2 * Tests for the core driver model code
4 * Copyright (c) 2013 Google, Inc
6 * SPDX-License-Identifier: GPL-2.0+
14 #include <dm/device-internal.h>
18 #include <dm/uclass-internal.h>
21 DECLARE_GLOBAL_DATA_PTR;
27 TEST_INTVAL_MANUAL = 101112,
28 TEST_INTVAL_PRE_RELOC = 7,
31 static const struct dm_test_pdata test_pdata[] = {
32 { .ping_add = TEST_INTVAL1, },
33 { .ping_add = TEST_INTVAL2, },
34 { .ping_add = TEST_INTVAL3, },
37 static const struct dm_test_pdata test_pdata_manual = {
38 .ping_add = TEST_INTVAL_MANUAL,
41 static const struct dm_test_pdata test_pdata_pre_reloc = {
42 .ping_add = TEST_INTVAL_PRE_RELOC,
45 U_BOOT_DEVICE(dm_test_info1) = {
47 .platdata = &test_pdata[0],
50 U_BOOT_DEVICE(dm_test_info2) = {
52 .platdata = &test_pdata[1],
55 U_BOOT_DEVICE(dm_test_info3) = {
57 .platdata = &test_pdata[2],
60 static struct driver_info driver_info_manual = {
61 .name = "test_manual_drv",
62 .platdata = &test_pdata_manual,
65 static struct driver_info driver_info_pre_reloc = {
66 .name = "test_pre_reloc_drv",
67 .platdata = &test_pdata_manual,
70 void dm_leak_check_start(struct unit_test_state *uts)
72 uts->start = mallinfo();
73 if (!uts->start.uordblks)
74 puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
77 int dm_leak_check_end(struct unit_test_state *uts)
82 /* Don't delete the root class, since we started with that */
83 for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
89 ut_assertok(uclass_destroy(uc));
93 ut_asserteq(uts->start.uordblks, end.uordblks);
98 /* Test that binding with platdata occurs correctly */
99 static int dm_test_autobind(struct unit_test_state *uts)
101 struct dm_test_state *dms = uts->priv;
105 * We should have a single class (UCLASS_ROOT) and a single root
106 * device with no children.
108 ut_assert(dms->root);
109 ut_asserteq(1, list_count_items(&gd->uclass_root));
110 ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
111 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
113 ut_assertok(dm_scan_platdata(false));
115 /* We should have our test class now at least, plus more children */
116 ut_assert(1 < list_count_items(&gd->uclass_root));
117 ut_assert(0 < list_count_items(&gd->dm_root->child_head));
119 /* Our 3 dm_test_infox children should be bound to the test uclass */
120 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
122 /* No devices should be probed */
123 list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
124 ut_assert(!(dev->flags & DM_FLAG_ACTIVATED));
126 /* Our test driver should have been bound 3 times */
127 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
131 DM_TEST(dm_test_autobind, 0);
133 /* Test that binding with uclass platdata allocation occurs correctly */
134 static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
136 struct dm_test_perdev_uc_pdata *uc_pdata;
140 ut_assertok(uclass_get(UCLASS_TEST, &uc));
144 * Test if test uclass driver requires allocation for the uclass
145 * platform data and then check the dev->uclass_platdata pointer.
147 ut_assert(uc->uc_drv->per_device_platdata_auto_alloc_size);
149 for (uclass_find_first_device(UCLASS_TEST, &dev);
151 uclass_find_next_device(&dev)) {
154 uc_pdata = dev_get_uclass_platdata(dev);
160 DM_TEST(dm_test_autobind_uclass_pdata_alloc, DM_TESTF_SCAN_PDATA);
162 /* Test that binding with uclass platdata setting occurs correctly */
163 static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
165 struct dm_test_perdev_uc_pdata *uc_pdata;
169 * In the test_postbind() method of test uclass driver, the uclass
170 * platform data should be set to three test int values - test it.
172 for (uclass_find_first_device(UCLASS_TEST, &dev);
174 uclass_find_next_device(&dev)) {
177 uc_pdata = dev_get_uclass_platdata(dev);
179 ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
180 ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
181 ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
186 DM_TEST(dm_test_autobind_uclass_pdata_valid, DM_TESTF_SCAN_PDATA);
188 /* Test that autoprobe finds all the expected devices */
189 static int dm_test_autoprobe(struct unit_test_state *uts)
191 struct dm_test_state *dms = uts->priv;
192 int expected_base_add;
197 ut_assertok(uclass_get(UCLASS_TEST, &uc));
200 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
201 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
202 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
204 /* The root device should not be activated until needed */
205 ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
208 * We should be able to find the three test devices, and they should
209 * all be activated as they are used (lazy activation, required by
212 for (i = 0; i < 3; i++) {
213 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
215 ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
216 "Driver %d/%s already activated", i, dev->name);
218 /* This should activate it */
219 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
221 ut_assert(dev->flags & DM_FLAG_ACTIVATED);
223 /* Activating a device should activate the root device */
225 ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
229 * Our 3 dm_test_info children should be passed to pre_probe and
232 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
233 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
235 /* Also we can check the per-device data */
236 expected_base_add = 0;
237 for (i = 0; i < 3; i++) {
238 struct dm_test_uclass_perdev_priv *priv;
239 struct dm_test_pdata *pdata;
241 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
244 priv = dev_get_uclass_priv(dev);
246 ut_asserteq(expected_base_add, priv->base_add);
248 pdata = dev->platdata;
249 expected_base_add += pdata->ping_add;
254 DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA);
256 /* Check that we see the correct platdata in each device */
257 static int dm_test_platdata(struct unit_test_state *uts)
259 const struct dm_test_pdata *pdata;
263 for (i = 0; i < 3; i++) {
264 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
266 pdata = dev->platdata;
267 ut_assert(pdata->ping_add == test_pdata[i].ping_add);
272 DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA);
274 /* Test that we can bind, probe, remove, unbind a driver */
275 static int dm_test_lifecycle(struct unit_test_state *uts)
277 struct dm_test_state *dms = uts->priv;
278 int op_count[DM_TEST_OP_COUNT];
279 struct udevice *dev, *test_dev;
283 memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
285 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
288 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
289 == op_count[DM_TEST_OP_BIND] + 1);
290 ut_assert(!dev->priv);
292 /* Probe the device - it should fail allocating private data */
293 dms->force_fail_alloc = 1;
294 ret = device_probe(dev);
295 ut_assert(ret == -ENOMEM);
296 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
297 == op_count[DM_TEST_OP_PROBE] + 1);
298 ut_assert(!dev->priv);
300 /* Try again without the alloc failure */
301 dms->force_fail_alloc = 0;
302 ut_assertok(device_probe(dev));
303 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
304 == op_count[DM_TEST_OP_PROBE] + 2);
305 ut_assert(dev->priv);
307 /* This should be device 3 in the uclass */
308 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
309 ut_assert(dev == test_dev);
312 ut_assertok(test_ping(dev, 100, &pingret));
313 ut_assert(pingret == 102);
315 /* Now remove device 3 */
316 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
317 ut_assertok(device_remove(dev));
318 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
320 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
321 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
322 ut_assertok(device_unbind(dev));
323 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
324 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
328 DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
330 /* Test that we can bind/unbind and the lists update correctly */
331 static int dm_test_ordering(struct unit_test_state *uts)
333 struct dm_test_state *dms = uts->priv;
334 struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
337 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
341 /* Bind two new devices (numbers 4 and 5) */
342 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
344 ut_assert(dev_penultimate);
345 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
349 /* Now remove device 3 */
350 ut_assertok(device_remove(dev));
351 ut_assertok(device_unbind(dev));
353 /* The device numbering should have shifted down one */
354 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
355 ut_assert(dev_penultimate == test_dev);
356 ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
357 ut_assert(dev_last == test_dev);
359 /* Add back the original device 3, now in position 5 */
360 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
365 ut_assertok(test_ping(dev, 100, &pingret));
366 ut_assert(pingret == 102);
369 ut_assertok(device_remove(dev_penultimate));
370 ut_assertok(device_unbind(dev_penultimate));
371 ut_assertok(device_remove(dev_last));
372 ut_assertok(device_unbind(dev_last));
374 /* Our device should now be in position 3 */
375 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
376 ut_assert(dev == test_dev);
378 /* Now remove device 3 */
379 ut_assertok(device_remove(dev));
380 ut_assertok(device_unbind(dev));
384 DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA);
386 /* Check that we can perform operations on a device (do a ping) */
387 int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
388 uint32_t base, struct dm_test_priv *priv)
393 /* Getting the child device should allocate platdata / priv */
394 ut_assertok(testfdt_ping(dev, 10, &pingret));
395 ut_assert(dev->priv);
396 ut_assert(dev->platdata);
398 expected = 10 + base;
399 ut_asserteq(expected, pingret);
401 /* Do another ping */
402 ut_assertok(testfdt_ping(dev, 20, &pingret));
403 expected = 20 + base;
404 ut_asserteq(expected, pingret);
406 /* Now check the ping_total */
408 ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
414 /* Check that we can perform operations on devices */
415 static int dm_test_operations(struct unit_test_state *uts)
421 * Now check that the ping adds are what we expect. This is using the
422 * ping-add property in each node.
424 for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
427 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
430 * Get the 'reg' property, which tells us what the ping add
431 * should be. We don't use the platdata because we want
432 * to test the code that sets that up (testfdt_drv_probe()).
434 base = test_pdata[i].ping_add;
435 debug("dev=%d, base=%d\n", i, base);
437 ut_assert(!dm_check_operations(uts, dev, base, dev->priv));
442 DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA);
444 /* Remove all drivers and check that things work */
445 static int dm_test_remove(struct unit_test_state *uts)
450 for (i = 0; i < 3; i++) {
451 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
453 ut_assertf(dev->flags & DM_FLAG_ACTIVATED,
454 "Driver %d/%s not activated", i, dev->name);
455 ut_assertok(device_remove(dev));
456 ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
457 "Driver %d/%s should have deactivated", i,
459 ut_assert(!dev->priv);
464 DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
466 /* Remove and recreate everything, check for memory leaks */
467 static int dm_test_leak(struct unit_test_state *uts)
471 for (i = 0; i < 2; i++) {
476 dm_leak_check_start(uts);
478 ut_assertok(dm_scan_platdata(false));
479 ut_assertok(dm_scan_fdt(gd->fdt_blob, false));
481 /* Scanning the uclass is enough to probe all the devices */
482 for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
483 for (ret = uclass_first_device(UCLASS_TEST, &dev);
485 ret = uclass_next_device(&dev))
490 ut_assertok(dm_leak_check_end(uts));
495 DM_TEST(dm_test_leak, 0);
497 /* Test uclass init/destroy methods */
498 static int dm_test_uclass(struct unit_test_state *uts)
502 ut_assertok(uclass_get(UCLASS_TEST, &uc));
503 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
504 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
507 ut_assertok(uclass_destroy(uc));
508 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
509 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
513 DM_TEST(dm_test_uclass, 0);
516 * create_children() - Create children of a parent node
518 * @dms: Test system state
519 * @parent: Parent device
520 * @count: Number of children to create
521 * @key: Key value to put in first child. Subsequence children
522 * receive an incrementing value
523 * @child: If not NULL, then the child device pointers are written into
525 * @return 0 if OK, -ve on error
527 static int create_children(struct unit_test_state *uts, struct udevice *parent,
528 int count, int key, struct udevice *child[])
533 for (i = 0; i < count; i++) {
534 struct dm_test_pdata *pdata;
536 ut_assertok(device_bind_by_name(parent, false,
537 &driver_info_manual, &dev));
538 pdata = calloc(1, sizeof(*pdata));
539 pdata->ping_add = key + i;
540 dev->platdata = pdata;
548 #define NODE_COUNT 10
550 static int dm_test_children(struct unit_test_state *uts)
552 struct dm_test_state *dms = uts->priv;
553 struct udevice *top[NODE_COUNT];
554 struct udevice *child[NODE_COUNT];
555 struct udevice *grandchild[NODE_COUNT];
561 /* We don't care about the numbering for this test */
562 dms->skip_post_probe = 1;
564 ut_assert(NODE_COUNT > 5);
566 /* First create 10 top-level children */
567 ut_assertok(create_children(uts, dms->root, NODE_COUNT, 0, top));
569 /* Now a few have their own children */
570 ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
571 ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
573 /* And grandchildren */
574 for (i = 0; i < NODE_COUNT; i++)
575 ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
576 i == 2 ? grandchild : NULL));
578 /* Check total number of devices */
579 total = NODE_COUNT * (3 + NODE_COUNT);
580 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
582 /* Try probing one of the grandchildren */
583 ut_assertok(uclass_get_device(UCLASS_TEST,
584 NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
585 ut_asserteq_ptr(grandchild[0], dev);
588 * This should have probed the child and top node also, for a total
591 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
593 /* Probe the other grandchildren */
594 for (i = 1; i < NODE_COUNT; i++)
595 ut_assertok(device_probe(grandchild[i]));
597 ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
599 /* Probe everything */
600 for (ret = uclass_first_device(UCLASS_TEST, &dev);
602 ret = uclass_next_device(&dev))
606 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
608 /* Remove a top-level child and check that the children are removed */
609 ut_assertok(device_remove(top[2]));
610 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
611 dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
613 /* Try one with grandchildren */
614 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
615 ut_asserteq_ptr(dev, top[5]);
616 ut_assertok(device_remove(dev));
617 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
618 dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
620 /* Try the same with unbind */
621 ut_assertok(device_unbind(top[2]));
622 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
623 dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
625 /* Try one with grandchildren */
626 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
627 ut_asserteq_ptr(dev, top[6]);
628 ut_assertok(device_unbind(top[5]));
629 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
630 dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
634 DM_TEST(dm_test_children, 0);
636 /* Test that pre-relocation devices work as expected */
637 static int dm_test_pre_reloc(struct unit_test_state *uts)
639 struct dm_test_state *dms = uts->priv;
642 /* The normal driver should refuse to bind before relocation */
643 ut_asserteq(-EPERM, device_bind_by_name(dms->root, true,
644 &driver_info_manual, &dev));
646 /* But this one is marked pre-reloc */
647 ut_assertok(device_bind_by_name(dms->root, true,
648 &driver_info_pre_reloc, &dev));
652 DM_TEST(dm_test_pre_reloc, 0);
654 static int dm_test_uclass_before_ready(struct unit_test_state *uts)
658 ut_assertok(uclass_get(UCLASS_TEST, &uc));
661 gd->dm_root_f = NULL;
662 memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
664 ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
668 DM_TEST(dm_test_uclass_before_ready, 0);
670 static int dm_test_uclass_devices_find(struct unit_test_state *uts)
675 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
677 ret = uclass_find_next_device(&dev)) {
684 DM_TEST(dm_test_uclass_devices_find, DM_TESTF_SCAN_PDATA);
686 static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
688 struct udevice *finddev;
689 struct udevice *testdev;
693 * For each test device found in fdt like: "a-test", "b-test", etc.,
694 * use its name and try to find it by uclass_find_device_by_name().
695 * Then, on success check if:
696 * - current 'testdev' name is equal to the returned 'finddev' name
697 * - current 'testdev' pointer is equal to the returned 'finddev'
699 * We assume that, each uclass's device name is unique, so if not, then
700 * this will fail on checking condition: testdev == finddev, since the
701 * uclass_find_device_by_name(), returns the first device by given name.
703 for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
705 ret = uclass_find_next_device(&testdev)) {
709 findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
713 ut_assertok(findret);
715 ut_asserteq_str(testdev->name, finddev->name);
716 ut_asserteq_ptr(testdev, finddev);
721 DM_TEST(dm_test_uclass_devices_find_by_name, DM_TESTF_SCAN_FDT);
723 static int dm_test_uclass_devices_get(struct unit_test_state *uts)
728 for (ret = uclass_first_device(UCLASS_TEST, &dev);
730 ret = uclass_next_device(&dev)) {
733 ut_assert(device_active(dev));
738 DM_TEST(dm_test_uclass_devices_get, DM_TESTF_SCAN_PDATA);
740 static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
742 struct udevice *finddev;
743 struct udevice *testdev;
747 * For each test device found in fdt like: "a-test", "b-test", etc.,
748 * use its name and try to get it by uclass_get_device_by_name().
749 * On success check if:
750 * - returned finddev' is active
751 * - current 'testdev' name is equal to the returned 'finddev' name
752 * - current 'testdev' pointer is equal to the returned 'finddev'
754 * We asserts that the 'testdev' is active on each loop entry, so we
755 * could be sure that the 'finddev' is activated too, but for sure
758 * We assume that, each uclass's device name is unique, so if not, then
759 * this will fail on checking condition: testdev == finddev, since the
760 * uclass_get_device_by_name(), returns the first device by given name.
762 for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
764 ret = uclass_next_device(&testdev)) {
767 ut_assert(device_active(testdev));
769 findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
773 ut_assertok(findret);
775 ut_assert(device_active(finddev));
776 ut_asserteq_str(testdev->name, finddev->name);
777 ut_asserteq_ptr(testdev, finddev);
782 DM_TEST(dm_test_uclass_devices_get_by_name, DM_TESTF_SCAN_FDT);
784 static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
788 ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
789 ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
793 DM_TEST(dm_test_device_get_uclass_id, DM_TESTF_SCAN_PDATA);