Jim_GetOpt_Obj(goi, &new_cmd);
5512         /* does this command exist? */
5513         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5514         if (cmd) {
5515                 cp = Jim_GetString(new_cmd, NULL);
5516                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5517                 return JIM_ERR;
5518         }
5519
5520         /* TYPE */
5521         e = Jim_GetOpt_String(goi, &cp, NULL);
5522         if (e != JIM_OK)
5523                 return e;
5524         struct transport *tr = get_current_transport();
5525         if (tr->override_target) {
5526                 e = tr->override_target(&cp);
5527                 if (e != ERROR_OK) {
5528                         LOG_ERROR("The selected transport doesn't support this target");
5529                         return JIM_ERR;
5530                 }
5531                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5532         }
5533         /* now does target type exist */
5534         for (x = 0 ; target_types[x] ; x++) {
5535                 if (0 == strcmp(cp, target_types[x]->name)) {
5536                         /* found */
5537                         break;
5538                 }
5539
5540                 /* check for deprecated name */
5541                 if (target_types[x]->deprecated_name) {
5542                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5543                                 /* found */
5544                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5545                                 break;
5546                         }
5547                 }
5548         }
5549         if (target_types[x] == NULL) {
5550                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5551                 for (x = 0 ; target_types[x] ; x++) {
5552                         if (target_types[x + 1]) {
5553                                 Jim_AppendStrings(goi->interp,
5554                                                                    Jim_GetResult(goi->interp),
5555                                                                    target_types[x]->name,
5556                                                                    ", ", NULL);
5557                         } else {
5558                                 Jim_AppendStrings(goi->interp,
5559                                                                    Jim_GetResult(goi->interp),
5560                                                                    " or ",
5561                                                                    target_types[x]->name, NULL);
5562                         }
5563                 }
5564                 return JIM_ERR;
5565         }
5566
5567         /* Create it */
5568         target = calloc(1, sizeof(struct target));
5569         /* set target number */
5570         target->target_number = new_target_number();
5571         cmd_ctx->current_target = target;
5572
5573         /* allocate memory for each unique target type */
5574         target->type = calloc(1, sizeof(struct target_type));
5575
5576         memcpy(target->type, target_types[x], sizeof(struct target_type));
5577
5578         /* will be set by "-endian" */
5579         target->endianness = TARGET_ENDIAN_UNKNOWN;
5580
5581         /* default to first core, override with -coreid */
5582         target->coreid = 0;
5583
5584         target->working_area        = 0x0;
5585         target->working_area_size   = 0x0;
5586         target->working_areas       = NULL;
5587         target->backup_working_area = 0;
5588
5589         target->state               = TARGET_UNKNOWN;
5590         target->debug_reason        = DBG_REASON_UNDEFINED;
5591         target->reg_cache           = NULL;
5592         target->breakpoints         = NULL;
5593         target->watchpoints         = NULL;
5594         target->next                = NULL;
5595         target->arch_info           = NULL;
5596
5597         target->verbose_halt_msg        = true;
5598
5599         target->halt_issued                     = false;
5600
5601         /* initialize trace information */
5602         target->trace_info = calloc(1, sizeof(struct trace));
5603
5604         target->dbgmsg          = NULL;
5605         target->dbg_msg_enabled = 0;
5606
5607         target->endianness = TARGET_ENDIAN_UNKNOWN;
5608
5609         target->rtos = NULL;
5610         target->rtos_auto_detect = false;
5611
5612         /* Do the rest as "configure" options */
5613         goi->isconfigure = 1;
5614         e = target_configure(goi, target);
5615
5616         if (e == JIM_OK) {
5617                 if (target->has_dap) {
5618                         if (!target->dap_configured) {
5619                                 Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5620                                 e = JIM_ERR;
5621                         }
5622                 } else {
5623                         if (!target->tap_configured) {
5624                                 Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5625                                 e = JIM_ERR;
5626                         }
5627                 }
5628                 /* tap must be set after target was configured */
5629                 if (target->tap == NULL)
5630                         e = JIM_ERR;
5631         }
5632
5633         if (e != JIM_OK) {
5634                 free(target->type);
5635                 free(target);
5636                 return e;
5637         }
5638
5639         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5640                 /* default endian to little if not specified */
5641                 target->endianness = TARGET_LITTLE_ENDIAN;
5642         }
5643
5644         cp = Jim_GetString(new_cmd, NULL);
5645         target->cmd_name = strdup(cp);
5646
5647         if (target->type->target_create) {
5648                 e = (*(target->type->target_create))(target, goi->interp);
5649                 if (e != ERROR_OK) {
5650                         LOG_DEBUG("target_create failed");
5651                         free(target->type);
5652                         free(target->cmd_name);
5653                         free(target);
5654                         return JIM_ERR;
5655                 }
5656         }
5657
5658         /* create the target specific commands */
5659         if (target->type->commands) {
5660                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5661                 if (ERROR_OK != e)
5662                         LOG_ERROR("unable to register '%s' commands", cp);
5663         }
5664
5665         /* append to end of list */
5666         {
5667                 struct target **tpp;
5668                 tpp = &(all_targets);
5669                 while (*tpp)
5670                         tpp = &((*tpp)->next);
5671                 *tpp = target;
5672         }
5673
5674         /* now - create the new target name command */
5675         const struct command_registration target_subcommands[] = {
5676                 {
5677                         .chain = target_instance_command_handlers,
5678                 },
5679                 {
5680                         .chain = target->type->commands,
5681                 },
5682                 COMMAND_REGISTRATION_DONE
5683         };
5684         const struct command_registration target_commands[] = {
5685                 {
5686                         .name = cp,
5687                         .mode = COMMAND_ANY,
5688                         .help = "target command group",
5689                         .usage = "",
5690                         .chain = target_subcommands,
5691                 },
5692                 COMMAND_REGISTRATION_DONE
5693         };
5694         e = register_commands(cmd_ctx, NULL, target_commands);
5695         if (ERROR_OK != e)
5696                 return JIM_ERR;
5697
5698         struct command *c = command_find_in_context(cmd_ctx, cp);
5699         assert(c);
5700         command_set_handler_data(c, target);
5701
5702         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5703 }
5704
5705 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5706 {
5707         if (argc != 1) {
5708                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5709                 return JIM_ERR;
5710         }
5711         struct command_context *cmd_ctx = current_command_context(interp);
5712         assert(cmd_ctx != NULL);
5713
5714         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5715         return JIM_OK;
5716 }
5717
5718 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5719 {
5720         if (argc != 1) {
5721                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5722                 return JIM_ERR;
5723         }
5724         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5725         for (unsigned x = 0; NULL != target_types[x]; x++) {
5726                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5727                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5728         }
5729         return JIM_OK;
5730 }
5731
5732 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5733 {
5734         if (argc != 1) {
5735                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5736                 return JIM_ERR;
5737         }
5738         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5739         struct target *target = all_targets;
5740         while (target) {
5741                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5742                         Jim_NewStringObj(interp, target_name(target), -1));
5743                 target = target->next;
5744         }
5745         return JIM_OK;
5746 }
5747
5748 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5749 {
5750         int i;
5751         const char *targetname;
5752         int retval, len;
5753         struct target *target = (struct target *) NULL;
5754         struct target_list *head, *curr, *new;
5755         curr = (struct target_list *) NULL;
5756         head = (struct target_list *) NULL;
5757
5758         retval = 0;
5759         LOG_DEBUG("%d", argc);
5760         /* argv[1] = target to associate in smp
5761          * argv[2] = target to assoicate in smp
5762          * argv[3] ...
5763          */
5764
5765         for (i = 1; i < argc; i++) {
5766
5767                 targetname = Jim_GetString(argv[i], &len);
5768                 target = get_target(targetname);
5769                 LOG_DEBUG("%s ", targetname);
5770                 if (target) {
5771                         new = malloc(sizeof(struct target_list));
5772                         new->target = target;
5773                         new->next = (struct target_list *)NULL;
5774                         if (head == (struct target_list *)NULL) {
5775                                 head = new;
5776                                 curr = head;
5777                         } else {
5778                                 curr->next = new;
5779                                 curr = new;
5780                         }
5781                 }
5782         }
5783         /*  now parse the list of cpu and put the target in smp mode*/
5784         curr = head;
5785
5786         while (curr != (struct target_list *)NULL) {
5787                 target = curr->target;
5788                 target->smp = 1;
5789                 target->head = head;
5790                 curr = curr->next;
5791         }
5792
5793         if (target && target->rtos)
5794                 retval = rtos_smp_init(head->target);
5795
5796         return retval;
5797 }
5798
5799
5800 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5801 {
5802         Jim_GetOptInfo goi;
5803         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5804         if (goi.argc < 3) {
5805                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5806                         "<name> <target_type> [<target_options> ...]");
5807                 return JIM_ERR;
5808         }
5809         return target_create(&goi);
5810 }
5811
5812 static const struct command_registration target_subcommand_handlers[] = {
5813         {
5814                 .name = "init",
5815                 .mode = COMMAND_CONFIG,
5816                 .handler = handle_target_init_command,
5817                 .help = "initialize targets",
5818         },
5819         {
5820                 .name = "create",
5821                 /* REVISIT this should be COMMAND_CONFIG ... */
5822                 .mode = COMMAND_ANY,
5823                 .jim_handler = jim_target_create,
5824                 .usage = "name type '-chain-position' name [options ...]",
5825                 .help = "Creates and selects a new target",
5826         },
5827         {
5828                 .name = "current",
5829                 .mode = COMMAND_ANY,
5830                 .jim_handler = jim_target_current,
5831                 .help = "Returns the currently selected target",
5832         },
5833         {
5834                 .name = "types",
5835                 .mode = COMMAND_ANY,
5836                 .jim_handler = jim_target_types,
5837                 .help = "Returns the available target types as "
5838                                 "a list of strings",
5839         },
5840         {
5841                 .name = "names",
5842                 .mode = COMMAND_ANY,
5843                 .jim_handler = jim_target_names,
5844                 .help = "Returns the names of all targets as a list of strings",
5845         },
5846         {
5847                 .name = "smp",
5848                 .mode = COMMAND_ANY,
5849                 .jim_handler = jim_target_smp,
5850                 .usage = "targetname1 targetname2 ...",
5851                 .help = "gather several target in a smp list"
5852         },
5853
5854         COMMAND_REGISTRATION_DONE
5855 };
5856
5857 struct FastLoad {
5858         target_addr_t address;
5859         uint8_t *data;
5860         int length;
5861
5862 };
5863
5864 static int fastload_num;
5865 static struct FastLoad *fastload;
5866
5867 static void free_fastload(void)
5868 {
5869         if (fastload != NULL) {
5870                 int i;
5871                 for (i = 0; i < fastload_num; i++) {
5872                         if (fastload[i].data)
5873                                 free(fastload[i].data);
5874                 }
5875                 free(fastload);
5876                 fastload = NULL;
5877         }
5878 }
5879
5880 COMMAND_HANDLER(handle_fast_load_image_command)
5881 {
5882         uint8_t *buffer;
5883         size_t buf_cnt;
5884         uint32_t image_size;
5885         target_addr_t min_address = 0;
5886         target_addr_t max_address = -1;
5887         int i;
5888
5889         struct image image;
5890
5891         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5892                         &image, &min_address, &max_address);
5893         if (ERROR_OK != retval)
5894                 return retval;
5895
5896         struct duration bench;
5897         duration_start(&bench);
5898
5899         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5900         if (retval != ERROR_OK)
5901                 return retval;
5902
5903         image_size = 0x0;
5904         retval = ERROR_OK;
5905         fastload_num = image.num_sections;
5906         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5907         if (fastload == NULL) {
5908                 command_print(CMD_CTX, "out of memory");
5909                 image_close(&image);
5910                 return ERROR_FAIL;
5911         }
5912         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5913         for (i = 0; i < image.num_sections; i++) {
5914                 buffer = malloc(image.sections[i].size);
5915                 if (buffer == NULL) {
5916                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5917                                                   (int)(image.sections[i].size));
5918                         retval = ERROR_FAIL;
5919                         break;
5920                 }
5921
5922                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5923                 if (retval != ERROR_OK) {
5924                         free(buffer);
5925                         break;
5926                 }
5927
5928                 uint32_t offset = 0;
5929                 uint32_t length = buf_cnt;
5930
5931                 /* DANGER!!! beware of unsigned comparision here!!! */
5932
5933                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5934                                 (image.sections[i].base_address < max_address)) {
5935                         if (image.sections[i].base_address < min_address) {
5936                                 /* clip addresses below */
5937                                 offset += min_address-image.sections[i].base_address;
5938                                 length -= offset;
5939                         }
5940
5941                         if (image.sections[i].base_address + buf_cnt > max_address)
5942                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5943
5944                         fastload[i].address = image.sections[i].base_address + offset;
5945                         fastload[i].data = malloc(length);
5946                         if (fastload[i].data == NULL) {
5947                                 free(buffer);
5948                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5949                                                           length);
5950                                 retval = ERROR_FAIL;
5951                                 break;
5952                         }
5953                         memcpy(fastload[i].data, buffer + offset, length);
5954                         fastload[i].length = length;
5955
5956                         image_size += length;
5957                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5958                                                   (unsigned int)length,
5959                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5960                 }
5961
5962                 free(buffer);
5963         }
5964
5965         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5966                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5967                                 "in %fs (%0.3f KiB/s)", image_size,
5968                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5969
5970                 command_print(CMD_CTX,
5971                                 "WARNING: image has not been loaded to target!"
5972                                 "You can issue a 'fast_load' to finish loading.");
5973         }
5974
5975         image_close(&image);
5976
5977         if (retval != ERROR_OK)
5978                 free_fastload();
5979
5980         return retval;
5981 }
5982
5983 COMMAND_HANDLER(handle_fast_load_command)
5984 {
5985         if (CMD_ARGC > 0)
5986                 return ERROR_COMMAND_SYNTAX_ERROR;
5987         if (fastload == NULL) {
5988                 LOG_ERROR("No image in memory");
5989                 return ERROR_FAIL;
5990         }
5991         int i;
5992         int64_t ms = timeval_ms();
5993         int size = 0;
5994         int retval = ERROR_OK;
5995         for (i = 0; i < fastload_num; i++) {
5996                 struct target *target = get_current_target(CMD_CTX);
5997                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5998                                           (unsigned int)(fastload[i].address),
5999                                           (unsigned int)(fastload[i].length));
6000                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
6001                 if (retval != ERROR_OK)
6002                         break;
6003                 size += fastload[i].length;
6004         }
6005         if (retval == ERROR_OK) {
6006                 int64_t after = timeval_ms();
6007                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
6008         }
6009         return retval;
6010 }
6011
6012 static const struct command_registration target_command_handlers[] = {
6013         {
6014                 .name = "targets",
6015                 .handler = handle_targets_command,
6016                 .mode = COMMAND_ANY,
6017                 .help = "change current default target (one parameter) "
6018                         "or prints table of all targets (no parameters)",
6019                 .usage = "[target]",
6020         },
6021         {
6022                 .name = "target",
6023                 .mode = COMMAND_CONFIG,
6024                 .help = "configure target",
6025
6026                 .chain = target_subcommand_handlers,
6027         },
6028         COMMAND_REGISTRATION_DONE
6029 };
6030
6031 int target_register_commands(struct command_context *cmd_ctx)
6032 {
6033         return register_commands(cmd_ctx, NULL, target_command_handlers);
6034 }
6035
6036 static bool target_reset_nag = true;
6037
6038 bool get_target_reset_nag(void)
6039 {
6040         return target_reset_nag;
6041 }
6042
6043 COMMAND_HANDLER(handle_target_reset_nag)
6044 {
6045         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
6046                         &target_reset_nag, "Nag after each reset about options to improve "
6047                         "performance");
6048 }
6049
6050 COMMAND_HANDLER(handle_ps_command)
6051 {
6052         struct target *target = get_current_target(CMD_CTX);
6053         char *display;
6054         if (target->state != TARGET_HALTED) {
6055                 LOG_INFO("target not halted !!");
6056                 return ERROR_OK;
6057         }
6058
6059         if ((target->rtos) && (target->rtos->type)
6060                         && (target->rtos->type->ps_command)) {
6061                 display = target->rtos->type->ps_command(target);
6062                 command_print(CMD_CTX, "%s", display);
6063                 free(display);
6064                 return ERROR_OK;
6065         } else {
6066                 LOG_INFO("failed");
6067                 return ERROR_TARGET_FAILURE;
6068         }
6069 }
6070
6071 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
6072 {
6073         if (text != NULL)
6074                 command_print_sameline(cmd_ctx, "%s", text);
6075         for (int i = 0; i < size; i++)
6076                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
6077         command_print(cmd_ctx, " ");
6078 }
6079
6080 COMMAND_HANDLER(handle_test_mem_access_command)
6081 {
6082         struct target *target = get_current_target(CMD_CTX);
6083         uint32_t test_size;
6084         int retval = ERROR_OK;
6085
6086         if (target->state != TARGET_HALTED) {
6087                 LOG_INFO("target not halted !!");
6088                 return ERROR_FAIL;
6089         }
6090
6091         if (CMD_ARGC != 1)
6092                 return ERROR_COMMAND_SYNTAX_ERROR;
6093
6094         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6095
6096         /* Test reads */
6097         size_t num_bytes = test_size + 4;
6098
6099         struct working_area *wa = NULL;
6100         retval = target_alloc_working_area(target, num_bytes, &wa);
6101         if (retval != ERROR_OK) {
6102                 LOG_ERROR("Not enough working area");
6103                 return ERROR_FAIL;
6104         }
6105
6106         uint8_t *test_pattern = malloc(num_bytes);
6107
6108         for (size_t i = 0; i < num_bytes; i++)
6109                 test_pattern[i] = rand();
6110
6111         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6112         if (retval != ERROR_OK) {
6113                 LOG_ERROR("Test pattern write failed");
6114                 goto out;
6115         }
6116
6117         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6118                 for (int size = 1; size <= 4; size *= 2) {
6119                         for (int offset = 0; offset < 4; offset++) {
6120                                 uint32_t count = test_size / size;
6121                                 size_t host_bufsiz = (count + 2) * size + host_offset;
6122                                 uint8_t *read_ref = malloc(host_bufsiz);
6123                                 uint8_t *read_buf = malloc(host_bufsiz);
6124
6125                                 for (size_t i = 0; i < host_bufsiz; i++) {
6126                                         read_ref[i] = rand();
6127                                         read_buf[i] = read_ref[i];
6128                                 }
6129                                 command_print_sameline(CMD_CTX,
6130                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6131                                                 size, offset, host_offset ? "un" : "");
6132
6133                                 struct duration bench;
6134                                 duration_start(&bench);
6135
6136                                 retval = target_read_memory(target, wa->address + offset, size, count,
6137                                                 read_buf + size + host_offset);
6138
6139                                 duration_measure(&bench);
6140
6141                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6142                                         command_print(CMD_CTX, "Unsupported alignment");
6143                                         goto next;
6144                                 } else if (retval != ERROR_OK) {
6145                                         command_print(CMD_CTX, "Memory read failed");
6146                                         goto next;
6147                                 }
6148
6149                                 /* replay on host */
6150                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6151
6152                                 /* check result */
6153                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
6154                                 if (result == 0) {
6155                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6156                                                         duration_elapsed(&bench),
6157                                                         duration_kbps(&bench, count * size));
6158                                 } else {
6159                                         command_print(CMD_CTX, "Compare failed");
6160                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6161                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6162                                 }
6163 next:
6164                                 free(read_ref);
6165                                 free(read_buf);
6166                         }
6167                 }
6168         }
6169
6170 out:
6171         free(test_pattern);
6172
6173         if (wa != NULL)
6174                 target_free_working_area(target, wa);
6175
6176         /* Test writes */
6177         num_bytes = test_size + 4 + 4 + 4;
6178
6179         retval = target_alloc_working_area(target, num_bytes, &wa);
6180         if (retval != ERROR_OK) {
6181                 LOG_ERROR("Not enough working area");
6182                 return ERROR_FAIL;
6183         }
6184
6185         test_pattern = malloc(num_bytes);
6186
6187         for (size_t i = 0; i < num_bytes; i++)
6188                 test_pattern[i] = rand();
6189
6190         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6191                 for (int size = 1; size <= 4; size *= 2) {
6192                         for (int offset = 0; offset < 4; offset++) {
6193                                 uint32_t count = test_size / size;
6194                                 size_t host_bufsiz = count * size + host_offset;
6195                                 uint8_t *read_ref = malloc(num_bytes);
6196                                 uint8_t *read_buf = malloc(num_bytes);
6197                                 uint8_t *write_buf = malloc(host_bufsiz);
6198
6199                                 for (size_t i = 0; i < host_bufsiz; i++)
6200                                         write_buf[i] = rand();
6201                                 command_print_sameline(CMD_CTX,
6202                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6203                                                 size, offset, host_offset ? "un" : "");
6204
6205                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6206                                 if (retval != ERROR_OK) {
6207                                         command_print(CMD_CTX, "Test pattern write failed");
6208                                         goto nextw;
6209                                 }
6210
6211                                 /* replay on host */
6212                                 memcpy(read_ref, test_pattern, num_bytes);
6213                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6214
6215                                 struct duration bench;
6216                                 duration_start(&bench);
6217
6218                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
6219                                                 write_buf + host_offset);
6220
6221                                 duration_measure(&bench);
6222
6223                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6224                                         command_print(CMD_CTX, "Unsupported alignment");
6225                                         goto nextw;
6226                                 } else if (retval != ERROR_OK) {
6227                                         command_print(CMD_CTX, "Memory write failed");
6228                                         goto nextw;
6229                                 }
6230
6231                                 /* read back */
6232                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6233                                 if (retval != ERROR_OK) {
6234                                         command_print(CMD_CTX, "Test pattern write failed");
6235                                         goto nextw;
6236                                 }
6237
6238                                 /* check result */
6239                                 int result = memcmp(read_ref, read_buf, num_bytes);
6240                                 if (result == 0) {
6241                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6242                                                         duration_elapsed(&bench),
6243                                                         duration_kbps(&bench, count * size));
6244                                 } else {
6245                                         command_print(CMD_CTX, "Compare failed");
6246                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6247                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6248                                 }
6249 nextw:
6250                                 free(read_ref);
6251                                 free(read_buf);
6252                         }
6253                 }
6254         }
6255
6256         free(test_pattern);
6257
6258         if (wa != NULL)
6259                 target_free_working_area(target, wa);
6260         return retval;
6261 }
6262
6263 static const struct command_registration target_exec_command_handlers[] = {
6264         {
6265                 .name = "fast_load_image",
6266                 .handler = handle_fast_load_image_command,
6267                 .mode = COMMAND_ANY,
6268                 .help = "Load image into server memory for later use by "
6269                         "fast_load; primarily for profiling",
6270                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6271                         "[min_address [max_length]]",
6272         },
6273         {
6274                 .name = "fast_load",
6275                 .handler = handle_fast_load_command,
6276                 .mode = COMMAND_EXEC,
6277                 .help = "loads active fast load image to current target "
6278                         "- mainly for profiling purposes",
6279                 .usage = "",
6280         },
6281         {
6282                 .name = "profile",
6283                 .handler = handle_profile_command,
6284                 .mode = COMMAND_EXEC,
6285                 .usage = "seconds filename [start end]",
6286                 .help = "profiling samples the CPU PC",
6287         },
6288         /** @todo don't register virt2phys() unless target supports it */
6289         {
6290                 .name = "virt2phys",
6291                 .handler = handle_virt2phys_command,
6292                 .mode = COMMAND_ANY,
6293                 .help = "translate a virtual address into a physical address",
6294                 .usage = "virtual_address",
6295         },
6296         {
6297                 .name = "reg",
6298                 .handler = handle_reg_command,
6299                 .mode = COMMAND_EXEC,
6300                 .help = "display (reread from target with \"force\") or set a register; "
6301                         "with no arguments, displays all registers and their values",
6302                 .usage = "[(register_number|register_name) [(value|'force')]]",
6303         },
6304         {
6305                 .name = "poll",
6306                 .handler = handle_poll_command,
6307                 .mode = COMMAND_EXEC,
6308                 .help = "poll target state; or reconfigure background polling",
6309                 .usage = "['on'|'off']",
6310         },
6311         {
6312                 .name = "wait_halt",
6313                 .handler = handle_wait_halt_command,
6314                 .mode = COMMAND_EXEC,
6315                 .help = "wait up to the specified number of milliseconds "
6316                         "(default 5000) for a previously requested halt",
6317                 .usage = "[milliseconds]",
6318         },
6319         {
6320                 .name = "halt",
6321                 .handler = handle_halt_command,
6322                 .mode = COMMAND_EXEC,
6323                 .help = "request target to halt, then wait up to the specified"
6324                         "number of milliseconds (default 5000) for it to complete",
6325                 .usage = "[milliseconds]",
6326         },
6327         {
6328                 .name = "resume",
6329                 .handler = handle_resume_command,
6330                 .mode = COMMAND_EXEC,
6331                 .help = "resume target execution from current PC or address",
6332                 .usage = "[address]",
6333         },
6334         {
6335                 .name = "reset",
6336                 .handler = handle_reset_command,
6337                 .mode = COMMAND_EXEC,
6338                 .usage = "[run|halt|init]",
6339                 .help = "Reset all targets into the specified mode."
6340                         "Default reset mode is run, if not given.",
6341         },
6342         {
6343                 .name = "soft_reset_halt",
6344                 .handler = handle_soft_reset_halt_command,
6345                 .mode = COMMAND_EXEC,
6346                 .usage = "",
6347                 .help = "halt the target and do a soft reset",
6348         },
6349         {
6350                 .name = "step",
6351                 .handler = handle_step_command,
6352                 .mode = COMMAND_EXEC,
6353                 .help = "step one instruction from current PC or address",
6354                 .usage = "[address]",
6355         },
6356         {
6357                 .name = "mdd",
6358                 .handler = handle_md_command,
6359                 .mode = COMMAND_EXEC,
6360                 .help = "display memory words",
6361                 .usage = "['phys'] address [count]",
6362         },
6363         {
6364                 .name = "mdw",
6365                 .handler = handle_md_command,
6366                 .mode = COMMAND_EXEC,
6367                 .help = "display memory words",
6368                 .usage = "['phys'] address [count]",
6369         },
6370         {
6371                 .name = "mdh",
6372                 .handler = handle_md_command,
6373                 .mode = COMMAND_EXEC,
6374                 .help = "display memory half-words",
6375                 .usage = "['phys'] address [count]",
6376         },
6377         {
6378                 .name = "mdb",
6379                 .handler = handle_md_command,
6380                 .mode = COMMAND_EXEC,
6381                 .help = "display memory bytes",
6382                 .usage = "['phys'] address [count]",
6383         },
6384         {
6385                 .name = "mwd",
6386                 .handler = handle_mw_command,
6387                 .mode = COMMAND_EXEC,
6388                 .help = "write memory word",
6389                 .usage = "['phys'] address value [count]",
6390         },
6391         {
6392                 .name = "mww",
6393                 .handler = handle_mw_command,
6394                 .mode = COMMAND_EXEC,
6395                 .help = "write memory word",
6396                 .usage = "['phys'] address value [count]",
6397         },
6398         {
6399                 .name = "mwh",
6400                 .handler = handle_mw_command,
6401                 .mode = COMMAND_EXEC,
6402                 .help = "write memory half-word",
6403                 .usage = "['phys'] address value [count]",
6404         },
6405         {
6406                 .name = "mwb",
6407                 .handler = handle_mw_command,
6408                 .mode = COMMAND_EXEC,
6409                 .help = "write memory byte",
6410                 .usage = "['phys'] address value [count]",
6411         },
6412         {
6413                 .name = "bp",
6414                 .handler = handle_bp_command,
6415                 .mode = COMMAND_EXEC,
6416                 .help = "list or set hardware or software breakpoint",
6417                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6418         },
6419         {
6420                 .name = "rbp",
6421                 .handler = handle_rbp_command,
6422                 .mode = COMMAND_EXEC,
6423                 .help = "remove breakpoint",
6424                 .usage = "address",
6425         },
6426         {
6427                 .name = "wp",
6428                 .handler = handle_wp_command,
6429                 .mode = COMMAND_EXEC,
6430                 .help = "list (no params) or create watchpoints",
6431                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6432         },
6433         {
6434                 .name = "rwp",
6435                 .handler = handle_rwp_command,
6436                 .mode = COMMAND_EXEC,
6437                 .help = "remove watchpoint",
6438                 .usage = "address",
6439         },
6440         {
6441                 .name = "load_image",
6442                 .handler = handle_load_image_command,
6443                 .mode = COMMAND_EXEC,
6444                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6445                         "[min_address] [max_length]",
6446         },
6447         {
6448                 .name = "dump_image",
6449                 .handler = handle_dump_image_command,
6450                 .mode = COMMAND_EXEC,
6451                 .usage = "filename address size",
6452         },
6453         {
6454                 .name = "verify_image_checksum",
6455                 .handler = handle_verify_image_checksum_command,
6456                 .mode = COMMAND_EXEC,
6457                 .usage = "filename [offset [type]]",
6458         },
6459         {
6460                 .name = "verify_image",
6461                 .handler = handle_verify_image_command,
6462                 .mode = COMMAND_EXEC,
6463                 .usage = "filename [offset [type]]",
6464         },
6465         {
6466                 .name = "test_image",
6467                 .handler = handle_test_image_command,
6468                 .mode = COMMAND_EXEC,
6469                 .usage = "filename [offset [type]]",
6470         },
6471         {
6472                 .name = "mem2array",
6473                 .mode = COMMAND_EXEC,
6474                 .jim_handler = jim_mem2array,
6475                 .help = "read 8/16/32 bit memory and return as a TCL array "
6476                         "for script processing",
6477                 .usage = "arrayname bitwidth address count",
6478         },
6479         {
6480                 .name = "array2mem",
6481                 .mode = COMMAND_EXEC,
6482                 .jim_handler = jim_array2mem,
6483                 .help = "convert a TCL array to memory locations "
6484                         "and write the 8/16/32 bit values",
6485                 .usage = "arrayname bitwidth address count",
6486         },
6487         {
6488                 .name = "reset_nag",
6489                 .handler = handle_target_reset_nag,
6490                 .mode = COMMAND_ANY,
6491                 .help = "Nag after each reset about options that could have been "
6492                                 "enabled to improve performance. ",
6493                 .usage = "['enable'|'disable']",
6494         },
6495         {
6496                 .name = "ps",
6497                 .handler = handle_ps_command,
6498                 .mode = COMMAND_EXEC,
6499                 .help = "list all tasks ",
6500                 .usage = " ",
6501         },
6502         {
6503                 .name = "test_mem_access",
6504                 .handler = handle_test_mem_access_command,
6505                 .mode = COMMAND_EXEC,
6506                 .help = "Test the target's memory access functions",
6507                 .usage = "size",
6508         },
6509
6510         COMMAND_REGISTRATION_DONE
6511 };
6512 static int target_register_user_commands(struct command_context *cmd_ctx)
6513 {
6514         int retval = ERROR_OK;
6515         retval = target_request_register_commands(cmd_ctx);
6516         if (retval != ERROR_OK)
6517                 return retval;
6518
6519         retval = trace_register_commands(cmd_ctx);
6520         if (retval != ERROR_OK)
6521                 return retval;
6522
6523
6524         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6525 }