OMAP5432 did go into production with AVS class0 registers which were
mutually exclusive from AVS Class 1.5 registers.
Most OMAP5-uEVM boards use the pre-production Class1.5 which has
production efuse registers set to 0. However on production devices,
these are set to valid data.
scale_vcore logic is already smart enough to detect this and use the
"Nominal voltage" on devices that do not have efuse registers populated.
On a test production device populated as follows:
MPU OPP_NOM:
=> md.l 0x04A0021C4 1
4a0021c4:
03a003e9 ....
(0x3e9 = 1.01v) vs nom voltage of 1.06v
MPU OPP_HIGH:
=> md.l 0x04A0021C8 1
4a0021c8:
03400485 ..@.
MM OPP_NOM:
=> md.l 0x04A0021A4 1
4a0021a4:
038003d4 ....
(0x3d4 = 980mV) vs nom voltage of 1.025v
MM OPP_OD:
=> md.l 0x04A0021A8 1
4a0021a8:
03600403 ..`.
CORE OPP_NOM:
=> md.l 0x04A0021D8 1
4a0021d8:
000003cf ....
(0x3cf = 975mV) vs nom voltage of 1.040v
Since the efuse values are'nt currently used, we do not regress on
existing pre-production samples (they continue to use nominal voltage).
But on boards that do have production samples populated, we can leverage
the optimal voltages necessary for proper operation.
Tested on:
a) 720-2644-001 OMAP5UEVM with production sample.
b) 750-2628-222(A) UEVM5432G-02 with pre-production sample.
Data based on OMAP5432 Technical reference Manual SWPU282AF (May
2012-Revised Aug 2016)
NOTE: All collaterals on OMAP5432 silicon itself seems to have been
removed from ti.com, though EVM details are still available:
http://www.ti.com/tool/OMAP5432-EVM
Signed-off-by: Nishanth Menon <nm@ti.com>
Reviewed-by: Lokesh Vutla <lokeshvutla@ti.com>
#define VDD_MPU_ES2_HIGH 1250
#define VDD_MM_ES2_OD 1120
+/* Efuse register offsets for OMAP5 platform */
+#define OMAP5_ES2_EFUSE_BASE 0x4A002000
+#define OMAP5_ES2_PROD_REGBITS 16
+
+/* CONTROL_STD_FUSE_OPP_VDD_CORE_3 */
+#define OMAP5_ES2_PROD_CORE_OPNO_VMIN (OMAP5_ES2_EFUSE_BASE + 0x1D8)
+
+/* CONTROL_STD_FUSE_OPP_VDD_MM_4 */
+#define OMAP5_ES2_PROD_MM_OPNO_VMIN (OMAP5_ES2_EFUSE_BASE + 0x1A4)
+/* CONTROL_STD_FUSE_OPP_VDD_MM_5 */
+#define OMAP5_ES2_PROD_MM_OPOD_VMIN (OMAP5_ES2_EFUSE_BASE + 0x1A8)
+/* CONTROL_STD_FUSE_OPP_VDD_MPU_6 */
+#define OMAP5_ES2_PROD_MPU_OPNO_VMIN (OMAP5_ES2_EFUSE_BASE + 0x1C4)
+/* CONTROL_STD_FUSE_OPP_VDD_MPU_7 */
+#define OMAP5_ES2_PROD_MPU_OPHI_VMIN (OMAP5_ES2_EFUSE_BASE + 0x1C8)
+
/* DRA74x/75x/72x voltage settings in mv for OPP_NOM per DM */
#define VDD_MPU_DRA7_NOM 1150
#define VDD_CORE_DRA7_NOM 1150
#define OMAP_ABB_GPU_TXDONE_MASK (0x1 << 28)
/* ABB efuse masks */
-#define OMAP5_ABB_FUSE_VSET_MASK (0x1F << 24)
-#define OMAP5_ABB_FUSE_ENABLE_MASK (0x1 << 29)
+#define OMAP5_PROD_ABB_FUSE_VSET_MASK (0x1F << 20)
+#define OMAP5_PROD_ABB_FUSE_ENABLE_MASK (0x1 << 25)
#define DRA7_ABB_FUSE_VSET_MASK (0x1F << 20)
#define DRA7_ABB_FUSE_ENABLE_MASK (0x1 << 25)
#define OMAP5_ABB_LDOVBBMPU_MUX_CTRL_MASK (0x1 << 10)
s8 abb_setup_ldovbb(u32 fuse, u32 ldovbb)
{
u32 vset;
- u32 fuse_enable_mask = OMAP5_ABB_FUSE_ENABLE_MASK;
- u32 fuse_vset_mask = OMAP5_ABB_FUSE_VSET_MASK;
+ u32 fuse_enable_mask = OMAP5_PROD_ABB_FUSE_ENABLE_MASK;
+ u32 fuse_vset_mask = OMAP5_PROD_ABB_FUSE_VSET_MASK;
if (!is_omap54xx()) {
/* DRA7 */
.mm.addr = SMPS_REG_ADDR_45_IVA,
.mm.pmic = &palmas,
.mm.abb_tx_done_mask = OMAP_ABB_MM_TXDONE_MASK,
+
+ .mpu.efuse.reg[OPP_NOM] = OMAP5_ES2_PROD_MPU_OPNO_VMIN,
+ .mpu.efuse.reg_bits = OMAP5_ES2_PROD_REGBITS,
+
+ .core.efuse.reg[OPP_NOM] = OMAP5_ES2_PROD_CORE_OPNO_VMIN,
+ .core.efuse.reg_bits = OMAP5_ES2_PROD_REGBITS,
+
+ .mm.efuse.reg[OPP_NOM] = OMAP5_ES2_PROD_MM_OPNO_VMIN,
+ .mm.efuse.reg_bits = OMAP5_ES2_PROD_REGBITS,
};
/*