obj-y += string.o
obj-$(CONFIG_GENERATE_ACPI_TABLE) += acpi_table.o
obj-y += tables.o
-obj-$(CONFIG_SYS_X86_TSC_TIMER) += tsc_timer.o
obj-$(CONFIG_CMD_ZBOOT) += zimage.o
obj-$(CONFIG_HAVE_FSP) += fsp/
+++ /dev/null
-/*
- * Copyright (c) 2012 The Chromium OS Authors.
- *
- * TSC calibration codes are adapted from Linux kernel
- * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
- *
- * SPDX-License-Identifier: GPL-2.0+
- */
-
-#include <common.h>
-#include <dm.h>
-#include <malloc.h>
-#include <timer.h>
-#include <asm/io.h>
-#include <asm/i8254.h>
-#include <asm/ibmpc.h>
-#include <asm/msr.h>
-#include <asm/u-boot-x86.h>
-
-/* CPU reference clock frequency: in KHz */
-#define FREQ_83 83200
-#define FREQ_100 99840
-#define FREQ_133 133200
-#define FREQ_166 166400
-
-#define MAX_NUM_FREQS 8
-
-DECLARE_GLOBAL_DATA_PTR;
-
-/*
- * According to Intel 64 and IA-32 System Programming Guide,
- * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
- * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
- * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
- * so we need manually differentiate SoC families. This is what the
- * field msr_plat does.
- */
-struct freq_desc {
- u8 x86_family; /* CPU family */
- u8 x86_model; /* model */
- /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
- u8 msr_plat;
- u32 freqs[MAX_NUM_FREQS];
-};
-
-static struct freq_desc freq_desc_tables[] = {
- /* PNW */
- { 6, 0x27, 0, { 0, 0, 0, 0, 0, FREQ_100, 0, FREQ_83 } },
- /* CLV+ */
- { 6, 0x35, 0, { 0, FREQ_133, 0, 0, 0, FREQ_100, 0, FREQ_83 } },
- /* TNG */
- { 6, 0x4a, 1, { 0, FREQ_100, FREQ_133, 0, 0, 0, 0, 0 } },
- /* VLV2 */
- { 6, 0x37, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_166, 0, 0, 0, 0 } },
- /* Ivybridge */
- { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0 } },
- /* ANN */
- { 6, 0x5a, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_100, 0, 0, 0, 0 } },
-};
-
-static int match_cpu(u8 family, u8 model)
-{
- int i;
-
- for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
- if ((family == freq_desc_tables[i].x86_family) &&
- (model == freq_desc_tables[i].x86_model))
- return i;
- }
-
- return -1;
-}
-
-/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
-#define id_to_freq(cpu_index, freq_id) \
- (freq_desc_tables[cpu_index].freqs[freq_id])
-
-/*
- * Do MSR calibration only for known/supported CPUs.
- *
- * Returns the calibration value or 0 if MSR calibration failed.
- */
-static unsigned long __maybe_unused try_msr_calibrate_tsc(void)
-{
- u32 lo, hi, ratio, freq_id, freq;
- unsigned long res;
- int cpu_index;
-
- cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
- if (cpu_index < 0)
- return 0;
-
- if (freq_desc_tables[cpu_index].msr_plat) {
- rdmsr(MSR_PLATFORM_INFO, lo, hi);
- ratio = (lo >> 8) & 0x1f;
- } else {
- rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
- ratio = (hi >> 8) & 0x1f;
- }
- debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
-
- if (!ratio)
- goto fail;
-
- if (freq_desc_tables[cpu_index].msr_plat == 2) {
- /* TODO: Figure out how best to deal with this */
- freq = FREQ_100;
- debug("Using frequency: %u KHz\n", freq);
- } else {
- /* Get FSB FREQ ID */
- rdmsr(MSR_FSB_FREQ, lo, hi);
- freq_id = lo & 0x7;
- freq = id_to_freq(cpu_index, freq_id);
- debug("Resolved frequency ID: %u, frequency: %u KHz\n",
- freq_id, freq);
- }
- if (!freq)
- goto fail;
-
- /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
- res = freq * ratio / 1000;
- debug("TSC runs at %lu MHz\n", res);
-
- return res;
-
-fail:
- debug("Fast TSC calibration using MSR failed\n");
- return 0;
-}
-
-/*
- * This reads the current MSB of the PIT counter, and
- * checks if we are running on sufficiently fast and
- * non-virtualized hardware.
- *
- * Our expectations are:
- *
- * - the PIT is running at roughly 1.19MHz
- *
- * - each IO is going to take about 1us on real hardware,
- * but we allow it to be much faster (by a factor of 10) or
- * _slightly_ slower (ie we allow up to a 2us read+counter
- * update - anything else implies a unacceptably slow CPU
- * or PIT for the fast calibration to work.
- *
- * - with 256 PIT ticks to read the value, we have 214us to
- * see the same MSB (and overhead like doing a single TSC
- * read per MSB value etc).
- *
- * - We're doing 2 reads per loop (LSB, MSB), and we expect
- * them each to take about a microsecond on real hardware.
- * So we expect a count value of around 100. But we'll be
- * generous, and accept anything over 50.
- *
- * - if the PIT is stuck, and we see *many* more reads, we
- * return early (and the next caller of pit_expect_msb()
- * then consider it a failure when they don't see the
- * next expected value).
- *
- * These expectations mean that we know that we have seen the
- * transition from one expected value to another with a fairly
- * high accuracy, and we didn't miss any events. We can thus
- * use the TSC value at the transitions to calculate a pretty
- * good value for the TSC frequencty.
- */
-static inline int pit_verify_msb(unsigned char val)
-{
- /* Ignore LSB */
- inb(0x42);
- return inb(0x42) == val;
-}
-
-static inline int pit_expect_msb(unsigned char val, u64 *tscp,
- unsigned long *deltap)
-{
- int count;
- u64 tsc = 0, prev_tsc = 0;
-
- for (count = 0; count < 50000; count++) {
- if (!pit_verify_msb(val))
- break;
- prev_tsc = tsc;
- tsc = rdtsc();
- }
- *deltap = rdtsc() - prev_tsc;
- *tscp = tsc;
-
- /*
- * We require _some_ success, but the quality control
- * will be based on the error terms on the TSC values.
- */
- return count > 5;
-}
-
-/*
- * How many MSB values do we want to see? We aim for
- * a maximum error rate of 500ppm (in practice the
- * real error is much smaller), but refuse to spend
- * more than 50ms on it.
- */
-#define MAX_QUICK_PIT_MS 50
-#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
-
-static unsigned long __maybe_unused quick_pit_calibrate(void)
-{
- int i;
- u64 tsc, delta;
- unsigned long d1, d2;
-
- /* Set the Gate high, disable speaker */
- outb((inb(0x61) & ~0x02) | 0x01, 0x61);
-
- /*
- * Counter 2, mode 0 (one-shot), binary count
- *
- * NOTE! Mode 2 decrements by two (and then the
- * output is flipped each time, giving the same
- * final output frequency as a decrement-by-one),
- * so mode 0 is much better when looking at the
- * individual counts.
- */
- outb(0xb0, 0x43);
-
- /* Start at 0xffff */
- outb(0xff, 0x42);
- outb(0xff, 0x42);
-
- /*
- * The PIT starts counting at the next edge, so we
- * need to delay for a microsecond. The easiest way
- * to do that is to just read back the 16-bit counter
- * once from the PIT.
- */
- pit_verify_msb(0);
-
- if (pit_expect_msb(0xff, &tsc, &d1)) {
- for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
- if (!pit_expect_msb(0xff-i, &delta, &d2))
- break;
-
- /*
- * Iterate until the error is less than 500 ppm
- */
- delta -= tsc;
- if (d1+d2 >= delta >> 11)
- continue;
-
- /*
- * Check the PIT one more time to verify that
- * all TSC reads were stable wrt the PIT.
- *
- * This also guarantees serialization of the
- * last cycle read ('d2') in pit_expect_msb.
- */
- if (!pit_verify_msb(0xfe - i))
- break;
- goto success;
- }
- }
- debug("Fast TSC calibration failed\n");
- return 0;
-
-success:
- /*
- * Ok, if we get here, then we've seen the
- * MSB of the PIT decrement 'i' times, and the
- * error has shrunk to less than 500 ppm.
- *
- * As a result, we can depend on there not being
- * any odd delays anywhere, and the TSC reads are
- * reliable (within the error).
- *
- * kHz = ticks / time-in-seconds / 1000;
- * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
- * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
- */
- delta *= PIT_TICK_RATE;
- delta /= (i*256*1000);
- debug("Fast TSC calibration using PIT\n");
- return delta / 1000;
-}
-
-/* Get the speed of the TSC timer in MHz */
-unsigned notrace long get_tbclk_mhz(void)
-{
- return get_tbclk() / 1000000;
-}
-
-static ulong get_ms_timer(void)
-{
- return (get_ticks() * 1000) / get_tbclk();
-}
-
-ulong get_timer(ulong base)
-{
- return get_ms_timer() - base;
-}
-
-ulong notrace timer_get_us(void)
-{
- return get_ticks() / get_tbclk_mhz();
-}
-
-ulong timer_get_boot_us(void)
-{
- return timer_get_us();
-}
-
-void __udelay(unsigned long usec)
-{
- u64 now = get_ticks();
- u64 stop;
-
- stop = now + usec * get_tbclk_mhz();
-
- while ((int64_t)(stop - get_ticks()) > 0)
-#if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
- /*
- * Add a 'pause' instruction on qemu target,
- * to give other VCPUs a chance to run.
- */
- asm volatile("pause");
-#else
- ;
-#endif
-}
-
-int timer_init(void)
-{
-#ifdef CONFIG_I8254_TIMER
- /* Set up the i8254 timer if required */
- i8254_init();
-#endif
-
- return 0;
-}
-
-static int tsc_timer_get_count(struct udevice *dev, u64 *count)
-{
- u64 now_tick = rdtsc();
-
- *count = now_tick - gd->arch.tsc_base;
-
- return 0;
-}
-
-static int tsc_timer_probe(struct udevice *dev)
-{
- struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
-
- gd->arch.tsc_base = rdtsc();
-
- /*
- * If there is no clock frequency specified in the device tree,
- * calibrate it by ourselves.
- */
- if (!uc_priv->clock_rate) {
- unsigned long fast_calibrate;
-
- fast_calibrate = try_msr_calibrate_tsc();
- if (!fast_calibrate) {
- fast_calibrate = quick_pit_calibrate();
- if (!fast_calibrate)
- panic("TSC frequency is ZERO");
- }
-
- uc_priv->clock_rate = fast_calibrate * 1000000;
- }
-
- return 0;
-}
-
-static const struct timer_ops tsc_timer_ops = {
- .get_count = tsc_timer_get_count,
-};
-
-static const struct udevice_id tsc_timer_ids[] = {
- { .compatible = "x86,tsc-timer", },
- { }
-};
-
-U_BOOT_DRIVER(tsc_timer) = {
- .name = "tsc_timer",
- .id = UCLASS_TIMER,
- .of_match = tsc_timer_ids,
- .probe = tsc_timer_probe,
- .ops = &tsc_timer_ops,
- .flags = DM_FLAG_PRE_RELOC,
-};
Select this to enable an emulated timer for sandbox. It gets
time from host os.
+config X86_TSC_TIMER
+ bool "x86 Time-Stamp Counter (TSC) timer support"
+ depends on TIMER && X86
+ default y if X86
+ help
+ Select this to enable Time-Stamp Counter (TSC) timer for x86.
+
endmenu
obj-$(CONFIG_TIMER) += timer-uclass.o
obj-$(CONFIG_ALTERA_TIMER) += altera_timer.o
obj-$(CONFIG_SANDBOX_TIMER) += sandbox_timer.o
+obj-$(CONFIG_X86_TSC_TIMER) += tsc_timer.o
--- /dev/null
+/*
+ * Copyright (c) 2012 The Chromium OS Authors.
+ *
+ * TSC calibration codes are adapted from Linux kernel
+ * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <common.h>
+#include <dm.h>
+#include <malloc.h>
+#include <timer.h>
+#include <asm/io.h>
+#include <asm/i8254.h>
+#include <asm/ibmpc.h>
+#include <asm/msr.h>
+#include <asm/u-boot-x86.h>
+
+/* CPU reference clock frequency: in KHz */
+#define FREQ_83 83200
+#define FREQ_100 99840
+#define FREQ_133 133200
+#define FREQ_166 166400
+
+#define MAX_NUM_FREQS 8
+
+DECLARE_GLOBAL_DATA_PTR;
+
+/*
+ * According to Intel 64 and IA-32 System Programming Guide,
+ * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
+ * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
+ * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
+ * so we need manually differentiate SoC families. This is what the
+ * field msr_plat does.
+ */
+struct freq_desc {
+ u8 x86_family; /* CPU family */
+ u8 x86_model; /* model */
+ /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
+ u8 msr_plat;
+ u32 freqs[MAX_NUM_FREQS];
+};
+
+static struct freq_desc freq_desc_tables[] = {
+ /* PNW */
+ { 6, 0x27, 0, { 0, 0, 0, 0, 0, FREQ_100, 0, FREQ_83 } },
+ /* CLV+ */
+ { 6, 0x35, 0, { 0, FREQ_133, 0, 0, 0, FREQ_100, 0, FREQ_83 } },
+ /* TNG */
+ { 6, 0x4a, 1, { 0, FREQ_100, FREQ_133, 0, 0, 0, 0, 0 } },
+ /* VLV2 */
+ { 6, 0x37, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_166, 0, 0, 0, 0 } },
+ /* Ivybridge */
+ { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0 } },
+ /* ANN */
+ { 6, 0x5a, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_100, 0, 0, 0, 0 } },
+};
+
+static int match_cpu(u8 family, u8 model)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
+ if ((family == freq_desc_tables[i].x86_family) &&
+ (model == freq_desc_tables[i].x86_model))
+ return i;
+ }
+
+ return -1;
+}
+
+/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
+#define id_to_freq(cpu_index, freq_id) \
+ (freq_desc_tables[cpu_index].freqs[freq_id])
+
+/*
+ * Do MSR calibration only for known/supported CPUs.
+ *
+ * Returns the calibration value or 0 if MSR calibration failed.
+ */
+static unsigned long __maybe_unused try_msr_calibrate_tsc(void)
+{
+ u32 lo, hi, ratio, freq_id, freq;
+ unsigned long res;
+ int cpu_index;
+
+ cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
+ if (cpu_index < 0)
+ return 0;
+
+ if (freq_desc_tables[cpu_index].msr_plat) {
+ rdmsr(MSR_PLATFORM_INFO, lo, hi);
+ ratio = (lo >> 8) & 0x1f;
+ } else {
+ rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
+ ratio = (hi >> 8) & 0x1f;
+ }
+ debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
+
+ if (!ratio)
+ goto fail;
+
+ if (freq_desc_tables[cpu_index].msr_plat == 2) {
+ /* TODO: Figure out how best to deal with this */
+ freq = FREQ_100;
+ debug("Using frequency: %u KHz\n", freq);
+ } else {
+ /* Get FSB FREQ ID */
+ rdmsr(MSR_FSB_FREQ, lo, hi);
+ freq_id = lo & 0x7;
+ freq = id_to_freq(cpu_index, freq_id);
+ debug("Resolved frequency ID: %u, frequency: %u KHz\n",
+ freq_id, freq);
+ }
+ if (!freq)
+ goto fail;
+
+ /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
+ res = freq * ratio / 1000;
+ debug("TSC runs at %lu MHz\n", res);
+
+ return res;
+
+fail:
+ debug("Fast TSC calibration using MSR failed\n");
+ return 0;
+}
+
+/*
+ * This reads the current MSB of the PIT counter, and
+ * checks if we are running on sufficiently fast and
+ * non-virtualized hardware.
+ *
+ * Our expectations are:
+ *
+ * - the PIT is running at roughly 1.19MHz
+ *
+ * - each IO is going to take about 1us on real hardware,
+ * but we allow it to be much faster (by a factor of 10) or
+ * _slightly_ slower (ie we allow up to a 2us read+counter
+ * update - anything else implies a unacceptably slow CPU
+ * or PIT for the fast calibration to work.
+ *
+ * - with 256 PIT ticks to read the value, we have 214us to
+ * see the same MSB (and overhead like doing a single TSC
+ * read per MSB value etc).
+ *
+ * - We're doing 2 reads per loop (LSB, MSB), and we expect
+ * them each to take about a microsecond on real hardware.
+ * So we expect a count value of around 100. But we'll be
+ * generous, and accept anything over 50.
+ *
+ * - if the PIT is stuck, and we see *many* more reads, we
+ * return early (and the next caller of pit_expect_msb()
+ * then consider it a failure when they don't see the
+ * next expected value).
+ *
+ * These expectations mean that we know that we have seen the
+ * transition from one expected value to another with a fairly
+ * high accuracy, and we didn't miss any events. We can thus
+ * use the TSC value at the transitions to calculate a pretty
+ * good value for the TSC frequencty.
+ */
+static inline int pit_verify_msb(unsigned char val)
+{
+ /* Ignore LSB */
+ inb(0x42);
+ return inb(0x42) == val;
+}
+
+static inline int pit_expect_msb(unsigned char val, u64 *tscp,
+ unsigned long *deltap)
+{
+ int count;
+ u64 tsc = 0, prev_tsc = 0;
+
+ for (count = 0; count < 50000; count++) {
+ if (!pit_verify_msb(val))
+ break;
+ prev_tsc = tsc;
+ tsc = rdtsc();
+ }
+ *deltap = rdtsc() - prev_tsc;
+ *tscp = tsc;
+
+ /*
+ * We require _some_ success, but the quality control
+ * will be based on the error terms on the TSC values.
+ */
+ return count > 5;
+}
+
+/*
+ * How many MSB values do we want to see? We aim for
+ * a maximum error rate of 500ppm (in practice the
+ * real error is much smaller), but refuse to spend
+ * more than 50ms on it.
+ */
+#define MAX_QUICK_PIT_MS 50
+#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
+
+static unsigned long __maybe_unused quick_pit_calibrate(void)
+{
+ int i;
+ u64 tsc, delta;
+ unsigned long d1, d2;
+
+ /* Set the Gate high, disable speaker */
+ outb((inb(0x61) & ~0x02) | 0x01, 0x61);
+
+ /*
+ * Counter 2, mode 0 (one-shot), binary count
+ *
+ * NOTE! Mode 2 decrements by two (and then the
+ * output is flipped each time, giving the same
+ * final output frequency as a decrement-by-one),
+ * so mode 0 is much better when looking at the
+ * individual counts.
+ */
+ outb(0xb0, 0x43);
+
+ /* Start at 0xffff */
+ outb(0xff, 0x42);
+ outb(0xff, 0x42);
+
+ /*
+ * The PIT starts counting at the next edge, so we
+ * need to delay for a microsecond. The easiest way
+ * to do that is to just read back the 16-bit counter
+ * once from the PIT.
+ */
+ pit_verify_msb(0);
+
+ if (pit_expect_msb(0xff, &tsc, &d1)) {
+ for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
+ if (!pit_expect_msb(0xff-i, &delta, &d2))
+ break;
+
+ /*
+ * Iterate until the error is less than 500 ppm
+ */
+ delta -= tsc;
+ if (d1+d2 >= delta >> 11)
+ continue;
+
+ /*
+ * Check the PIT one more time to verify that
+ * all TSC reads were stable wrt the PIT.
+ *
+ * This also guarantees serialization of the
+ * last cycle read ('d2') in pit_expect_msb.
+ */
+ if (!pit_verify_msb(0xfe - i))
+ break;
+ goto success;
+ }
+ }
+ debug("Fast TSC calibration failed\n");
+ return 0;
+
+success:
+ /*
+ * Ok, if we get here, then we've seen the
+ * MSB of the PIT decrement 'i' times, and the
+ * error has shrunk to less than 500 ppm.
+ *
+ * As a result, we can depend on there not being
+ * any odd delays anywhere, and the TSC reads are
+ * reliable (within the error).
+ *
+ * kHz = ticks / time-in-seconds / 1000;
+ * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
+ * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
+ */
+ delta *= PIT_TICK_RATE;
+ delta /= (i*256*1000);
+ debug("Fast TSC calibration using PIT\n");
+ return delta / 1000;
+}
+
+/* Get the speed of the TSC timer in MHz */
+unsigned notrace long get_tbclk_mhz(void)
+{
+ return get_tbclk() / 1000000;
+}
+
+static ulong get_ms_timer(void)
+{
+ return (get_ticks() * 1000) / get_tbclk();
+}
+
+ulong get_timer(ulong base)
+{
+ return get_ms_timer() - base;
+}
+
+ulong notrace timer_get_us(void)
+{
+ return get_ticks() / get_tbclk_mhz();
+}
+
+ulong timer_get_boot_us(void)
+{
+ return timer_get_us();
+}
+
+void __udelay(unsigned long usec)
+{
+ u64 now = get_ticks();
+ u64 stop;
+
+ stop = now + usec * get_tbclk_mhz();
+
+ while ((int64_t)(stop - get_ticks()) > 0)
+#if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
+ /*
+ * Add a 'pause' instruction on qemu target,
+ * to give other VCPUs a chance to run.
+ */
+ asm volatile("pause");
+#else
+ ;
+#endif
+}
+
+int timer_init(void)
+{
+#ifdef CONFIG_I8254_TIMER
+ /* Set up the i8254 timer if required */
+ i8254_init();
+#endif
+
+ return 0;
+}
+
+static int tsc_timer_get_count(struct udevice *dev, u64 *count)
+{
+ u64 now_tick = rdtsc();
+
+ *count = now_tick - gd->arch.tsc_base;
+
+ return 0;
+}
+
+static int tsc_timer_probe(struct udevice *dev)
+{
+ struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
+
+ gd->arch.tsc_base = rdtsc();
+
+ /*
+ * If there is no clock frequency specified in the device tree,
+ * calibrate it by ourselves.
+ */
+ if (!uc_priv->clock_rate) {
+ unsigned long fast_calibrate;
+
+ fast_calibrate = try_msr_calibrate_tsc();
+ if (!fast_calibrate) {
+ fast_calibrate = quick_pit_calibrate();
+ if (!fast_calibrate)
+ panic("TSC frequency is ZERO");
+ }
+
+ uc_priv->clock_rate = fast_calibrate * 1000000;
+ }
+
+ return 0;
+}
+
+static const struct timer_ops tsc_timer_ops = {
+ .get_count = tsc_timer_get_count,
+};
+
+static const struct udevice_id tsc_timer_ids[] = {
+ { .compatible = "x86,tsc-timer", },
+ { }
+};
+
+U_BOOT_DRIVER(tsc_timer) = {
+ .name = "tsc_timer",
+ .id = UCLASS_TIMER,
+ .of_match = tsc_timer_ids,
+ .probe = tsc_timer_probe,
+ .ops = &tsc_timer_ops,
+ .flags = DM_FLAG_PRE_RELOC,
+};
* CPU Features
*/
-#define CONFIG_SYS_X86_TSC_TIMER
-
#define CONFIG_SYS_STACK_SIZE (32 * 1024)
#define CONFIG_SYS_MONITOR_BASE CONFIG_SYS_TEXT_BASE
#define CONFIG_SYS_MALLOC_LEN 0x200000