--- /dev/null
+/*
+ * Sun8i platform dram controller register and constant defines
+ *
+ * (C) Copyright 2007-2015 Allwinner Technology Co.
+ * Jerry Wang <wangflord@allwinnertech.com>
+ * (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
+ * Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#ifndef _SUNXI_DRAM_SUN9I_H
+#define _SUNXI_DRAM_SUN9I_H
+
+struct sunxi_mctl_com_reg {
+ u32 cr; /* 0x00 */
+ u32 ccr; /* 0x04 controller configuration register */
+ u32 dbgcr; /* 0x08 */
+ u32 dbgcr1; /* 0x0c */
+ u32 rmcr; /* 0x10 */
+ u8 res1[0x1c]; /* 0x14 */
+ u32 mmcr; /* 0x30 */
+ u8 res2[0x3c]; /* 0x34 */
+ u32 mbagcr; /* 0x70 */
+ u32 mbacr; /* 0x74 */
+ u8 res3[0x10]; /* 0x78 */
+ u32 maer; /* 0x88 */
+ u8 res4[0x74]; /* 0x8c */
+ u32 mdfscr; /* 0x100 */
+ u32 mdfsmer; /* 0x104 */
+ u32 mdfsmrmr; /* 0x108 */
+ u32 mdfstr[4]; /* 0x10c */
+ u32 mdfsgcr; /* 0x11c */
+ u8 res5[0x1c]; /* 0x120 */
+ u32 mdfsivr; /* 0x13c */
+ u8 res6[0xc]; /* 0x140 */
+ u32 mdfstcr; /* 0x14c */
+};
+
+
+struct sunxi_mctl_ctl_reg {
+ u32 mstr; /* 0x00 master register */
+ u32 stat; /* 0x04 operating mode status register */
+ u8 res1[0x8]; /* 0x08 */
+ u32 mrctrl[2]; /* 0x10 mode register read/write control reg */
+ u32 mstat; /* 0x18 mode register read/write status reg */
+ u8 res2[0x4]; /* 0x1c */
+ u32 derateen; /* 0x20 temperature derate enable register */
+ u32 derateint; /* 0x24 temperature derate interval register */
+ u8 res3[0x8]; /* 0x28 */
+ u32 pwrctl; /* 0x30 low power control register */
+ u32 pwrtmg; /* 0x34 low power timing register */
+ u8 res4[0x18]; /* 0x38 */
+ u32 rfshctl0; /* 0x50 refresh control register 0 */
+ u32 rfshctl1; /* 0x54 refresh control register 1 */
+ u8 res5[0x8]; /* 0x58 */
+ u32 rfshctl3; /* 0x60 refresh control register 3 */
+ u32 rfshtmg; /* 0x64 refresh timing register */
+ u8 res6[0x68]; /* 0x68 */
+ u32 init[6]; /* 0xd0 SDRAM initialisation register */
+ u8 res7[0xc]; /* 0xe8 */
+ u32 rankctl; /* 0xf4 rank control register */
+ u8 res8[0x8]; /* 0xf8 */
+ u32 dramtmg[9]; /* 0x100 DRAM timing register */
+ u8 res9[0x5c]; /* 0x124 */
+ u32 zqctrl[3]; /* 0x180 ZQ control register */
+ u32 zqstat; /* 0x18c ZQ status register */
+ u32 dfitmg[2]; /* 0x190 DFI timing register */
+ u32 dfilpcfg; /* 0x198 DFI low power configuration register */
+ u8 res10[0x4]; /* 0x19c */
+ u32 dfiupd[4]; /* 0x1a0 DFI update register */
+ u32 dfimisc; /* 0x1b0 DFI miscellaneous control register */
+ u8 res11[0x1c]; /* 0x1b4 */
+ u32 trainctl[3]; /* 0x1d0 */
+ u32 trainstat; /* 0x1dc */
+ u8 res12[0x20]; /* 0x1e0 */
+ u32 addrmap[7]; /* 0x200 address map register */
+ u8 res13[0x24]; /* 0x21c */
+ u32 odtcfg; /* 0x240 ODT configuration register */
+ u32 odtmap; /* 0x244 ODT/rank map register */
+ u8 res14[0x8]; /* 0x248 */
+ u32 sched; /* 0x250 scheduler control register */
+ u8 res15[0x4]; /* 0x254 */
+ u32 perfhpr0; /* 0x258 high priority read CAM register 0 */
+ u32 perfhpr1; /* 0x25c high priority read CAM register 1 */
+ u32 perflpr0; /* 0x260 low priority read CAM register 0 */
+ u32 perflpr1; /* 0x264 low priority read CAM register 1 */
+ u32 perfwr0; /* 0x268 write CAM register 0 */
+ u32 perfwr1; /* 0x26c write CAM register 1 */
+};
+
+
+struct sunxi_mctl_phy_reg {
+ u8 res0[0x04]; /* 0x00 revision id ??? */
+ u32 pir; /* 0x04 PHY initialisation register */
+ u32 pgcr[4]; /* 0x08 PHY general configuration register */
+ u32 pgsr[2]; /* 0x18 PHY general status register */
+ u32 pllcr; /* 0x20 PLL control register */
+ u32 ptr[5]; /* 0x24 PHY timing register */
+ u32 acmdlr; /* 0x38 AC master delay line register */
+ u32 aclcdlr; /* 0x3c AC local calibrated delay line reg */
+ u32 acbdlr[10]; /* 0x40 AC bit delay line register */
+ u32 aciocr[6]; /* 0x68 AC IO configuration register */
+ u32 dxccr; /* 0x80 DATX8 common configuration register */
+ u32 dsgcr; /* 0x84 DRAM system general config register */
+ u32 dcr; /* 0x88 DRAM configuration register */
+ u32 dtpr[4]; /* 0x8c DRAM timing parameters register */
+ u32 mr0; /* 0x9c mode register 0 */
+ u32 mr1; /* 0xa0 mode register 1 */
+ u32 mr2; /* 0xa4 mode register 2 */
+ u32 mr3; /* 0xa8 mode register 3 */
+ u32 odtcr; /* 0xac ODT configuration register */
+ u32 dtcr; /* 0xb0 data training configuration register */
+ u32 dtar[4]; /* 0xb4 data training address register */
+ u32 dtdr[2]; /* 0xc4 data training data register */
+ u32 dtedr[2]; /* 0xcc data training eye data register */
+ u32 rdimmgcr[2]; /* 0xd4 RDIMM general configuration register */
+ u32 rdimmcr[2]; /* 0xdc RDIMM control register */
+ u32 gpr[2]; /* 0xe4 general purpose register */
+ u32 catr[2]; /* 0xec CA training register */
+ u32 dqdsr; /* 0xf4 DQS drift register */
+ u8 res1[0xc8]; /* 0xf8 */
+ u32 bistrr; /* 0x1c0 BIST run register */
+ u32 bistwcr; /* 0x1c4 BIST word count register */
+ u32 bistmskr[3]; /* 0x1c8 BIST mask register */
+ u32 bistlsr; /* 0x1d4 BIST LFSR seed register */
+ u32 bistar[3]; /* 0x1d8 BIST address register */
+ u32 bistupdr; /* 0x1e4 BIST user pattern data register */
+ u32 bistgsr; /* 0x1e8 BIST general status register */
+ u32 bistwer; /* 0x1dc BIST word error register */
+ u32 bistber[4]; /* 0x1f0 BIST bit error register */
+ u32 bistwcsr; /* 0x200 BIST word count status register */
+ u32 bistfwr[3]; /* 0x204 BIST fail word register */
+ u8 res2[0x28]; /* 0x210 */
+ u32 iovcr[2]; /* 0x238 IO VREF control register */
+ struct ddrphy_zq {
+ u32 cr; /* impedance control register */
+ u32 pr; /* impedance control data register */
+ u32 dr; /* impedance control data register */
+ u32 sr; /* impedance control status register */
+ } zq[4]; /* 0x240, 0x250, 0x260, 0x270 */
+ struct ddrphy_dx {
+ u32 gcr[4]; /* DATX8 general configuration register */
+ u32 gsr[3]; /* DATX8 general status register */
+ u32 bdlr[7]; /* DATX8 bit delay line register */
+ u32 lcdlr[3]; /* DATX8 local calibrated delay line reg */
+ u32 mdlr; /* DATX8 master delay line register */
+ u32 gtr; /* DATX8 general timing register */
+ u8 res[0x34];
+ } dx[4]; /* 0x280, 0x300, 0x380, 0x400 */
+};
+
+/*
+ * DRAM common (sunxi_mctl_com_reg) register constants.
+ */
+#define MCTL_CR_RANK_MASK (3 << 0)
+#define MCTL_CR_RANK(x) (((x) - 1) << 0)
+#define MCTL_CR_BANK_MASK (3 << 2)
+#define MCTL_CR_BANK(x) ((x) << 2)
+#define MCTL_CR_ROW_MASK (0xf << 4)
+#define MCTL_CR_ROW(x) (((x) - 1) << 4)
+#define MCTL_CR_PAGE_SIZE_MASK (0xf << 8)
+#define MCTL_CR_PAGE_SIZE(x) ((fls(x) - 4) << 8)
+#define MCTL_CR_BUSW_MASK (3 << 12)
+#define MCTL_CR_BUSW16 (1 << 12)
+#define MCTL_CR_BUSW32 (3 << 12)
+#define MCTL_CR_DRAMTYPE_MASK (7 << 16)
+#define MCTL_CR_DRAMTYPE_DDR2 (2 << 16)
+#define MCTL_CR_DRAMTYPE_DDR3 (3 << 16)
+#define MCTL_CR_DRAMTYPE_LPDDR2 (6 << 16)
+
+#define MCTL_CR_CHANNEL_MASK ((1 << 22) | (1 << 20) | (1 << 19))
+#define MCTL_CR_CHANNEL_SINGLE (1 << 22)
+#define MCTL_CR_CHANNEL_DUAL ((1 << 22) | (1 << 20) | (1 << 19))
+
+#define MCTL_CCR_CH0_CLK_EN (1 << 15)
+#define MCTL_CCR_CH1_CLK_EN (1 << 31)
+
+/*
+ * post_cke_x1024 [bits 16..25]: Cycles to wait after driving CKE high
+ * to start the SDRAM initialization sequence (in 1024s of cycles).
+ */
+#define MCTL_INIT0_POST_CKE_x1024(n) ((n & 0x0fff) << 16)
+/*
+ * pre_cke_x1024 [bits 0..11] Cycles to wait after reset before driving
+ * CKE high to start the SDRAM initialization (in 1024s of cycles)
+ */
+#define MCTL_INIT0_PRE_CKE_x1024(n) ((n & 0x0fff) << 0)
+#define MCTL_INIT1_DRAM_RSTN_x1024(n) ((n & 0xff) << 16)
+#define MCTL_INIT1_FINAL_WAIT_x32(n) ((n & 0x3f) << 8)
+#define MCTL_INIT1_PRE_OCD_x32(n) ((n & 0x0f) << 0)
+#define MCTL_INIT2_IDLE_AFTER_RESET_x32(n) ((n & 0xff) << 8)
+#define MCTL_INIT2_MIN_STABLE_CLOCK_x1(n) ((n & 0x0f) << 0)
+#define MCTL_INIT3_MR(n) ((n & 0xffff) << 16)
+#define MCTL_INIT3_EMR(n) ((n & 0xffff) << 0)
+#define MCTL_INIT4_EMR2(n) ((n & 0xffff) << 16)
+#define MCTL_INIT4_EMR3(n) ((n & 0xffff) << 0)
+#define MCTL_INIT5_DEV_ZQINIT_x32(n) ((n & 0x00ff) << 16)
+#define MCTL_INIT5_MAX_AUTO_INIT_x1024(n) ((n & 0x03ff) << 0);
+
+#define MCTL_DFIMISC_DFI_INIT_COMPLETE_EN (1 << 0)
+#define MCTL_DFIUPD0_DIS_AUTO_CTRLUPD (1 << 31)
+
+#define MCTL_MSTR_DEVICETYPE_DDR3 1
+#define MCTL_MSTR_DEVICETYPE_LPDDR2 4
+#define MCTL_MSTR_DEVICETYPE_LPDDR3 8
+#define MCTL_MSTR_DEVICETYPE(type) \
+ ((type == DRAM_TYPE_DDR3) ? MCTL_MSTR_DEVICETYPE_DDR3 : \
+ ((type == DRAM_TYPE_LPDDR2) ? MCTL_MSTR_DEVICETYPE_LPDDR2 : \
+ MCTL_MSTR_DEVICETYPE_LPDDR3))
+#define MCTL_MSTR_BURSTLENGTH4 (2 << 16)
+#define MCTL_MSTR_BURSTLENGTH8 (4 << 16)
+#define MCTL_MSTR_BURSTLENGTH16 (8 << 16)
+#define MCTL_MSTR_BURSTLENGTH(type) \
+ ((type == DRAM_TYPE_DDR3) ? MCTL_MSTR_BURSTLENGTH8 : \
+ ((type == DRAM_TYPE_LPDDR2) ? MCTL_MSTR_BURSTLENGTH4 : \
+ MCTL_MSTR_BURSTLENGTH8))
+#define MCTL_MSTR_ACTIVERANKS(x) (((x == 2) ? 3 : 1) << 24)
+#define MCTL_MSTR_BUSWIDTH8 (2 << 12)
+#define MCTL_MSTR_BUSWIDTH16 (1 << 12)
+#define MCTL_MSTR_BUSWIDTH32 (0 << 12)
+#define MCTL_MSTR_2TMODE (1 << 10)
+
+#define MCTL_RFSHCTL3_DIS_AUTO_REFRESH (1 << 0)
+
+#define MCTL_ZQCTRL0_TZQCS(x) (x << 0)
+#define MCTL_ZQCTRL0_TZQCL(x) (x << 16)
+#define MCTL_ZQCTRL0_ZQCL_DIS (1 << 30)
+#define MCTL_ZQCTRL0_ZQCS_DIS (1 << 31)
+#define MCTL_ZQCTRL1_TZQRESET(x) (x << 20)
+#define MCTL_ZQCTRL1_TZQSI_x1024(x) (x << 0)
+#define MCTL_ZQCTRL2_TZRESET_TRIGGER (1 << 0)
+
+#define MCTL_PHY_DCR_BYTEMASK (1 << 10)
+#define MCTL_PHY_DCR_2TMODE (1 << 28)
+#define MCTL_PHY_DCR_DDR8BNK (1 << 3)
+#define MCTL_PHY_DRAMMODE_DDR3 3
+#define MCTL_PHY_DRAMMODE_LPDDR2 0
+#define MCTL_PHY_DRAMMODE_LPDDR3 1
+
+#define MCTL_DTCR_DEFAULT 0x00003007
+#define MCTL_DTCR_RANKEN(n) (((n == 2) ? 3 : 1) << 24)
+
+#define MCTL_PGCR1_ZCKSEL_MASK (3 << 23)
+#define MCTL_PGCR1_IODDRM_MASK (3 << 7)
+#define MCTL_PGCR1_IODDRM_DDR3 (1 << 7)
+#define MCTL_PGCR1_IODDRM_DDR3L (2 << 7)
+#define MCTL_PGCR1_INHVT_EN (1 << 26)
+
+#define MCTL_PLLGCR_PLL_BYPASS (1 << 31)
+#define MCTL_PLLGCR_PLL_POWERDOWN (1 << 29)
+
+#define MCTL_PIR_PLL_BYPASS (1 << 17)
+#define MCTL_PIR_MASK (~(1 << 17))
+#define MCTL_PIR_INIT (1 << 0)
+
+#define MCTL_PGSR0_ERRORS (0x1ff << 20)
+
+/* Constants for assembling MR0 */
+#define DDR3_MR0_PPD_FAST_EXIT (1 << 12)
+#define DDR3_MR0_WR(n) \
+ ((n <= 8) ? ((n - 4) << 9) : (((n >> 1) & 0x7) << 9))
+#define DDR3_MR0_CL(n) \
+ ((((n - 4) & 0x7) << 4) | (((n - 4) & 0x8) >> 2))
+#define DDR3_MR0_BL8 (0 << 0)
+
+#define DDR3_MR1_RTT120OHM ((0 << 9) | (1 << 6) | (0 << 2))
+
+#define DDR3_MR2_TWL(n) \
+ (((n - 5) & 0x7) << 3)
+
+#define MCTL_NS2CYCLES_CEIL(ns) ((ns * (CONFIG_DRAM_CLK / 2) + 999) / 1000)
+
+#define DRAM_TYPE_DDR3 3
+#define DRAM_TYPE_LPDDR2 6
+#define DRAM_TYPE_LPDDR3 7
+
+#endif
--- /dev/null
+/*
+ * sun9i dram controller initialisation
+ *
+ * (C) Copyright 2007-2015
+ * Allwinner Technology Co., Ltd. <www.allwinnertech.com>
+ * Jerry Wang <wangflord@allwinnertech.com>
+ *
+ * (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
+ * Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <common.h>
+#include <dm.h>
+#include <errno.h>
+#include <ram.h>
+#include <asm/io.h>
+#include <asm/arch/clock.h>
+#include <asm/arch/dram.h>
+#include <asm/arch/sys_proto.h>
+
+DECLARE_GLOBAL_DATA_PTR;
+
+#define DRAM_CLK (CONFIG_DRAM_CLK * 1000000)
+
+/*
+ * The following amounts to an extensive rewrite of the code received from
+ * Allwinner as part of the open-source bootloader release (refer to
+ * https://github.com/allwinner-zh/bootloader.git) and augments the upstream
+ * sources (which act as the primary reference point for the inner workings
+ * of the 'underdocumented' DRAM controller in the A80) using the following
+ * documentation for other memory controllers based on the (Synopsys)
+ * Designware IP (DDR memory protocol controller and DDR PHY)
+ * * TI Keystone II Architecture: DDR3 Memory Controller, User's Guide
+ * Document 'SPRUHN7C', Oct 2013 (revised March 2015)
+ * * Xilinx Zynq UltraScale+ MPSoC Register Reference
+ * document ug1087 (v1.0)
+ * Note that the Zynq-documentation provides a very close match for the DDR
+ * memory protocol controller (and provides a very good guide to the rounding
+ * rules for various timings), whereas the TI Keystone II document should be
+ * referred to for DDR PHY specifics only.
+ *
+ * The DRAM controller in the A80 runs at half the frequency of the DDR PHY
+ * (i.e. the rules for MEMC_FREQ_RATIO=2 from the Zynq-documentation apply).
+ *
+ * Known limitations
+ * =================
+ * In the current state, the following features are not fully supported and
+ * a number of simplifying assumptions have been made:
+ * 1) Only DDR3 support is implemented, as our test platform (the A80-Q7
+ * module) is designed to accomodate DDR3/DDR3L.
+ * 2) Only 2T-mode has been implemented and tested.
+ * 3) The controller supports two different clocking strategies (PLL6 can
+ * either be 2*CK or CK/2)... we only support the 2*CK clock at this
+ * time and haven't verified whether the alternative clocking strategy
+ * works. If you are interested in porting this over/testing this,
+ * please refer to cases where bit 0 of 'dram_tpr8' is tested in the
+ * original code from Allwinner.
+ * 4) Support for 2 ranks per controller is not implemented (as we don't
+ * the hardware to test it).
+ *
+ * Future directions
+ * =================
+ * The driver should be driven from a device-tree based configuration that
+ * can dynamically provide the necessary timing parameters (i.e. target
+ * frequency and speed-bin information)---the data structures used in the
+ * calculation of the timing parameters are already designed to capture
+ * similar information as the device tree would provide.
+ *
+ * To enable a device-tree based configuration of the sun9i platform, we
+ * will need to enable CONFIG_TPL and bootstrap in 3 stages: initially
+ * into SRAM A1 (40KB) and next into SRAM A2 (160KB)---which would be the
+ * stage to initialise the platform via the device-tree---before having
+ * the full U-Boot run from DDR.
+ */
+
+/*
+ * A number of DDR3 timings are given as "the greater of a fixed number of
+ * clock cycles (CK) or nanoseconds. We express these using a structure
+ * that holds a cycle count and a duration in picoseconds (so we can model
+ * sub-ns timings, such as 7.5ns without losing precision or resorting to
+ * rounding up early.
+ */
+struct dram_sun9i_timing {
+ u32 ck;
+ u32 ps;
+};
+
+/* */
+struct dram_sun9i_cl_cwl_timing {
+ u32 CL;
+ u32 CWL;
+ u32 tCKmin; /* in ps */
+ u32 tCKmax; /* in ps */
+};
+
+struct dram_sun9i_para {
+ u32 dram_type;
+
+ u8 bus_width;
+ u8 chan;
+ u8 rank;
+ u8 rows;
+ u16 page_size;
+
+ /* Timing information for each speed-bin */
+ struct dram_sun9i_cl_cwl_timing *cl_cwl_table;
+ u32 cl_cwl_numentries;
+
+ /*
+ * For the timings, we try to keep the order and grouping used in
+ * JEDEC Standard No. 79-3F
+ */
+
+ /* timings */
+ u32 tREFI; /* in ns */
+ u32 tRFC; /* in ns */
+
+ u32 tRAS; /* in ps */
+
+ /* command and address timing */
+ u32 tDLLK; /* in nCK */
+ struct dram_sun9i_timing tRTP;
+ struct dram_sun9i_timing tWTR;
+ u32 tWR; /* in nCK */
+ u32 tMRD; /* in nCK */
+ struct dram_sun9i_timing tMOD;
+ u32 tRCD; /* in ps */
+ u32 tRP; /* in ps */
+ u32 tRC; /* in ps */
+ u32 tCCD; /* in nCK */
+ struct dram_sun9i_timing tRRD;
+ u32 tFAW; /* in ps */
+
+ /* calibration timing */
+ /* struct dram_sun9i_timing tZQinit; */
+ struct dram_sun9i_timing tZQoper;
+ struct dram_sun9i_timing tZQCS;
+
+ /* reset timing */
+ /* struct dram_sun9i_timing tXPR; */
+
+ /* self-refresh timings */
+ struct dram_sun9i_timing tXS;
+ u32 tXSDLL; /* in nCK */
+ /* struct dram_sun9i_timing tCKESR; */
+ struct dram_sun9i_timing tCKSRE;
+ struct dram_sun9i_timing tCKSRX;
+
+ /* power-down timings */
+ struct dram_sun9i_timing tXP;
+ struct dram_sun9i_timing tXPDLL;
+ struct dram_sun9i_timing tCKE;
+
+ /* write leveling timings */
+ u32 tWLMRD; /* min, in nCK */
+ /* u32 tWLDQSEN; min, in nCK */
+ u32 tWLO; /* max, in ns */
+ /* u32 tWLOE; max, in ns */
+
+ /* u32 tCKDPX; in nCK */
+ /* u32 tCKCSX; in nCK */
+};
+
+static void mctl_sys_init(void);
+
+#define SCHED_RDWR_IDLE_GAP(n) ((n & 0xff) << 24)
+#define SCHED_GO2CRITICAL_HYSTERESIS(n) ((n & 0xff) << 16)
+#define SCHED_LPR_NUM_ENTRIES(n) ((n & 0xff) << 8)
+#define SCHED_PAGECLOSE (1 << 2)
+#define SCHED_PREFER_WRITE (1 << 1)
+#define SCHED_FORCE_LOW_PRI_N (1 << 0)
+
+#define SCHED_CONFIG (SCHED_RDWR_IDLE_GAP(0xf) | \
+ SCHED_GO2CRITICAL_HYSTERESIS(0x80) | \
+ SCHED_LPR_NUM_ENTRIES(0x20) | \
+ SCHED_FORCE_LOW_PRI_N)
+#define PERFHPR0_CONFIG 0x0000001f
+#define PERFHPR1_CONFIG 0x1f00001f
+#define PERFLPR0_CONFIG 0x000000ff
+#define PERFLPR1_CONFIG 0x0f0000ff
+#define PERFWR0_CONFIG 0x000000ff
+#define PERFWR1_CONFIG 0x0f0001ff
+
+static void mctl_ctl_sched_init(unsigned long base)
+{
+ struct sunxi_mctl_ctl_reg *mctl_ctl =
+ (struct sunxi_mctl_ctl_reg *)base;
+
+ /* Needs to be done before the global clk enable... */
+ writel(SCHED_CONFIG, &mctl_ctl->sched);
+ writel(PERFHPR0_CONFIG, &mctl_ctl->perfhpr0);
+ writel(PERFHPR1_CONFIG, &mctl_ctl->perfhpr1);
+ writel(PERFLPR0_CONFIG, &mctl_ctl->perflpr0);
+ writel(PERFLPR1_CONFIG, &mctl_ctl->perflpr1);
+ writel(PERFWR0_CONFIG, &mctl_ctl->perfwr0);
+ writel(PERFWR1_CONFIG, &mctl_ctl->perfwr1);
+}
+
+static void mctl_sys_init(void)
+{
+ struct sunxi_ccm_reg * const ccm =
+ (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
+ struct sunxi_mctl_com_reg * const mctl_com =
+ (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
+
+ debug("Setting PLL6 to %d\n", DRAM_CLK * 2);
+ clock_set_pll6(DRAM_CLK * 2);
+
+ /* Original dram init code which may come in handy later
+ ********************************************************
+ clock_set_pll6(use_2channelPLL ? (DRAM_CLK * 2) :
+ (DRAM_CLK / 2), false);
+
+ if ((para->dram_clk <= 400)|((para->dram_tpr8 & 0x1)==0)) {
+ * PLL6 should be 2*CK *
+ * ccm_setup_pll6_ddr_clk(PLL6_DDR_CLK); *
+ ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) * 2), 0);
+ } else {
+ * PLL6 should be CK/2 *
+ ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) / 2), 1);
+ }
+
+ if (para->dram_tpr13 & (0xf<<18)) {
+ *
+ * bit21:bit18=0001:pll swing 0.4
+ * bit21:bit18=0010:pll swing 0.3
+ * bit21:bit18=0100:pll swing 0.2
+ * bit21:bit18=1000:pll swing 0.1
+ *
+ dram_dbg("DRAM fre extend open !\n");
+ reg_val=mctl_read_w(CCM_PLL6_DDR_REG);
+ reg_val&=(0x1<<16);
+ reg_val=reg_val>>16;
+
+ if(para->dram_tpr13 & (0x1<<18))
+ {
+ mctl_write_w(CCM_PLL_BASE + 0x114,
+ (0x3333U|(0x3<<17)|(reg_val<<19)|(0x120U<<20)|
+ (0x2U<<29)|(0x1U<<31)));
+ }
+ else if(para->dram_tpr13 & (0x1<<19))
+ {
+ mctl_write_w(CCM_PLL_BASE + 0x114,
+ (0x6666U|(0x3U<<17)|(reg_val<<19)|(0xD8U<<20)|
+ (0x2U<<29)|(0x1U<<31)));
+ }
+ else if(para->dram_tpr13 & (0x1<<20))
+ {
+ mctl_write_w(CCM_PLL_BASE + 0x114,
+ (0x9999U|(0x3U<<17)|(reg_val<<19)|(0x90U<<20)|
+ (0x2U<<29)|(0x1U<<31)));
+ }
+ else if(para->dram_tpr13 & (0x1<<21))
+ {
+ mctl_write_w(CCM_PLL_BASE + 0x114,
+ (0xccccU|(0x3U<<17)|(reg_val<<19)|(0x48U<<20)|
+ (0x2U<<29)|(0x1U<<31)));
+ }
+
+ //frequency extend open
+ reg_val = mctl_read_w(CCM_PLL6_DDR_REG);
+ reg_val |= ((0x1<<24)|(0x1<<30));
+ mctl_write_w(CCM_PLL6_DDR_REG, reg_val);
+
+
+ while(mctl_read_w(CCM_PLL6_DDR_REG) & (0x1<<30));
+ }
+
+ aw_delay(0x20000); //make some delay
+ ********************************************************
+ */
+
+ /* assert mctl reset */
+ clrbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
+ /* stop mctl clock */
+ clrbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
+
+ sdelay(2000);
+
+ /* deassert mctl reset */
+ setbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
+ /* enable mctl clock */
+ setbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
+
+ /* set up the transactions scheduling before enabling the global clk */
+ mctl_ctl_sched_init(SUNXI_DRAM_CTL0_BASE);
+ mctl_ctl_sched_init(SUNXI_DRAM_CTL1_BASE);
+ sdelay(1000);
+
+ debug("2\n");
+
+ /* (3 << 12): PLL_DDR */
+ writel((3 << 12) | (1 << 16), &ccm->dram_clk_cfg);
+ do {
+ debug("Waiting for DRAM_CLK_CFG\n");
+ sdelay(10000);
+ } while (readl(&ccm->dram_clk_cfg) & (1 << 16));
+ setbits_le32(&ccm->dram_clk_cfg, (1 << 31));
+
+ /* TODO: we only support the common case ... i.e. 2*CK */
+ setbits_le32(&mctl_com->ccr, (1 << 14) | (1 << 30));
+ writel(2, &mctl_com->rmcr); /* controller clock is PLL6/4 */
+
+ sdelay(2000);
+
+ /* Original dram init code which may come in handy later
+ ********************************************************
+ if ((para->dram_clk <= 400) | ((para->dram_tpr8 & 0x1) == 0)) {
+ * PLL6 should be 2*CK *
+ * gating 2 channel pll *
+ reg_val = mctl_read_w(MC_CCR);
+ reg_val |= ((0x1 << 14) | (0x1U << 30));
+ mctl_write_w(MC_CCR, reg_val);
+ mctl_write_w(MC_RMCR, 0x2); * controller clock use pll6/4 *
+ } else {
+ * enable 2 channel pll *
+ reg_val = mctl_read_w(MC_CCR);
+ reg_val &= ~((0x1 << 14) | (0x1U << 30));
+ mctl_write_w(MC_CCR, reg_val);
+ mctl_write_w(MC_RMCR, 0x0); * controller clock use pll6 *
+ }
+
+ reg_val = mctl_read_w(MC_CCR);
+ reg_val &= ~((0x1<<15)|(0x1U<<31));
+ mctl_write_w(MC_CCR, reg_val);
+ aw_delay(20);
+ //aw_delay(0x10);
+ ********************************************************
+ */
+
+ clrbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN | MCTL_CCR_CH1_CLK_EN);
+ sdelay(1000);
+
+ setbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN);
+ /* TODO if (para->chan == 2) */
+ setbits_le32(&mctl_com->ccr, MCTL_CCR_CH1_CLK_EN);
+}
+
+static void mctl_com_init(struct dram_sun9i_para *para)
+{
+ struct sunxi_mctl_com_reg * const mctl_com =
+ (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
+
+ /* TODO: hard-wired for DDR3 now */
+ writel(((para->chan == 2) ? MCTL_CR_CHANNEL_DUAL :
+ MCTL_CR_CHANNEL_SINGLE)
+ | MCTL_CR_DRAMTYPE_DDR3 | MCTL_CR_BANK(1)
+ | MCTL_CR_ROW(para->rows)
+ | ((para->bus_width == 32) ? MCTL_CR_BUSW32 : MCTL_CR_BUSW16)
+ | MCTL_CR_PAGE_SIZE(para->page_size) | MCTL_CR_RANK(para->rank),
+ &mctl_com->cr);
+
+ debug("CR: %d\n", readl(&mctl_com->cr));
+}
+
+static u32 mctl_channel_init(u32 ch_index, struct dram_sun9i_para *para)
+{
+ struct sunxi_mctl_ctl_reg *mctl_ctl;
+ struct sunxi_mctl_phy_reg *mctl_phy;
+
+ u32 CL = 0;
+ u32 CWL = 0;
+ u16 mr[4] = { 0, };
+
+#define PS2CYCLES_FLOOR(n) ((n * CONFIG_DRAM_CLK) / 1000000)
+#define PS2CYCLES_ROUNDUP(n) ((n * CONFIG_DRAM_CLK + 999999) / 1000000)
+#define NS2CYCLES_FLOOR(n) ((n * CONFIG_DRAM_CLK) / 1000)
+#define NS2CYCLES_ROUNDUP(n) ((n * CONFIG_DRAM_CLK + 999) / 1000)
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+
+ /*
+ * Convert the values to cycle counts (nCK) from what is provided
+ * by the definition of each speed bin.
+ */
+ /* const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI); */
+ const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI);
+ const u32 tRFC = NS2CYCLES_ROUNDUP(para->tRFC);
+ const u32 tRCD = PS2CYCLES_ROUNDUP(para->tRCD);
+ const u32 tRP = PS2CYCLES_ROUNDUP(para->tRP);
+ const u32 tRC = PS2CYCLES_ROUNDUP(para->tRC);
+ const u32 tRAS = PS2CYCLES_ROUNDUP(para->tRAS);
+
+ /* command and address timing */
+ const u32 tDLLK = para->tDLLK;
+ const u32 tRTP = MAX(para->tRTP.ck, PS2CYCLES_ROUNDUP(para->tRTP.ps));
+ const u32 tWTR = MAX(para->tWTR.ck, PS2CYCLES_ROUNDUP(para->tWTR.ps));
+ const u32 tWR = NS2CYCLES_FLOOR(para->tWR);
+ const u32 tMRD = para->tMRD;
+ const u32 tMOD = MAX(para->tMOD.ck, PS2CYCLES_ROUNDUP(para->tMOD.ps));
+ const u32 tCCD = para->tCCD;
+ const u32 tRRD = MAX(para->tRRD.ck, PS2CYCLES_ROUNDUP(para->tRRD.ps));
+ const u32 tFAW = PS2CYCLES_ROUNDUP(para->tFAW);
+
+ /* calibration timings */
+ /* const u32 tZQinit = MAX(para->tZQinit.ck,
+ PS2CYCLES_ROUNDUP(para->tZQinit.ps)); */
+ const u32 tZQoper = MAX(para->tZQoper.ck,
+ PS2CYCLES_ROUNDUP(para->tZQoper.ps));
+ const u32 tZQCS = MAX(para->tZQCS.ck,
+ PS2CYCLES_ROUNDUP(para->tZQCS.ps));
+
+ /* reset timing */
+ /* const u32 tXPR = MAX(para->tXPR.ck,
+ PS2CYCLES_ROUNDUP(para->tXPR.ps)); */
+
+ /* power-down timings */
+ const u32 tXP = MAX(para->tXP.ck, PS2CYCLES_ROUNDUP(para->tXP.ps));
+ const u32 tXPDLL = MAX(para->tXPDLL.ck,
+ PS2CYCLES_ROUNDUP(para->tXPDLL.ps));
+ const u32 tCKE = MAX(para->tCKE.ck, PS2CYCLES_ROUNDUP(para->tCKE.ps));
+
+ /*
+ * self-refresh timings (keep below power-down timings, as tCKESR
+ * needs to be calculated based on the nCK value of tCKE)
+ */
+ const u32 tXS = MAX(para->tXS.ck, PS2CYCLES_ROUNDUP(para->tXS.ps));
+ const u32 tXSDLL = para->tXSDLL;
+ const u32 tCKSRE = MAX(para->tCKSRE.ck,
+ PS2CYCLES_ROUNDUP(para->tCKSRE.ps));
+ const u32 tCKESR = tCKE + 1;
+ const u32 tCKSRX = MAX(para->tCKSRX.ck,
+ PS2CYCLES_ROUNDUP(para->tCKSRX.ps));
+
+ /* write leveling timings */
+ const u32 tWLMRD = para->tWLMRD;
+ /* const u32 tWLDQSEN = para->tWLDQSEN; */
+ const u32 tWLO = PS2CYCLES_FLOOR(para->tWLO);
+ /* const u32 tWLOE = PS2CYCLES_FLOOR(para->tWLOE); */
+
+ const u32 tRASmax = tREFI * 9;
+ int i;
+
+ for (i = 0; i < para->cl_cwl_numentries; ++i) {
+ const u32 tCK = 1000000 / CONFIG_DRAM_CLK;
+
+ if ((para->cl_cwl_table[i].tCKmin <= tCK) &&
+ (tCK < para->cl_cwl_table[i].tCKmax)) {
+ CL = para->cl_cwl_table[i].CL;
+ CWL = para->cl_cwl_table[i].CWL;
+
+ debug("found CL/CWL: CL = %d, CWL = %d\n", CL, CWL);
+ break;
+ }
+ }
+
+ if ((CL == 0) && (CWL == 0)) {
+ printf("failed to find valid CL/CWL for operating point %d MHz\n",
+ CONFIG_DRAM_CLK);
+ return 0;
+ }
+
+ if (ch_index == 0) {
+ mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
+ mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
+ } else {
+ mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL1_BASE;
+ mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY1_BASE;
+ }
+
+ if (para->dram_type == DRAM_TYPE_DDR3) {
+ mr[0] = DDR3_MR0_PPD_FAST_EXIT | DDR3_MR0_WR(tWR) |
+ DDR3_MR0_CL(CL);
+ mr[1] = DDR3_MR1_RTT120OHM;
+ mr[2] = DDR3_MR2_TWL(CWL);
+ mr[3] = 0;
+
+ /*
+ * DRAM3 initialisation requires holding CKE LOW for
+ * at least 500us prior to starting the initialisation
+ * sequence and at least 10ns after driving CKE HIGH
+ * before the initialisation sequence may be started).
+ *
+ * Refer to Micron document "TN-41-07: DDR3 Power-Up,
+ * Initialization, and Reset DDR3 Initialization
+ * Routine" for details).
+ */
+ writel(MCTL_INIT0_POST_CKE_x1024(1) |
+ MCTL_INIT0_PRE_CKE_x1024(
+ (500 * CONFIG_DRAM_CLK + 1023) / 1024), /* 500us */
+ &mctl_ctl->init[0]);
+ writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
+ &mctl_ctl->init[1]);
+ /* INIT2 is not used for DDR3 */
+ writel(MCTL_INIT3_MR(mr[0]) | MCTL_INIT3_EMR(mr[1]),
+ &mctl_ctl->init[3]);
+ writel(MCTL_INIT4_EMR2(mr[2]) | MCTL_INIT4_EMR3(mr[3]),
+ &mctl_ctl->init[4]);
+ writel(MCTL_INIT5_DEV_ZQINIT_x32(512 / 32), /* 512 cycles */
+ &mctl_ctl->init[5]);
+ } else {
+ /* !!! UNTESTED !!! */
+ /*
+ * LPDDR2 and/or LPDDR3 require a 200us minimum delay
+ * after driving CKE HIGH in the initialisation sequence.
+ */
+ writel(MCTL_INIT0_POST_CKE_x1024(
+ (200 * CONFIG_DRAM_CLK + 1023) / 1024),
+ &mctl_ctl->init[0]);
+ writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
+ &mctl_ctl->init[1]);
+ writel(MCTL_INIT2_IDLE_AFTER_RESET_x32(
+ (CONFIG_DRAM_CLK + 31) / 32) /* 1us */
+ | MCTL_INIT2_MIN_STABLE_CLOCK_x1(5), /* 5 cycles */
+ &mctl_ctl->init[2]);
+ writel(MCTL_INIT3_MR(mr[1]) | MCTL_INIT3_EMR(mr[2]),
+ &mctl_ctl->init[3]);
+ writel(MCTL_INIT4_EMR2(mr[3]),
+ &mctl_ctl->init[4]);
+ writel(MCTL_INIT5_DEV_ZQINIT_x32(
+ (CONFIG_DRAM_CLK + 31) / 32) /* 1us */
+ | MCTL_INIT5_MAX_AUTO_INIT_x1024(
+ (10 * CONFIG_DRAM_CLK + 1023) / 1024),
+ &mctl_ctl->init[5]);
+ }
+
+ /* (DDR3) We always use a burst-length of 8. */
+#define MCTL_BL 8
+ /* wr2pre: WL + BL/2 + tWR */
+#define WR2PRE (MCTL_BL/2 + CWL + tWTR)
+ /* wr2rd = CWL + BL/2 + tWTR */
+#define WR2RD (MCTL_BL/2 + CWL + tWTR)
+ /*
+ * rd2wr = RL + BL/2 + 2 - WL (for DDR3)
+ * rd2wr = RL + BL/2 + RU(tDQSCKmax/tCK) + 1 - WL (for LPDDR2/LPDDR3)
+ */
+#define RD2WR (CL + MCTL_BL/2 + 2 - CWL)
+#define MCTL_PHY_TRTW 0
+#define MCTL_PHY_TRTODT 0
+
+#define MCTL_DIV2(n) ((n + 1)/2)
+#define MCTL_DIV32(n) (n/32)
+#define MCTL_DIV1024(n) (n/1024)
+
+ writel((MCTL_DIV2(WR2PRE) << 24) | (MCTL_DIV2(tFAW) << 16) |
+ (MCTL_DIV1024(tRASmax) << 8) | (MCTL_DIV2(tRAS) << 0),
+ &mctl_ctl->dramtmg[0]);
+ writel((MCTL_DIV2(tXP) << 16) | (MCTL_DIV2(tRTP) << 8) |
+ (MCTL_DIV2(tRC) << 0),
+ &mctl_ctl->dramtmg[1]);
+ writel((MCTL_DIV2(CWL) << 24) | (MCTL_DIV2(CL) << 16) |
+ (MCTL_DIV2(RD2WR) << 8) | (MCTL_DIV2(WR2RD) << 0),
+ &mctl_ctl->dramtmg[2]);
+ /*
+ * Note: tMRW is located at bit 16 (and up) in DRAMTMG3...
+ * this is only relevant for LPDDR2/LPDDR3
+ */
+ writel((MCTL_DIV2(tMRD) << 12) | (MCTL_DIV2(tMOD) << 0),
+ &mctl_ctl->dramtmg[3]);
+ writel((MCTL_DIV2(tRCD) << 24) | (MCTL_DIV2(tCCD) << 16) |
+ (MCTL_DIV2(tRRD) << 8) | (MCTL_DIV2(tRP) << 0),
+ &mctl_ctl->dramtmg[4]);
+ writel((MCTL_DIV2(tCKSRX) << 24) | (MCTL_DIV2(tCKSRE) << 16) |
+ (MCTL_DIV2(tCKESR) << 8) | (MCTL_DIV2(tCKE) << 0),
+ &mctl_ctl->dramtmg[5]);
+
+ /* These timings are relevant for LPDDR2/LPDDR3 only */
+ /* writel((MCTL_TCKDPDE << 24) | (MCTL_TCKDPX << 16) |
+ (MCTL_TCKCSX << 0), &mctl_ctl->dramtmg[6]); */
+
+ /* printf("DRAMTMG7 reset value: 0x%x\n",
+ readl(&mctl_ctl->dramtmg[7])); */
+ /* DRAMTMG7 reset value: 0x202 */
+ /* DRAMTMG7 should contain t_ckpde and t_ckpdx: check reset values!!! */
+ /* printf("DRAMTMG8 reset value: 0x%x\n",
+ readl(&mctl_ctl->dramtmg[8])); */
+ /* DRAMTMG8 reset value: 0x44 */
+
+ writel((MCTL_DIV32(tXSDLL) << 0), &mctl_ctl->dramtmg[8]);
+
+ writel((MCTL_DIV32(tREFI) << 16) | (MCTL_DIV2(tRFC) << 0),
+ &mctl_ctl->rfshtmg);
+
+ if (para->dram_type == DRAM_TYPE_DDR3) {
+ writel((2 << 24) | ((MCTL_DIV2(CL) - 2) << 16) |
+ (1 << 8) | ((MCTL_DIV2(CWL) - 2) << 0),
+ &mctl_ctl->dfitmg[0]);
+ } else {
+ /* TODO */
+ }
+
+ /* TODO: handle the case of the write latency domain going to 0 ... */
+
+ /*
+ * Disable dfi_init_complete_en (the triggering of the SDRAM
+ * initialisation when the PHY initialisation completes).
+ */
+ clrbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
+ /* Disable the automatic generation of DLL calibration requests */
+ setbits_le32(&mctl_ctl->dfiupd[0], MCTL_DFIUPD0_DIS_AUTO_CTRLUPD);
+
+ /* A80-Q7: 2T, 1 rank, DDR3, full-32bit-DQ */
+ /* TODO: make 2T and BUSWIDTH configurable */
+ writel(MCTL_MSTR_DEVICETYPE(para->dram_type) |
+ MCTL_MSTR_BURSTLENGTH(para->dram_type) |
+ MCTL_MSTR_ACTIVERANKS(para->rank) |
+ MCTL_MSTR_2TMODE | MCTL_MSTR_BUSWIDTH32,
+ &mctl_ctl->mstr);
+
+ if (para->dram_type == DRAM_TYPE_DDR3) {
+ writel(MCTL_ZQCTRL0_TZQCL(MCTL_DIV2(tZQoper)) |
+ (MCTL_DIV2(tZQCS)), &mctl_ctl->zqctrl[0]);
+ /*
+ * TODO: is the following really necessary as the bottom
+ * half should already be 0x100 and the upper half should
+ * be ignored for a DDR3 device???
+ */
+ writel(MCTL_ZQCTRL1_TZQSI_x1024(0x100),
+ &mctl_ctl->zqctrl[1]);
+ } else {
+ writel(MCTL_ZQCTRL0_TZQCL(0x200) | MCTL_ZQCTRL0_TZQCS(0x40),
+ &mctl_ctl->zqctrl[0]);
+ writel(MCTL_ZQCTRL1_TZQRESET(0x28) |
+ MCTL_ZQCTRL1_TZQSI_x1024(0x100),
+ &mctl_ctl->zqctrl[1]);
+ }
+
+ /* Assert dfi_init_complete signal */
+ setbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
+ /* Disable auto-refresh */
+ setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
+
+ /* PHY initialisation */
+
+ /* TODO: make 2T and 8-bank mode configurable */
+ writel(MCTL_PHY_DCR_BYTEMASK | MCTL_PHY_DCR_2TMODE |
+ MCTL_PHY_DCR_DDR8BNK | MCTL_PHY_DRAMMODE_DDR3,
+ &mctl_phy->dcr);
+
+ /* For LPDDR2 or LPDDR3, set DQSGX to 0 before training. */
+ if (para->dram_type != DRAM_TYPE_DDR3)
+ clrbits_le32(&mctl_phy->dsgcr, (3 << 6));
+
+ writel(mr[0], &mctl_phy->mr0);
+ writel(mr[1], &mctl_phy->mr1);
+ writel(mr[2], &mctl_phy->mr2);
+ writel(mr[3], &mctl_phy->mr3);
+
+ /*
+ * The DFI PHY is running at full rate. We thus use the actual
+ * timings in clock cycles here.
+ */
+ writel((tRC << 26) | (tRRD << 22) | (tRAS << 16) |
+ (tRCD << 12) | (tRP << 8) | (tWTR << 4) | (tRTP << 0),
+ &mctl_phy->dtpr[0]);
+ writel((tMRD << 0) | ((tMOD - 12) << 2) | (tFAW << 5) |
+ (tRFC << 11) | (tWLMRD << 20) | (tWLO << 26),
+ &mctl_phy->dtpr[1]);
+ writel((tXS << 0) | (MAX(tXP, tXPDLL) << 10) |
+ (tCKE << 15) | (tDLLK << 19) |
+ (MCTL_PHY_TRTODT << 29) | (MCTL_PHY_TRTW << 30) |
+ (((tCCD - 4) & 0x1) << 31),
+ &mctl_phy->dtpr[2]);
+
+ /* tDQSCK and tDQSCKmax are used LPDDR2/LPDDR3 */
+ /* writel((tDQSCK << 0) | (tDQSCKMAX << 3), &mctl_phy->dtpr[3]); */
+
+ /*
+ * We use the same values used by Allwinner's Boot0 for the PTR
+ * (PHY timing register) configuration that is tied to the PHY
+ * implementation.
+ */
+ writel(0x42C21590, &mctl_phy->ptr[0]);
+ writel(0xD05612C0, &mctl_phy->ptr[1]);
+ if (para->dram_type == DRAM_TYPE_DDR3) {
+ const unsigned int tdinit0 = 500 * CONFIG_DRAM_CLK; /* 500us */
+ const unsigned int tdinit1 = (360 * CONFIG_DRAM_CLK + 999) /
+ 1000; /* 360ns */
+ const unsigned int tdinit2 = 200 * CONFIG_DRAM_CLK; /* 200us */
+ const unsigned int tdinit3 = CONFIG_DRAM_CLK; /* 1us */
+
+ writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
+ writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
+ } else {
+ /* LPDDR2 or LPDDR3 */
+ const unsigned int tdinit0 = (100 * CONFIG_DRAM_CLK + 999) /
+ 1000; /* 100ns */
+ const unsigned int tdinit1 = 200 * CONFIG_DRAM_CLK; /* 200us */
+ const unsigned int tdinit2 = 22 * CONFIG_DRAM_CLK; /* 11us */
+ const unsigned int tdinit3 = 2 * CONFIG_DRAM_CLK; /* 2us */
+
+ writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
+ writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
+ }
+
+ /* TEST ME */
+ writel(0x00203131, &mctl_phy->acmdlr);
+
+ /* TODO: can we enable this for 2 ranks, even when we don't know yet */
+ writel(MCTL_DTCR_DEFAULT | MCTL_DTCR_RANKEN(para->rank),
+ &mctl_phy->dtcr);
+
+ /* TODO: half width */
+ debug("DX2GCR0 reset: 0x%x\n", readl(&mctl_phy->dx[2].gcr[0]));
+ writel(0x7C000285, &mctl_phy->dx[2].gcr[0]);
+ writel(0x7C000285, &mctl_phy->dx[3].gcr[0]);
+
+ clrsetbits_le32(&mctl_phy->zq[0].pr, 0xff,
+ (CONFIG_DRAM_ZQ >> 0) & 0xff); /* CK/CA */
+ clrsetbits_le32(&mctl_phy->zq[1].pr, 0xff,
+ (CONFIG_DRAM_ZQ >> 8) & 0xff); /* DX0/DX1 */
+ clrsetbits_le32(&mctl_phy->zq[2].pr, 0xff,
+ (CONFIG_DRAM_ZQ >> 16) & 0xff); /* DX2/DX3 */
+
+ /* TODO: make configurable & implement non-ODT path */
+ if (1) {
+ int lane;
+ for (lane = 0; lane < 4; ++lane) {
+ clrbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff);
+ clrbits_le32(&mctl_phy->dx[lane].gcr[3],
+ (0x3<<12) | (0x3<<4));
+ }
+ } else {
+ /* TODO: check */
+ int lane;
+ for (lane = 0; lane < 4; ++lane) {
+ clrsetbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff,
+ 0xaaaa);
+ if (para->dram_type == DRAM_TYPE_DDR3)
+ setbits_le32(&mctl_phy->dx[lane].gcr[3],
+ (0x3<<12) | (0x3<<4));
+ else
+ setbits_le32(&mctl_phy->dx[lane].gcr[3],
+ 0x00000012);
+ }
+ }
+
+ writel(0x04058D02, &mctl_phy->zq[0].cr); /* CK/CA */
+ writel(0x04058D02, &mctl_phy->zq[1].cr); /* DX0/DX1 */
+ writel(0x04058D02, &mctl_phy->zq[2].cr); /* DX2/DX3 */
+
+ /* Disable auto-refresh prior to data training */
+ setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
+
+ setbits_le32(&mctl_phy->dsgcr, 0xf << 24); /* unclear what this is... */
+ /* TODO: IODDRM (IO DDR-MODE) for DDR3L */
+ clrsetbits_le32(&mctl_phy->pgcr[1],
+ MCTL_PGCR1_ZCKSEL_MASK,
+ MCTL_PGCR1_IODDRM_DDR3 | MCTL_PGCR1_INHVT_EN);
+
+ setbits_le32(&mctl_phy->pllcr, 0x3 << 19); /* PLL frequency select */
+ /* TODO: single-channel PLL mode??? missing */
+ setbits_le32(&mctl_phy->pllcr,
+ MCTL_PLLGCR_PLL_BYPASS | MCTL_PLLGCR_PLL_POWERDOWN);
+ /* setbits_le32(&mctl_phy->pir, MCTL_PIR_PLL_BYPASS); included below */
+
+ /* Disable VT compensation */
+ clrbits_le32(&mctl_phy->pgcr[0], 0x3f);
+
+ /* TODO: "other" PLL mode ... 0x20000 seems to be the PLL Bypass */
+ if (para->dram_type == DRAM_TYPE_DDR3)
+ clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x20df3);
+ else
+ clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x2c573);
+
+ sdelay(10000); /* XXX necessary? */
+
+ /* Wait for the INIT bit to clear itself... */
+ while ((readl(&mctl_phy->pir) & MCTL_PIR_INIT) != MCTL_PIR_INIT) {
+ /* not done yet -- keep spinning */
+ debug("MCTL_PIR_INIT not set\n");
+ sdelay(1000);
+ /* TODO: implement timeout */
+ }
+
+ /* TODO: not used --- there's a "2rank debug" section here */
+
+ /* Original dram init code which may come in handy later
+ ********************************************************
+ * LPDDR2 and LPDDR3 *
+ if ((para->dram_type) == 6 || (para->dram_type) == 7) {
+ reg_val = mctl_read_w(P0_DSGCR + ch_offset);
+ reg_val &= (~(0x3<<6)); * set DQSGX to 1 *
+ reg_val |= (0x1<<6); * dqs gate extend *
+ mctl_write_w(P0_DSGCR + ch_offset, reg_val);
+ dram_dbg("DQS Gate Extend Enable!\n", ch_index);
+ }
+
+ * Disable ZCAL after initial--for nand dma debug--20140330 by YSZ *
+ if (para->dram_tpr13 & (0x1<<31)) {
+ reg_val = mctl_read_w(P0_ZQ0CR + ch_offset);
+ reg_val |= (0x7<<11);
+ mctl_write_w(P0_ZQ0CR + ch_offset, reg_val);
+ }
+ ********************************************************
+ */
+
+ /*
+ * TODO: more 2-rank support
+ * (setting the "dqs gate delay to average between 2 rank")
+ */
+
+ /* check if any errors are set */
+ if (readl(&mctl_phy->pgsr[0]) & MCTL_PGSR0_ERRORS) {
+ debug("Channel %d unavailable!\n", ch_index);
+ return 0;
+ } else{
+ /* initial OK */
+ debug("Channel %d OK!\n", ch_index);
+ /* return 1; */
+ }
+
+ while ((readl(&mctl_ctl->stat) & 0x1) != 0x1) {
+ debug("Waiting for INIT to be done (controller to come up into 'normal operating' mode\n");
+ sdelay(100000);
+ /* init not done */
+ /* TODO: implement time-out */
+ }
+ debug("done\n");
+
+ /* "DDR is controller by contoller" */
+ clrbits_le32(&mctl_phy->pgcr[3], (1 << 25));
+
+ /* TODO: is the following necessary? */
+ debug("DFIMISC before writing 0: 0x%x\n", readl(&mctl_ctl->dfimisc));
+ writel(0, &mctl_ctl->dfimisc);
+
+ /* Enable auto-refresh */
+ clrbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
+
+ debug("channel_init complete\n");
+ return 1;
+}
+
+signed int DRAMC_get_dram_size(void)
+{
+ struct sunxi_mctl_com_reg * const mctl_com =
+ (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
+
+ unsigned int reg_val;
+ unsigned int dram_size;
+ unsigned int temp;
+
+ reg_val = readl(&mctl_com->cr);
+
+ temp = (reg_val >> 8) & 0xf; /* page size code */
+ dram_size = (temp - 6); /* (1 << dram_size) * 512Bytes */
+
+ temp = (reg_val >> 4) & 0xf; /* row width code */
+ dram_size += (temp + 1); /* (1 << dram_size) * 512Bytes */
+
+ temp = (reg_val >> 2) & 0x3; /* bank number code */
+ dram_size += (temp + 2); /* (1 << dram_size) * 512Bytes */
+
+ temp = reg_val & 0x3; /* rank number code */
+ dram_size += temp; /* (1 << dram_size) * 512Bytes */
+
+ temp = (reg_val >> 19) & 0x1; /* channel number code */
+ dram_size += temp; /* (1 << dram_size) * 512Bytes */
+
+ dram_size = dram_size - 11; /* (1 << dram_size) MBytes */
+
+ return 1 << dram_size;
+}
+
+unsigned long sunxi_dram_init(void)
+{
+ struct sunxi_mctl_com_reg * const mctl_com =
+ (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
+
+ struct dram_sun9i_cl_cwl_timing cl_cwl[] = {
+ { .CL = 5, .CWL = 5, .tCKmin = 3000, .tCKmax = 3300 },
+ { .CL = 6, .CWL = 5, .tCKmin = 2500, .tCKmax = 3300 },
+ { .CL = 8, .CWL = 6, .tCKmin = 1875, .tCKmax = 2500 },
+ { .CL = 10, .CWL = 7, .tCKmin = 1500, .tCKmax = 1875 },
+ { .CL = 11, .CWL = 8, .tCKmin = 1250, .tCKmax = 1500 }
+ };
+
+ /* Set initial parameters, these get modified by the autodetect code */
+ struct dram_sun9i_para para = {
+ .dram_type = DRAM_TYPE_DDR3,
+ .bus_width = 32,
+ .chan = 2,
+ .rank = 1,
+ /* .rank = 2, */
+ .page_size = 4096,
+ /* .rows = 16, */
+ .rows = 15,
+
+ /* CL/CWL table for the speed bin */
+ .cl_cwl_table = cl_cwl,
+ .cl_cwl_numentries = sizeof(cl_cwl) /
+ sizeof(struct dram_sun9i_cl_cwl_timing),
+
+ /* timings */
+ .tREFI = 7800, /* 7.8us (up to 85 degC) */
+ .tRFC = 260, /* 260ns for 4GBit devices */
+ /* 350ns @ 8GBit */
+
+ .tRCD = 13750,
+ .tRP = 13750,
+ .tRC = 48750,
+ .tRAS = 35000,
+
+ .tDLLK = 512,
+ .tRTP = { .ck = 4, .ps = 7500 },
+ .tWTR = { .ck = 4, .ps = 7500 },
+ .tWR = 15,
+ .tMRD = 4,
+ .tMOD = { .ck = 12, .ps = 15000 },
+ .tCCD = 4,
+ .tRRD = { .ck = 4, .ps = 7500 },
+ .tFAW = 40,
+
+ /* calibration timing */
+ /* .tZQinit = { .ck = 512, .ps = 640000 }, */
+ .tZQoper = { .ck = 256, .ps = 320000 },
+ .tZQCS = { .ck = 64, .ps = 80000 },
+
+ /* reset timing */
+ /* .tXPR = { .ck = 5, .ps = 10000 }, */
+
+ /* self-refresh timings */
+ .tXS = { .ck = 5, .ps = 10000 },
+ .tXSDLL = 512,
+ .tCKSRE = { .ck = 5, .ps = 10000 },
+ .tCKSRX = { .ck = 5, .ps = 10000 },
+
+ /* power-down timings */
+ .tXP = { .ck = 3, .ps = 6000 },
+ .tXPDLL = { .ck = 10, .ps = 24000 },
+ .tCKE = { .ck = 3, .ps = 5000 },
+
+ /* write leveling timings */
+ .tWLMRD = 40,
+ /* .tWLDQSEN = 25, */
+ .tWLO = 7500,
+ /* .tWLOE = 2000, */
+ };
+
+ /*
+ * Disable A80 internal 240 ohm resistor.
+ *
+ * This code sequence is adapated from Allwinner's Boot0 (see
+ * https://github.com/allwinner-zh/bootloader.git), as there
+ * is no documentation for these two registers in the R_PRCM
+ * block.
+ */
+ setbits_le32(SUNXI_PRCM_BASE + 0x1e0, (0x3 << 8));
+ writel(0, SUNXI_PRCM_BASE + 0x1e8);
+
+ mctl_sys_init();
+
+ if (!mctl_channel_init(0, ¶))
+ return 0;
+
+ /* dual-channel */
+ if (!mctl_channel_init(1, ¶)) {
+ /* disable channel 1 */
+ clrsetbits_le32(&mctl_com->cr, MCTL_CR_CHANNEL_MASK,
+ MCTL_CR_CHANNEL_SINGLE);
+ /* disable channel 1 global clock */
+ clrbits_le32(&mctl_com->cr, MCTL_CCR_CH1_CLK_EN);
+ }
+
+ mctl_com_init(¶);
+
+ /* return the proper RAM size */
+ return DRAMC_get_dram_size() << 20;
+}