]> git.sur5r.net Git - u-boot/blobdiff - drivers/mtd/nand/omap_gpmc.c
Merge branch 'u-boot-ti/master' into 'u-boot-arm/master'
[u-boot] / drivers / mtd / nand / omap_gpmc.c
index 5f8ed3984d8236b74cc698e2d5d0039ed4e9b86c..cee394ece4b7699bc3932c367f436aeb2debc885 100644 (file)
 #include <asm/arch/mem.h>
 #include <asm/arch/omap_gpmc.h>
 #include <linux/mtd/nand_ecc.h>
+#include <linux/compiler.h>
 #include <nand.h>
+#ifdef CONFIG_AM33XX
+#include <asm/arch/elm.h>
+#endif
 
 static uint8_t cs;
-static gpmc_t *gpmc_base = (gpmc_t *)GPMC_BASE;
-static gpmc_csx_t *gpmc_cs_base;
-static struct nand_ecclayout hw_nand_oob = GPMC_NAND_HW_ECC_LAYOUT;
+static __maybe_unused struct nand_ecclayout hw_nand_oob =
+       GPMC_NAND_HW_ECC_LAYOUT;
 
 /*
  * omap_nand_hwcontrol - Set the address pointers corretly for the
@@ -49,13 +52,13 @@ static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
         */
        switch (ctrl) {
        case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
-               this->IO_ADDR_W = (void __iomem *)&gpmc_cs_base->nand_cmd;
+               this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
                break;
        case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
-               this->IO_ADDR_W = (void __iomem *)&gpmc_cs_base->nand_adr;
+               this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
                break;
        case NAND_CTRL_CHANGE | NAND_NCE:
-               this->IO_ADDR_W = (void __iomem *)&gpmc_cs_base->nand_dat;
+               this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
                break;
        }
 
@@ -63,20 +66,28 @@ static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
                writeb(cmd, this->IO_ADDR_W);
 }
 
+#ifdef CONFIG_SPL_BUILD
+/* Check wait pin as dev ready indicator */
+int omap_spl_dev_ready(struct mtd_info *mtd)
+{
+       return gpmc_cfg->status & (1 << 8);
+}
+#endif
+
 /*
  * omap_hwecc_init - Initialize the Hardware ECC for NAND flash in
  *                   GPMC controller
  * @mtd:        MTD device structure
  *
  */
-static void omap_hwecc_init(struct nand_chip *chip)
+static void __maybe_unused omap_hwecc_init(struct nand_chip *chip)
 {
        /*
         * Init ECC Control Register
         * Clear all ECC | Enable Reg1
         */
-       writel(ECCCLEAR | ECCRESULTREG1, &gpmc_base->ecc_control);
-       writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_base->ecc_size_config);
+       writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
+       writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_cfg->ecc_size_config);
 }
 
 /*
@@ -107,7 +118,7 @@ static uint32_t gen_true_ecc(uint8_t *ecc_buf)
  *
  * @return 0 if data is OK or corrected, else returns -1
  */
-static int omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
+static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
                                uint8_t *read_ecc, uint8_t *calc_ecc)
 {
        uint32_t orig_ecc, new_ecc, res, hm;
@@ -173,13 +184,13 @@ static int omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
  *  @dat:      unused
  *  @ecc_code: ecc_code buffer
  */
-static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
-                               uint8_t *ecc_code)
+static int __maybe_unused omap_calculate_ecc(struct mtd_info *mtd,
+               const uint8_t *dat, uint8_t *ecc_code)
 {
        u_int32_t val;
 
        /* Start Reading from HW ECC1_Result = 0x200 */
-       val = readl(&gpmc_base->ecc1_result);
+       val = readl(&gpmc_cfg->ecc1_result);
 
        ecc_code[0] = val & 0xFF;
        ecc_code[1] = (val >> 16) & 0xFF;
@@ -189,7 +200,7 @@ static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
         * Stop reading anymore ECC vals and clear old results
         * enable will be called if more reads are required
         */
-       writel(0x000, &gpmc_base->ecc_config);
+       writel(0x000, &gpmc_cfg->ecc_config);
 
        return 0;
 }
@@ -199,7 +210,7 @@ static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
  * @mtd:        MTD device structure
  * @mode:       Read/Write mode
  */
-static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
+static void __maybe_unused omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
 {
        struct nand_chip *chip = mtd->priv;
        uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
@@ -208,7 +219,7 @@ static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
        case NAND_ECC_READ:
        case NAND_ECC_WRITE:
                /* Clear the ecc result registers, select ecc reg as 1 */
-               writel(ECCCLEAR | ECCRESULTREG1, &gpmc_base->ecc_control);
+               writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
 
                /*
                 * Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes
@@ -216,9 +227,9 @@ static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
                 * we just have a single ECC engine for all CS
                 */
                writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL,
-                       &gpmc_base->ecc_size_config);
+                       &gpmc_cfg->ecc_size_config);
                val = (dev_width << 7) | (cs << 1) | (0x1);
-               writel(val, &gpmc_base->ecc_config);
+               writel(val, &gpmc_cfg->ecc_config);
                break;
        default:
                printf("Error: Unrecognized Mode[%d]!\n", mode);
@@ -226,6 +237,371 @@ static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
        }
 }
 
+/*
+ * BCH8 support (needs ELM and thus AM33xx-only)
+ */
+#ifdef CONFIG_AM33XX
+struct nand_bch_priv {
+       uint8_t mode;
+       uint8_t type;
+       uint8_t nibbles;
+};
+
+/* bch types */
+#define ECC_BCH4       0
+#define ECC_BCH8       1
+#define ECC_BCH16      2
+
+/* BCH nibbles for diff bch levels */
+#define NAND_ECC_HW_BCH ((uint8_t)(NAND_ECC_HW_OOB_FIRST) + 1)
+#define ECC_BCH4_NIBBLES       13
+#define ECC_BCH8_NIBBLES       26
+#define ECC_BCH16_NIBBLES      52
+
+static struct nand_ecclayout hw_bch8_nand_oob = GPMC_NAND_HW_BCH8_ECC_LAYOUT;
+
+static struct nand_bch_priv bch_priv = {
+       .mode = NAND_ECC_HW_BCH,
+       .type = ECC_BCH8,
+       .nibbles = ECC_BCH8_NIBBLES
+};
+
+/*
+ * omap_read_bch8_result - Read BCH result for BCH8 level
+ *
+ * @mtd:       MTD device structure
+ * @big_endian:        When set read register 3 first
+ * @ecc_code:  Read syndrome from BCH result registers
+ */
+static void omap_read_bch8_result(struct mtd_info *mtd, uint8_t big_endian,
+                               uint8_t *ecc_code)
+{
+       uint32_t *ptr;
+       int8_t i = 0, j;
+
+       if (big_endian) {
+               ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
+               ecc_code[i++] = readl(ptr) & 0xFF;
+               ptr--;
+               for (j = 0; j < 3; j++) {
+                       ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
+                       ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
+                       ecc_code[i++] = (readl(ptr) >>  8) & 0xFF;
+                       ecc_code[i++] = readl(ptr) & 0xFF;
+                       ptr--;
+               }
+       } else {
+               ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[0];
+               for (j = 0; j < 3; j++) {
+                       ecc_code[i++] = readl(ptr) & 0xFF;
+                       ecc_code[i++] = (readl(ptr) >>  8) & 0xFF;
+                       ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
+                       ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
+                       ptr++;
+               }
+               ecc_code[i++] = readl(ptr) & 0xFF;
+               ecc_code[i++] = 0;      /* 14th byte is always zero */
+       }
+}
+
+/*
+ * omap_ecc_disable - Disable H/W ECC calculation
+ *
+ * @mtd:       MTD device structure
+ *
+ */
+static void omap_ecc_disable(struct mtd_info *mtd)
+{
+       writel((readl(&gpmc_cfg->ecc_config) & ~0x1),
+               &gpmc_cfg->ecc_config);
+}
+
+/*
+ * omap_rotate_ecc_bch - Rotate the syndrome bytes
+ *
+ * @mtd:       MTD device structure
+ * @calc_ecc:  ECC read from ECC registers
+ * @syndrome:  Rotated syndrome will be retuned in this array
+ *
+ */
+static void omap_rotate_ecc_bch(struct mtd_info *mtd, uint8_t *calc_ecc,
+               uint8_t *syndrome)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct nand_bch_priv *bch = chip->priv;
+       uint8_t n_bytes = 0;
+       int8_t i, j;
+
+       switch (bch->type) {
+       case ECC_BCH4:
+               n_bytes = 8;
+               break;
+
+       case ECC_BCH16:
+               n_bytes = 28;
+               break;
+
+       case ECC_BCH8:
+       default:
+               n_bytes = 13;
+               break;
+       }
+
+       for (i = 0, j = (n_bytes-1); i < n_bytes; i++, j--)
+               syndrome[i] =  calc_ecc[j];
+}
+
+/*
+ *  omap_calculate_ecc_bch - Read BCH ECC result
+ *
+ *  @mtd:      MTD structure
+ *  @dat:      unused
+ *  @ecc_code: ecc_code buffer
+ */
+static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
+                               uint8_t *ecc_code)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct nand_bch_priv *bch = chip->priv;
+       uint8_t big_endian = 1;
+       int8_t ret = 0;
+
+       if (bch->type == ECC_BCH8)
+               omap_read_bch8_result(mtd, big_endian, ecc_code);
+       else /* BCH4 and BCH16 currently not supported */
+               ret = -1;
+
+       /*
+        * Stop reading anymore ECC vals and clear old results
+        * enable will be called if more reads are required
+        */
+       omap_ecc_disable(mtd);
+
+       return ret;
+}
+
+/*
+ * omap_fix_errors_bch - Correct bch error in the data
+ *
+ * @mtd:       MTD device structure
+ * @data:      Data read from flash
+ * @error_count:Number of errors in data
+ * @error_loc: Locations of errors in the data
+ *
+ */
+static void omap_fix_errors_bch(struct mtd_info *mtd, uint8_t *data,
+               uint32_t error_count, uint32_t *error_loc)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct nand_bch_priv *bch = chip->priv;
+       uint8_t count = 0;
+       uint32_t error_byte_pos;
+       uint32_t error_bit_mask;
+       uint32_t last_bit = (bch->nibbles * 4) - 1;
+
+       /* Flip all bits as specified by the error location array. */
+       /* FOR( each found error location flip the bit ) */
+       for (count = 0; count < error_count; count++) {
+               if (error_loc[count] > last_bit) {
+                       /* Remove the ECC spare bits from correction. */
+                       error_loc[count] -= (last_bit + 1);
+                       /* Offset bit in data region */
+                       error_byte_pos = ((512 * 8) -
+                                       (error_loc[count]) - 1) / 8;
+                       /* Error Bit mask */
+                       error_bit_mask = 0x1 << (error_loc[count] % 8);
+                       /* Toggle the error bit to make the correction. */
+                       data[error_byte_pos] ^= error_bit_mask;
+               }
+       }
+}
+
+/*
+ * omap_correct_data_bch - Compares the ecc read from nand spare area
+ * with ECC registers values and corrects one bit error if it has occured
+ *
+ * @mtd:       MTD device structure
+ * @dat:       page data
+ * @read_ecc:  ecc read from nand flash (ignored)
+ * @calc_ecc:  ecc read from ECC registers
+ *
+ * @return 0 if data is OK or corrected, else returns -1
+ */
+static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
+                               uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct nand_bch_priv *bch = chip->priv;
+       uint8_t syndrome[28];
+       uint32_t error_count = 0;
+       uint32_t error_loc[8];
+       uint32_t i, ecc_flag;
+
+       ecc_flag = 0;
+       for (i = 0; i < chip->ecc.bytes; i++)
+               if (read_ecc[i] != 0xff)
+                       ecc_flag = 1;
+
+       if (!ecc_flag)
+               return 0;
+
+       elm_reset();
+       elm_config((enum bch_level)(bch->type));
+
+       /*
+        * while reading ECC result we read it in big endian.
+        * Hence while loading to ELM we have rotate to get the right endian.
+        */
+       omap_rotate_ecc_bch(mtd, calc_ecc, syndrome);
+
+       /* use elm module to check for errors */
+       if (elm_check_error(syndrome, bch->nibbles, &error_count,
+                               error_loc) != 0) {
+               printf("ECC: uncorrectable.\n");
+               return -1;
+       }
+
+       /* correct bch error */
+       if (error_count > 0)
+               omap_fix_errors_bch(mtd, dat, error_count, error_loc);
+
+       return 0;
+}
+/*
+ * omap_hwecc_init_bch - Initialize the BCH Hardware ECC for NAND flash in
+ *                             GPMC controller
+ * @mtd:       MTD device structure
+ * @mode:      Read/Write mode
+ */
+static void omap_hwecc_init_bch(struct nand_chip *chip, int32_t mode)
+{
+       uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
+       uint32_t unused_length = 0;
+       struct nand_bch_priv *bch = chip->priv;
+
+       switch (bch->nibbles) {
+       case ECC_BCH4_NIBBLES:
+               unused_length = 3;
+               break;
+       case ECC_BCH8_NIBBLES:
+               unused_length = 2;
+               break;
+       case ECC_BCH16_NIBBLES:
+               unused_length = 0;
+               break;
+       }
+
+       /* Clear the ecc result registers, select ecc reg as 1 */
+       writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
+
+       switch (mode) {
+       case NAND_ECC_WRITE:
+               /* eccsize1 config */
+               val = ((unused_length + bch->nibbles) << 22);
+               break;
+
+       case NAND_ECC_READ:
+       default:
+               /* by default eccsize0 selected for ecc1resultsize */
+               /* eccsize0 config */
+               val  = (bch->nibbles << 12);
+               /* eccsize1 config */
+               val |= (unused_length << 22);
+               break;
+       }
+       /* ecc size configuration */
+       writel(val, &gpmc_cfg->ecc_size_config);
+       /* by default 512bytes sector page is selected */
+       /* set bch mode */
+       val  = (1 << 16);
+       /* bch4 / bch8 / bch16 */
+       val |= (bch->type << 12);
+       /* set wrap mode to 1 */
+       val |= (1 << 8);
+       val |= (dev_width << 7);
+       val |= (cs << 1);
+       writel(val, &gpmc_cfg->ecc_config);
+}
+
+/*
+ * omap_enable_ecc_bch- This function enables the bch h/w ecc functionality
+ * @mtd:        MTD device structure
+ * @mode:       Read/Write mode
+ *
+ */
+static void omap_enable_ecc_bch(struct mtd_info *mtd, int32_t mode)
+{
+       struct nand_chip *chip = mtd->priv;
+
+       omap_hwecc_init_bch(chip, mode);
+       /* enable ecc */
+       writel((readl(&gpmc_cfg->ecc_config) | 0x1), &gpmc_cfg->ecc_config);
+}
+
+/**
+ * omap_read_page_bch - hardware ecc based page read function
+ * @mtd:       mtd info structure
+ * @chip:      nand chip info structure
+ * @buf:       buffer to store read data
+ * @page:      page number to read
+ *
+ */
+static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
+                               uint8_t *buf, int page)
+{
+       int i, eccsize = chip->ecc.size;
+       int eccbytes = chip->ecc.bytes;
+       int eccsteps = chip->ecc.steps;
+       uint8_t *p = buf;
+       uint8_t *ecc_calc = chip->buffers->ecccalc;
+       uint8_t *ecc_code = chip->buffers->ecccode;
+       uint32_t *eccpos = chip->ecc.layout->eccpos;
+       uint8_t *oob = chip->oob_poi;
+       uint32_t data_pos;
+       uint32_t oob_pos;
+
+       data_pos = 0;
+       /* oob area start */
+       oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
+       oob += chip->ecc.layout->eccpos[0];
+
+       for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
+                               oob += eccbytes) {
+               chip->ecc.hwctl(mtd, NAND_ECC_READ);
+               /* read data */
+               chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, page);
+               chip->read_buf(mtd, p, eccsize);
+
+               /* read respective ecc from oob area */
+               chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, page);
+               chip->read_buf(mtd, oob, eccbytes);
+               /* read syndrome */
+               chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+               data_pos += eccsize;
+               oob_pos += eccbytes;
+       }
+
+       for (i = 0; i < chip->ecc.total; i++)
+               ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+       eccsteps = chip->ecc.steps;
+       p = buf;
+
+       for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+               int stat;
+
+               stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+               if (stat < 0)
+                       mtd->ecc_stats.failed++;
+               else
+                       mtd->ecc_stats.corrected += stat;
+       }
+       return 0;
+}
+#endif /* CONFIG_AM33XX */
+
+#ifndef CONFIG_SPL_BUILD
 /*
  * omap_nand_switch_ecc - switch the ECC operation b/w h/w ecc and s/w ecc.
  * The default is to come up on s/w ecc
@@ -260,7 +636,7 @@ void omap_nand_switch_ecc(int32_t hardware)
        nand->ecc.calculate = NULL;
 
        /* Setup the ecc configurations again */
-       if (hardware) {
+       if (hardware == 1) {
                nand->ecc.mode = NAND_ECC_HW;
                nand->ecc.layout = &hw_nand_oob;
                nand->ecc.size = 512;
@@ -270,10 +646,24 @@ void omap_nand_switch_ecc(int32_t hardware)
                nand->ecc.calculate = omap_calculate_ecc;
                omap_hwecc_init(nand);
                printf("HW ECC selected\n");
+#ifdef CONFIG_AM33XX
+       } else if (hardware == 2) {
+               nand->ecc.mode = NAND_ECC_HW;
+               nand->ecc.layout = &hw_bch8_nand_oob;
+               nand->ecc.size = 512;
+               nand->ecc.bytes = 14;
+               nand->ecc.read_page = omap_read_page_bch;
+               nand->ecc.hwctl = omap_enable_ecc_bch;
+               nand->ecc.correct = omap_correct_data_bch;
+               nand->ecc.calculate = omap_calculate_ecc_bch;
+               omap_hwecc_init_bch(nand, NAND_ECC_READ);
+               printf("HW BCH8 selected\n");
+#endif
        } else {
                nand->ecc.mode = NAND_ECC_SOFT;
                /* Use mtd default settings */
                nand->ecc.layout = NULL;
+               nand->ecc.size = 0;
                printf("SW ECC selected\n");
        }
 
@@ -282,6 +672,7 @@ void omap_nand_switch_ecc(int32_t hardware)
 
        nand->options &= ~NAND_OWN_BUFFERS;
 }
+#endif /* CONFIG_SPL_BUILD */
 
 /*
  * Board-specific NAND initialization. The following members of the
@@ -311,15 +702,8 @@ int board_nand_init(struct nand_chip *nand)
         * devices.
         */
        while (cs < GPMC_MAX_CS) {
-               /*
-                * Each GPMC set for a single CS is at offset 0x30
-                * - already remapped for us
-                */
-               gpmc_cs_base = (gpmc_csx_t *)(GPMC_CONFIG_CS0_BASE +
-                               (cs * GPMC_CONFIG_WIDTH));
                /* Check if NAND type is set */
-               if ((readl(&gpmc_cs_base->config1) & 0xC00) ==
-                    0x800) {
+               if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
                        /* Found it!! */
                        break;
                }
@@ -331,23 +715,63 @@ int board_nand_init(struct nand_chip *nand)
                return -ENODEV;
        }
 
-       gpmc_config = readl(&gpmc_base->config);
+       gpmc_config = readl(&gpmc_cfg->config);
        /* Disable Write protect */
        gpmc_config |= 0x10;
-       writel(gpmc_config, &gpmc_base->config);
+       writel(gpmc_config, &gpmc_cfg->config);
 
-       nand->IO_ADDR_R = (void __iomem *)&gpmc_cs_base->nand_dat;
-       nand->IO_ADDR_W = (void __iomem *)&gpmc_cs_base->nand_cmd;
+       nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
+       nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
 
        nand->cmd_ctrl = omap_nand_hwcontrol;
        nand->options = NAND_NO_PADDING | NAND_CACHEPRG | NAND_NO_AUTOINCR;
        /* If we are 16 bit dev, our gpmc config tells us that */
-       if ((readl(gpmc_cs_base) & 0x3000) == 0x1000)
+       if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000)
                nand->options |= NAND_BUSWIDTH_16;
 
        nand->chip_delay = 100;
+
+#ifdef CONFIG_AM33XX
+       /* required in case of BCH */
+       elm_init();
+
+       /* BCH info that will be correct for SPL or overridden otherwise. */
+       nand->priv = &bch_priv;
+#endif
+
        /* Default ECC mode */
+#ifdef CONFIG_AM33XX
+       nand->ecc.mode = NAND_ECC_HW;
+       nand->ecc.layout = &hw_bch8_nand_oob;
+       nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
+       nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
+       nand->ecc.hwctl = omap_enable_ecc_bch;
+       nand->ecc.correct = omap_correct_data_bch;
+       nand->ecc.calculate = omap_calculate_ecc_bch;
+       nand->ecc.read_page = omap_read_page_bch;
+       omap_hwecc_init_bch(nand, NAND_ECC_READ);
+#else
+#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_NAND_SOFTECC)
        nand->ecc.mode = NAND_ECC_SOFT;
+#else
+       nand->ecc.mode = NAND_ECC_HW;
+       nand->ecc.layout = &hw_nand_oob;
+       nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE;
+       nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES;
+       nand->ecc.hwctl = omap_enable_hwecc;
+       nand->ecc.correct = omap_correct_data;
+       nand->ecc.calculate = omap_calculate_ecc;
+       omap_hwecc_init(nand);
+#endif
+#endif
+
+#ifdef CONFIG_SPL_BUILD
+       if (nand->options & NAND_BUSWIDTH_16)
+               nand->read_buf = nand_read_buf16;
+       else
+               nand->read_buf = nand_read_buf;
+       nand->dev_ready = omap_spl_dev_ready;
+#endif
 
        return 0;
 }