--- /dev/null
+/**************************************************************************
+* Copyright (C) 2015 Jeff Ciesielski <jeffciesielski@gmail.com> *
+* *
+* This program is free software; you can redistribute it and/or modify *
+* it under the terms of the GNU General Public License as published by *
+* the Free Software Foundation; either version 2 of the License, or *
+* (at your option) any later version. *
+* *
+* This program is distributed in the hope that it will be useful, *
+* but WITHOUT ANY WARRANTY; without even the implied warranty of *
+* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
+* GNU General Public License for more details. *
+* *
+***************************************************************************/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "imp.h"
+#include <helper/binarybuffer.h>
+#include <target/algorithm.h>
+#include <target/armv7m.h>
+
+/* Maximum number of sectors */
+#define MAX_XMC_SECTORS 12
+
+/* System control unit registers */
+#define SCU_REG_BASE 0x50004000
+
+#define SCU_ID_CHIP 0x04
+
+/* Base of the non-cached flash memory */
+#define PFLASH_BASE 0x0C000000
+
+/* User configuration block offsets */
+#define UCB0_BASE 0x00000000
+#define UCB1_BASE 0x00000400
+#define UCB2_BASE 0x00000800
+
+/* Flash register base */
+#define FLASH_REG_BASE 0x58000000
+
+/* PMU ID Registers */
+#define FLASH_REG_PMU_ID (FLASH_REG_BASE | 0x0508)
+
+/* PMU Fields */
+#define PMU_MOD_REV_MASK 0xFF
+#define PMU_MOD_TYPE_MASK 0xFF00
+#define PMU_MOD_NO_MASK 0xFFFF0000
+
+/* Prefetch Config */
+#define FLASH_REG_PREF_PCON (FLASH_REG_BASE | 0x4000)
+
+/* Prefetch Fields */
+#define PCON_IBYP (1 << 0)
+#define PCON_IINV (1 << 1)
+
+/* Flash ID Register */
+#define FLASH_REG_FLASH0_ID (FLASH_REG_BASE | 0x2008)
+
+/* Flash Status Register */
+#define FLASH_REG_FLASH0_FSR (FLASH_REG_BASE | 0x2010)
+
+#define FSR_PBUSY (0)
+#define FSR_FABUSY (1)
+#define FSR_PROG (4)
+#define FSR_ERASE (5)
+#define FSR_PFPAGE (6)
+#define FSR_PFOPER (8)
+#define FSR_SQER (10)
+#define FSR_PROER (11)
+#define FSR_PFSBER (12)
+#define FSR_PFDBER (14)
+#define FSR_PROIN (16)
+#define FSR_RPROIN (18)
+#define FSR_RPRODIS (19)
+#define FSR_WPROIN0 (21)
+#define FSR_WPROIN1 (22)
+#define FSR_WPROIN2 (23)
+#define FSR_WPRODIS0 (25)
+#define FSR_WPRODIS1 (26)
+#define FSR_SLM (28)
+#define FSR_VER (31)
+
+#define FSR_PBUSY_MASK (0x01 << FSR_PBUSY)
+#define FSR_FABUSY_MASK (0x01 << FSR_FABUSY)
+#define FSR_PROG_MASK (0x01 << FSR_PROG)
+#define FSR_ERASE_MASK (0x01 << FSR_ERASE)
+#define FSR_PFPAGE_MASK (0x01 << FSR_PFPAGE)
+#define FSR_PFOPER_MASK (0x01 << FSR_PFOPER)
+#define FSR_SQER_MASK (0x01 << FSR_SQER)
+#define FSR_PROER_MASK (0x01 << FSR_PROER)
+#define FSR_PFSBER_MASK (0x01 << FSR_PFSBER)
+#define FSR_PFDBER_MASK (0x01 << FSR_PFDBER)
+#define FSR_PROIN_MASK (0x01 << FSR_PROIN)
+#define FSR_RPROIN_MASK (0x01 << FSR_RPROIN)
+#define FSR_RPRODIS_MASK (0x01 << FSR_RPRODIS)
+#define FSR_WPROIN0_MASK (0x01 << FSR_WPROIN0)
+#define FSR_WPROIN1_MASK (0x01 << FSR_WPROIN1)
+#define FSR_WPROIN2_MASK (0x01 << FSR_WPROIN2)
+#define FSR_WPRODIS0_MASK (0x01 << FSR_WPRODIS0)
+#define FSR_WPRODIS1_MASK (0x01 << FSR_WPRODIS1)
+#define FSR_SLM_MASK (0x01 << FSR_SLM)
+#define FSR_VER_MASK (0x01 << FSR_VER)
+
+/* Flash Config Register */
+#define FLASH_REG_FLASH0_FCON (FLASH_REG_BASE | 0x2014)
+
+#define FCON_WSPFLASH (0)
+#define FCON_WSECPF (4)
+#define FCON_IDLE (13)
+#define FCON_ESLDIS (14)
+#define FCON_SLEEP (15)
+#define FCON_RPA (16)
+#define FCON_DCF (17)
+#define FCON_DDF (18)
+#define FCON_VOPERM (24)
+#define FCON_SQERM (25)
+#define FCON_PROERM (26)
+#define FCON_PFSBERM (27)
+#define FCON_PFDBERM (29)
+#define FCON_EOBM (31)
+
+#define FCON_WSPFLASH_MASK (0x0f << FCON_WSPFLASH)
+#define FCON_WSECPF_MASK (0x01 << FCON_WSECPF)
+#define FCON_IDLE_MASK (0x01 << FCON_IDLE)
+#define FCON_ESLDIS_MASK (0x01 << FCON_ESLDIS)
+#define FCON_SLEEP_MASK (0x01 << FCON_SLEEP)
+#define FCON_RPA_MASK (0x01 << FCON_RPA)
+#define FCON_DCF_MASK (0x01 << FCON_DCF)
+#define FCON_DDF_MASK (0x01 << FCON_DDF)
+#define FCON_VOPERM_MASK (0x01 << FCON_VOPERM)
+#define FCON_SQERM_MASK (0x01 << FCON_SQERM)
+#define FCON_PROERM_MASK (0x01 << FCON_PROERM)
+#define FCON_PFSBERM_MASK (0x01 << FCON_PFSBERM)
+#define FCON_PFDBERM_MASK (0x01 << FCON_PFDBERM)
+#define FCON_EOBM_MASK (0x01 << FCON_EOBM)
+
+/* Flash Margin Control Register */
+#define FLASH_REG_FLASH0_MARP (FLASH_REG_BASE | 0x2018)
+
+#define MARP_MARGIN (0)
+#define MARP_TRAPDIS (15)
+
+#define MARP_MARGIN_MASK (0x0f << MARP_MARGIN)
+#define MARP_TRAPDIS_MASK (0x01 << MARP_TRAPDIS)
+
+/* Flash Protection Registers */
+#define FLASH_REG_FLASH0_PROCON0 (FLASH_REG_BASE | 0x2020)
+#define FLASH_REG_FLASH0_PROCON1 (FLASH_REG_BASE | 0x2024)
+#define FLASH_REG_FLASH0_PROCON2 (FLASH_REG_BASE | 0x2028)
+
+#define PROCON_S0L (0)
+#define PROCON_S1L (1)
+#define PROCON_S2L (2)
+#define PROCON_S3L (3)
+#define PROCON_S4L (4)
+#define PROCON_S5L (5)
+#define PROCON_S6L (6)
+#define PROCON_S7L (7)
+#define PROCON_S8L (8)
+#define PROCON_S9L (9)
+#define PROCON_S10_S11L (10)
+#define PROCON_RPRO (15)
+
+#define PROCON_S0L_MASK (0x01 << PROCON_S0L)
+#define PROCON_S1L_MASK (0x01 << PROCON_S1L)
+#define PROCON_S2L_MASK (0x01 << PROCON_S2L)
+#define PROCON_S3L_MASK (0x01 << PROCON_S3L)
+#define PROCON_S4L_MASK (0x01 << PROCON_S4L)
+#define PROCON_S5L_MASK (0x01 << PROCON_S5L)
+#define PROCON_S6L_MASK (0x01 << PROCON_S6L)
+#define PROCON_S7L_MASK (0x01 << PROCON_S7L)
+#define PROCON_S8L_MASK (0x01 << PROCON_S8L)
+#define PROCON_S9L_MASK (0x01 << PROCON_S9L)
+#define PROCON_S10_S11L_MASK (0x01 << PROCON_S10_S11L)
+#define PROCON_RPRO_MASK (0x01 << PROCON_RPRO)
+
+#define FLASH_PROTECT_CONFIRMATION_CODE 0x8AFE15C3
+
+/* Flash controller configuration values */
+#define FLASH_ID_XMC4500 0xA2
+#define FLASH_ID_XMC4100_4200 0x9C
+#define FLASH_ID_XMC4400 0x9F
+
+/* Timeouts */
+#define FLASH_OP_TIMEOUT 5000
+
+/* Flash commands (write/erase/protect) are performed using special
+ * command sequences that are written to magic addresses in the flash controller */
+/* Command sequence addresses. See reference manual, section 8: Flash Command Sequences */
+#define FLASH_CMD_ERASE_1 0x0C005554
+#define FLASH_CMD_ERASE_2 0x0C00AAA8
+#define FLASH_CMD_ERASE_3 FLASH_CMD_ERASE_1
+#define FLASH_CMD_ERASE_4 FLASH_CMD_ERASE_1
+#define FLASH_CMD_ERASE_5 FLASH_CMD_ERASE_2
+/* ERASE_6 is the sector base address */
+
+#define FLASH_CMD_CLEAR_STATUS FLASH_CMD_ERASE_1
+
+#define FLASH_CMD_ENTER_PAGEMODE FLASH_CMD_ERASE_1
+
+#define FLASH_CMD_LOAD_PAGE_1 0x0C0055F0
+#define FLASH_CMD_LOAD_PAGE_2 0x0C0055F4
+
+#define FLASH_CMD_WRITE_PAGE_1 FLASH_CMD_ERASE_1
+#define FLASH_CMD_WRITE_PAGE_2 FLASH_CMD_ERASE_2
+#define FLASH_CMD_WRITE_PAGE_3 FLASH_CMD_ERASE_1
+/* WRITE_PAGE_4 is the page base address */
+
+#define FLASH_CMD_TEMP_UNPROT_1 FLASH_CMD_ERASE_1
+#define FLASH_CMD_TEMP_UNPROT_2 FLASH_CMD_ERASE_2
+#define FLASH_CMD_TEMP_UNPROT_3 0x0C00553C
+#define FLASH_CMD_TEMP_UNPROT_4 FLASH_CMD_ERASE_2
+#define FLASH_CMD_TEMP_UNPROT_5 FLASH_CMD_ERASE_2
+#define FLASH_CMD_TEMP_UNPROT_6 0x0C005558
+
+struct xmc4xxx_flash_bank {
+ bool probed;
+
+ /* We need the flash controller ID to choose the sector layout */
+ uint32_t fcon_id;
+
+ /* Passwords used for protection operations */
+ uint32_t pw1;
+ uint32_t pw2;
+ bool pw_set;
+
+ /* Protection flags */
+ bool read_protected;
+
+ bool write_prot_otp[MAX_XMC_SECTORS];
+};
+
+struct xmc4xxx_command_seq {
+ uint32_t address;
+ uint32_t magic;
+};
+
+/* Sector capacities. See section 8 of xmc4x00_rm */
+static unsigned int sector_capacity_8[] = {
+ 16, 16, 16, 16, 16, 16, 16, 128
+};
+
+static unsigned int sector_capacity_9[] = {
+ 16, 16, 16, 16, 16, 16, 16, 128, 256
+};
+
+static unsigned int sector_capacity_12[] = {
+ 16, 16, 16, 16, 16, 16, 16, 16, 128, 256, 256, 256
+};
+
+static int xmc4xxx_write_command_sequence(struct flash_bank *bank,
+ struct xmc4xxx_command_seq *seq,
+ int seq_len)
+{
+ int res = ERROR_OK;
+
+ for (int i = 0; i < seq_len; i++) {
+ res = target_write_u32(bank->target, seq[i].address,
+ seq[i].magic);
+ if (res != ERROR_OK)
+ return res;
+ }
+
+ return ERROR_OK;
+}
+
+static int xmc4xxx_load_bank_layout(struct flash_bank *bank)
+{
+ unsigned int *capacity = NULL;
+
+ /* At this point, we know which flash controller ID we're
+ * talking to and simply need to fill out the bank structure accordingly */
+ LOG_DEBUG("%d sectors", bank->num_sectors);
+
+ switch (bank->num_sectors) {
+ case 8:
+ capacity = sector_capacity_8;
+ break;
+ case 9:
+ capacity = sector_capacity_9;
+ break;
+ case 12:
+ capacity = sector_capacity_12;
+ break;
+ default:
+ LOG_ERROR("Unexpected number of sectors, %d\n",
+ bank->num_sectors);
+ return ERROR_FAIL;
+ }
+
+ /* This looks like a bank that we understand, now we know the
+ * corresponding sector capacities and we can add those up into the
+ * bank size. */
+ uint32_t total_offset = 0;
+ bank->sectors = calloc(bank->num_sectors,
+ sizeof(struct flash_sector));
+ for (int i = 0; i < bank->num_sectors; i++) {
+ bank->sectors[i].size = capacity[i] * 1024;
+ bank->sectors[i].offset = total_offset;
+ bank->sectors[i].is_erased = -1;
+ bank->sectors[i].is_protected = -1;
+
+ bank->size += bank->sectors[i].size;
+ LOG_DEBUG("\t%d: %uk", i, capacity[i]);
+ total_offset += bank->sectors[i].size;
+ }
+
+ /* This part doesn't follow the typical standard of 0xff
+ * being the default padding value.*/
+ bank->default_padded_value = 0x00;
+
+ return ERROR_OK;
+}
+
+static int xmc4xxx_probe(struct flash_bank *bank)
+{
+ int res;
+ uint32_t devid, config;
+ struct xmc4xxx_flash_bank *fb = bank->driver_priv;
+ uint8_t flash_id;
+
+ if (fb->probed)
+ return ERROR_OK;
+
+ /* It's not possible for the DAP to access the OTP locations needed for
+ * probing the part info and Flash geometry so we require that the target
+ * be halted before proceeding. */
+ if (bank->target->state != TARGET_HALTED) {
+ LOG_WARNING("Cannot communicate... target not halted.");
+ return ERROR_TARGET_NOT_HALTED;
+ }
+
+ /* The SCU registers contain the ID of the chip */
+ res = target_read_u32(bank->target, SCU_REG_BASE + SCU_ID_CHIP, &devid);
+ if (res != ERROR_OK) {
+ LOG_ERROR("Cannot read device identification register.");
+ return res;
+ }
+
+ /* Make sure this is a XMC4000 family device */
+ if ((devid & 0xF0000) != 0x40000) {
+ LOG_ERROR("Platform ID doesn't match XMC4xxx: 0x%08" PRIx32, devid);
+ return ERROR_FAIL;
+ }
+
+ LOG_DEBUG("Found XMC4xxx with devid: 0x%08" PRIx32, devid);
+
+ /* Now sanity-check the Flash controller itself. */
+ res = target_read_u32(bank->target, FLASH_REG_FLASH0_ID,
+ &config);
+ if (res != ERROR_OK) {
+ LOG_ERROR("Cannot read Flash bank configuration.");
+ return res;
+ }
+ flash_id = (config & 0xff0000) >> 16;
+
+ /* The Flash configuration register is our only means of
+ * determining the sector layout. We need to make sure that
+ * we understand the type of controller we're dealing with */
+ switch (flash_id) {
+ case FLASH_ID_XMC4100_4200:
+ bank->num_sectors = 8;
+ LOG_DEBUG("XMC4xxx: XMC4100/4200 detected.");
+ break;
+ case FLASH_ID_XMC4400:
+ bank->num_sectors = 9;
+ LOG_DEBUG("XMC4xxx: XMC4400 detected.");
+ break;
+ case FLASH_ID_XMC4500:
+ bank->num_sectors = 12;
+ LOG_DEBUG("XMC4xxx: XMC4500 detected.");
+ break;
+ default:
+ LOG_ERROR("XMC4xxx: Unexpected flash ID. got %02" PRIx8,
+ flash_id);
+ return ERROR_FAIL;
+ }
+
+ /* Retrieve information about the particular bank we're probing and fill in
+ * the bank structure accordingly. */
+ res = xmc4xxx_load_bank_layout(bank);
+ if (res == ERROR_OK) {
+ /* We're done */
+ fb->probed = true;
+ } else {
+ LOG_ERROR("Unable to load bank information.");
+ return ERROR_FAIL;
+ }
+
+ return ERROR_OK;
+}
+
+static int xmc4xxx_get_sector_start_addr(struct flash_bank *bank,
+ int sector, uint32_t *ret_addr)
+{
+ /* Make sure we understand this sector */
+ if (sector > bank->num_sectors)
+ return ERROR_FAIL;
+
+ *ret_addr = bank->base + bank->sectors[sector].offset;
+
+ return ERROR_OK;
+
+}
+
+static int xmc4xxx_clear_flash_status(struct flash_bank *bank)
+{
+ int res;
+ /* TODO: Do we need to check for sequence error? */
+ LOG_INFO("Clearing flash status");
+ res = target_write_u32(bank->target, FLASH_CMD_CLEAR_STATUS,
+ 0xF5);
+ if (res != ERROR_OK) {
+ LOG_ERROR("Unable to write erase command sequence");
+ return res;
+ }
+
+ return ERROR_OK;
+}
+
+static int xmc4xxx_get_flash_status(struct flash_bank *bank, uint32_t *status)
+{
+ int res;
+
+ res = target_read_u32(bank->target, FLASH_REG_FLASH0_FSR, status);
+
+ if (res != ERROR_OK)
+ LOG_ERROR("Cannot read flash status register.");
+
+ return res;
+}
+
+static int xmc4xxx_wait_status_busy(struct flash_bank *bank, int timeout)
+{
+ int res;
+ uint32_t status;
+
+ res = xmc4xxx_get_flash_status(bank, &status);
+ if (res != ERROR_OK)
+ return res;
+
+ /* While the flash controller is busy, wait */
+ while (status & FSR_PBUSY_MASK) {
+ res = xmc4xxx_get_flash_status(bank, &status);
+ if (res != ERROR_OK)
+ return res;
+
+ if (timeout-- <= 0) {
+ LOG_ERROR("Timed out waiting for flash");
+ return ERROR_FAIL;
+ }
+ alive_sleep(1);
+ keep_alive();
+ }
+
+ if (status & FSR_PROER_MASK) {
+ LOG_ERROR("XMC4xxx flash protected");
+ res = ERROR_FAIL;
+ }
+
+ return res;
+}
+
+static int xmc4xxx_erase_sector(struct flash_bank *bank, uint32_t address,
+ bool user_config)
+{
+ int res;
+ uint32_t status;
+
+ /* See reference manual table 8.4: Command Sequences for Flash Control */
+ struct xmc4xxx_command_seq erase_cmd_seq[6] = {
+ {FLASH_CMD_ERASE_1, 0xAA},
+ {FLASH_CMD_ERASE_2, 0x55},
+ {FLASH_CMD_ERASE_3, 0x80},
+ {FLASH_CMD_ERASE_4, 0xAA},
+ {FLASH_CMD_ERASE_5, 0x55},
+ {0xFF, 0xFF} /* Needs filled in */
+ };
+
+ /* We need to fill in the base address of the sector we'll be
+ * erasing, as well as the magic code that determines whether
+ * this is a standard flash sector or a user configuration block */
+
+ erase_cmd_seq[5].address = address;
+ if (user_config) {
+ /* Removing flash protection requires the addition of
+ * the base address */
+ erase_cmd_seq[5].address += bank->base;
+ erase_cmd_seq[5].magic = 0xC0;
+ } else {
+ erase_cmd_seq[5].magic = 0x30;
+ }
+
+ res = xmc4xxx_write_command_sequence(bank, erase_cmd_seq,
+ ARRAY_SIZE(erase_cmd_seq));
+ if (res != ERROR_OK)
+ return res;
+
+ /* Read the flash status register */
+ res = target_read_u32(bank->target, FLASH_REG_FLASH0_FSR, &status);
+ if (res != ERROR_OK) {
+ LOG_ERROR("Cannot read flash status register.");
+ return res;
+ }
+
+ /* Check for a sequence error */
+ if (status & FSR_SQER_MASK) {
+ LOG_ERROR("Error with flash erase sequence");
+ return ERROR_FAIL;
+ }
+
+ /* Make sure a flash erase was triggered */
+ if (!(status & FSR_ERASE_MASK)) {
+ LOG_ERROR("Flash failed to erase");
+ return ERROR_FAIL;
+ }
+
+ /* Now we must wait for the erase operation to end */
+ res = xmc4xxx_wait_status_busy(bank, FLASH_OP_TIMEOUT);
+
+ return res;
+}
+
+static int xmc4xxx_erase(struct flash_bank *bank, int first, int last)
+{
+ struct xmc4xxx_flash_bank *fb = bank->driver_priv;
+ int res;
+
+ if (bank->target->state != TARGET_HALTED) {
+ LOG_ERROR("Unable to erase, target is not halted");
+ return ERROR_TARGET_NOT_HALTED;
+ }
+
+ if (!fb->probed) {
+ res = xmc4xxx_probe(bank);
+ if (res != ERROR_OK)
+ return res;
+ }
+
+ uint32_t tmp_addr;
+ /* Loop through the sectors and erase each one */
+ for (int i = first; i <= last; i++) {
+ res = xmc4xxx_get_sector_start_addr(bank, i, &tmp_addr);
+ if (res != ERROR_OK) {
+ LOG_ERROR("Invalid sector %d", i);
+ return res;
+ }
+
+ LOG_DEBUG("Erasing sector %d @ 0x%08"PRIx32, i, tmp_addr);
+
+ res = xmc4xxx_erase_sector(bank, tmp_addr, false);
+ if (res != ERROR_OK) {
+ LOG_ERROR("Unable to write erase command sequence");
+ goto clear_status_and_exit;
+ }
+
+ /* Now we must wait for the erase operation to end */
+ res = xmc4xxx_wait_status_busy(bank, FLASH_OP_TIMEOUT);
+
+ if (res != ERROR_OK)
+ goto clear_status_and_exit;
+
+ bank->sectors[i].is_erased = 1;
+ }
+
+clear_status_and_exit:
+ res = xmc4xxx_clear_flash_status(bank);
+ return res;
+
+}
+
+static int xmc4xxx_enter_page_mode(struct flash_bank *bank)
+{
+ int res;
+ uint32_t status;
+
+ res = target_write_u32(bank->target, FLASH_CMD_ENTER_PAGEMODE, 0x50);
+ if (res != ERROR_OK) {
+ LOG_ERROR("Unable to write enter page mode command");
+ return ERROR_FAIL;
+ }
+
+ res = xmc4xxx_get_flash_status(bank, &status);
+
+ if (res != ERROR_OK)
+ return res;
+
+ /* Make sure we're in page mode */
+ if (!(status & FSR_PFPAGE_MASK)) {
+ LOG_ERROR("Unable to enter page mode");
+ return ERROR_FAIL;
+ }
+
+ /* Make sure we didn't encounter a sequence error */
+ if (status & FSR_SQER_MASK) {
+ LOG_ERROR("Sequence error while entering page mode");
+ return ERROR_FAIL;
+ }
+
+ return res;
+}
+
+/* The logical erase value of an xmc4xxx memory cell is 0x00,
+ * therefore, we cannot use the built in flash blank check and must
+ * implement our own */
+
+/** Checks whether a memory region is zeroed. */
+int xmc4xxx_blank_check_memory(struct target *target,
+ uint32_t address, uint32_t count, uint32_t *blank)
+{
+ struct working_area *erase_check_algorithm;
+ struct reg_param reg_params[3];
+ struct armv7m_algorithm armv7m_info;
+ int retval;
+
+ /* see contrib/loaders/erase_check/armv7m_0_erase_check.s for src */
+
+ static const uint8_t erase_check_code[] = {
+ /* loop: */
+ 0x03, 0x78, /* ldrb r3, [r0] */
+ 0x01, 0x30, /* adds r0, #1 */
+ 0x1A, 0x43, /* orrs r2, r2, r3 */
+ 0x01, 0x39, /* subs r1, r1, #1 */
+ 0xFA, 0xD1, /* bne loop */
+ 0x00, 0xBE /* bkpt #0 */
+ };
+
+ /* make sure we have a working area */
+ if (target_alloc_working_area(target, sizeof(erase_check_code),
+ &erase_check_algorithm) != ERROR_OK)
+ return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+
+ retval = target_write_buffer(target, erase_check_algorithm->address,
+ sizeof(erase_check_code), (uint8_t *)erase_check_code);
+ if (retval != ERROR_OK)
+ return retval;
+
+ armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
+ armv7m_info.core_mode = ARM_MODE_THREAD;
+
+ init_reg_param(®_params[0], "r0", 32, PARAM_OUT);
+ buf_set_u32(reg_params[0].value, 0, 32, address);
+
+ init_reg_param(®_params[1], "r1", 32, PARAM_OUT);
+ buf_set_u32(reg_params[1].value, 0, 32, count);
+
+ init_reg_param(®_params[2], "r2", 32, PARAM_IN_OUT);
+ buf_set_u32(reg_params[2].value, 0, 32, 0x00);
+
+ retval = target_run_algorithm(target,
+ 0,
+ NULL,
+ 3,
+ reg_params,
+ erase_check_algorithm->address,
+ erase_check_algorithm->address + (sizeof(erase_check_code) - 2),
+ 10000,
+ &armv7m_info);
+
+ if (retval == ERROR_OK)
+ *blank = buf_get_u32(reg_params[2].value, 0, 32);
+
+ destroy_reg_param(®_params[0]);
+ destroy_reg_param(®_params[1]);
+ destroy_reg_param(®_params[2]);
+
+ target_free_working_area(target, erase_check_algorithm);
+
+ return retval;
+}
+
+static int xmc4xxx_flash_blank_check(struct flash_bank *bank)
+{
+ struct target *target = bank->target;
+ int i;
+ int retval;
+ uint32_t blank;
+
+ if (bank->target->state != TARGET_HALTED) {
+ LOG_ERROR("Target not halted");
+ return ERROR_TARGET_NOT_HALTED;
+ }
+
+ for (i = 0; i < bank->num_sectors; i++) {
+ uint32_t address = bank->base + bank->sectors[i].offset;
+ uint32_t size = bank->sectors[i].size;
+
+ LOG_DEBUG("Erase checking 0x%08"PRIx32, address);
+ retval = xmc4xxx_blank_check_memory(target, address, size, &blank);
+
+ if (retval != ERROR_OK)
+ break;
+
+ if (blank == 0x00)
+ bank->sectors[i].is_erased = 1;
+ else
+ bank->sectors[i].is_erased = 0;
+ }
+
+ return ERROR_OK;
+}
+
+static int xmc4xxx_write_page(struct flash_bank *bank, const uint8_t *pg_buf,
+ uint32_t offset, bool user_config)
+{
+ int res;
+ uint32_t status;
+
+ /* Base of the flash write command */
+ struct xmc4xxx_command_seq write_cmd_seq[4] = {
+ {FLASH_CMD_WRITE_PAGE_1, 0xAA},
+ {FLASH_CMD_WRITE_PAGE_2, 0x55},
+ {FLASH_CMD_WRITE_PAGE_3, 0xFF}, /* Needs filled in */
+ {0xFF, 0xFF} /* Needs filled in */
+ };
+
+ /* The command sequence differs depending on whether this is
+ * being written to standard flash or the user configuration
+ * area */
+ if (user_config)
+ write_cmd_seq[2].magic = 0xC0;
+ else
+ write_cmd_seq[2].magic = 0xA0;
+
+ /* Finally, we need to add the address that this page will be
+ * written to */
+ write_cmd_seq[3].address = bank->base + offset;
+ write_cmd_seq[3].magic = 0xAA;
+
+
+ /* Flash pages are written 256 bytes at a time. For each 256
+ * byte chunk, we need to:
+ * 1. Enter page mode. This activates the flash write buffer
+ * 2. Load the page buffer with data (2x 32 bit words at a time)
+ * 3. Burn the page buffer into its intended location
+ * If the starting offset is not on a 256 byte boundary, we
+ * will need to pad the beginning of the write buffer
+ * accordingly. Likewise, if the last page does not fill the
+ * buffer, we should pad it to avoid leftover data from being
+ * written to flash
+ */
+ res = xmc4xxx_enter_page_mode(bank);
+ if (res != ERROR_OK)
+ return res;
+
+ /* Copy the data into the page buffer*/
+ for (int i = 0; i < 256; i += 8) {
+ uint32_t w_lo = target_buffer_get_u32(bank->target, &pg_buf[i]);
+ uint32_t w_hi = target_buffer_get_u32(bank->target, &pg_buf[i + 4]);
+ LOG_DEBUG("WLO: %08"PRIx32, w_lo);
+ LOG_DEBUG("WHI: %08"PRIx32, w_hi);
+
+ /* Data is loaded 2x 32 bit words at a time */
+ res = target_write_u32(bank->target, FLASH_CMD_LOAD_PAGE_1, w_lo);
+ if (res != ERROR_OK)
+ return res;
+
+ res = target_write_u32(bank->target, FLASH_CMD_LOAD_PAGE_2, w_hi);
+ if (res != ERROR_OK)
+ return res;
+
+ /* Check for an error */
+ res = xmc4xxx_get_flash_status(bank, &status);
+ if (res != ERROR_OK)
+ return res;
+
+ if (status & FSR_SQER_MASK) {
+ LOG_ERROR("Error loading page buffer");
+ return ERROR_FAIL;
+ }
+ }
+
+ /* The page buffer is now full, time to commit it to flash */
+
+ res = xmc4xxx_write_command_sequence(bank, write_cmd_seq, ARRAY_SIZE(write_cmd_seq));
+ if (res != ERROR_OK) {
+ LOG_ERROR("Unable to enter write command sequence");
+ return res;
+ }
+
+ /* Read the flash status register */
+ res = xmc4xxx_get_flash_status(bank, &status);
+ if (res != ERROR_OK)
+ return res;
+
+ /* Check for a sequence error */
+ if (status & FSR_SQER_MASK) {
+ LOG_ERROR("Error with flash write sequence");
+ return ERROR_FAIL;
+ }
+
+ /* Make sure a flash write was triggered */
+ if (!(status & FSR_PROG_MASK)) {
+ LOG_ERROR("Failed to write flash page");
+ return ERROR_FAIL;
+ }
+
+ /* Wait for the write operation to end */
+ res = xmc4xxx_wait_status_busy(bank, FLASH_OP_TIMEOUT);
+ if (res != ERROR_OK)
+ return res;
+
+ /* TODO: Verify that page was written without error */
+ return res;
+}
+
+static int xmc4xxx_write(struct flash_bank *bank, const uint8_t *buffer,
+ uint32_t offset, uint32_t count)
+{
+ struct xmc4xxx_flash_bank *fb = bank->driver_priv;
+ int res = ERROR_OK;
+
+ if (bank->target->state != TARGET_HALTED) {
+ LOG_ERROR("Unable to erase, target is not halted");
+ return ERROR_TARGET_NOT_HALTED;
+ }
+
+ if (!fb->probed) {
+ res = xmc4xxx_probe(bank);
+ if (res != ERROR_OK)
+ return res;
+ }
+
+ /* Make sure we won't run off the end of the flash bank */
+ if ((offset + count) > (bank->size)) {
+ LOG_ERROR("Attempting to write past the end of flash");
+ return ERROR_FAIL;
+ }
+
+
+ /* Attempt to write the passed in buffer to flash */
+ /* Pages are written 256 bytes at a time, we need to handle
+ * scenarios where padding is required at the beginning and
+ * end of a page */
+ while (count) {
+ /* page working area */
+ uint8_t tmp_buf[256] = {0};
+
+ /* Amount of data we'll be writing to this page */
+ int remaining;
+ int end_pad;
+
+ remaining = MIN(count, sizeof(tmp_buf));
+ end_pad = sizeof(tmp_buf) - remaining;
+
+ /* Make sure we're starting on a page boundary */
+ int start_pad = offset % 256;
+ if (start_pad) {
+ LOG_INFO("Write does not start on a 256 byte boundary. "
+ "Padding by %d bytes", start_pad);
+ memset(tmp_buf, 0xff, start_pad);
+ /* Subtract the amount of start offset from
+ * the amount of data we'll need to write */
+ remaining -= start_pad;
+ }
+
+ /* Remove the amount we'll be writing from the total count */
+ count -= remaining;
+
+ /* Now copy in the remaining data */
+ memcpy(&tmp_buf[start_pad], buffer, remaining);
+
+ if (end_pad) {
+ LOG_INFO("Padding end of page @%08"PRIx32" by %d bytes",
+ bank->base + offset, end_pad);
+ memset(&tmp_buf[256 - end_pad], 0xff, end_pad);
+ }
+
+ /* Now commit this page to flash, if there was start
+ * padding, we should subtract that from the target offset */
+ res = xmc4xxx_write_page(bank, tmp_buf, (offset - start_pad), false);
+ if (res != ERROR_OK) {
+ LOG_ERROR("Unable to write flash page");
+ goto abort_write_and_exit;
+ }
+
+ /* Advance the buffer pointer */
+ buffer += remaining;
+
+ /* Advance the offset */
+ offset += remaining;
+ }
+
+abort_write_and_exit:
+ xmc4xxx_clear_flash_status(bank);
+ return res;
+
+}
+
+static int xmc4xxx_get_info_command(struct flash_bank *bank, char *buf, int buf_size)
+{
+ struct xmc4xxx_flash_bank *fb = bank->driver_priv;
+ uint32_t scu_idcode;
+
+ if (bank->target->state != TARGET_HALTED) {
+ LOG_WARNING("Cannot communicate... target not halted.");
+ return ERROR_TARGET_NOT_HALTED;
+ }
+
+ /* The SCU registers contain the ID of the chip */
+ int res = target_read_u32(bank->target, SCU_REG_BASE + SCU_ID_CHIP, &scu_idcode);
+ if (res != ERROR_OK) {
+ LOG_ERROR("Cannot read device identification register.");
+ return res;
+ }
+
+ uint16_t dev_id = (scu_idcode & 0xfff0) >> 4;
+ uint16_t rev_id = scu_idcode & 0xf;
+ const char *dev_str;
+ const char *rev_str = NULL;
+
+ switch (dev_id) {
+ case 0x100:
+ dev_str = "XMC4100";
+
+ switch (rev_id) {
+ case 0x1:
+ rev_str = "AA";
+ break;
+ case 0x2:
+ rev_str = "AB";
+ break;
+ }
+ break;
+ case 0x200:
+ dev_str = "XMC4200";
+
+ switch (rev_id) {
+ case 0x1:
+ rev_str = "AA";
+ break;
+ case 0x2:
+ rev_str = "AB";
+ break;
+ }
+ break;
+ case 0x400:
+ dev_str = "XMC4400";
+
+ switch (rev_id) {
+ case 0x1:
+ rev_str = "AA";
+ break;
+ case 0x2:
+ rev_str = "AB";
+ break;
+ }
+ break;
+ case 0x500:
+ dev_str = "XMC4500";
+
+ switch (rev_id) {
+ case 0x2:
+ rev_str = "AA";
+ break;
+ case 0x3:
+ rev_str = "AB";
+ break;
+ case 0x4:
+ rev_str = "AC";
+ break;
+ }
+ break;
+
+ default:
+ snprintf(buf, buf_size,
+ "Cannot identify target as an XMC4xxx. SCU_ID: %"PRIx32"\n",
+ scu_idcode);
+ return ERROR_OK;
+ }
+
+ /* String to declare protection data held in the private driver */
+ char prot_str[512] = {0};
+ if (fb->read_protected)
+ snprintf(prot_str, sizeof(prot_str), "\nFlash is read protected");
+
+ bool otp_enabled = false;
+ for (int i = 0; i < bank->num_sectors; i++)
+ if (fb->write_prot_otp[i])
+ otp_enabled = true;
+
+ /* If OTP Write protection is enabled (User 2), list each
+ * sector that has it enabled */
+ char otp_str[8];
+ if (otp_enabled) {
+ strcat(prot_str, "\nOTP Protection is enabled for sectors:\n");
+ for (int i = 0; i < bank->num_sectors; i++) {
+ if (fb->write_prot_otp[i]) {
+ snprintf(otp_str, sizeof(otp_str), "- %d\n", i);
+ strncat(prot_str, otp_str, ARRAY_SIZE(otp_str));
+ }
+ }
+ }
+
+ if (rev_str != NULL)
+ snprintf(buf, buf_size, "%s - Rev: %s%s",
+ dev_str, rev_str, prot_str);
+ else
+ snprintf(buf, buf_size, "%s - Rev: unknown (0x%01x)%s",
+ dev_str, rev_id, prot_str);
+
+ return ERROR_OK;
+}
+
+static int xmc4xxx_temp_unprotect(struct flash_bank *bank, int user_level)
+{
+ struct xmc4xxx_flash_bank *fb;
+ int res = ERROR_OK;
+ uint32_t status = 0;
+
+ struct xmc4xxx_command_seq temp_unprot_seq[6] = {
+ {FLASH_CMD_TEMP_UNPROT_1, 0xAA},
+ {FLASH_CMD_TEMP_UNPROT_2, 0x55},
+ {FLASH_CMD_TEMP_UNPROT_3, 0xFF}, /* Needs filled in */
+ {FLASH_CMD_TEMP_UNPROT_4, 0xFF}, /* Needs filled in */
+ {FLASH_CMD_TEMP_UNPROT_5, 0xFF}, /* Needs filled in */
+ {FLASH_CMD_TEMP_UNPROT_6, 0x05}
+ };
+
+ if (user_level < 0 || user_level > 2) {
+ LOG_ERROR("Invalid user level, must be 0-2");
+ return ERROR_FAIL;
+ }
+
+ fb = bank->driver_priv;
+
+ /* Fill in the user level and passwords */
+ temp_unprot_seq[2].magic = user_level;
+ temp_unprot_seq[3].magic = fb->pw1;
+ temp_unprot_seq[4].magic = fb->pw2;
+
+ res = xmc4xxx_write_command_sequence(bank, temp_unprot_seq,
+ ARRAY_SIZE(temp_unprot_seq));
+ if (res != ERROR_OK) {
+ LOG_ERROR("Unable to write temp unprotect sequence");
+ return res;
+ }
+
+ res = xmc4xxx_get_flash_status(bank, &status);
+ if (res != ERROR_OK)
+ return res;
+
+ if (status & FSR_WPRODIS0) {
+ LOG_INFO("Flash is temporarily unprotected");
+ } else {
+ LOG_INFO("Unable to disable flash protection");
+ res = ERROR_FAIL;
+ }
+
+
+ return res;
+}
+
+static int xmc4xxx_flash_unprotect(struct flash_bank *bank, int32_t level)
+{
+ uint32_t addr;
+ int res;
+
+ if ((level < 0) || (level > 1)) {
+ LOG_ERROR("Invalid user level. Must be 0-1");
+ return ERROR_FAIL;
+ }
+
+ switch (level) {
+ case 0:
+ addr = UCB0_BASE;
+ break;
+ case 1:
+ addr = UCB1_BASE;
+ break;
+ }
+
+ res = xmc4xxx_erase_sector(bank, addr, true);
+
+ if (res != ERROR_OK)
+ LOG_ERROR("Error erasing user configuration block");
+
+ return res;
+}
+
+/* Reference: "XMC4500 Flash Protection.pptx" app note */
+static int xmc4xxx_flash_protect(struct flash_bank *bank, int level, bool read_protect,
+ int first, int last)
+{
+ /* User configuration block buffers */
+ uint8_t ucp0_buf[8 * sizeof(uint32_t)] = {0};
+ uint32_t ucb_base = 0;
+ uint32_t procon = 0;
+ int res = ERROR_OK;
+ uint32_t status = 0;
+ bool proin = false;
+
+ struct xmc4xxx_flash_bank *fb = bank->driver_priv;
+
+ /* Read protect only works for user 0, make sure we don't try
+ * to do something silly */
+ if (level != 0 && read_protect) {
+ LOG_ERROR("Read protection is for user level 0 only!");
+ return ERROR_FAIL;
+ }
+
+ /* Check to see if protection is already installed for the
+ * specified user level. If it is, the user configuration
+ * block will need to be erased before we can continue */
+
+ /* Grab the flash status register*/
+ res = xmc4xxx_get_flash_status(bank, &status);
+ if (res != ERROR_OK)
+ return res;
+
+ switch (level) {
+ case 0:
+ if ((status & FSR_RPROIN_MASK) || (status & FSR_WPROIN0_MASK))
+ proin = true;
+ break;
+ case 1:
+ if (status & FSR_WPROIN1_MASK)
+ proin = true;
+ break;
+ case 2:
+ if (status & FSR_WPROIN2_MASK)
+ proin = true;
+ break;
+ }
+
+ if (proin) {
+ LOG_ERROR("Flash protection is installed for user %d"
+ " and must be removed before continuing", level);
+ return ERROR_FAIL;
+ }
+
+ /* If this device has 12 flash sectors, protection for
+ * sectors 10 & 11 are handled jointly. If we are trying to
+ * write all sectors, we should decrement
+ * last to ensure we don't write to a register bit that
+ * doesn't exist*/
+ if ((bank->num_sectors == 12) && (last == 12))
+ last--;
+
+ /* We need to fill out the procon register representation
+ * that we will be writing to the device */
+ for (int i = first; i <= last; i++)
+ procon |= 1 << i;
+
+ /* If read protection is requested, set the appropriate bit
+ * (we checked that this is allowed above) */
+ if (read_protect)
+ procon |= PROCON_RPRO_MASK;
+
+ LOG_DEBUG("Setting flash protection with procon:");
+ LOG_DEBUG("PROCON: %"PRIx32, procon);
+
+ /* First we need to copy in the procon register to the buffer
+ * we're going to attempt to write. This is written twice */
+ target_buffer_set_u32(bank->target, &ucp0_buf[0 * 4], procon);
+ target_buffer_set_u32(bank->target, &ucp0_buf[2 * 4], procon);
+
+ /* Now we must copy in both flash passwords. As with the
+ * procon data, this must be written twice (4 total words
+ * worth of data) */
+ target_buffer_set_u32(bank->target, &ucp0_buf[4 * 4], fb->pw1);
+ target_buffer_set_u32(bank->target, &ucp0_buf[5 * 4], fb->pw2);
+ target_buffer_set_u32(bank->target, &ucp0_buf[6 * 4], fb->pw1);
+ target_buffer_set_u32(bank->target, &ucp0_buf[7 * 4], fb->pw2);
+
+ /* Finally, (if requested) we copy in the confirmation
+ * code so that the protection is permanent and will
+ * require a password to undo. */
+ target_buffer_set_u32(bank->target, &ucp0_buf[0 * 4], FLASH_PROTECT_CONFIRMATION_CODE);
+ target_buffer_set_u32(bank->target, &ucp0_buf[2 * 4], FLASH_PROTECT_CONFIRMATION_CODE);
+
+ /* Now that the data is copied into place, we must write
+ * these pages into flash */
+
+ /* The user configuration block base depends on what level of
+ * protection we're trying to install, select the proper one */
+ switch (level) {
+ case 0:
+ ucb_base = UCB0_BASE;
+ break;
+ case 1:
+ ucb_base = UCB1_BASE;
+ break;
+ case 2:
+ ucb_base = UCB2_BASE;
+ break;
+ }
+
+ /* Write the user config pages */
+ res = xmc4xxx_write_page(bank, ucp0_buf, ucb_base, true);
+ if (res != ERROR_OK) {
+ LOG_ERROR("Error writing user configuration block 0");
+ return res;
+ }
+
+ return ERROR_OK;
+}
+
+static int xmc4xxx_protect(struct flash_bank *bank, int set, int first, int last)
+{
+ int ret;
+ struct xmc4xxx_flash_bank *fb = bank->driver_priv;
+
+ /* Check for flash passwords */
+ if (!fb->pw_set) {
+ LOG_ERROR("Flash passwords not set, use xmc4xxx flash_password to set them");
+ return ERROR_FAIL;
+ }
+
+ /* We want to clear flash protection temporarily*/
+ if (set == 0) {
+ LOG_WARNING("Flash protection will be temporarily disabled"
+ " for all pages (User 0 only)!");
+ ret = xmc4xxx_temp_unprotect(bank, 0);
+ return ret;
+ }
+
+ /* Install write protection for user 0 on the specified pages */
+ ret = xmc4xxx_flash_protect(bank, 0, false, first, last);
+
+ return ret;
+}
+
+static int xmc4xxx_protect_check(struct flash_bank *bank)
+{
+ int ret;
+ uint32_t protection[3] = {0};
+ struct xmc4xxx_flash_bank *fb = bank->driver_priv;
+
+ ret = target_read_u32(bank->target, FLASH_REG_FLASH0_PROCON0, &protection[0]);
+ if (ret != ERROR_OK) {
+ LOG_ERROR("Unable to read flash User0 protection register");
+ return ret;
+ }
+
+ ret = target_read_u32(bank->target, FLASH_REG_FLASH0_PROCON1, &protection[1]);
+ if (ret != ERROR_OK) {
+ LOG_ERROR("Unable to read flash User1 protection register");
+ return ret;
+ }
+
+ ret = target_read_u32(bank->target, FLASH_REG_FLASH0_PROCON2, &protection[2]);
+ if (ret != ERROR_OK) {
+ LOG_ERROR("Unable to read flash User2 protection register");
+ return ret;
+ }
+
+ int sectors = bank->num_sectors;
+
+ /* On devices with 12 sectors, sectors 10 & 11 are ptected
+ * together instead of individually */
+ if (sectors == 12)
+ sectors--;
+
+ /* Clear the protection status */
+ for (int i = 0; i < bank->num_sectors; i++) {
+ bank->sectors[i].is_protected = 0;
+ fb->write_prot_otp[i] = false;
+ }
+ fb->read_protected = false;
+
+ /* The xmc4xxx series supports 3 levels of user protection
+ * (User0, User1 (low priority), and User 2(OTP), we need to
+ * check all 3 */
+ for (unsigned int i = 0; i < ARRAY_SIZE(protection); i++) {
+
+ /* Check for write protection on every available
+ * sector */
+ for (int j = 0; j < sectors; j++) {
+ int set = (protection[i] & (1 << j)) ? 1 : 0;
+ bank->sectors[j].is_protected |= set;
+
+ /* Handle sector 11 */
+ if (j == 10)
+ bank->sectors[j + 1].is_protected |= set;
+
+ /* User 2 indicates this protection is
+ * permanent, make note in the private driver structure */
+ if (i == 2 && set) {
+ fb->write_prot_otp[j] = true;
+
+ /* Handle sector 11 */
+ if (j == 10)
+ fb->write_prot_otp[j + 1] = true;
+ }
+
+ }
+ }
+
+ /* XMC4xxx also supports read proptection, make a note
+ * in the private driver structure */
+ if (protection[0] & PROCON_RPRO_MASK)
+ fb->read_protected = true;
+
+ return ERROR_OK;
+}
+
+FLASH_BANK_COMMAND_HANDLER(xmc4xxx_flash_bank_command)
+{
+ bank->driver_priv = malloc(sizeof(struct xmc4xxx_flash_bank));
+
+ if (!bank->driver_priv)
+ return ERROR_FLASH_OPERATION_FAILED;
+
+ (void)memset(bank->driver_priv, 0, sizeof(struct xmc4xxx_flash_bank));
+
+ return ERROR_OK;
+}
+
+COMMAND_HANDLER(xmc4xxx_handle_flash_password_command)
+{
+ int res;
+ struct flash_bank *bank;
+
+ if (CMD_ARGC < 3)
+ return ERROR_COMMAND_SYNTAX_ERROR;
+
+ res = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
+ if (res != ERROR_OK)
+ return res;
+
+ struct xmc4xxx_flash_bank *fb = bank->driver_priv;
+
+ errno = 0;
+
+ /* We skip over the flash bank */
+ fb->pw1 = strtol(CMD_ARGV[1], NULL, 16);
+
+ if (errno)
+ return ERROR_COMMAND_SYNTAX_ERROR;
+
+ fb->pw2 = strtol(CMD_ARGV[2], NULL, 16);
+
+ if (errno)
+ return ERROR_COMMAND_SYNTAX_ERROR;
+
+ fb->pw_set = true;
+
+ command_print(CMD_CTX, "XMC4xxx flash passwords set to:\n");
+ command_print(CMD_CTX, "-0x%08"PRIx32"\n", fb->pw1);
+ command_print(CMD_CTX, "-0x%08"PRIx32"\n", fb->pw2);
+ return ERROR_OK;
+}
+
+COMMAND_HANDLER(xmc4xxx_handle_flash_unprotect_command)
+{
+ struct flash_bank *bank;
+ int res;
+ int32_t level;
+
+ if (CMD_ARGC < 2)
+ return ERROR_COMMAND_SYNTAX_ERROR;
+
+ res = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
+ if (res != ERROR_OK)
+ return res;
+
+ COMMAND_PARSE_NUMBER(s32, CMD_ARGV[1], level);
+
+ res = xmc4xxx_flash_unprotect(bank, level);
+
+ return res;
+}
+
+static const struct command_registration xmc4xxx_exec_command_handlers[] = {
+ {
+ .name = "flash_password",
+ .handler = xmc4xxx_handle_flash_password_command,
+ .mode = COMMAND_EXEC,
+ .usage = "bank_id password1 password2",
+ .help = "Set the flash passwords used for protect operations. "
+ "Passwords should be in standard hex form (0x00000000). "
+ "(You must call this before any other protect commands) "
+ "NOTE: The xmc4xxx's UCB area only allows for FOUR cycles. "
+ "Please use protection carefully!",
+ },
+ {
+ .name = "flash_unprotect",
+ .handler = xmc4xxx_handle_flash_unprotect_command,
+ .mode = COMMAND_EXEC,
+ .usage = "bank_id user_level[0-1]",
+ .help = "Permanently Removes flash protection (read and write) "
+ "for the specified user level",
+ }, COMMAND_REGISTRATION_DONE
+};
+
+static const struct command_registration xmc4xxx_command_handlers[] = {
+ {
+ .name = "xmc4xxx",
+ .mode = COMMAND_ANY,
+ .help = "xmc4xxx flash command group",
+ .usage = "",
+ .chain = xmc4xxx_exec_command_handlers,
+ },
+ COMMAND_REGISTRATION_DONE
+};
+
+struct flash_driver xmc4xxx_flash = {
+ .name = "xmc4xxx",
+ .commands = xmc4xxx_command_handlers,
+ .flash_bank_command = xmc4xxx_flash_bank_command,
+ .erase = xmc4xxx_erase,
+ .write = xmc4xxx_write,
+ .read = default_flash_read,
+ .probe = xmc4xxx_probe,
+ .auto_probe = xmc4xxx_probe,
+ .erase_check = xmc4xxx_flash_blank_check,
+ .info = xmc4xxx_get_info_command,
+ .protect_check = xmc4xxx_protect_check,
+ .protect = xmc4xxx_protect,
+};