+++ /dev/null
-/*
- * Copyright 2004, 2007 Freescale Semiconductor.
- * (C) Copyright 2003 Motorola Inc.
- * Xianghua Xiao (X.Xiao@motorola.com)
- *
- * See file CREDITS for list of people who contributed to this
- * project.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License as
- * published by the Free Software Foundation; either version 2 of
- * the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
- * MA 02111-1307 USA
- */
-
-#include <common.h>
-#include <asm/processor.h>
-#include <i2c.h>
-#include <spd.h>
-#include <asm/mmu.h>
-#include <asm/fsl_law.h>
-
-
-#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
-extern void dma_init(void);
-extern uint dma_check(void);
-extern int dma_xfer(void *dest, uint count, void *src);
-#endif
-
-#ifdef CONFIG_SPD_EEPROM
-
-#ifndef CFG_READ_SPD
-#define CFG_READ_SPD i2c_read
-#endif
-
-static unsigned int setup_laws_and_tlbs(unsigned int memsize);
-
-
-/*
- * Convert picoseconds into clock cycles (rounding up if needed).
- */
-
-int
-picos_to_clk(int picos)
-{
- int clks;
-
- clks = picos / (2000000000 / (get_ddr_freq(0) / 1000));
- if (picos % (2000000000 / (get_ddr_freq(0) / 1000)) != 0) {
- clks++;
- }
-
- return clks;
-}
-
-
-/*
- * Calculate the Density of each Physical Rank.
- * Returned size is in bytes.
- *
- * Study these table from Byte 31 of JEDEC SPD Spec.
- *
- * DDR I DDR II
- * Bit Size Size
- * --- ----- ------
- * 7 high 512MB 512MB
- * 6 256MB 256MB
- * 5 128MB 128MB
- * 4 64MB 16GB
- * 3 32MB 8GB
- * 2 16MB 4GB
- * 1 2GB 2GB
- * 0 low 1GB 1GB
- *
- * Reorder Table to be linear by stripping the bottom
- * 2 or 5 bits off and shifting them up to the top.
- */
-
-unsigned int
-compute_banksize(unsigned int mem_type, unsigned char row_dens)
-{
- unsigned int bsize;
-
- if (mem_type == SPD_MEMTYPE_DDR) {
- /* Bottom 2 bits up to the top. */
- bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
- debug("DDR: DDR I rank density = 0x%08x\n", bsize);
- } else {
- /* Bottom 5 bits up to the top. */
- bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27;
- debug("DDR: DDR II rank density = 0x%08x\n", bsize);
- }
- return bsize;
-}
-
-
-/*
- * Convert a two-nibble BCD value into a cycle time.
- * While the spec calls for nano-seconds, picos are returned.
- *
- * This implements the tables for bytes 9, 23 and 25 for both
- * DDR I and II. No allowance for distinguishing the invalid
- * fields absent for DDR I yet present in DDR II is made.
- * (That is, cycle times of .25, .33, .66 and .75 ns are
- * allowed for both DDR II and I.)
- */
-
-unsigned int
-convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
-{
- /*
- * Table look up the lower nibble, allow DDR I & II.
- */
- unsigned int tenths_ps[16] = {
- 0,
- 100,
- 200,
- 300,
- 400,
- 500,
- 600,
- 700,
- 800,
- 900,
- 250,
- 330,
- 660,
- 750,
- 0, /* undefined */
- 0 /* undefined */
- };
-
- unsigned int whole_ns = (spd_val & 0xF0) >> 4;
- unsigned int tenth_ns = spd_val & 0x0F;
- unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
-
- return ps;
-}
-
-
-/*
- * Determine Refresh Rate. Ignore self refresh bit on DDR I.
- * Table from SPD Spec, Byte 12, converted to picoseconds and
- * filled in with "default" normal values.
- */
-unsigned int determine_refresh_rate(unsigned int spd_refresh)
-{
- unsigned int refresh_time_ns[8] = {
- 15625000, /* 0 Normal 1.00x */
- 3900000, /* 1 Reduced .25x */
- 7800000, /* 2 Extended .50x */
- 31300000, /* 3 Extended 2.00x */
- 62500000, /* 4 Extended 4.00x */
- 125000000, /* 5 Extended 8.00x */
- 15625000, /* 6 Normal 1.00x filler */
- 15625000, /* 7 Normal 1.00x filler */
- };
-
- return picos_to_clk(refresh_time_ns[spd_refresh & 0x7]);
-}
-
-
-long int
-spd_sdram(void)
-{
- volatile ccsr_ddr_t *ddr = (void *)(CFG_MPC85xx_DDR_ADDR);
- spd_eeprom_t spd;
- unsigned int n_ranks;
- unsigned int rank_density;
- unsigned int odt_rd_cfg, odt_wr_cfg, ba_bits;
- unsigned int odt_cfg, mode_odt_enable;
- unsigned int refresh_clk;
-#ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
- unsigned char clk_adjust;
-#endif
- unsigned int dqs_cfg;
- unsigned char twr_clk, twtr_clk, twr_auto_clk;
- unsigned int tCKmin_ps, tCKmax_ps;
- unsigned int max_data_rate, effective_data_rate;
- unsigned int busfreq;
- unsigned sdram_cfg;
- unsigned int memsize = 0;
- unsigned char caslat, caslat_ctrl;
- unsigned int trfc, trfc_clk, trfc_low, trfc_high;
- unsigned int trcd_clk;
- unsigned int trtp_clk;
- unsigned char cke_min_clk;
- unsigned char add_lat;
- unsigned char wr_lat;
- unsigned char wr_data_delay;
- unsigned char four_act;
- unsigned char cpo;
- unsigned char burst_len;
- unsigned int mode_caslat;
- unsigned char sdram_type;
- unsigned char d_init;
- unsigned int bnds;
-
- /*
- * Skip configuration if already configured.
- * memsize is determined from last configured chip select.
- */
- if (ddr->cs0_config & 0x80000000) {
- debug(" cs0 already configured, bnds=%x\n",ddr->cs0_bnds);
- bnds = 0xfff & ddr->cs0_bnds;
- if (bnds < 0xff) { /* do not add if at top of 4G */
- memsize = (bnds + 1) << 4;
- }
- }
- if (ddr->cs1_config & 0x80000000) {
- debug(" cs1 already configured, bnds=%x\n",ddr->cs1_bnds);
- bnds = 0xfff & ddr->cs1_bnds;
- if (bnds < 0xff) { /* do not add if at top of 4G */
- memsize = (bnds + 1) << 4; /* assume ordered bnds */
- }
- }
- if (ddr->cs2_config & 0x80000000) {
- debug(" cs2 already configured, bnds=%x\n",ddr->cs2_bnds);
- bnds = 0xfff & ddr->cs2_bnds;
- if (bnds < 0xff) { /* do not add if at top of 4G */
- memsize = (bnds + 1) << 4;
- }
- }
- if (ddr->cs3_config & 0x80000000) {
- debug(" cs3 already configured, bnds=%x\n",ddr->cs3_bnds);
- bnds = 0xfff & ddr->cs3_bnds;
- if (bnds < 0xff) { /* do not add if at top of 4G */
- memsize = (bnds + 1) << 4;
- }
- }
-
- if (memsize) {
- printf(" Reusing current %dMB configuration\n",memsize);
- memsize = setup_laws_and_tlbs(memsize);
- return memsize << 20;
- }
-
- /*
- * Read SPD information.
- */
- CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) &spd, sizeof(spd));
-
- /*
- * Check for supported memory module types.
- */
- if (spd.mem_type != SPD_MEMTYPE_DDR &&
- spd.mem_type != SPD_MEMTYPE_DDR2) {
- printf("Unable to locate DDR I or DDR II module.\n"
- " Fundamental memory type is 0x%0x\n",
- spd.mem_type);
- return 0;
- }
-
- /*
- * These test gloss over DDR I and II differences in interpretation
- * of bytes 3 and 4, but irrelevantly. Multiple asymmetric banks
- * are not supported on DDR I; and not encoded on DDR II.
- *
- * Also note that the 8548 controller can support:
- * 12 <= nrow <= 16
- * and
- * 8 <= ncol <= 11 (still, for DDR)
- * 6 <= ncol <= 9 (for FCRAM)
- */
- if (spd.nrow_addr < 12 || spd.nrow_addr > 14) {
- printf("DDR: Unsupported number of Row Addr lines: %d.\n",
- spd.nrow_addr);
- return 0;
- }
- if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
- printf("DDR: Unsupported number of Column Addr lines: %d.\n",
- spd.ncol_addr);
- return 0;
- }
-
- /*
- * Determine the number of physical banks controlled by
- * different Chip Select signals. This is not quite the
- * same as the number of DIMM modules on the board. Feh.
- */
- if (spd.mem_type == SPD_MEMTYPE_DDR) {
- n_ranks = spd.nrows;
- } else {
- n_ranks = (spd.nrows & 0x7) + 1;
- }
-
- debug("DDR: number of ranks = %d\n", n_ranks);
-
- if (n_ranks > 2) {
- printf("DDR: Only 2 chip selects are supported: %d\n",
- n_ranks);
- return 0;
- }
-
-#ifdef CONFIG_MPC8548
- /*
- * Adjust DDR II IO voltage biasing.
- * Only 8548 rev 1 needs the fix
- */
- if ((SVR_SOC_VER(get_svr()) == SVR_8548_E) &&
- (SVR_MJREV(get_svr()) == 1) &&
- (spd.mem_type == SPD_MEMTYPE_DDR2)) {
- volatile ccsr_gur_t *gur = (void *)(CFG_MPC85xx_GUTS_ADDR);
- gur->ddrioovcr = (0x80000000 /* Enable */
- | 0x10000000);/* VSEL to 1.8V */
- }
-#endif
-
- /*
- * Determine the size of each Rank in bytes.
- */
- rank_density = compute_banksize(spd.mem_type, spd.row_dens);
-
-
- /*
- * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
- */
- ddr->cs0_bnds = (rank_density >> 24) - 1;
-
- /*
- * ODT configuration recommendation from DDR Controller Chapter.
- */
- odt_rd_cfg = 0; /* Never assert ODT */
- odt_wr_cfg = 0; /* Never assert ODT */
- if (spd.mem_type == SPD_MEMTYPE_DDR2) {
- odt_wr_cfg = 1; /* Assert ODT on writes to CS0 */
-#if 0
- /* FIXME: How to determine the number of dimm modules? */
- if (n_dimm_modules == 2) {
- odt_rd_cfg = 1; /* Assert ODT on reads to CS0 */
- }
-#endif
- }
-
- ba_bits = 0;
- if (spd.nbanks == 0x8)
- ba_bits = 1;
-
- ddr->cs0_config = ( 1 << 31
- | (odt_rd_cfg << 20)
- | (odt_wr_cfg << 16)
- | (ba_bits << 14)
- | (spd.nrow_addr - 12) << 8
- | (spd.ncol_addr - 8) );
- debug("\n");
- debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds);
- debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
-
- if (n_ranks == 2) {
- /*
- * Eg: Bounds: 0x0f00_0000 to 0x1e0000_0000, second 256 Meg
- */
- ddr->cs1_bnds = ( (rank_density >> 8)
- | ((rank_density >> (24 - 1)) - 1) );
- ddr->cs1_config = ( 1<<31
- | (odt_rd_cfg << 20)
- | (odt_wr_cfg << 16)
- | (spd.nrow_addr - 12) << 8
- | (spd.ncol_addr - 8) );
- debug("DDR: cs1_bnds = 0x%08x\n", ddr->cs1_bnds);
- debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config);
- }
-
-
- /*
- * Find the largest CAS by locating the highest 1 bit
- * in the spd.cas_lat field. Translate it to a DDR
- * controller field value:
- *
- * CAS Lat DDR I DDR II Ctrl
- * Clocks SPD Bit SPD Bit Value
- * ------- ------- ------- -----
- * 1.0 0 0001
- * 1.5 1 0010
- * 2.0 2 2 0011
- * 2.5 3 0100
- * 3.0 4 3 0101
- * 3.5 5 0110
- * 4.0 4 0111
- * 4.5 1000
- * 5.0 5 1001
- */
- caslat = __ilog2(spd.cas_lat);
- if ((spd.mem_type == SPD_MEMTYPE_DDR)
- && (caslat > 5)) {
- printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
- return 0;
-
- } else if (spd.mem_type == SPD_MEMTYPE_DDR2
- && (caslat < 2 || caslat > 5)) {
- printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
- spd.cas_lat);
- return 0;
- }
- debug("DDR: caslat SPD bit is %d\n", caslat);
-
- /*
- * Calculate the Maximum Data Rate based on the Minimum Cycle time.
- * The SPD clk_cycle field (tCKmin) is measured in tenths of
- * nanoseconds and represented as BCD.
- */
- tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle);
- debug("DDR: tCKmin = %d ps\n", tCKmin_ps);
-
- /*
- * Double-data rate, scaled 1000 to picoseconds, and back down to MHz.
- */
- max_data_rate = 2 * 1000 * 1000 / tCKmin_ps;
- debug("DDR: Module max data rate = %d Mhz\n", max_data_rate);
-
-
- /*
- * Adjust the CAS Latency to allow for bus speeds that
- * are slower than the DDR module.
- */
- busfreq = get_ddr_freq(0) / 1000000; /* MHz */
-
- effective_data_rate = max_data_rate;
- if (busfreq < 90) {
- /* DDR rate out-of-range */
- puts("DDR: platform frequency is not fit for DDR rate\n");
- return 0;
-
- } else if (90 <= busfreq && busfreq < 230 && max_data_rate >= 230) {
- /*
- * busfreq 90~230 range, treated as DDR 200.
- */
- effective_data_rate = 200;
- if (spd.clk_cycle3 == 0xa0) /* 10 ns */
- caslat -= 2;
- else if (spd.clk_cycle2 == 0xa0)
- caslat--;
-
- } else if (230 <= busfreq && busfreq < 280 && max_data_rate >= 280) {
- /*
- * busfreq 230~280 range, treated as DDR 266.
- */
- effective_data_rate = 266;
- if (spd.clk_cycle3 == 0x75) /* 7.5 ns */
- caslat -= 2;
- else if (spd.clk_cycle2 == 0x75)
- caslat--;
-
- } else if (280 <= busfreq && busfreq < 350 && max_data_rate >= 350) {
- /*
- * busfreq 280~350 range, treated as DDR 333.
- */
- effective_data_rate = 333;
- if (spd.clk_cycle3 == 0x60) /* 6.0 ns */
- caslat -= 2;
- else if (spd.clk_cycle2 == 0x60)
- caslat--;
-
- } else if (350 <= busfreq && busfreq < 460 && max_data_rate >= 460) {
- /*
- * busfreq 350~460 range, treated as DDR 400.
- */
- effective_data_rate = 400;
- if (spd.clk_cycle3 == 0x50) /* 5.0 ns */
- caslat -= 2;
- else if (spd.clk_cycle2 == 0x50)
- caslat--;
-
- } else if (460 <= busfreq && busfreq < 560 && max_data_rate >= 560) {
- /*
- * busfreq 460~560 range, treated as DDR 533.
- */
- effective_data_rate = 533;
- if (spd.clk_cycle3 == 0x3D) /* 3.75 ns */
- caslat -= 2;
- else if (spd.clk_cycle2 == 0x3D)
- caslat--;
-
- } else if (560 <= busfreq && busfreq < 700 && max_data_rate >= 700) {
- /*
- * busfreq 560~700 range, treated as DDR 667.
- */
- effective_data_rate = 667;
- if (spd.clk_cycle3 == 0x30) /* 3.0 ns */
- caslat -= 2;
- else if (spd.clk_cycle2 == 0x30)
- caslat--;
-
- } else if (700 <= busfreq) {
- /*
- * DDR rate out-of-range
- */
- printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n",
- busfreq, max_data_rate);
- return 0;
- }
-
-
- /*
- * Convert caslat clocks to DDR controller value.
- * Force caslat_ctrl to be DDR Controller field-sized.
- */
- if (spd.mem_type == SPD_MEMTYPE_DDR) {
- caslat_ctrl = (caslat + 1) & 0x07;
- } else {
- caslat_ctrl = (2 * caslat - 1) & 0x0f;
- }
-
- debug("DDR: effective data rate is %d MHz\n", effective_data_rate);
- debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
- caslat, caslat_ctrl);
-
- /*
- * Timing Config 0.
- * Avoid writing for DDR I. The new PQ38 DDR controller
- * dreams up non-zero default values to be backwards compatible.
- */
- if (spd.mem_type == SPD_MEMTYPE_DDR2) {
- unsigned char taxpd_clk = 8; /* By the book. */
- unsigned char tmrd_clk = 2; /* By the book. */
- unsigned char act_pd_exit = 2; /* Empirical? */
- unsigned char pre_pd_exit = 6; /* Empirical? */
-
- ddr->timing_cfg_0 = (0
- | ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */
- | ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */
- | ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */
- | ((tmrd_clk & 0xf) << 0) /* MRS_CYC */
- );
-#if 0
- ddr->timing_cfg_0 |= 0xaa000000; /* extra cycles */
-#endif
- debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
-
- } else {
-#if 0
- /*
- * Force extra cycles with 0xaa bits.
- * Incidentally supply the dreamt-up backwards compat value!
- */
- ddr->timing_cfg_0 = 0x00110105; /* backwards compat value */
- ddr->timing_cfg_0 |= 0xaa000000; /* extra cycles */
- debug("DDR: HACK timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
-#endif
- }
-
-
- /*
- * Some Timing Config 1 values now.
- * Sneak Extended Refresh Recovery in here too.
- */
-
- /*
- * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
- * use conservative value.
- * For DDR II, they are bytes 36 and 37, in quarter nanos.
- */
-
- if (spd.mem_type == SPD_MEMTYPE_DDR) {
- twr_clk = 3; /* Clocks */
- twtr_clk = 1; /* Clocks */
- } else {
- twr_clk = picos_to_clk(spd.twr * 250);
- twtr_clk = picos_to_clk(spd.twtr * 250);
- }
-
- /*
- * Calculate Trfc, in picos.
- * DDR I: Byte 42 straight up in ns.
- * DDR II: Byte 40 and 42 swizzled some, in ns.
- */
- if (spd.mem_type == SPD_MEMTYPE_DDR) {
- trfc = spd.trfc * 1000; /* up to ps */
- } else {
- unsigned int byte40_table_ps[8] = {
- 0,
- 250,
- 330,
- 500,
- 660,
- 750,
- 0,
- 0
- };
-
- trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
- + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
- }
- trfc_clk = picos_to_clk(trfc);
-
- /*
- * Trcd, Byte 29, from quarter nanos to ps and clocks.
- */
- trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
-
- /*
- * Convert trfc_clk to DDR controller fields. DDR I should
- * fit in the REFREC field (16-19) of TIMING_CFG_1, but the
- * 8548 controller has an extended REFREC field of three bits.
- * The controller automatically adds 8 clocks to this value,
- * so preadjust it down 8 first before splitting it up.
- */
- trfc_low = (trfc_clk - 8) & 0xf;
- trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
-
- /*
- * Sneak in some Extended Refresh Recovery.
- */
- ddr->timing_cfg_3 = (trfc_high << 16);
- debug("DDR: timing_cfg_3 = 0x%08x\n", ddr->timing_cfg_3);
-
- ddr->timing_cfg_1 =
- (0
- | ((picos_to_clk(spd.trp * 250) & 0x07) << 28) /* PRETOACT */
- | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24) /* ACTTOPRE */
- | (trcd_clk << 20) /* ACTTORW */
- | (caslat_ctrl << 16) /* CASLAT */
- | (trfc_low << 12) /* REFEC */
- | ((twr_clk & 0x07) << 8) /* WRRREC */
- | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) /* ACTTOACT */
- | ((twtr_clk & 0x07) << 0) /* WRTORD */
- );
-
- debug("DDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1);
-
-
- /*
- * Timing_Config_2
- * Was: 0x00000800;
- */
-
- /*
- * Additive Latency
- * For DDR I, 0.
- * For DDR II, with ODT enabled, use "a value" less than ACTTORW,
- * which comes from Trcd, and also note that:
- * add_lat + caslat must be >= 4
- */
- add_lat = 0;
- if (spd.mem_type == SPD_MEMTYPE_DDR2
- && (odt_wr_cfg || odt_rd_cfg)
- && (caslat < 4)) {
- add_lat = 4 - caslat;
- if (add_lat > trcd_clk) {
- add_lat = trcd_clk - 1;
- }
- }
-
- /*
- * Write Data Delay
- * Historically 0x2 == 4/8 clock delay.
- * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
- */
- wr_data_delay = 3;
-
- /*
- * Write Latency
- * Read to Precharge
- * Minimum CKE Pulse Width.
- * Four Activate Window
- */
- if (spd.mem_type == SPD_MEMTYPE_DDR) {
- /*
- * This is a lie. It should really be 1, but if it is
- * set to 1, bits overlap into the old controller's
- * otherwise unused ACSM field. If we leave it 0, then
- * the HW will magically treat it as 1 for DDR 1. Oh Yea.
- */
- wr_lat = 0;
-
- trtp_clk = 2; /* By the book. */
- cke_min_clk = 1; /* By the book. */
- four_act = 1; /* By the book. */
-
- } else {
- wr_lat = caslat - 1;
-
- /* Convert SPD value from quarter nanos to picos. */
- trtp_clk = picos_to_clk(spd.trtp * 250);
-
- cke_min_clk = 3; /* By the book. */
- four_act = picos_to_clk(37500); /* By the book. 1k pages? */
- }
-
- /*
- * Empirically set ~MCAS-to-preamble override for DDR 2.
- * Your milage will vary.
- */
- cpo = 0;
- if (spd.mem_type == SPD_MEMTYPE_DDR2) {
- if (effective_data_rate <= 333) {
- cpo = 0x7; /* READ_LAT + 5/4 */
- } else {
- cpo = 0x9; /* READ_LAT + 7/4 */
- }
- }
-
- ddr->timing_cfg_2 = (0
- | ((add_lat & 0x7) << 28) /* ADD_LAT */
- | ((cpo & 0x1f) << 23) /* CPO */
- | ((wr_lat & 0x7) << 19) /* WR_LAT */
- | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */
- | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */
- | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */
- | ((four_act & 0x1f) << 0) /* FOUR_ACT */
- );
-
- debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
-
-
- /*
- * Determine the Mode Register Set.
- *
- * This is nominally part specific, but it appears to be
- * consistent for all DDR I devices, and for all DDR II devices.
- *
- * caslat must be programmed
- * burst length is always 4
- * burst type is sequential
- *
- * For DDR I:
- * operating mode is "normal"
- *
- * For DDR II:
- * other stuff
- */
-
- mode_caslat = 0;
-
- /*
- * Table lookup from DDR I or II Device Operation Specs.
- */
- if (spd.mem_type == SPD_MEMTYPE_DDR) {
- if (1 <= caslat && caslat <= 4) {
- unsigned char mode_caslat_table[4] = {
- 0x5, /* 1.5 clocks */
- 0x2, /* 2.0 clocks */
- 0x6, /* 2.5 clocks */
- 0x3 /* 3.0 clocks */
- };
- mode_caslat = mode_caslat_table[caslat - 1];
- } else {
- puts("DDR I: Only CAS Latencies of 1.5, 2.0, "
- "2.5 and 3.0 clocks are supported.\n");
- return 0;
- }
-
- } else {
- if (2 <= caslat && caslat <= 5) {
- mode_caslat = caslat;
- } else {
- puts("DDR II: Only CAS Latencies of 2.0, 3.0, "
- "4.0 and 5.0 clocks are supported.\n");
- return 0;
- }
- }
-
- /*
- * Encoded Burst Lenght of 4.
- */
- burst_len = 2; /* Fiat. */
-
- if (spd.mem_type == SPD_MEMTYPE_DDR) {
- twr_auto_clk = 0; /* Historical */
- } else {
- /*
- * Determine tCK max in picos. Grab tWR and convert to picos.
- * Auto-precharge write recovery is:
- * WR = roundup(tWR_ns/tCKmax_ns).
- *
- * Ponder: Is twr_auto_clk different than twr_clk?
- */
- tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax);
- twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps;
- }
-
-
- /*
- * Mode Reg in bits 16 ~ 31,
- * Extended Mode Reg 1 in bits 0 ~ 15.
- */
- mode_odt_enable = 0x0; /* Default disabled */
- if (odt_wr_cfg || odt_rd_cfg) {
- /*
- * Bits 6 and 2 in Extended MRS(1)
- * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
- * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
- */
- mode_odt_enable = 0x40; /* 150 Ohm */
- }
-
- ddr->sdram_mode =
- (0
- | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */
- | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */
- | (twr_auto_clk << 9) /* Write Recovery Autopre */
- | (mode_caslat << 4) /* caslat */
- | (burst_len << 0) /* Burst length */
- );
-
- debug("DDR: sdram_mode = 0x%08x\n", ddr->sdram_mode);
-
-
- /*
- * Clear EMRS2 and EMRS3.
- */
- ddr->sdram_mode_2 = 0;
- debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2);
-
- /*
- * Determine Refresh Rate.
- */
- refresh_clk = determine_refresh_rate(spd.refresh & 0x7);
-
- /*
- * Set BSTOPRE to 0x100 for page mode
- * If auto-charge is used, set BSTOPRE = 0
- */
- ddr->sdram_interval =
- (0
- | (refresh_clk & 0x3fff) << 16
- | 0x100
- );
- debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval);
-
- /*
- * Is this an ECC DDR chip?
- * But don't mess with it if the DDR controller will init mem.
- */
-#ifdef CONFIG_DDR_ECC
- if (spd.config == 0x02) {
-#ifndef CONFIG_ECC_INIT_VIA_DDRCONTROLLER
- ddr->err_disable = 0x0000000d;
-#endif
- ddr->err_sbe = 0x00ff0000;
- }
-
- debug("DDR: err_disable = 0x%08x\n", ddr->err_disable);
- debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe);
-#endif /* CONFIG_DDR_ECC */
-
- asm("sync;isync;msync");
- udelay(500);
-
- /*
- * SDRAM Cfg 2
- */
-
- /*
- * When ODT is enabled, Chap 9 suggests asserting ODT to
- * internal IOs only during reads.
- */
- odt_cfg = 0;
- if (odt_rd_cfg | odt_wr_cfg) {
- odt_cfg = 0x2; /* ODT to IOs during reads */
- }
-
- /*
- * Try to use differential DQS with DDR II.
- */
- if (spd.mem_type == SPD_MEMTYPE_DDR) {
- dqs_cfg = 0; /* No Differential DQS for DDR I */
- } else {
- dqs_cfg = 0x1; /* Differential DQS for DDR II */
- }
-
-#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
- /*
- * Use the DDR controller to auto initialize memory.
- */
- d_init = 1;
- ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE;
- debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init);
-#else
- /*
- * Memory will be initialized via DMA, or not at all.
- */
- d_init = 0;
-#endif
-
- ddr->sdram_cfg_2 = (0
- | (dqs_cfg << 26) /* Differential DQS */
- | (odt_cfg << 21) /* ODT */
- | (d_init << 4) /* D_INIT auto init DDR */
- );
-
- debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr->sdram_cfg_2);
-
-
-#ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
- /*
- * Setup the clock control.
- * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
- * SDRAM_CLK_CNTL[5-7] = Clock Adjust
- * 0110 3/4 cycle late
- * 0111 7/8 cycle late
- */
- if (spd.mem_type == SPD_MEMTYPE_DDR)
- clk_adjust = 0x6;
- else
-#ifdef CONFIG_MPC8568
- /* Empirally setting clk_adjust */
- clk_adjust = 0x6;
-#else
- clk_adjust = 0x7;
-#endif
-
- ddr->sdram_clk_cntl = (0
- | 0x80000000
- | (clk_adjust << 23)
- );
- debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl);
-#endif
-
- /*
- * Figure out the settings for the sdram_cfg register.
- * Build up the entire register in 'sdram_cfg' before writing
- * since the write into the register will actually enable the
- * memory controller; all settings must be done before enabling.
- *
- * sdram_cfg[0] = 1 (ddr sdram logic enable)
- * sdram_cfg[1] = 1 (self-refresh-enable)
- * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
- * 010 DDR 1 SDRAM
- * 011 DDR 2 SDRAM
- */
- sdram_type = (spd.mem_type == SPD_MEMTYPE_DDR) ? 2 : 3;
- sdram_cfg = (0
- | (1 << 31) /* Enable */
- | (1 << 30) /* Self refresh */
- | (sdram_type << 24) /* SDRAM type */
- );
-
- /*
- * sdram_cfg[3] = RD_EN - registered DIMM enable
- * A value of 0x26 indicates micron registered DIMMS (micron.com)
- */
- if (spd.mem_type == SPD_MEMTYPE_DDR && spd.mod_attr == 0x26) {
- sdram_cfg |= 0x10000000; /* RD_EN */
- }
-
-#if defined(CONFIG_DDR_ECC)
- /*
- * If the user wanted ECC (enabled via sdram_cfg[2])
- */
- if (spd.config == 0x02) {
- sdram_cfg |= 0x20000000; /* ECC_EN */
- }
-#endif
-
- /*
- * REV1 uses 1T timing.
- * REV2 may use 1T or 2T as configured by the user.
- */
- {
- uint pvr = get_pvr();
-
- if (pvr != PVR_85xx_REV1) {
-#if defined(CONFIG_DDR_2T_TIMING)
- /*
- * Enable 2T timing by setting sdram_cfg[16].
- */
- sdram_cfg |= 0x8000; /* 2T_EN */
-#endif
- }
- }
-
- /*
- * 200 painful micro-seconds must elapse between
- * the DDR clock setup and the DDR config enable.
- */
- udelay(200);
-
- /*
- * Go!
- */
- ddr->sdram_cfg = sdram_cfg;
-
- asm("sync;isync;msync");
- udelay(500);
-
- debug("DDR: sdram_cfg = 0x%08x\n", ddr->sdram_cfg);
-
-
-#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
- /*
- * Poll until memory is initialized.
- * 512 Meg at 400 might hit this 200 times or so.
- */
- while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) {
- udelay(1000);
- }
-#endif
-
-
- /*
- * Figure out memory size in Megabytes.
- */
- memsize = n_ranks * rank_density / 0x100000;
-
- /*
- * Establish Local Access Window and TLB mappings for DDR memory.
- */
- memsize = setup_laws_and_tlbs(memsize);
- if (memsize == 0) {
- return 0;
- }
-
- return memsize * 1024 * 1024;
-}
-
-
-/*
- * Setup Local Access Window and TLB1 mappings for the requested
- * amount of memory. Returns the amount of memory actually mapped
- * (usually the original request size), or 0 on error.
- */
-
-static unsigned int
-setup_laws_and_tlbs(unsigned int memsize)
-{
- unsigned int tlb_size;
- unsigned int law_size;
- unsigned int ram_tlb_index;
- unsigned int ram_tlb_address;
-
- /*
- * Determine size of each TLB1 entry.
- */
- switch (memsize) {
- case 16:
- case 32:
- tlb_size = BOOKE_PAGESZ_16M;
- break;
- case 64:
- case 128:
- tlb_size = BOOKE_PAGESZ_64M;
- break;
- case 256:
- case 512:
- tlb_size = BOOKE_PAGESZ_256M;
- break;
- case 1024:
- case 2048:
- if (PVR_VER(get_pvr()) > PVR_VER(PVR_85xx))
- tlb_size = BOOKE_PAGESZ_1G;
- else
- tlb_size = BOOKE_PAGESZ_256M;
- break;
- default:
- puts("DDR: only 16M,32M,64M,128M,256M,512M,1G and 2G are supported.\n");
-
- /*
- * The memory was not able to be mapped.
- * Default to a small size.
- */
- tlb_size = BOOKE_PAGESZ_64M;
- memsize=64;
- break;
- }
-
- /*
- * Configure DDR TLB1 entries.
- * Starting at TLB1 8, use no more than 8 TLB1 entries.
- */
- ram_tlb_index = 8;
- ram_tlb_address = (unsigned int)CFG_DDR_SDRAM_BASE;
- while (ram_tlb_address < (memsize * 1024 * 1024)
- && ram_tlb_index < 16) {
- set_tlb(1, ram_tlb_address, ram_tlb_address,
- MAS3_SX|MAS3_SW|MAS3_SR, 0,
- 0, ram_tlb_index, tlb_size, 1);
-
- ram_tlb_address += (0x1000 << ((tlb_size - 1) * 2));
- ram_tlb_index++;
- }
-
-
- /*
- * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord.
- */
- law_size = 19 + __ilog2(memsize);
-
- /*
- * Set up LAWBAR for all of DDR.
- */
-
-#ifdef CONFIG_FSL_LAW
- set_next_law(CFG_DDR_SDRAM_BASE, law_size, LAW_TRGT_IF_DDR);
-#endif
-
- /*
- * Confirm that the requested amount of memory was mapped.
- */
- return memsize;
-}
-
-#endif /* CONFIG_SPD_EEPROM */
-
-
-#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
-
-/*
- * Initialize all of memory for ECC, then enable errors.
- */
-
-void
-ddr_enable_ecc(unsigned int dram_size)
-{
- uint *p = 0;
- uint i = 0;
- volatile ccsr_ddr_t *ddr= (void *)(CFG_MPC85xx_DDR_ADDR);
-
- dma_init();
-
- for (*p = 0; p < (uint *)(8 * 1024); p++) {
- if (((unsigned int)p & 0x1f) == 0) {
- ppcDcbz((unsigned long) p);
- }
- *p = (unsigned int)CONFIG_MEM_INIT_VALUE;
- if (((unsigned int)p & 0x1c) == 0x1c) {
- ppcDcbf((unsigned long) p);
- }
- }
-
- dma_xfer((uint *)0x002000, 0x002000, (uint *)0); /* 8K */
- dma_xfer((uint *)0x004000, 0x004000, (uint *)0); /* 16K */
- dma_xfer((uint *)0x008000, 0x008000, (uint *)0); /* 32K */
- dma_xfer((uint *)0x010000, 0x010000, (uint *)0); /* 64K */
- dma_xfer((uint *)0x020000, 0x020000, (uint *)0); /* 128k */
- dma_xfer((uint *)0x040000, 0x040000, (uint *)0); /* 256k */
- dma_xfer((uint *)0x080000, 0x080000, (uint *)0); /* 512k */
- dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */
- dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */
- dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */
-
- for (i = 1; i < dram_size / 0x800000; i++) {
- dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
- }
-
- /*
- * Enable errors for ECC.
- */
- debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
- ddr->err_disable = 0x00000000;
- asm("sync;isync;msync");
- debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
-}
-
-#endif /* CONFIG_DDR_ECC && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */