]> git.sur5r.net Git - openocd/blobdiff - doc/openocd.texi
ARM: rename "arm9tdmi vector_catch" to "arm9 ..."
[openocd] / doc / openocd.texi
index 1cf673620a236505f399c63dc39cbe6cbc08088b..b91fb3be824f6dcc49d19144ccf09f709649d671 100644 (file)
@@ -170,38 +170,38 @@ documentation, as well as more conventional bug fixes and enhancements.
 The resources in this chapter are available for developers wishing to explore
 or expand the OpenOCD source code.
 
-@section OpenOCD Subversion Repository
+@section OpenOCD GIT Repository
 
-You can download the current SVN version with an SVN client of your
-choice from the following repositories:
+During the 0.3.x release cycle, OpenOCD switched from Subversion to
+a GIT repository hosted at SourceForge.  The repository URL is:
 
-   @uref{svn://svn.berlios.de/openocd/trunk}
+@uref{git://openocd.git.sourceforge.net/gitroot/openocd/openocd}
 
-or
+You may prefer to use a mirror and the HTTP protocol:
 
-   @uref{http://svn.berlios.de/svnroot/repos/openocd/trunk}
+@uref{http://repo.or.cz/r/openocd.git}
 
-Using the SVN command line client, you can use the following command to
-fetch the latest version (make sure there is no (non-svn) directory
-called "openocd" in the current directory):
+With standard GIT tools, use @command{git clone} to initialize
+a local repository, and @command{git pull} to update it.
+There are also gitweb pages letting you browse the repository
+with a web browser, or download arbitrary snapshots without
+needing a GIT client:
 
-   svn checkout svn://svn.berlios.de/openocd/trunk openocd
+@uref{http://openocd.git.sourceforge.net/git/gitweb.cgi?p=openocd/openocd}
 
-If you prefer GIT based tools, the @command{git-svn} package works too:
+@uref{http://repo.or.cz/w/openocd.git}
 
-   git svn clone -s svn://svn.berlios.de/openocd
-
-The ``README'' file contains the instructions for building the project
-from the repository.
+The @file{README} file contains the instructions for building the project
+from the repository or a snapshot.
 
 Developers that want to contribute patches to the OpenOCD system are
-@b{strongly} encouraged to base their work off of the most recent trunk
-revision.  Patches created against older versions may require additional
+@b{strongly} encouraged to work against mainline.
+Patches created against older versions may require additional
 work from their submitter in order to be updated for newer releases.
 
 @section Doxygen Developer Manual
 
-During the development of the 0.2.0 release, the OpenOCD project began
+During the 0.2.x release cycle, the OpenOCD project began
 providing a Doxygen reference manual.  This document contains more
 technical information about the software internals, development
 processes, and similar documentation:
@@ -210,7 +210,7 @@ processes, and similar documentation:
 
 This document is a work-in-progress, but contributions would be welcome
 to fill in the gaps.  All of the source files are provided in-tree,
-listed in the Doxyfile configuration in the top of the repository trunk.
+listed in the Doxyfile configuration in the top of the source tree.
 
 @section OpenOCD Developer Mailing List
 
@@ -219,10 +219,9 @@ communication between developers:
 
 @uref{https://lists.berlios.de/mailman/listinfo/openocd-development}
 
-All drivers developers are enouraged to also subscribe to the list of
-SVN commits to keep pace with the ongoing changes:
-
-@uref{https://lists.berlios.de/mailman/listinfo/openocd-svn}
+Discuss and submit patches to this list.
+The @file{PATCHES} file contains basic information about how
+to prepare patches.
 
 
 @node JTAG Hardware Dongles
@@ -769,7 +768,7 @@ early boot code, which performs some of the same actions
 that the @code{reset-init} event handler does.
 
 @item
-Likewise, the @command{arm9tdmi vector_catch} command (or
+Likewise, the @command{arm9 vector_catch} command (or
 @cindex vector_catch
 its siblings @command{xscale vector_catch}
 and @command{cortex_m3 vector_catch}) can be a timesaver
@@ -912,7 +911,6 @@ It provides guidelines for creating those files.
 You should find the following directories under @t{$(INSTALLDIR)/scripts},
 with files including the ones listed here.
 Use them as-is where you can; or as models for new files.
-
 @itemize @bullet
 @item @file{interface} ...
 think JTAG Dongle. Files that configure JTAG adapters go here.
@@ -1187,7 +1185,9 @@ handlers too, if just for developer convenience.
 Because this is so very board-specific, and chip-specific, no examples
 are included here.
 Instead, look at the board config files distributed with OpenOCD.
-If you have a boot loader, its source code may also be useful.
+If you have a boot loader, its source code will help; so will
+configuration files for other JTAG tools
+(@pxref{Translating Configuration Files}).
 @end quotation
 
 Some of this code could probably be shared between different boards.
@@ -1465,6 +1465,46 @@ Examples:
 @item pxa270 - again - CS0 flash - it goes in the board file.
 @end itemize
 
+@anchor{Translating Configuration Files}
+@section Translating Configuration Files
+@cindex translation
+If you have a configuration file for another hardware debugger
+or toolset (Abatron, BDI2000, BDI3000, CCS,
+Lauterbach, Segger, Macraigor, etc.), translating
+it into OpenOCD syntax is often quite straightforward. The most tricky
+part of creating a configuration script is oftentimes the reset init
+sequence where e.g. PLLs, DRAM and the like is set up.
+
+One trick that you can use when translating is to write small
+Tcl procedures to translate the syntax into OpenOCD syntax. This
+can avoid manual translation errors and make it easier to
+convert other scripts later on.
+
+Example of transforming quirky arguments to a simple search and
+replace job:
+
+@example
+#   Lauterbach syntax(?)
+#
+#       Data.Set c15:0x042f %long 0x40000015
+#
+#   OpenOCD syntax when using procedure below.
+#
+#       setc15 0x01 0x00050078
+
+proc setc15 @{regs value@} @{
+    global TARGETNAME
+
+    echo [format "set p15 0x%04x, 0x%08x" $regs $value]
+
+    arm11 mcr $TARGETNAME 15 [expr ($regs>>12)&0x7] \
+        [expr ($regs>>0)&0xf] [expr ($regs>>4)&0xf] \
+        [expr ($regs>>8)&0x7] $value
+@}
+@end example
+
+
+
 @node Daemon Configuration
 @chapter Daemon Configuration
 @cindex initialization
@@ -1524,6 +1564,22 @@ read/write memory on your target, @command{init} must occur before
 the memory read/write commands.  This includes @command{nand probe}.
 @end deffn
 
+@deffn {Overridable Procedure} jtag_init
+This is invoked at server startup to verify that it can talk
+to the scan chain (list of TAPs) which has been configured.
+
+The default implementation first tries @command{jtag arp_init},
+which uses only a lightweight JTAG reset before examining the
+scan chain.
+If that fails, it tries again, using a harder reset
+from the overridable procedure @command{init_reset}.
+
+Implementations must have verified the JTAG scan chain before
+they return.
+This is done by calling @command{jtag arp_init}
+(or @command{jtag arp_init-reset}).
+@end deffn
+
 @anchor{TCP/IP Ports}
 @section TCP/IP Ports
 @cindex TCP port
@@ -1587,11 +1643,6 @@ GDB behaviour is not sufficient.  GDB normally uses hardware
 breakpoints if the memory map has been set up for flash regions.
 @end deffn
 
-@deffn {Config Command} gdb_detach (@option{resume}|@option{reset}|@option{halt}|@option{nothing})
-Configures what OpenOCD will do when GDB detaches from the daemon.
-Default behaviour is @option{resume}.
-@end deffn
-
 @anchor{gdb_flash_program}
 @deffn {Config Command} gdb_flash_program (@option{enable}|@option{disable})
 Set to @option{enable} to cause OpenOCD to program the flash memory when a
@@ -2153,8 +2204,9 @@ issues (not limited to errata).
 For example, certain JTAG commands might need to be issued while
 the system as a whole is in a reset state (SRST active)
 but the JTAG scan chain is usable (TRST inactive).
-(@xref{JTAG Commands}, where the @command{jtag_reset}
-command is presented.)
+Many systems treat combined assertion of SRST and TRST as a
+trigger for a harder reset than SRST alone.
+Such custom reset handling is discussed later in this chapter.
 @end itemize
 
 There can also be other issues.
@@ -2174,6 +2226,12 @@ needing to cope with both architecture and board specific constraints.
 
 @section Commands for Handling Resets
 
+@deffn {Command} jtag_nsrst_assert_width milliseconds
+Minimum amount of time (in milliseconds) OpenOCD should wait
+after asserting nSRST (active-low system reset) before
+allowing it to be deasserted.
+@end deffn
+
 @deffn {Command} jtag_nsrst_delay milliseconds
 How long (in milliseconds) OpenOCD should wait after deasserting
 nSRST (active-low system reset) before starting new JTAG operations.
@@ -2181,6 +2239,12 @@ When a board has a reset button connected to SRST line it will
 probably have hardware debouncing, implying you should use this.
 @end deffn
 
+@deffn {Command} jtag_ntrst_assert_width milliseconds
+Minimum amount of time (in milliseconds) OpenOCD should wait
+after asserting nTRST (active-low JTAG TAP reset) before
+allowing it to be deasserted.
+@end deffn
+
 @deffn {Command} jtag_ntrst_delay milliseconds
 How long (in milliseconds) OpenOCD should wait after deasserting
 nTRST (active-low JTAG TAP reset) before starting new JTAG operations.
@@ -2221,7 +2285,7 @@ Possible values are @option{none} (the default), @option{trst_only},
 
 @quotation Tip
 If your board provides SRST and/or TRST through the JTAG connector,
-you must declare that or else those signals will not be used.
+you must declare that so those signals can be used.
 @end quotation
 
 @item
@@ -2270,6 +2334,82 @@ powerup and pressing a reset button.
 @end itemize
 @end deffn
 
+@section Custom Reset Handling
+@cindex events
+
+OpenOCD has several ways to help support the various reset
+mechanisms provided by chip and board vendors.
+The commands shown in the previous section give standard parameters.
+There are also @emph{event handlers} associated with TAPs or Targets.
+Those handlers are Tcl procedures you can provide, which are invoked
+at particular points in the reset sequence.
+
+After configuring those mechanisms, you might still
+find your board doesn't start up or reset correctly.
+For example, maybe it needs a slightly different sequence
+of SRST and/or TRST manipulations, because of quirks that
+the @command{reset_config} mechanism doesn't address;
+or asserting both might trigger a stronger reset, which
+needs special attention.
+
+Experiment with lower level operations, such as @command{jtag_reset}
+and the @command{jtag arp_*} operations shown here,
+to find a sequence of operations that works.
+@xref{JTAG Commands}.
+When you find a working sequence, it can be used to override
+@command{jtag_init}, which fires during OpenOCD startup
+(@pxref{Configuration Stage});
+or @command{init_reset}, which fires during reset processing.
+
+You might also want to provide some project-specific reset
+schemes.  For example, on a multi-target board the standard
+@command{reset} command would reset all targets, but you
+may need the ability to reset only one target at time and
+thus want to avoid using the board-wide SRST signal.
+
+@deffn {Overridable Procedure} init_reset mode
+This is invoked near the beginning of the @command{reset} command,
+usually to provide as much of a cold (power-up) reset as practical.
+By default it is also invoked from @command{jtag_init} if
+the scan chain does not respond to pure JTAG operations.
+The @var{mode} parameter is the parameter given to the
+low level reset command (@option{halt},
+@option{init}, or @option{run}), @option{setup},
+or potentially some other value.
+
+The default implementation just invokes @command{jtag arp_init-reset}.
+Replacements will normally build on low level JTAG
+operations such as @command{jtag_reset}.
+Operations here must not address individual TAPs
+(or their associated targets)
+until the JTAG scan chain has first been verified to work.
+
+Implementations must have verified the JTAG scan chain before
+they return.
+This is done by calling @command{jtag arp_init}
+(or @command{jtag arp_init-reset}).
+@end deffn
+
+@deffn Command {jtag arp_init}
+This validates the scan chain using just the four
+standard JTAG signals (TMS, TCK, TDI, TDO).
+It starts by issuing a JTAG-only reset.
+Then it performs checks to verify that the scan chain configuration
+matches the TAPs it can observe.
+Those checks include checking IDCODE values for each active TAP,
+and verifying the length of their instruction registers using
+TAP @code{-ircapture} and @code{-irmask} values.
+If these tests all pass, TAP @code{setup} events are
+issued to all TAPs with handlers for that event.
+@end deffn
+
+@deffn Command {jtag arp_init-reset}
+This uses TRST and SRST to try resetting
+everything on the JTAG scan chain
+(and anything else connected to SRST).
+It then invokes the logic of @command{jtag arp_init}.
+@end deffn
+
 
 @node TAP Declaration
 @chapter TAP Declaration
@@ -2501,9 +2641,6 @@ there seems to be no problems with JTAG scan chain operations.
 
 @section Other TAP commands
 
-@c @deffn Command {jtag arp_init-reset}
-@c ... more or less "toggle TRST ... and SRST too, what the heck"
-
 @deffn Command {jtag cget} dotted.name @option{-event} name
 @deffnx Command {jtag configure} dotted.name @option{-event} name string
 At this writing this TAP attribute
@@ -3179,7 +3316,7 @@ The following target events are defined:
 @end ignore
 @item @b{reset-assert-pre}
 @* Issued as part of @command{reset} processing
-after SRST and/or TRST were activated and deactivated,
+after @command{reset_init} was triggered
 but before SRST alone is re-asserted on the tap.
 @item @b{reset-assert-post}
 @* Issued as part of @command{reset} processing
@@ -3209,10 +3346,11 @@ multiplexing, and so on.
 the target clocks are fully set up.)
 @item @b{reset-start}
 @* Issued as part of @command{reset} processing
-before either SRST or TRST are activated.
+before @command{reset_init} is called.
 
-This is the most robust place to switch to a low JTAG clock rate, if
-SRST disables PLLs needed to use a fast clock.
+This is the most robust place to use @command{jtag_rclk}
+or @command{jtag_khz} to switch to a low JTAG clock rate,
+when reset disables PLLs needed to use a fast clock.
 @ignore
 @item @b{reset-wait-pos}
 @* Currently not used
@@ -3399,7 +3537,7 @@ The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 
 @anchor{flash write_image}
-@deffn Command {flash write_image} [erase] filename [offset] [type]
+@deffn Command {flash write_image} [erase] [unlock] filename [offset] [type]
 Write the image @file{filename} to the current target's flash bank(s).
 A relocation @var{offset} may be specified, in which case it is added
 to the base address for each section in the image.
@@ -3408,8 +3546,9 @@ explicitly as @option{bin} (binary), @option{ihex} (Intel hex),
 @option{elf} (ELF file), @option{s19} (Motorola s19).
 @option{mem}, or @option{builder}.
 The relevant flash sectors will be erased prior to programming
-if the @option{erase} parameter is given.
-The flash bank to use is inferred from the @var{address} of
+if the @option{erase} parameter is given. If @option{unlock} is
+provided, then the flash banks are unlocked before erase and
+program. The flash bank to use is inferred from the @var{address} of
 each image segment.
 @end deffn
 
@@ -4799,23 +4938,27 @@ Please use their TARGET object siblings to avoid making assumptions
 about what TAP is the current target, or about MMU configuration.
 @end enumerate
 
-@deffn Command mdw addr [count]
-@deffnx Command mdh addr [count]
-@deffnx Command mdb addr [count]
+@deffn Command mdw [phys] addr [count]
+@deffnx Command mdh [phys] addr [count]
+@deffnx Command mdb [phys] addr [count]
 Display contents of address @var{addr}, as
 32-bit words (@command{mdw}), 16-bit halfwords (@command{mdh}),
 or 8-bit bytes (@command{mdb}).
 If @var{count} is specified, displays that many units.
+@var{phys} is an optional flag to indicate to use
+physical address and bypass MMU
 (If you want to manipulate the data instead of displaying it,
 see the @code{mem2array} primitives.)
 @end deffn
 
-@deffn Command mww addr word
-@deffnx Command mwh addr halfword
-@deffnx Command mwb addr byte
+@deffn Command mww [phys] addr word
+@deffnx Command mwh [phys] addr halfword
+@deffnx Command mwb [phys] addr byte
 Writes the specified @var{word} (32 bits),
 @var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
 at the specified address @var{addr}.
+@var{phys} is an optional flag to indicate to use
+physical address and bypass MMU
 @end deffn
 
 
@@ -4885,7 +5028,7 @@ at @var{address} for @var{length} bytes.
 This is a software breakpoint, unless @option{hw} is specified
 in which case it will be a hardware breakpoint.
 
-(@xref{arm9tdmi vector_catch}, or @pxref{xscale vector_catch},
+(@xref{arm9 vector_catch}, or @pxref{xscale vector_catch},
 for similar mechanisms that do not consume hardware breakpoints.)
 @end deffn
 
@@ -4971,14 +5114,23 @@ ETM support in OpenOCD doesn't seem to be widely used yet.
 @quotation Issues
 ETM support may be buggy, and at least some @command{etm config}
 parameters should be detected by asking the ETM for them.
+
+ETM trigger events could also implement a kind of complex
+hardware breakpoint, much more powerful than the simple
+watchpoint hardware exported by EmbeddedICE modules.
+@emph{Such breakpoints can be triggered even when using the
+dummy trace port driver}.
+
 It seems like a GDB hookup should be possible,
-as well as triggering trace on specific events
+as well as tracing only during specific states
 (perhaps @emph{handling IRQ 23} or @emph{calls foo()}).
+
 There should be GUI tools to manipulate saved trace data and help
 analyse it in conjunction with the source code.
 It's unclear how much of a common interface is shared
 with the current XScale trace support, or should be
 shared with eventual Nexus-style trace module support.
+
 At this writing (September 2009) only ARM7 and ARM9 support
 for ETM modules is available.  The code should be able to
 work with some newer cores; but not all of them support
@@ -4992,7 +5144,10 @@ ETM setup is coupled with the trace port driver configuration.
 Declares the ETM associated with @var{target}, and associates it
 with a given trace port @var{driver}.  @xref{Trace Port Drivers}.
 
-Several of the parameters must reflect the trace port configuration.
+Several of the parameters must reflect the trace port capabilities,
+which are a function of silicon capabilties (exposed later
+using @command{etm info}) and of what hardware is connected to
+that port (such as an external pod, or ETB).
 The @var{width} must be either 4, 8, or 16.
 The @var{mode} must be @option{normal}, @option{multiplexted},
 or @option{demultiplexted}.
@@ -5008,6 +5163,9 @@ what CPU activities are traced.
 
 @deffn Command {etm info}
 Displays information about the current target's ETM.
+This includes resource counts from the @code{ETM_CONFIG} register,
+as well as silicon capabilities (except on rather old modules).
+from the @code{ETM_SYS_CONFIG} register.
 @end deffn
 
 @deffn Command {etm status}
@@ -5288,28 +5446,6 @@ Display cp15 register @var{regnum};
 else if a @var{value} is provided, that value is written to that register.
 @end deffn
 
-@deffn Command {arm720t mdw_phys} addr [count]
-@deffnx Command {arm720t mdh_phys} addr [count]
-@deffnx Command {arm720t mdb_phys} addr [count]
-Display contents of physical address @var{addr}, as
-32-bit words (@command{mdw_phys}), 16-bit halfwords (@command{mdh_phys}),
-or 8-bit bytes (@command{mdb_phys}).
-If @var{count} is specified, displays that many units.
-@end deffn
-
-@deffn Command {arm720t mww_phys} addr word
-@deffnx Command {arm720t mwh_phys} addr halfword
-@deffnx Command {arm720t mwb_phys} addr byte
-Writes the specified @var{word} (32 bits),
-@var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
-at the specified physical address @var{addr}.
-@end deffn
-
-@deffn Command {arm720t virt2phys} va
-Translate a virtual address @var{va} to a physical address
-and display the result.
-@end deffn
-
 @subsection ARM9 specific commands
 @cindex ARM9
 
@@ -5317,16 +5453,13 @@ ARM9-family cores are built around ARM9TDMI or ARM9E (including ARM9EJS)
 integer processors.
 Such cores include the ARM920T, ARM926EJ-S, and ARM966.
 
-For historical reasons, one command shared by these cores starts
-with the @command{arm9tdmi} prefix.
-This is true even for ARM9E based processors, which implement the
-ARMv5TE architecture instead of ARMv4T.
-
 @c 9-june-2009:  tried this on arm920t, it didn't work.
 @c no-params always lists nothing caught, and that's how it acts.
+@c 23-oct-2009:  doesn't work _consistently_ ... as if the ICE
+@c versions have different rules about when they commit writes.
 
-@anchor{arm9tdmi vector_catch}
-@deffn Command {arm9tdmi vector_catch} [@option{all}|@option{none}|list]
+@anchor{arm9 vector_catch}
+@deffn Command {arm9 vector_catch} [@option{all}|@option{none}|list]
 @cindex vector_catch
 Vector Catch hardware provides a sort of dedicated breakpoint
 for hardware events such as reset, interrupt, and abort.
@@ -5340,7 +5473,7 @@ vector catch hardware to intercept
 @option{all} of the hardware vectors,
 @option{none} of them,
 or a list with one or more of the following:
-@option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
+@option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt}
 @option{irq} @option{fiq}.
 @end deffn
 
@@ -5370,23 +5503,6 @@ Else if that value is written using the specified @var{address},
 or using zero if no other address is not provided.
 @end deffn
 
-@deffn Command {arm920t mdw_phys} addr [count]
-@deffnx Command {arm920t mdh_phys} addr [count]
-@deffnx Command {arm920t mdb_phys} addr [count]
-Display contents of physical address @var{addr}, as
-32-bit words (@command{mdw_phys}), 16-bit halfwords (@command{mdh_phys}),
-or 8-bit bytes (@command{mdb_phys}).
-If @var{count} is specified, displays that many units.
-@end deffn
-
-@deffn Command {arm920t mww_phys} addr word
-@deffnx Command {arm920t mwh_phys} addr halfword
-@deffnx Command {arm920t mwb_phys} addr byte
-Writes the specified @var{word} (32 bits),
-@var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
-at the specified physical address @var{addr}.
-@end deffn
-
 @deffn Command {arm920t read_cache} filename
 Dump the content of ICache and DCache to a file named @file{filename}.
 @end deffn
@@ -5395,11 +5511,6 @@ Dump the content of ICache and DCache to a file named @file{filename}.
 Dump the content of the ITLB and DTLB to a file named @file{filename}.
 @end deffn
 
-@deffn Command {arm920t virt2phys} va
-Translate a virtual address @var{va} to a physical address
-and display the result.
-@end deffn
-
 @subsection ARM926ej-s specific commands
 @cindex ARM926ej-s
 
@@ -5423,28 +5534,6 @@ If a @var{value} is provided, that value is written to that register.
 Else that register is read and displayed.
 @end deffn
 
-@deffn Command {arm926ejs mdw_phys} addr [count]
-@deffnx Command {arm926ejs mdh_phys} addr [count]
-@deffnx Command {arm926ejs mdb_phys} addr [count]
-Display contents of physical address @var{addr}, as
-32-bit words (@command{mdw_phys}), 16-bit halfwords (@command{mdh_phys}),
-or 8-bit bytes (@command{mdb_phys}).
-If @var{count} is specified, displays that many units.
-@end deffn
-
-@deffn Command {arm926ejs mww_phys} addr word
-@deffnx Command {arm926ejs mwh_phys} addr halfword
-@deffnx Command {arm926ejs mwb_phys} addr byte
-Writes the specified @var{word} (32 bits),
-@var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
-at the specified physical address @var{addr}.
-@end deffn
-
-@deffn Command {arm926ejs virt2phys} va
-Translate a virtual address @var{va} to a physical address
-and display the result.
-@end deffn
-
 @subsection ARM966E specific commands
 @cindex ARM966E
 
@@ -5611,7 +5700,11 @@ one bit in the encoding, effecively a fifth parameter.)
 
 @deffn Command {arm11 memwrite burst} [value]
 Displays the value of the memwrite burst-enable flag,
-which is enabled by default.
+which is enabled by default. Burst writes are only used
+for memory writes larger than 1 word. Single word writes
+are likely to be from reset init scripts and those writes
+are often to non-memory locations which could easily have
+many wait states, which could easily break burst writes.
 If @var{value} is defined, first assigns that.
 @end deffn
 
@@ -5630,13 +5723,6 @@ one bit in the encoding, effecively a fifth parameter.)
 Displays the result.
 @end deffn
 
-@deffn Command {arm11 no_increment}  [value]
-Displays the value of the flag controlling whether
-some read or write operations increment the pointer
-(the default behavior) or not (acting like a FIFO).
-If @var{value} is defined, first assigns that.
-@end deffn
-
 @deffn Command {arm11 step_irq_enable}  [value]
 Displays the value of the flag controlling whether
 IRQs are enabled during single stepping;
@@ -5944,6 +6030,28 @@ The @command{reset_config} command should already have been used
 to configure how the board and JTAG adapter treat these two
 signals, and to say if either signal is even present.
 @xref{Reset Configuration}.
+
+Note that TRST is specially handled.
+It actually signifies JTAG's @sc{reset} state.
+So if the board doesn't support the optional TRST signal,
+or it doesn't support it along with the specified SRST value,
+JTAG reset is triggered with TMS and TCK signals
+instead of the TRST signal.
+And no matter how that JTAG reset is triggered, once
+the scan chain enters @sc{reset} with TRST inactive,
+TAP @code{post-reset} events are delivered to all TAPs
+with handlers for that event.
+@end deffn
+
+@deffn Command {pathmove} start_state [next_state ...]
+Start by moving to @var{start_state}, which
+must be one of the @emph{stable} states.
+Unless it is the only state given, this will often be the
+current state, so that no TCK transitions are needed.
+Then, in a series of single state transitions
+(conforming to the JTAG state machine) shift to
+each @var{next_state} in sequence, one per TCK cycle.
+The final state must also be stable.
 @end deffn
 
 @deffn Command {runtest} @var{num_cycles}
@@ -5973,23 +6081,30 @@ Default is enabled.
 @cindex TAP state names
 
 The @var{tap_state} names used by OpenOCD in the @command{drscan},
-and @command{irscan} commands are:
+@command{irscan}, and @command{pathmove} commands are the same
+as those used in SVF boundary scan documents, except that
+SVF uses @sc{idle} instead of @sc{run/idle}.
 
 @itemize @bullet
-@item @b{RESET} ... should act as if TRST were active
-@item @b{RUN/IDLE} ... don't assume this always means IDLE
+@item @b{RESET} ... @emph{stable} (with TMS high);
+acts as if TRST were pulsed
+@item @b{RUN/IDLE} ... @emph{stable}; don't assume this always means IDLE
 @item @b{DRSELECT}
 @item @b{DRCAPTURE}
-@item @b{DRSHIFT} ... TDI/TDO shifting through the data register
+@item @b{DRSHIFT} ... @emph{stable}; TDI/TDO shifting
+through the data register
 @item @b{DREXIT1}
-@item @b{DRPAUSE} ... data register ready for update or more shifting
+@item @b{DRPAUSE} ... @emph{stable}; data register ready
+for update or more shifting
 @item @b{DREXIT2}
 @item @b{DRUPDATE}
 @item @b{IRSELECT}
 @item @b{IRCAPTURE}
-@item @b{IRSHIFT} ... TDI/TDO shifting through the instruction register
+@item @b{IRSHIFT} ... @emph{stable}; TDI/TDO shifting
+through the instruction register
 @item @b{IREXIT1}
-@item @b{IRPAUSE} ... instruction register ready for update or more shifting
+@item @b{IRPAUSE} ... @emph{stable}; instruction register ready
+for update or more shifting
 @item @b{IREXIT2}
 @item @b{IRUPDATE}
 @end itemize
@@ -6007,7 +6122,7 @@ may not be as expected.
 @item @sc{run/idle}, @sc{drpause}, and @sc{irpause} are reasonable
 choices after @command{drscan} or @command{irscan} commands,
 since they are free of JTAG side effects.
-However, @sc{run/idle} may have side effects that appear at other
+@item @sc{run/idle} may have side effects that appear at non-JTAG
 levels, such as advancing the ARM9E-S instruction pipeline.
 Consult the documentation for the TAP(s) you are working with.
 @end itemize
@@ -6059,6 +6174,27 @@ Unless the @option{quiet} option is specified,
 messages are logged for comments and some retries.
 @end deffn
 
+The OpenOCD sources also include two utility scripts
+for working with XSVF; they are not currently installed
+after building the software.
+You may find them useful:
+
+@itemize
+@item @emph{svf2xsvf} ... converts SVF files into the extended XSVF
+syntax understood by the @command{xsvf} command; see notes below.
+@item @emph{xsvfdump} ... converts XSVF files into a text output format;
+understands the OpenOCD extensions.
+@end itemize
+
+The input format accepts a handful of non-standard extensions.
+These include three opcodes corresponding to SVF extensions
+from Lattice Semiconductor (LCOUNT, LDELAY, LDSR), and
+two opcodes supporting a more accurate translation of SVF
+(XTRST, XWAITSTATE).
+If @emph{xsvfdump} shows a file is using those opcodes, it
+probably will not be usable with other XSVF tools.
+
+
 @node TFTP
 @chapter TFTP
 @cindex TFTP