}
 }
 
+#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
+#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
+
+static u32 *const T_num = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_NUM;
+static u32 *const T_den = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_DEN;
+static u32 *const emif_sizes = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_SIZE;
+
+/*
+ * Organization and refresh requirements for LPDDR2 devices of different
+ * types and densities. Derived from JESD209-2 section 2.4
+ */
+const struct lpddr2_addressing addressing_table[] = {
+       /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
+       {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
+       {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
+       {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
+       {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
+       {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
+       {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
+       {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
+       {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
+       {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
+       {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
+};
+
+static const u32 lpddr2_density_2_size_in_mbytes[] = {
+       8,                      /* 64Mb */
+       16,                     /* 128Mb */
+       32,                     /* 256Mb */
+       64,                     /* 512Mb */
+       128,                    /* 1Gb   */
+       256,                    /* 2Gb   */
+       512,                    /* 4Gb   */
+       1024,                   /* 8Gb   */
+       2048,                   /* 16Gb  */
+       4096                    /* 32Gb  */
+};
+
+/*
+ * Calculate the period of DDR clock from frequency value and set the
+ * denominator and numerator in global variables for easy access later
+ */
+static void set_ddr_clk_period(u32 freq)
+{
+       /*
+        * period = 1/freq
+        * period_in_ns = 10^9/freq
+        */
+       *T_num = 1000000000;
+       *T_den = freq;
+       cancel_out(T_num, T_den, 200);
+
+}
+
+/*
+ * Convert time in nano seconds to number of cycles of DDR clock
+ */
+static inline u32 ns_2_cycles(u32 ns)
+{
+       return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
+}
+
+/*
+ * ns_2_cycles with the difference that the time passed is 2 times the actual
+ * value(to avoid fractions). The cycles returned is for the original value of
+ * the timing parameter
+ */
+static inline u32 ns_x2_2_cycles(u32 ns)
+{
+       return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
+}
+
+/*
+ * Find addressing table index based on the device's type(S2 or S4) and
+ * density
+ */
+s8 addressing_table_index(u8 type, u8 density, u8 width)
+{
+       u8 index;
+       if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
+               return -1;
+
+       /*
+        * Look at the way ADDR_TABLE_INDEX* values have been defined
+        * in emif.h compared to LPDDR2_DENSITY_* values
+        * The table is layed out in the increasing order of density
+        * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
+        * at the end
+        */
+       if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
+               index = ADDR_TABLE_INDEX1GS2;
+       else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
+               index = ADDR_TABLE_INDEX2GS2;
+       else
+               index = density;
+
+       debug("emif: addressing table index %d\n", index);
+
+       return index;
+}
+
+/*
+ * Find the the right timing table from the array of timing
+ * tables of the device using DDR clock frequency
+ */
+static const struct lpddr2_ac_timings *get_timings_table(const struct
+                       lpddr2_ac_timings const *const *device_timings,
+                       u32 freq)
+{
+       u32 i, temp, freq_nearest;
+       const struct lpddr2_ac_timings *timings = 0;
+
+       emif_assert(freq <= MAX_LPDDR2_FREQ);
+       emif_assert(device_timings);
+
+       /*
+        * Start with the maximum allowed frequency - that is always safe
+        */
+       freq_nearest = MAX_LPDDR2_FREQ;
+       /*
+        * Find the timings table that has the max frequency value:
+        *   i.  Above or equal to the DDR frequency - safe
+        *   ii. The lowest that satisfies condition (i) - optimal
+        */
+       for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
+               temp = device_timings[i]->max_freq;
+               if ((temp >= freq) && (temp <= freq_nearest)) {
+                       freq_nearest = temp;
+                       timings = device_timings[i];
+               }
+       }
+       debug("emif: timings table: %d\n", freq_nearest);
+       return timings;
+}
+
+/*
+ * Finds the value of emif_sdram_config_reg
+ * All parameters are programmed based on the device on CS0.
+ * If there is a device on CS1, it will be same as that on CS0 or
+ * it will be NVM. We don't support NVM yet.
+ * If cs1_device pointer is NULL it is assumed that there is no device
+ * on CS1
+ */
+static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
+                               const struct lpddr2_device_details *cs1_device,
+                               const struct lpddr2_addressing *addressing,
+                               u8 RL)
+{
+       u32 config_reg = 0;
+
+       config_reg |=  (cs0_device->type + 4) << OMAP44XX_REG_SDRAM_TYPE_SHIFT;
+       config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
+                       OMAP44XX_REG_IBANK_POS_SHIFT;
+
+       config_reg |= cs0_device->io_width << OMAP44XX_REG_NARROW_MODE_SHIFT;
+
+       config_reg |= RL << OMAP44XX_REG_CL_SHIFT;
+
+       config_reg |= addressing->row_sz[cs0_device->io_width] <<
+                       OMAP44XX_REG_ROWSIZE_SHIFT;
+
+       config_reg |= addressing->num_banks << OMAP44XX_REG_IBANK_SHIFT;
+
+       config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
+                       OMAP44XX_REG_EBANK_SHIFT;
+
+       config_reg |= addressing->col_sz[cs0_device->io_width] <<
+                       OMAP44XX_REG_PAGESIZE_SHIFT;
+
+       return config_reg;
+}
+
+static u32 get_sdram_ref_ctrl(u32 freq,
+                             const struct lpddr2_addressing *addressing)
+{
+       u32 ref_ctrl = 0, val = 0, freq_khz;
+       freq_khz = freq / 1000;
+       /*
+        * refresh rate to be set is 'tREFI * freq in MHz
+        * division by 10000 to account for khz and x10 in t_REFI_us_x10
+        */
+       val = addressing->t_REFI_us_x10 * freq_khz / 10000;
+       ref_ctrl |= val << OMAP44XX_REG_REFRESH_RATE_SHIFT;
+
+       return ref_ctrl;
+}
+
+static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
+                              const struct lpddr2_min_tck *min_tck,
+                              const struct lpddr2_addressing *addressing)
+{
+       u32 tim1 = 0, val = 0;
+       val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
+       tim1 |= val << OMAP44XX_REG_T_WTR_SHIFT;
+
+       if (addressing->num_banks == BANKS8)
+               val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
+                                                       (4 * (*T_num)) - 1;
+       else
+               val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
+
+       tim1 |= val << OMAP44XX_REG_T_RRD_SHIFT;
+
+       val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
+       tim1 |= val << OMAP44XX_REG_T_RC_SHIFT;
+
+       val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
+       tim1 |= val << OMAP44XX_REG_T_RAS_SHIFT;
+
+       val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
+       tim1 |= val << OMAP44XX_REG_T_WR_SHIFT;
+
+       val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
+       tim1 |= val << OMAP44XX_REG_T_RCD_SHIFT;
+
+       val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
+       tim1 |= val << OMAP44XX_REG_T_RP_SHIFT;
+
+       return tim1;
+}
+
+static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
+                              const struct lpddr2_min_tck *min_tck)
+{
+       u32 tim2 = 0, val = 0;
+       val = max(min_tck->tCKE, timings->tCKE) - 1;
+       tim2 |= val << OMAP44XX_REG_T_CKE_SHIFT;
+
+       val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
+       tim2 |= val << OMAP44XX_REG_T_RTP_SHIFT;
+
+       /*
+        * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
+        * same value
+        */
+       val = ns_2_cycles(timings->tXSR) - 1;
+       tim2 |= val << OMAP44XX_REG_T_XSRD_SHIFT;
+       tim2 |= val << OMAP44XX_REG_T_XSNR_SHIFT;
+
+       val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
+       tim2 |= val << OMAP44XX_REG_T_XP_SHIFT;
+
+       return tim2;
+}
+
+static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
+                              const struct lpddr2_min_tck *min_tck,
+                              const struct lpddr2_addressing *addressing)
+{
+       u32 tim3 = 0, val = 0;
+       val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
+       tim3 |= val << OMAP44XX_REG_T_RAS_MAX_SHIFT;
+
+       val = ns_2_cycles(timings->tRFCab) - 1;
+       tim3 |= val << OMAP44XX_REG_T_RFC_SHIFT;
+
+       val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
+       tim3 |= val << OMAP44XX_REG_T_TDQSCKMAX_SHIFT;
+
+       val = ns_2_cycles(timings->tZQCS) - 1;
+       tim3 |= val << OMAP44XX_REG_ZQ_ZQCS_SHIFT;
+
+       val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
+       tim3 |= val << OMAP44XX_REG_T_CKESR_SHIFT;
+
+       return tim3;
+}
+
+static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
+                            const struct lpddr2_addressing *addressing,
+                            u8 volt_ramp)
+{
+       u32 zq = 0, val = 0;
+       if (volt_ramp)
+               val =
+                   EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
+                   addressing->t_REFI_us_x10;
+       else
+               val =
+                   EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
+                   addressing->t_REFI_us_x10;
+       zq |= val << OMAP44XX_REG_ZQ_REFINTERVAL_SHIFT;
+
+       zq |= (REG_ZQ_ZQCL_MULT - 1) << OMAP44XX_REG_ZQ_ZQCL_MULT_SHIFT;
+
+       zq |= (REG_ZQ_ZQINIT_MULT - 1) << OMAP44XX_REG_ZQ_ZQINIT_MULT_SHIFT;
+
+       zq |= REG_ZQ_SFEXITEN_ENABLE << OMAP44XX_REG_ZQ_SFEXITEN_SHIFT;
+
+       /*
+        * Assuming that two chipselects have a single calibration resistor
+        * If there are indeed two calibration resistors, then this flag should
+        * be enabled to take advantage of dual calibration feature.
+        * This data should ideally come from board files. But considering
+        * that none of the boards today have calibration resistors per CS,
+        * it would be an unnecessary overhead.
+        */
+       zq |= REG_ZQ_DUALCALEN_DISABLE << OMAP44XX_REG_ZQ_DUALCALEN_SHIFT;
+
+       zq |= REG_ZQ_CS0EN_ENABLE << OMAP44XX_REG_ZQ_CS0EN_SHIFT;
+
+       zq |= (cs1_device ? 1 : 0) << OMAP44XX_REG_ZQ_CS1EN_SHIFT;
+
+       return zq;
+}
+
+static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
+                                const struct lpddr2_addressing *addressing,
+                                u8 is_derated)
+{
+       u32 alert = 0, interval;
+       interval =
+           TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
+       if (is_derated)
+               interval *= 4;
+       alert |= interval << OMAP44XX_REG_TA_REFINTERVAL_SHIFT;
+
+       alert |= TEMP_ALERT_CONFIG_DEVCT_1 << OMAP44XX_REG_TA_DEVCNT_SHIFT;
+
+       alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << OMAP44XX_REG_TA_DEVWDT_SHIFT;
+
+       alert |= 1 << OMAP44XX_REG_TA_SFEXITEN_SHIFT;
+
+       alert |= 1 << OMAP44XX_REG_TA_CS0EN_SHIFT;
+
+       alert |= (cs1_device ? 1 : 0) << OMAP44XX_REG_TA_CS1EN_SHIFT;
+
+       return alert;
+}
+
+static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
+{
+       u32 idle = 0, val = 0;
+       if (volt_ramp)
+               val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 + 1;
+       else
+               /*Maximum value in normal conditions - suggested by hw team */
+               val = 0x1FF;
+       idle |= val << OMAP44XX_REG_READ_IDLE_INTERVAL_SHIFT;
+
+       idle |= EMIF_REG_READ_IDLE_LEN_VAL << OMAP44XX_REG_READ_IDLE_LEN_SHIFT;
+
+       return idle;
+}
+
+static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
+{
+       u32 phy = 0, val = 0;
+
+       phy |= (RL + 2) << OMAP44XX_REG_READ_LATENCY_SHIFT;
+
+       if (freq <= 100000000)
+               val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
+       else if (freq <= 200000000)
+               val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
+       else
+               val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
+       phy |= val << OMAP44XX_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
+
+       /* Other fields are constant magic values. Hardcode them together */
+       phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
+               OMAP44XX_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
+
+       return phy;
+}
+
+static u32 get_emif_mem_size(struct emif_device_details *devices)
+{
+       u32 size_mbytes = 0, temp;
+
+       if (!devices)
+               return 0;
+
+       if (devices->cs0_device_details) {
+               temp = devices->cs0_device_details->density;
+               size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
+       }
+
+       if (devices->cs1_device_details) {
+               temp = devices->cs1_device_details->density;
+               size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
+       }
+       /* convert to bytes */
+       return size_mbytes << 20;
+}
+
+/* Gets the encoding corresponding to a given DMM section size */
+u32 get_dmm_section_size_map(u32 section_size)
+{
+       /*
+        * Section size mapping:
+        * 0x0: 16-MiB section
+        * 0x1: 32-MiB section
+        * 0x2: 64-MiB section
+        * 0x3: 128-MiB section
+        * 0x4: 256-MiB section
+        * 0x5: 512-MiB section
+        * 0x6: 1-GiB section
+        * 0x7: 2-GiB section
+        */
+       section_size >>= 24; /* divide by 16 MB */
+       return log_2_n_round_down(section_size);
+}
+
+static void emif_calculate_regs(
+               const struct emif_device_details *emif_dev_details,
+               u32 freq, struct emif_regs *regs)
+{
+       u32 temp, sys_freq;
+       const struct lpddr2_addressing *addressing;
+       const struct lpddr2_ac_timings *timings;
+       const struct lpddr2_min_tck *min_tck;
+       const struct lpddr2_device_details *cs0_dev_details =
+                                       emif_dev_details->cs0_device_details;
+       const struct lpddr2_device_details *cs1_dev_details =
+                                       emif_dev_details->cs1_device_details;
+       const struct lpddr2_device_timings *cs0_dev_timings =
+                                       emif_dev_details->cs0_device_timings;
+
+       emif_assert(emif_dev_details);
+       emif_assert(regs);
+       /*
+        * You can not have a device on CS1 without one on CS0
+        * So configuring EMIF without a device on CS0 doesn't
+        * make sense
+        */
+       emif_assert(cs0_dev_details);
+       emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
+       /*
+        * If there is a device on CS1 it should be same type as CS0
+        * (or NVM. But NVM is not supported in this driver yet)
+        */
+       emif_assert((cs1_dev_details == NULL) ||
+                   (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
+                   (cs0_dev_details->type == cs1_dev_details->type));
+       emif_assert(freq <= MAX_LPDDR2_FREQ);
+
+       set_ddr_clk_period(freq);
+
+       /*
+        * The device on CS0 is used for all timing calculations
+        * There is only one set of registers for timings per EMIF. So, if the
+        * second CS(CS1) has a device, it should have the same timings as the
+        * device on CS0
+        */
+       timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
+       emif_assert(timings);
+       min_tck = cs0_dev_timings->min_tck;
+
+       temp = addressing_table_index(cs0_dev_details->type,
+                                     cs0_dev_details->density,
+                                     cs0_dev_details->io_width);
+
+       emif_assert((temp >= 0));
+       addressing = &(addressing_table[temp]);
+       emif_assert(addressing);
+
+       sys_freq = get_sys_clk_freq();
+
+       regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
+                                                       cs1_dev_details,
+                                                       addressing, RL_BOOT);
+
+       regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
+                                               cs1_dev_details,
+                                               addressing, RL_FINAL);
+
+       regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
+
+       regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
+
+       regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
+
+       regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
+
+       regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
+
+       regs->temp_alert_config =
+           get_temp_alert_config(cs1_dev_details, addressing, 0);
+
+       regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
+                                           LPDDR2_VOLTAGE_STABLE);
+
+       regs->emif_ddr_phy_ctlr_1_init =
+                       get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
+
+       regs->emif_ddr_phy_ctlr_1 =
+                       get_ddr_phy_ctrl_1(freq, RL_FINAL);
+
+       regs->freq = freq;
+
+       print_timing_reg(regs->sdram_config_init);
+       print_timing_reg(regs->sdram_config);
+       print_timing_reg(regs->ref_ctrl);
+       print_timing_reg(regs->sdram_tim1);
+       print_timing_reg(regs->sdram_tim2);
+       print_timing_reg(regs->sdram_tim3);
+       print_timing_reg(regs->read_idle_ctrl);
+       print_timing_reg(regs->temp_alert_config);
+       print_timing_reg(regs->zq_config);
+       print_timing_reg(regs->emif_ddr_phy_ctlr_1);
+       print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
+}
+#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
+
+#ifdef CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS
+/* Base AC Timing values specified by JESD209-2 for 400MHz operation */
+static const struct lpddr2_ac_timings timings_jedec_400_mhz = {
+       .max_freq = 400000000,
+       .RL = 6,
+       .tRPab = 21,
+       .tRCD = 18,
+       .tWR = 15,
+       .tRASmin = 42,
+       .tRRD = 10,
+       .tWTRx2 = 15,
+       .tXSR = 140,
+       .tXPx2 = 15,
+       .tRFCab = 130,
+       .tRTPx2 = 15,
+       .tCKE = 3,
+       .tCKESR = 15,
+       .tZQCS = 90,
+       .tZQCL = 360,
+       .tZQINIT = 1000,
+       .tDQSCKMAXx2 = 11,
+       .tRASmax = 70,
+       .tFAW = 50
+};
+
+/* Base AC Timing values specified by JESD209-2 for 333 MHz operation */
+static const struct lpddr2_ac_timings timings_jedec_333_mhz = {
+       .max_freq = 333000000,
+       .RL = 5,
+       .tRPab = 21,
+       .tRCD = 18,
+       .tWR = 15,
+       .tRASmin = 42,
+       .tRRD = 10,
+       .tWTRx2 = 15,
+       .tXSR = 140,
+       .tXPx2 = 15,
+       .tRFCab = 130,
+       .tRTPx2 = 15,
+       .tCKE = 3,
+       .tCKESR = 15,
+       .tZQCS = 90,
+       .tZQCL = 360,
+       .tZQINIT = 1000,
+       .tDQSCKMAXx2 = 11,
+       .tRASmax = 70,
+       .tFAW = 50
+};
+
+/* Base AC Timing values specified by JESD209-2 for 200 MHz operation */
+static const struct lpddr2_ac_timings timings_jedec_200_mhz = {
+       .max_freq = 200000000,
+       .RL = 3,
+       .tRPab = 21,
+       .tRCD = 18,
+       .tWR = 15,
+       .tRASmin = 42,
+       .tRRD = 10,
+       .tWTRx2 = 20,
+       .tXSR = 140,
+       .tXPx2 = 15,
+       .tRFCab = 130,
+       .tRTPx2 = 15,
+       .tCKE = 3,
+       .tCKESR = 15,
+       .tZQCS = 90,
+       .tZQCL = 360,
+       .tZQINIT = 1000,
+       .tDQSCKMAXx2 = 11,
+       .tRASmax = 70,
+       .tFAW = 50
+};
+
+/*
+ * Min tCK values specified by JESD209-2
+ * Min tCK specifies the minimum duration of some AC timing parameters in terms
+ * of the number of cycles. If the calculated number of cycles based on the
+ * absolute time value is less than the min tCK value, min tCK value should
+ * be used instead. This typically happens at low frequencies.
+ */
+static const struct lpddr2_min_tck min_tck_jedec = {
+       .tRL = 3,
+       .tRP_AB = 3,
+       .tRCD = 3,
+       .tWR = 3,
+       .tRAS_MIN = 3,
+       .tRRD = 2,
+       .tWTR = 2,
+       .tXP = 2,
+       .tRTP = 2,
+       .tCKE = 3,
+       .tCKESR = 3,
+       .tFAW = 8
+};
+
+static const struct lpddr2_ac_timings const*
+                       jedec_ac_timings[MAX_NUM_SPEEDBINS] = {
+       &timings_jedec_200_mhz,
+       &timings_jedec_333_mhz,
+       &timings_jedec_400_mhz
+};
+
+static const struct lpddr2_device_timings jedec_default_timings = {
+       .ac_timings = jedec_ac_timings,
+       .min_tck = &min_tck_jedec
+};
+
+void emif_get_device_timings(u32 emif_nr,
+               const struct lpddr2_device_timings **cs0_device_timings,
+               const struct lpddr2_device_timings **cs1_device_timings)
+{
+       /* Assume Identical devices on EMIF1 & EMIF2 */
+       *cs0_device_timings = &jedec_default_timings;
+       *cs1_device_timings = &jedec_default_timings;
+}
+#endif /* CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS */
+
 static void do_sdram_init(u32 base)
 {
        const struct emif_regs *regs;
        in_sdram = running_from_sdram();
        emif_nr = (base == OMAP44XX_EMIF1) ? 1 : 2;
 
+#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
        emif_get_reg_dump(emif_nr, ®s);
        if (!regs) {
                debug("EMIF: reg dump not provided\n");
                return;
        }
+#else
+       /*
+        * The user has not provided the register values. We need to
+        * calculate it based on the timings and the DDR frequency
+        */
+       struct emif_device_details dev_details;
+       struct emif_regs calculated_regs;
+
+       /*
+        * Get device details:
+        * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
+        * - Obtained from user otherwise
+        */
+       struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
+       emif_get_device_details(emif_nr, &cs0_dev_details,
+                               &cs1_dev_details);
+       dev_details.cs0_device_details = &cs0_dev_details;
+       dev_details.cs1_device_details = &cs1_dev_details;
+
+       /* Return if no devices on this EMIF */
+       if (!dev_details.cs0_device_details &&
+           !dev_details.cs1_device_details) {
+               emif_sizes[emif_nr - 1] = 0;
+               return;
+       }
+
+       if (!in_sdram)
+               emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details);
+
+       /*
+        * Get device timings:
+        * - Default timings specified by JESD209-2 if
+        *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
+        * - Obtained from user otherwise
+        */
+       emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
+                               &dev_details.cs1_device_timings);
+
+       /* Calculate the register values */
+       emif_calculate_regs(&dev_details, omap4_ddr_clk(), &calculated_regs);
+       regs = &calculated_regs;
+#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
 
        /*
         * Initializing the LPDDR2 device can not happen from SDRAM.
 {
        const struct dmm_lisa_map_regs *lisa_map_regs;
 
+#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
        emif_get_dmm_regs(&lisa_map_regs);
+#else
+       u32 emif1_size, emif2_size, mapped_size, section_map = 0;
+       u32 section_cnt, sys_addr;
+       struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
+
+       mapped_size = 0;
+       section_cnt = 3;
+       sys_addr = CONFIG_SYS_SDRAM_BASE;
+       emif1_size = emif_sizes[0];
+       emif2_size = emif_sizes[1];
+       debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
+
+       if (!emif1_size && !emif2_size)
+               return;
+
+       /* symmetric interleaved section */
+       if (emif1_size && emif2_size) {
+               mapped_size = min(emif1_size, emif2_size);
+               section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
+               section_map |= 0 << OMAP44XX_SDRC_ADDR_SHIFT;
+               /* only MSB */
+               section_map |= (sys_addr >> 24) <<
+                               OMAP44XX_SYS_ADDR_SHIFT;
+               section_map |= get_dmm_section_size_map(mapped_size * 2)
+                               << OMAP44XX_SYS_SIZE_SHIFT;
+               lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
+               emif1_size -= mapped_size;
+               emif2_size -= mapped_size;
+               sys_addr += (mapped_size * 2);
+               section_cnt--;
+       }
+
+       /*
+        * Single EMIF section(we can have a maximum of 1 single EMIF
+        * section- either EMIF1 or EMIF2 or none, but not both)
+        */
+       if (emif1_size) {
+               section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
+               section_map |= get_dmm_section_size_map(emif1_size)
+                               << OMAP44XX_SYS_SIZE_SHIFT;
+               /* only MSB */
+               section_map |= (mapped_size >> 24) <<
+                               OMAP44XX_SDRC_ADDR_SHIFT;
+               /* only MSB */
+               section_map |= (sys_addr >> 24) << OMAP44XX_SYS_ADDR_SHIFT;
+               section_cnt--;
+       }
+       if (emif2_size) {
+               section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
+               section_map |= get_dmm_section_size_map(emif2_size) <<
+                               OMAP44XX_SYS_SIZE_SHIFT;
+               /* only MSB */
+               section_map |= mapped_size >> 24 << OMAP44XX_SDRC_ADDR_SHIFT;
+               /* only MSB */
+               section_map |= sys_addr >> 24 << OMAP44XX_SYS_ADDR_SHIFT;
+               section_cnt--;
+       }
+
+       if (section_cnt == 2) {
+               /* Only 1 section - either symmetric or single EMIF */
+               lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
+               lis_map_regs_calculated.dmm_lisa_map_2 = 0;
+               lis_map_regs_calculated.dmm_lisa_map_1 = 0;
+       } else {
+               /* 2 sections - 1 symmetric, 1 single EMIF */
+               lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
+               lis_map_regs_calculated.dmm_lisa_map_1 = 0;
+       }
+
+       /* TRAP for invalid TILER mappings in section 0 */
+       lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
 
+       lisa_map_regs = &lis_map_regs_calculated;
+#endif
        struct dmm_lisa_map_regs *hw_lisa_map_regs =
            (struct dmm_lisa_map_regs *)base;