]> git.sur5r.net Git - u-boot/blobdiff - cpu/mpc85xx/spd_sdram.c
Merge branch 'master' of rsync://rsync.denx.de/git/u-boot
[u-boot] / cpu / mpc85xx / spd_sdram.c
index 02b29ad62d3826619d7dc8e485b825895ef7a920..af99282dd94bbfae4083ec0d5b83efed562adc37 100644 (file)
 #include <spd.h>
 #include <asm/mmu.h>
 
+
+#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
+extern void dma_init(void);
+extern uint dma_check(void);
+extern int dma_xfer(void *dest, uint count, void *src);
+#endif
+
 #ifdef CONFIG_SPD_EEPROM
 
-#define ns2clk(ns) ((ns) / (2000000000 /get_bus_freq(0) + 1) + 1)
+#ifndef        CFG_READ_SPD
+#define CFG_READ_SPD   i2c_read
+#endif
+
+static unsigned int setup_laws_and_tlbs(unsigned int memsize);
 
-long int spd_sdram(void) {
-       volatile immap_t *immap = (immap_t *)CFG_IMMR;
-       volatile ccsr_ddr_t *ddr = &immap->im_ddr;
-       volatile ccsr_local_ecm_t *ecm = &immap->im_local_ecm;
-       spd_eeprom_t spd;
-       unsigned int memsize,tmp,tmp1,tmp2;
-       unsigned char caslat;
 
-       i2c_read (SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd));
+/*
+ * Convert picoseconds into clock cycles (rounding up if needed).
+ */
+
+int
+picos_to_clk(int picos)
+{
+       int clks;
 
-       if ( spd.nrows > 2 ) {
-               printf("DDR:Only two chip selects are supported on ADS.\n");
+       clks = picos / (2000000000 / (get_bus_freq(0) / 1000));
+       if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) {
+               clks++;
+       }
+
+       return clks;
+}
+
+
+/*
+ * Calculate the Density of each Physical Rank.
+ * Returned size is in bytes.
+ *
+ * Study these table from Byte 31 of JEDEC SPD Spec.
+ *
+ *             DDR I   DDR II
+ *     Bit     Size    Size
+ *     ---     -----   ------
+ *     7 high  512MB   512MB
+ *     6       256MB   256MB
+ *     5       128MB   128MB
+ *     4        64MB    16GB
+ *     3        32MB     8GB
+ *     2        16MB     4GB
+ *     1         2GB     2GB
+ *     0 low     1GB     1GB
+ *
+ * Reorder Table to be linear by stripping the bottom
+ * 2 or 5 bits off and shifting them up to the top.
+ */
+
+unsigned int
+compute_banksize(unsigned int mem_type, unsigned char row_dens)
+{
+       unsigned int bsize;
+
+       if (mem_type == SPD_MEMTYPE_DDR) {
+               /* Bottom 2 bits up to the top. */
+               bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
+               debug("DDR: DDR I rank density = 0x%08x\n", bsize);
+       } else {
+               /* Bottom 5 bits up to the top. */
+               bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27;
+               debug("DDR: DDR II rank density = 0x%08x\n", bsize);
+       }
+       return bsize;
+}
+
+
+/*
+ * Convert a two-nibble BCD value into a cycle time.
+ * While the spec calls for nano-seconds, picos are returned.
+ *
+ * This implements the tables for bytes 9, 23 and 25 for both
+ * DDR I and II.  No allowance for distinguishing the invalid
+ * fields absent for DDR I yet present in DDR II is made.
+ * (That is, cycle times of .25, .33, .66 and .75 ns are
+ * allowed for both DDR II and I.)
+ */
+
+unsigned int
+convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
+{
+       /*
+        * Table look up the lower nibble, allow DDR I & II.
+        */
+       unsigned int tenths_ps[16] = {
+               0,
+               100,
+               200,
+               300,
+               400,
+               500,
+               600,
+               700,
+               800,
+               900,
+               250,
+               330,    /* FIXME: Is 333 better/valid? */
+               660,    /* FIXME: Is 667 better/valid? */
+               750,
+               0,      /* undefined */
+               0       /* undefined */
+       };
+
+       unsigned int whole_ns = (spd_val & 0xF0) >> 4;
+       unsigned int tenth_ns = spd_val & 0x0F;
+       unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
+
+       return ps;
+}
+
+
+long int
+spd_sdram(void)
+{
+       volatile immap_t *immap = (immap_t *)CFG_IMMR;
+       volatile ccsr_ddr_t *ddr = &immap->im_ddr;
+       volatile ccsr_gur_t *gur = &immap->im_gur;
+       spd_eeprom_t spd;
+       unsigned int n_ranks;
+       unsigned int rank_density;
+       unsigned int odt_rd_cfg, odt_wr_cfg;
+       unsigned int odt_cfg, mode_odt_enable;
+       unsigned int dqs_cfg;
+       unsigned char twr_clk, twtr_clk, twr_auto_clk;
+       unsigned int tCKmin_ps, tCKmax_ps;
+       unsigned int max_data_rate, effective_data_rate;
+       unsigned int busfreq;
+       unsigned sdram_cfg;
+       unsigned int memsize;
+       unsigned char caslat, caslat_ctrl;
+       unsigned int trfc, trfc_clk, trfc_low, trfc_high;
+       unsigned int trcd_clk;
+       unsigned int trtp_clk;
+       unsigned char cke_min_clk;
+       unsigned char add_lat;
+       unsigned char wr_lat;
+       unsigned char wr_data_delay;
+       unsigned char four_act;
+       unsigned char cpo;
+       unsigned char burst_len;
+       unsigned int mode_caslat;
+       unsigned char sdram_type;
+       unsigned char d_init;
+
+       /*
+        * Read SPD information.
+        */
+       CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) &spd, sizeof(spd));
+
+       /*
+        * Check for supported memory module types.
+        */
+       if (spd.mem_type != SPD_MEMTYPE_DDR &&
+           spd.mem_type != SPD_MEMTYPE_DDR2) {
+               printf("Unable to locate DDR I or DDR II module.\n"
+                      "    Fundamental memory type is 0x%0x\n",
+                      spd.mem_type);
                return 0;
        }
 
-       if ( spd.nrow_addr < 12 || spd.nrow_addr > 14 || spd.ncol_addr < 8 || spd.ncol_addr > 11) {
-               printf("DDR:Row or Col number unsupported.\n");
+       /*
+        * These test gloss over DDR I and II differences in interpretation
+        * of bytes 3 and 4, but irrelevantly.  Multiple asymmetric banks
+        * are not supported on DDR I; and not encoded on DDR II.
+        *
+        * Also note that the 8548 controller can support:
+        *    12 <= nrow <= 16
+        * and
+        *     8 <= ncol <= 11 (still, for DDR)
+        *     6 <= ncol <=  9 (for FCRAM)
+        */
+       if (spd.nrow_addr < 12 || spd.nrow_addr > 14) {
+               printf("DDR: Unsupported number of Row Addr lines: %d.\n",
+                      spd.nrow_addr);
+               return 0;
+       }
+       if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
+               printf("DDR: Unsupported number of Column Addr lines: %d.\n",
+                      spd.ncol_addr);
                return 0;
        }
 
-       ddr->cs0_bnds = ((spd.row_dens>>2) - 1);
-       ddr->cs0_config = ( 1<<31 | (spd.nrow_addr-12)<<8 | (spd.ncol_addr-8) );
-       debug ("\n");
-       debug ("cs0_bnds = 0x%08x\n",ddr->cs0_bnds);
-       debug ("cs0_config = 0x%08x\n",ddr->cs0_config);
-       if ( spd.nrows == 2 ) {
-               ddr->cs1_bnds = ((spd.row_dens<<14) | ((spd.row_dens>>1) - 1));
-               ddr->cs1_config = ( 1<<31 | (spd.nrow_addr-12)<<8 | (spd.ncol_addr-8) );
-               debug ("cs1_bnds = 0x%08x\n",ddr->cs1_bnds);
-               debug ("cs1_config = 0x%08x\n",ddr->cs1_config);
+       /*
+        * Determine the number of physical banks controlled by
+        * different Chip Select signals.  This is not quite the
+        * same as the number of DIMM modules on the board.  Feh.
+        */
+       if (spd.mem_type == SPD_MEMTYPE_DDR) {
+               n_ranks = spd.nrows;
+       } else {
+               n_ranks = (spd.nrows & 0x7) + 1;
        }
 
-       memsize = spd.nrows * (4 * spd.row_dens);
-       if( spd.mem_type != 0x07 ) {
-               printf("No DDR module found!\n");
+       debug("DDR: number of ranks = %d\n", n_ranks);
+
+       if (n_ranks > 2) {
+               printf("DDR: Only 2 chip selects are supported: %d\n",
+                      n_ranks);
                return 0;
        }
 
-       switch (memsize) {
-       case 16:
-               tmp = 7;                /* TLB size */
-               tmp1 = 1;               /* TLB entry number */
-               tmp2 = 23;              /* Local Access Window size */
-               break;
-       case 32:
-               tmp = 7;
-               tmp1 = 2;
-               tmp2 = 24;
-               break;
-       case 64:
-               tmp = 8;
-               tmp1 = 1;
-               tmp2 = 25;
-               break;
-       case 128:
-               tmp = 8;
-               tmp1 = 2;
-               tmp2 = 26;
-               break;
-       case 256:
-               tmp = 9;
-               tmp1 = 1;
-               tmp2 = 27;
-               break;
-       case 512:
-               tmp = 9;
-               tmp1 = 2;
-               tmp2 = 28;
-               break;
-       case 1024:
-               tmp = 10;
-               tmp1 = 1;
-               tmp2 = 29;
-               break;
-       default:
-               printf ("DDR:we only added support 16M,32M,64M,128M,256M,512M and 1G DDR I.\n");
-               return 0;
-               break;
+       /*
+        * Adjust DDR II IO voltage biasing.  It just makes it work.
+        */
+       if (spd.mem_type == SPD_MEMTYPE_DDR2) {
+               gur->ddrioovcr = (0
+                                 | 0x80000000          /* Enable */
+                                 | 0x10000000          /* VSEL to 1.8V */
+                                 );
        }
 
-       /* configure DDR TLB to TLB1 Entry 4,5 */
-       mtspr(MAS0, TLB1_MAS0(1,4,0));
-       mtspr(MAS1, TLB1_MAS1(1,1,0,0,tmp));
-       mtspr(MAS2, TLB1_MAS2(((CFG_DDR_SDRAM_BASE>>12) & 0xfffff),0,0,0,0,0,0,0,0));
-       mtspr(MAS3, TLB1_MAS3(((CFG_DDR_SDRAM_BASE>>12) & 0xfffff),0,0,0,0,0,1,0,1,0,1));
-       asm volatile("isync;msync;tlbwe;isync");
-       debug ("DDR:MAS0=0x%08x\n",TLB1_MAS0(1,4,0));
-       debug ("DDR:MAS1=0x%08x\n",TLB1_MAS1(1,1,0,0,tmp));
-       debug ("DDR:MAS2=0x%08x\n",TLB1_MAS2(((CFG_DDR_SDRAM_BASE>>12) \
-               & 0xfffff),0,0,0,0,0,0,0,0));
-       debug ("DDR:MAS3=0x%08x\n",TLB1_MAS3(((CFG_DDR_SDRAM_BASE>>12) \
-               & 0xfffff),0,0,0,0,0,1,0,1,0,1));
-
-       if(tmp1 == 2) {
-               mtspr(MAS0, TLB1_MAS0(1,5,0));
-               mtspr(MAS1, TLB1_MAS1(1,1,0,0,tmp));
-               mtspr(MAS2, TLB1_MAS2((((CFG_DDR_SDRAM_BASE+(memsize*1024*1024)/2)>>12) \
-                       & 0xfffff),0,0,0,0,0,0,0,0));
-               mtspr(MAS3, TLB1_MAS3((((CFG_DDR_SDRAM_BASE+(memsize*1024*1024)/2)>>12) \
-                       & 0xfffff),0,0,0,0,0,1,0,1,0,1));
-               asm volatile("isync;msync;tlbwe;isync");
-               debug ("DDR:MAS0=0x%08x\n",TLB1_MAS0(1,5,0));
-               debug ("DDR:MAS1=0x%08x\n",TLB1_MAS1(1,1,0,0,tmp));
-               debug ("DDR:MAS2=0x%08x\n",TLB1_MAS2((((CFG_DDR_SDRAM_BASE \
-                       +(memsize*1024*1024)/2)>>12) & 0xfffff),0,0,0,0,0,0,0,0));
-               debug ("DDR:MAS3=0x%08x\n",TLB1_MAS3((((CFG_DDR_SDRAM_BASE \
-                       +(memsize*1024*1024)/2)>>12) & 0xfffff),0,0,0,0,0,1,0,1,0,1));
-       }
-
-#if defined(CONFIG_RAM_AS_FLASH)
-       ecm->lawbar2 = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff);
-       ecm->lawar2 = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & tmp2));
-       debug ("DDR:LAWBAR2=0x%08x\n",ecm->lawbar2);
-       debug ("DDR:LARAR2=0x%08x\n",ecm->lawar2);
-#else
-       ecm->lawbar1 = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff);
-       ecm->lawar1 = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & tmp2));
-       debug ("DDR:LAWBAR1=0x%08x\n",ecm->lawbar1);
-       debug ("DDR:LARAR1=0x%08x\n",ecm->lawar1);
+       /*
+        * Determine the size of each Rank in bytes.
+        */
+       rank_density = compute_banksize(spd.mem_type, spd.row_dens);
+
+
+       /*
+        * Eg: Bounds: 0x0000_0000 to 0x0f000_0000      first 256 Meg
+        */
+       ddr->cs0_bnds = (rank_density >> 24) - 1;
+
+       /*
+        * ODT configuration recommendation from DDR Controller Chapter.
+        */
+       odt_rd_cfg = 0;                 /* Never assert ODT */
+       odt_wr_cfg = 0;                 /* Never assert ODT */
+       if (spd.mem_type == SPD_MEMTYPE_DDR2) {
+               odt_wr_cfg = 1;         /* Assert ODT on writes to CS0 */
+#if 0
+               /* FIXME: How to determine the number of dimm modules? */
+               if (n_dimm_modules == 2) {
+                       odt_rd_cfg = 1; /* Assert ODT on reads to CS0 */
+               }
 #endif
+       }
 
-       tmp = 20000/(((spd.clk_cycle & 0xF0) >> 4) * 10 + (spd.clk_cycle & 0x0f));
-       debug ("DDR:Module maximum data rate is: %dMhz\n",tmp);
-
-       /* find the largest CAS */
-       if(spd.cas_lat & 0x40) {
-               caslat = 7;
-       } else if (spd.cas_lat & 0x20) {
-               caslat = 6;
-       } else if (spd.cas_lat & 0x10) {
-               caslat = 5;
-       } else if (spd.cas_lat & 0x08) {
-               caslat = 4;
-       } else if (spd.cas_lat & 0x04) {
-               caslat = 3;
-       } else if (spd.cas_lat & 0x02) {
-               caslat = 2;
-       } else if (spd.cas_lat & 0x01) {
-               caslat = 1;
-       } else {
-               printf("DDR:no valid CAS Latency information.\n");
-               return 0;
+       ddr->cs0_config = ( 1 << 31
+                           | (odt_rd_cfg << 20)
+                           | (odt_wr_cfg << 16)
+                           | (spd.nrow_addr - 12) << 8
+                           | (spd.ncol_addr - 8) );
+       debug("\n");
+       debug("DDR: cs0_bnds   = 0x%08x\n", ddr->cs0_bnds);
+       debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
+
+       if (n_ranks == 2) {
+               /*
+                * Eg: Bounds: 0x0f00_0000 to 0x1e0000_0000, second 256 Meg
+                */
+               ddr->cs1_bnds = ( (rank_density >> 8)
+                                 | ((rank_density >> (24 - 1)) - 1) );
+               ddr->cs1_config = ( 1<<31
+                                   | (odt_rd_cfg << 20)
+                                   | (odt_wr_cfg << 16)
+                                   | (spd.nrow_addr - 12) << 8
+                                   | (spd.ncol_addr - 8) );
+               debug("DDR: cs1_bnds   = 0x%08x\n", ddr->cs1_bnds);
+               debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config);
        }
 
-       tmp1 = get_bus_freq(0)/1000000;
-       if(tmp1<230 && tmp1>=90 && tmp>=230) {
-               /* 90~230 range, treated as DDR 200 */
-               if(spd.clk_cycle3 == 0xa0) caslat -= 2;
-               else if(spd.clk_cycle2 == 0xa0) caslat--;
-       } else if(tmp1<280 && tmp1>=230 && tmp>=280) {
-               /* 230-280 range, treated as DDR 266 */
-               if(spd.clk_cycle3 == 0x75) caslat -= 2;
-               else if(spd.clk_cycle2 == 0x75) caslat--;
-       } else if(tmp1<350 && tmp1>=280 && tmp>=350) {
-               /* 280~350 range, treated as DDR 333 */
-               if(spd.clk_cycle3 == 0x60) caslat -= 2;
-               else if(spd.clk_cycle2 == 0x60) caslat--;
-       } else if(tmp1<90 || tmp1 >=350) { /* DDR rate out-of-range */
-               printf("DDR:platform frequency is not fit for DDR rate\n");
+
+       /*
+        * Find the largest CAS by locating the highest 1 bit
+        * in the spd.cas_lat field.  Translate it to a DDR
+        * controller field value:
+        *
+        *      CAS Lat DDR I   DDR II  Ctrl
+        *      Clocks  SPD Bit SPD Bit Value
+        *      ------- ------- ------- -----
+        *      1.0     0               0001
+        *      1.5     1               0010
+        *      2.0     2       2       0011
+        *      2.5     3               0100
+        *      3.0     4       3       0101
+        *      3.5     5               0110
+        *      4.0             4       0111
+        *      4.5                     1000
+        *      5.0             5       1001
+        */
+       caslat = __ilog2(spd.cas_lat);
+       if ((spd.mem_type == SPD_MEMTYPE_DDR)
+           && (caslat > 5)) {
+               printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
+               return 0;
+
+       } else if (spd.mem_type == SPD_MEMTYPE_DDR2
+                  && (caslat < 2 || caslat > 5)) {
+               printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
+                      spd.cas_lat);
                return 0;
        }
+       debug("DDR: caslat SPD bit is %d\n", caslat);
 
-       /* note: caslat must also be programmed into ddr->sdram_mode
-          register */
-       /* note: WRREC(Twr) and WRTORD(Twtr) are not in SPD,use
-          conservative value here */
-       ddr->timing_cfg_1 =     (((ns2clk(spd.trp/4) & 0x07) << 28 ) | \
-                               ((ns2clk(spd.tras) & 0x0f ) << 24 ) | \
-                               ((ns2clk(spd.trcd/4) & 0x07) << 20 ) | \
-                               ((caslat & 0x07)<< 16 ) | \
-                               (((ns2clk(spd.sset[6]) - 8) & 0x0f) << 12 ) | \
-                               ( 0x300 ) | \
-                               ((ns2clk(spd.trrd/4) & 0x07) << 4) | 1);
-
-       debug ("DDR:timing_cfg_1=0x%08x\n",ddr->timing_cfg_1);
-
-       ddr->timing_cfg_2 = 0x00000800;
-       debug ("DDR:timing_cfg_2=0x%08x\n",ddr->timing_cfg_2);
-
-       /* only DDR I is supported, DDR I and II have different mode-register-set definition */
-       /* burst length is always 4 */
-       switch(caslat) {
-       case 2:
-               ddr->sdram_mode = 0x52; /* 1.5 */
-               break;
-       case 3:
-               ddr->sdram_mode = 0x22; /* 2.0 */
-               break;
-       case 4:
-               ddr->sdram_mode = 0x62; /* 2.5 */
-               break;
-       case 5:
-               ddr->sdram_mode = 0x32; /* 3.0 */
-               break;
-       default:
-               printf("DDR:only CAS Latency 1.5,2.0,2.5,3.0 is supported.\n");
+       /*
+        * Calculate the Maximum Data Rate based on the Minimum Cycle time.
+        * The SPD clk_cycle field (tCKmin) is measured in tenths of
+        * nanoseconds and represented as BCD.
+        */
+       tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle);
+       debug("DDR: tCKmin = %d ps\n", tCKmin_ps);
+
+       /*
+        * Double-data rate, scaled 1000 to picoseconds, and back down to MHz.
+        */
+       max_data_rate = 2 * 1000 * 1000 / tCKmin_ps;
+       debug("DDR: Module max data rate = %d Mhz\n", max_data_rate);
+
+
+       /*
+        * Adjust the CAS Latency to allow for bus speeds that
+        * are slower than the DDR module.
+        */
+       busfreq = get_bus_freq(0) / 1000000;    /* MHz */
+
+       effective_data_rate = max_data_rate;
+       if (busfreq < 90) {
+               /* DDR rate out-of-range */
+               puts("DDR: platform frequency is not fit for DDR rate\n");
+               return 0;
+
+       } else if (90 <= busfreq && busfreq < 230 && max_data_rate >= 230) {
+               /*
+                * busfreq 90~230 range, treated as DDR 200.
+                */
+               effective_data_rate = 200;
+               if (spd.clk_cycle3 == 0xa0)     /* 10 ns */
+                       caslat -= 2;
+               else if (spd.clk_cycle2 == 0xa0)
+                       caslat--;
+
+       } else if (230 <= busfreq && busfreq < 280 && max_data_rate >= 280) {
+               /*
+                * busfreq 230~280 range, treated as DDR 266.
+                */
+               effective_data_rate = 266;
+               if (spd.clk_cycle3 == 0x75)     /* 7.5 ns */
+                       caslat -= 2;
+               else if (spd.clk_cycle2 == 0x75)
+                       caslat--;
+
+       } else if (280 <= busfreq && busfreq < 350 && max_data_rate >= 350) {
+               /*
+                * busfreq 280~350 range, treated as DDR 333.
+                */
+               effective_data_rate = 333;
+               if (spd.clk_cycle3 == 0x60)     /* 6.0 ns */
+                       caslat -= 2;
+               else if (spd.clk_cycle2 == 0x60)
+                       caslat--;
+
+       } else if (350 <= busfreq && busfreq < 460 && max_data_rate >= 460) {
+               /*
+                * busfreq 350~460 range, treated as DDR 400.
+                */
+               effective_data_rate = 400;
+               if (spd.clk_cycle3 == 0x50)     /* 5.0 ns */
+                       caslat -= 2;
+               else if (spd.clk_cycle2 == 0x50)
+                       caslat--;
+
+       } else if (460 <= busfreq && busfreq < 560 && max_data_rate >= 560) {
+               /*
+                * busfreq 460~560 range, treated as DDR 533.
+                */
+               effective_data_rate = 533;
+               if (spd.clk_cycle3 == 0x3D)     /* 3.75 ns */
+                       caslat -= 2;
+               else if (spd.clk_cycle2 == 0x3D)
+                       caslat--;
+
+       } else if (560 <= busfreq && busfreq < 700 && max_data_rate >= 700) {
+               /*
+                * busfreq 560~700 range, treated as DDR 667.
+                */
+               effective_data_rate = 667;
+               if (spd.clk_cycle3 == 0x30)     /* 3.0 ns */
+                       caslat -= 2;
+               else if (spd.clk_cycle2 == 0x30)
+                       caslat--;
+
+       } else if (700 <= busfreq) {
+               /*
+                * DDR rate out-of-range
+                */
+               printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n",
+                    busfreq, max_data_rate);
                return 0;
        }
-       debug ("DDR:sdram_mode=0x%08x\n",ddr->sdram_mode);
 
-       switch(spd.refresh) {
-       case 0x00:
-       case 0x80:
-               tmp = ns2clk(15625);
-               break;
-       case 0x01:
-       case 0x81:
-               tmp = ns2clk(3900);
-               break;
-       case 0x02:
-       case 0x82:
-               tmp = ns2clk(7800);
-               break;
-       case 0x03:
-       case 0x83:
-               tmp = ns2clk(31300);
-               break;
-       case 0x04:
-       case 0x84:
-               tmp = ns2clk(62500);
-               break;
-       case 0x05:
-       case 0x85:
-               tmp = ns2clk(125000);
-               break;
-       default:
-               tmp = 0x512;
-               break;
+
+       /*
+        * Convert caslat clocks to DDR controller value.
+        * Force caslat_ctrl to be DDR Controller field-sized.
+        */
+       if (spd.mem_type == SPD_MEMTYPE_DDR) {
+               caslat_ctrl = (caslat + 1) & 0x07;
+       } else {
+               caslat_ctrl =  (2 * caslat - 1) & 0x0f;
        }
 
-       /* set BSTOPRE to 0x100 for page mode, if auto-charge is used, set BSTOPRE = 0 */
-       ddr->sdram_interval = ((tmp & 0x3fff) << 16) | 0x100;
-       debug ("DDR:sdram_interval=0x%08x\n",ddr->sdram_interval);
+       debug("DDR: effective data rate is %d MHz\n", effective_data_rate);
+       debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
+             caslat, caslat_ctrl);
 
-       /* is this an ECC DDR chip? */
-#if defined(CONFIG_DDR_ECC)
-       if(spd.config == 0x02) {
+       /*
+        * Timing Config 0.
+        * Avoid writing for DDR I.  The new PQ38 DDR controller
+        * dreams up non-zero default values to be backwards compatible.
+        */
+       if (spd.mem_type == SPD_MEMTYPE_DDR2) {
+               unsigned char taxpd_clk = 8;            /* By the book. */
+               unsigned char tmrd_clk = 2;             /* By the book. */
+               unsigned char act_pd_exit = 2;          /* Empirical? */
+               unsigned char pre_pd_exit = 6;          /* Empirical? */
+
+               ddr->timing_cfg_0 = (0
+                       | ((act_pd_exit & 0x7) << 20)   /* ACT_PD_EXIT */
+                       | ((pre_pd_exit & 0x7) << 16)   /* PRE_PD_EXIT */
+                       | ((taxpd_clk & 0xf) << 8)      /* ODT_PD_EXIT */
+                       | ((tmrd_clk & 0xf) << 0)       /* MRS_CYC */
+                       );
+#if 0
+               ddr->timing_cfg_0 |= 0xaa000000;        /* extra cycles */
+#endif
+               debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
+
+       } else {
+#if 0
+               /*
+                * Force extra cycles with 0xaa bits.
+                * Incidentally supply the dreamt-up backwards compat value!
+                */
+               ddr->timing_cfg_0 = 0x00110105; /* backwards compat value */
+               ddr->timing_cfg_0 |= 0xaa000000;        /* extra cycles */
+               debug("DDR: HACK timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
+#endif
+       }
+
+
+       /*
+        * Some Timing Config 1 values now.
+        * Sneak Extended Refresh Recovery in here too.
+        */
+
+       /*
+        * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
+        * use conservative value.
+        * For DDR II, they are bytes 36 and 37, in quarter nanos.
+        */
+
+       if (spd.mem_type == SPD_MEMTYPE_DDR) {
+               twr_clk = 3;    /* Clocks */
+               twtr_clk = 1;   /* Clocks */
+       } else {
+               twr_clk = picos_to_clk(spd.twr * 250);
+               twtr_clk = picos_to_clk(spd.twtr * 250);
+       }
+
+       /*
+        * Calculate Trfc, in picos.
+        * DDR I:  Byte 42 straight up in ns.
+        * DDR II: Byte 40 and 42 swizzled some, in ns.
+        */
+       if (spd.mem_type == SPD_MEMTYPE_DDR) {
+               trfc = spd.trfc * 1000;         /* up to ps */
+       } else {
+               unsigned int byte40_table_ps[8] = {
+                       0,
+                       250,
+                       330,
+                       500,
+                       660,
+                       750,
+                       0,
+                       0
+               };
+
+               trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
+                       + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
+       }
+       trfc_clk = picos_to_clk(trfc);
+
+       /*
+        * Trcd, Byte 29, from quarter nanos to ps and clocks.
+        */
+       trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
+
+       /*
+        * Convert trfc_clk to DDR controller fields.  DDR I should
+        * fit in the REFREC field (16-19) of TIMING_CFG_1, but the
+        * 8548 controller has an extended REFREC field of three bits.
+        * The controller automatically adds 8 clocks to this value,
+        * so preadjust it down 8 first before splitting it up.
+        */
+       trfc_low = (trfc_clk - 8) & 0xf;
+       trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
+
+       /*
+        * Sneak in some Extended Refresh Recovery.
+        */
+       ddr->ext_refrec = (trfc_high << 16);
+       debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec);
+
+       ddr->timing_cfg_1 =
+           (0
+            | ((picos_to_clk(spd.trp * 250) & 0x07) << 28)     /* PRETOACT */
+            | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24)  /* ACTTOPRE */
+            | (trcd_clk << 20)                                 /* ACTTORW */
+            | (caslat_ctrl << 16)                              /* CASLAT */
+            | (trfc_low << 12)                                 /* REFEC */
+            | ((twr_clk & 0x07) << 8)                          /* WRRREC */
+            | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4)     /* ACTTOACT */
+            | ((twtr_clk & 0x07) << 0)                         /* WRTORD */
+            );
+
+       debug("DDR: timing_cfg_1  = 0x%08x\n", ddr->timing_cfg_1);
+
+
+       /*
+        * Timing_Config_2
+        * Was: 0x00000800;
+        */
+
+       /*
+        * Additive Latency
+        * For DDR I, 0.
+        * For DDR II, with ODT enabled, use "a value" less than ACTTORW,
+        * which comes from Trcd, and also note that:
+        *      add_lat + caslat must be >= 4
+        */
+       add_lat = 0;
+       if (spd.mem_type == SPD_MEMTYPE_DDR2
+           && (odt_wr_cfg || odt_rd_cfg)
+           && (caslat < 4)) {
+               add_lat = 4 - caslat;
+               if (add_lat > trcd_clk) {
+                       add_lat = trcd_clk - 1;
+               }
+       }
+
+       /*
+        * Write Data Delay
+        * Historically 0x2 == 4/8 clock delay.
+        * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
+        */
+       wr_data_delay = 3;
+
+       /*
+        * Write Latency
+        * Read to Precharge
+        * Minimum CKE Pulse Width.
+        * Four Activate Window
+        */
+       if (spd.mem_type == SPD_MEMTYPE_DDR) {
+               /*
+                * This is a lie.  It should really be 1, but if it is
+                * set to 1, bits overlap into the old controller's
+                * otherwise unused ACSM field.  If we leave it 0, then
+                * the HW will magically treat it as 1 for DDR 1.  Oh Yea.
+                */
+               wr_lat = 0;
+
+               trtp_clk = 2;           /* By the book. */
+               cke_min_clk = 1;        /* By the book. */
+               four_act = 1;           /* By the book. */
+
+       } else {
+               wr_lat = caslat - 1;
+
+               /* Convert SPD value from quarter nanos to picos. */
+               trtp_clk = picos_to_clk(spd.trtp * 250);
+
+               cke_min_clk = 3;        /* By the book. */
+               four_act = picos_to_clk(37500); /* By the book. 1k pages? */
+       }
+
+       /*
+        * Empirically set ~MCAS-to-preamble override for DDR 2.
+        * Your milage will vary.
+        */
+       cpo = 0;
+       if (spd.mem_type == SPD_MEMTYPE_DDR2) {
+               if (effective_data_rate == 266 || effective_data_rate == 333) {
+                       cpo = 0x7;              /* READ_LAT + 5/4 */
+               } else if (effective_data_rate == 400) {
+                       cpo = 0x9;              /* READ_LAT + 7/4 */
+               } else {
+                       /* Pure speculation */
+                       cpo = 0xb;
+               }
+       }
+
+       ddr->timing_cfg_2 = (0
+               | ((add_lat & 0x7) << 28)               /* ADD_LAT */
+               | ((cpo & 0x1f) << 23)                  /* CPO */
+               | ((wr_lat & 0x7) << 19)                /* WR_LAT */
+               | ((trtp_clk & 0x7) << 13)              /* RD_TO_PRE */
+               | ((wr_data_delay & 0x7) << 10)         /* WR_DATA_DELAY */
+               | ((cke_min_clk & 0x7) << 6)            /* CKE_PLS */
+               | ((four_act & 0x1f) << 0)              /* FOUR_ACT */
+               );
+
+       debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
+
+
+       /*
+        * Determine the Mode Register Set.
+        *
+        * This is nominally part specific, but it appears to be
+        * consistent for all DDR I devices, and for all DDR II devices.
+        *
+        *     caslat must be programmed
+        *     burst length is always 4
+        *     burst type is sequential
+        *
+        * For DDR I:
+        *     operating mode is "normal"
+        *
+        * For DDR II:
+        *     other stuff
+        */
+
+       mode_caslat = 0;
+
+       /*
+        * Table lookup from DDR I or II Device Operation Specs.
+        */
+       if (spd.mem_type == SPD_MEMTYPE_DDR) {
+               if (1 <= caslat && caslat <= 4) {
+                       unsigned char mode_caslat_table[4] = {
+                               0x5,    /* 1.5 clocks */
+                               0x2,    /* 2.0 clocks */
+                               0x6,    /* 2.5 clocks */
+                               0x3     /* 3.0 clocks */
+                       };
+                       mode_caslat = mode_caslat_table[caslat - 1];
+               } else {
+                       puts("DDR I: Only CAS Latencies of 1.5, 2.0, "
+                            "2.5 and 3.0 clocks are supported.\n");
+                       return 0;
+               }
+
+       } else {
+               if (2 <= caslat && caslat <= 5) {
+                       mode_caslat = caslat;
+               } else {
+                       puts("DDR II: Only CAS Latencies of 2.0, 3.0, "
+                            "4.0 and 5.0 clocks are supported.\n");
+                       return 0;
+               }
+       }
+
+       /*
+        * Encoded Burst Lenght of 4.
+        */
+       burst_len = 2;                  /* Fiat. */
+
+       if (spd.mem_type == SPD_MEMTYPE_DDR) {
+               twr_auto_clk = 0;       /* Historical */
+       } else {
+               /*
+                * Determine tCK max in picos.  Grab tWR and convert to picos.
+                * Auto-precharge write recovery is:
+                *      WR = roundup(tWR_ns/tCKmax_ns).
+                *
+                * Ponder: Is twr_auto_clk different than twr_clk?
+                */
+               tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax);
+               twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps;
+       }
+
+
+       /*
+        * Mode Reg in bits 16 ~ 31,
+        * Extended Mode Reg 1 in bits 0 ~ 15.
+        */
+       mode_odt_enable = 0x0;                  /* Default disabled */
+       if (odt_wr_cfg || odt_rd_cfg) {
+               /*
+                * Bits 6 and 2 in Extended MRS(1)
+                * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
+                * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
+                */
+               mode_odt_enable = 0x40;         /* 150 Ohm */
+       }
+
+       ddr->sdram_mode =
+               (0
+                | (add_lat << (16 + 3))        /* Additive Latency in EMRS1 */
+                | (mode_odt_enable << 16)      /* ODT Enable in EMRS1 */
+                | (twr_auto_clk << 9)          /* Write Recovery Autopre */
+                | (mode_caslat << 4)           /* caslat */
+                | (burst_len << 0)             /* Burst length */
+                );
+
+       debug("DDR: sdram_mode   = 0x%08x\n", ddr->sdram_mode);
+
+
+       /*
+        * Clear EMRS2 and EMRS3.
+        */
+       ddr->sdram_mode_2 = 0;
+       debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2);
+
+
+       /*
+        * Determine Refresh Rate.  Ignore self refresh bit on DDR I.
+        * Table from SPD Spec, Byte 12, converted to picoseconds and
+        * filled in with "default" normal values.
+        */
+       {
+               unsigned int refresh_clk;
+               unsigned int refresh_time_ns[8] = {
+                       15625000,       /* 0 Normal    1.00x */
+                       3900000,        /* 1 Reduced    .25x */
+                       7800000,        /* 2 Extended   .50x */
+                       31300000,       /* 3 Extended  2.00x */
+                       62500000,       /* 4 Extended  4.00x */
+                       125000000,      /* 5 Extended  8.00x */
+                       15625000,       /* 6 Normal    1.00x  filler */
+                       15625000,       /* 7 Normal    1.00x  filler */
+               };
+
+               refresh_clk = picos_to_clk(refresh_time_ns[spd.refresh & 0x7]);
+
+               /*
+                * Set BSTOPRE to 0x100 for page mode
+                * If auto-charge is used, set BSTOPRE = 0
+                */
+               ddr->sdram_interval =
+                       (0
+                        | (refresh_clk & 0x3fff) << 16
+                        | 0x100
+                        );
+               debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval);
+       }
+
+       /*
+        * Is this an ECC DDR chip?
+        * But don't mess with it if the DDR controller will init mem.
+        */
+#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
+       if (spd.config == 0x02) {
                ddr->err_disable = 0x0000000d;
                ddr->err_sbe = 0x00ff0000;
        }
-       debug ("DDR:err_disable=0x%08x\n",ddr->err_disable);
-       debug ("DDR:err_sbe=0x%08x\n",ddr->err_sbe);
+       debug("DDR: err_disable = 0x%08x\n", ddr->err_disable);
+       debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe);
 #endif
-       asm("sync;isync;msync");
 
+       asm("sync;isync;msync");
        udelay(500);
 
-#ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
-       /* Setup the clock control (8555 and later)
-        * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
-        * SDRAM_CLK_CNTL[5-7] = Clock Adjust == 3 (3/4 cycle late)
+       /*
+        * SDRAM Cfg 2
         */
-       ddr->sdram_clk_cntl = 0x83000000;
+
+       /*
+        * When ODT is enabled, Chap 9 suggests asserting ODT to
+        * internal IOs only during reads.
+        */
+       odt_cfg = 0;
+       if (odt_rd_cfg | odt_wr_cfg) {
+               odt_cfg = 0x2;          /* ODT to IOs during reads */
+       }
+
+       /*
+        * Try to use differential DQS with DDR II.
+        */
+       if (spd.mem_type == SPD_MEMTYPE_DDR) {
+               dqs_cfg = 0;            /* No Differential DQS for DDR I */
+       } else {
+               dqs_cfg = 0x1;          /* Differential DQS for DDR II */
+       }
+
+#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
+       /*
+        * Use the DDR controller to auto initialize memory.
+        */
+       d_init = 1;
+       ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE;
+       debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init);
+#else
+       /*
+        * Memory will be initialized via DMA, or not at all.
+        */
+       d_init = 0;
+#endif
+
+       ddr->sdram_cfg_2 = (0
+                           | (dqs_cfg << 26)   /* Differential DQS */
+                           | (odt_cfg << 21)   /* ODT */
+                           | (d_init << 4)     /* D_INIT auto init DDR */
+                           );
+
+       debug("DDR: sdram_cfg_2  = 0x%08x\n", ddr->sdram_cfg_2);
+
+
+#ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
+       {
+               unsigned char clk_adjust;
+
+               /*
+                * Setup the clock control.
+                * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
+                * SDRAM_CLK_CNTL[5-7] = Clock Adjust
+                *      0110    3/4 cycle late
+                *      0111    7/8 cycle late
+                */
+               if (spd.mem_type == SPD_MEMTYPE_DDR) {
+                       clk_adjust = 0x6;
+               } else {
+                       clk_adjust = 0x7;
+               }
+
+               ddr->sdram_clk_cntl = (0
+                              | 0x80000000
+                              | (clk_adjust << 23)
+                              );
+               debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl);
+       }
 #endif
 
-       /* Figure out the settings for the sdram_cfg register.  Build up
-        * the entire register in 'tmp' before writing since the write into
-        * the register will actually enable the memory controller, and all
-        * settings must be done before enabling.
+       /*
+        * Figure out the settings for the sdram_cfg register.
+        * Build up the entire register in 'sdram_cfg' before writing
+        * since the write into the register will actually enable the
+        * memory controller; all settings must be done before enabling.
         *
         * sdram_cfg[0]   = 1 (ddr sdram logic enable)
         * sdram_cfg[1]   = 1 (self-refresh-enable)
-        * sdram_cfg[6:7] = 2 (SDRAM type = DDR SDRAM)
+        * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
+        *                      010 DDR 1 SDRAM
+        *                      011 DDR 2 SDRAM
         */
-       tmp = 0xc2000000;
+       sdram_type = (spd.mem_type == SPD_MEMTYPE_DDR) ? 2 : 3;
+       sdram_cfg = (0
+                    | (1 << 31)                        /* Enable */
+                    | (1 << 30)                        /* Self refresh */
+                    | (sdram_type << 24)               /* SDRAM type */
+                    );
 
-       /* sdram_cfg[3] = RD_EN - registered DIMM enable
+       /*
+        * sdram_cfg[3] = RD_EN - registered DIMM enable
         *   A value of 0x26 indicates micron registered DIMMS (micron.com)
         */
-       if (spd.mod_attr == 0x26) {
-               tmp |= 0x10000000;
+       if (spd.mem_type == SPD_MEMTYPE_DDR && spd.mod_attr == 0x26) {
+               sdram_cfg |= 0x10000000;                /* RD_EN */
        }
 
 #if defined(CONFIG_DDR_ECC)
-       /* If the user wanted ECC (enabled via sdram_cfg[2]) */
+       /*
+        * If the user wanted ECC (enabled via sdram_cfg[2])
+        */
        if (spd.config == 0x02) {
-               tmp |= 0x20000000;
+               sdram_cfg |= 0x20000000;                /* ECC_EN */
        }
 #endif
 
-
        /*
         * REV1 uses 1T timing.
         * REV2 may use 1T or 2T as configured by the user.
@@ -325,20 +907,212 @@ long int spd_sdram(void) {
                        /*
                         * Enable 2T timing by setting sdram_cfg[16].
                         */
-                       tmp |= 0x8000;
+                       sdram_cfg |= 0x8000;            /* 2T_EN */
 #endif
                }
        }
 
-       ddr->sdram_cfg = tmp;
+       /*
+        * 200 painful micro-seconds must elapse between
+        * the DDR clock setup and the DDR config enable.
+        */
+       udelay(200);
+
+       /*
+        * Go!
+        */
+       ddr->sdram_cfg = sdram_cfg;
 
        asm("sync;isync;msync");
-
        udelay(500);
 
-       debug ("DDR:sdram_cfg=0x%08x\n",ddr->sdram_cfg);
+       debug("DDR: sdram_cfg   = 0x%08x\n", ddr->sdram_cfg);
+
 
-       return (memsize*1024*1024);
+#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
+       /*
+        * Poll until memory is initialized.
+        * 512 Meg at 400 might hit this 200 times or so.
+        */
+       while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) {
+               udelay(1000);
+       }
+#endif
+
+
+       /*
+        * Figure out memory size in Megabytes.
+        */
+       memsize = n_ranks * rank_density / 0x100000;
+
+       /*
+        * Establish Local Access Window and TLB mappings for DDR memory.
+        */
+       memsize = setup_laws_and_tlbs(memsize);
+       if (memsize == 0) {
+               return 0;
+       }
+
+       return memsize * 1024 * 1024;
+}
+
+
+/*
+ * Setup Local Access Window and TLB1 mappings for the requested
+ * amount of memory.  Returns the amount of memory actually mapped
+ * (usually the original request size), or 0 on error.
+ */
+
+static unsigned int
+setup_laws_and_tlbs(unsigned int memsize)
+{
+       volatile immap_t *immap = (immap_t *)CFG_IMMR;
+       volatile ccsr_local_ecm_t *ecm = &immap->im_local_ecm;
+       unsigned int tlb_size;
+       unsigned int law_size;
+       unsigned int ram_tlb_index;
+       unsigned int ram_tlb_address;
+
+       /*
+        * Determine size of each TLB1 entry.
+        */
+       switch (memsize) {
+       case 16:
+       case 32:
+               tlb_size = BOOKE_PAGESZ_16M;
+               break;
+       case 64:
+       case 128:
+               tlb_size = BOOKE_PAGESZ_64M;
+               break;
+       case 256:
+       case 512:
+       case 1024:
+       case 2048:
+               tlb_size = BOOKE_PAGESZ_256M;
+               break;
+       default:
+               puts("DDR: only 16M,32M,64M,128M,256M,512M,1G and 2G are supported.\n");
+
+               /*
+                * The memory was not able to be mapped.
+                */
+               return 0;
+               break;
+       }
+
+       /*
+        * Configure DDR TLB1 entries.
+        * Starting at TLB1 8, use no more than 8 TLB1 entries.
+        */
+       ram_tlb_index = 8;
+       ram_tlb_address = (unsigned int)CFG_DDR_SDRAM_BASE;
+       while (ram_tlb_address < (memsize * 1024 * 1024)
+             && ram_tlb_index < 16) {
+               mtspr(MAS0, TLB1_MAS0(1, ram_tlb_index, 0));
+               mtspr(MAS1, TLB1_MAS1(1, 1, 0, 0, tlb_size));
+               mtspr(MAS2, TLB1_MAS2(E500_TLB_EPN(ram_tlb_address),
+                                     0, 0, 0, 0, 0, 0, 0, 0));
+               mtspr(MAS3, TLB1_MAS3(E500_TLB_RPN(ram_tlb_address),
+                                     0, 0, 0, 0, 0, 1, 0, 1, 0, 1));
+               asm volatile("isync;msync;tlbwe;isync");
+
+               debug("DDR: MAS0=0x%08x\n", TLB1_MAS0(1, ram_tlb_index, 0));
+               debug("DDR: MAS1=0x%08x\n", TLB1_MAS1(1, 1, 0, 0, tlb_size));
+               debug("DDR: MAS2=0x%08x\n",
+                     TLB1_MAS2(E500_TLB_EPN(ram_tlb_address),
+                               0, 0, 0, 0, 0, 0, 0, 0));
+               debug("DDR: MAS3=0x%08x\n",
+                     TLB1_MAS3(E500_TLB_RPN(ram_tlb_address),
+                               0, 0, 0, 0, 0, 1, 0, 1, 0, 1));
+
+               ram_tlb_address += (0x1000 << ((tlb_size - 1) * 2));
+               ram_tlb_index++;
+       }
+
+
+       /*
+        * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23.  Fnord.
+        */
+       law_size = 19 + __ilog2(memsize);
+
+       /*
+        * Set up LAWBAR for all of DDR.
+        */
+       ecm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff);
+       ecm->lawar1 = (LAWAR_EN
+                      | LAWAR_TRGT_IF_DDR
+                      | (LAWAR_SIZE & law_size));
+       debug("DDR: LAWBAR1=0x%08x\n", ecm->lawbar1);
+       debug("DDR: LARAR1=0x%08x\n", ecm->lawar1);
+
+       /*
+        * Confirm that the requested amount of memory was mapped.
+        */
+       return memsize;
 }
 
 #endif /* CONFIG_SPD_EEPROM */
+
+
+#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
+
+/*
+ * Initialize all of memory for ECC, then enable errors.
+ */
+
+void
+ddr_enable_ecc(unsigned int dram_size)
+{
+       uint *p = 0;
+       uint i = 0;
+       volatile immap_t *immap = (immap_t *)CFG_IMMR;
+       volatile ccsr_ddr_t *ddr= &immap->im_ddr;
+
+       dma_init();
+
+       for (*p = 0; p < (uint *)(8 * 1024); p++) {
+               if (((unsigned int)p & 0x1f) == 0) {
+                       ppcDcbz((unsigned long) p);
+               }
+               *p = (unsigned int)CONFIG_MEM_INIT_VALUE;
+               if (((unsigned int)p & 0x1c) == 0x1c) {
+                       ppcDcbf((unsigned long) p);
+               }
+       }
+
+       /* 8K */
+       dma_xfer((uint *)0x2000, 0x2000, (uint *)0);
+       /* 16K */
+       dma_xfer((uint *)0x4000, 0x4000, (uint *)0);
+       /* 32K */
+       dma_xfer((uint *)0x8000, 0x8000, (uint *)0);
+       /* 64K */
+       dma_xfer((uint *)0x10000, 0x10000, (uint *)0);
+       /* 128k */
+       dma_xfer((uint *)0x20000, 0x20000, (uint *)0);
+       /* 256k */
+       dma_xfer((uint *)0x40000, 0x40000, (uint *)0);
+       /* 512k */
+       dma_xfer((uint *)0x80000, 0x80000, (uint *)0);
+       /* 1M */
+       dma_xfer((uint *)0x100000, 0x100000, (uint *)0);
+       /* 2M */
+       dma_xfer((uint *)0x200000, 0x200000, (uint *)0);
+       /* 4M */
+       dma_xfer((uint *)0x400000, 0x400000, (uint *)0);
+
+       for (i = 1; i < dram_size / 0x800000; i++) {
+               dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
+       }
+
+       /*
+        * Enable errors for ECC.
+        */
+       debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
+       ddr->err_disable = 0x00000000;
+       asm("sync;isync;msync");
+       debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
+}
+
+#endif /* CONFIG_DDR_ECC  && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */