As per following Sections in ONFI Spec, NAND_CMD_READID should use only
lower 8-bit for transfering command, address and data even on x16 NAND device.
*Section: Target Initialization"
"The Read ID and Read Parameter Page commands only use the lower 8-bits of the
data bus. The host shall not issue commands that use a word data width on x16
devices until the host determines the device supports a 16-bit data bus width
in the parameter page."
*Section: Bus Width Requirements*
"When the host supports a 16-bit bus width, only data is transferred at the
16-bit width. All address and command line transfers shall use only the lower
8-bits of the data bus. During command transfers, the host may place any value
on the upper 8-bits of the data bus. During address transfers, the host shall
set the upper 8-bits of the data bus to 00h."
Thus porting following commit from linux-kernel to ensure that column address
is not altered to align to x16 bus when issuing NAND_CMD_READID command.
commit
3dad2344e92c6e1aeae42df1c4824f307c51bcc7
mtd: nand: force NAND_CMD_READID onto 8-bit bus
Author: Brian Norris <computersforpeace@gmail.com> (preserving authorship)
The NAND command helpers tend to automatically shift the column address
for x16 bus devices, since most commands expect a word address, not a
byte address. The Read ID command, however, expects an 8-bit address
(i.e., 0x00, 0x20, or 0x40 should not be translated to 0x00, 0x10, or
0x20).
This fixes the column address for a few drivers which imitate the
nand_base defaults.
Signed-off-by: Pekon Gupta <pekon@ti.com>
}
/* Shift the offset from byte addressing to word addressing. */
- if (this->options & NAND_BUSWIDTH_16)
+ if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
offs >>= 1;
/* Set ALE and clear CLE to start address cycle */
hwctrl(&mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
- if (this->options & NAND_BUSWIDTH_16)
+ if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
offs >>= 1;
hwctrl(&mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
/* Serially input address */
if (column != -1) {
/* Adjust columns for 16 bit buswidth */
- if (chip->options & NAND_BUSWIDTH_16)
+ if ((chip->options & NAND_BUSWIDTH_16) &&
+ !nand_opcode_8bits(command))
column >>= 1;
chip->cmd_ctrl(mtd, column, ctrl);
ctrl &= ~NAND_CTRL_CHANGE;
/* Serially input address */
if (column != -1) {
/* Adjust columns for 16 bit buswidth */
- if (chip->options & NAND_BUSWIDTH_16)
+ if ((chip->options & NAND_BUSWIDTH_16) &&
+ !nand_opcode_8bits(command))
column >>= 1;
chip->cmd_ctrl(mtd, column, ctrl);
ctrl &= ~NAND_CTRL_CHANGE;
}
/* Shift the offset from byte addressing to word addressing. */
- if (this->options & NAND_BUSWIDTH_16)
+ if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
offs >>= 1;
/* Begin command latch cycle */
}
#endif
+/**
+ * Check if the opcode's address should be sent only on the lower 8 bits
+ * @command: opcode to check
+ */
+static inline int nand_opcode_8bits(unsigned int command)
+{
+ return command == NAND_CMD_READID;
+}
+
+
#endif /* __LINUX_MTD_NAND_H */