The patch implements secure booting for the mvebu architecture.
This includes:
- The addition of secure headers and all needed signatures and keys in
mkimage
- Commands capable of writing the board's efuses to both write the
needed cryptographic data and enable the secure booting mechanism
- The creation of convenience text files containing the necessary
commands to write the efuses
The KAK and CSK keys are expected to reside in the files kwb_kak.key and
kwb_csk.key (OpenSSL 2048 bit private keys) in the top-level directory.
Signed-off-by: Reinhard Pfau <reinhard.pfau@gdsys.cc>
Signed-off-by: Mario Six <mario.six@gdsys.cc>
Reviewed-by: Stefan Roese <sr@denx.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Stefan Roese <sr@denx.de>
-T kwbimage -a $(CONFIG_SYS_TEXT_BASE) -e $(CONFIG_SYS_TEXT_BASE)
MKIMAGEFLAGS_u-boot-spl.kwb = -n $(srctree)/$(CONFIG_SYS_KWD_CONFIG:"%"=%) \
- -T kwbimage -a $(CONFIG_SYS_TEXT_BASE) -e $(CONFIG_SYS_TEXT_BASE)
+ -T kwbimage -a $(CONFIG_SYS_TEXT_BASE) -e $(CONFIG_SYS_TEXT_BASE) \
+ $(if $(KEYDIR),-k $(KEYDIR))
MKIMAGEFLAGS_u-boot.pbl = -n $(srctree)/$(CONFIG_SYS_FSL_PBL_RCW:"%"=%) \
-R $(srctree)/$(CONFIG_SYS_FSL_PBL_PBI:"%"=%) -T pblimage
if ARCH_MVEBU
+config HAVE_MVEBU_EFUSE
+ bool
+ default n
+
config ARMADA_32BIT
bool
select CPU_V7
config ARMADA_38X
bool
select ARMADA_32BIT
+ select HAVE_MVEBU_EFUSE
config ARMADA_XP
bool
config SYS_SOC
default "mvebu"
+config MVEBU_EFUSE
+ bool "Enable eFuse support"
+ default n
+ depends on HAVE_MVEBU_EFUSE
+ help
+ Enable support for reading and writing eFuses on mvebu SoCs.
+
+config MVEBU_EFUSE_FAKE
+ bool "Fake eFuse access (dry run)"
+ default n
+ depends on MVEBU_EFUSE
+ help
+ This enables a "dry run" mode where eFuses are not really programmed.
+ Instead the eFuse accesses are emulated by writing to and reading
+ from a memory block.
+ This is can be used for testing prog scripts.
+
+config SECURED_MODE_IMAGE
+ bool "Build image for trusted boot"
+ default false
+ depends on 88F6820
+ help
+ Build an image that employs the ARMADA SoC's trusted boot framework
+ for securely booting images.
+
+config SECURED_MODE_CSK_INDEX
+ int "Index of active CSK"
+ default 0
+ depends on SECURED_MODE_IMAGE
+
endif
obj-$(CONFIG_ARMADA_375) += ../../../drivers/ddr/marvell/axp/xor.o
obj-$(CONFIG_ARMADA_38X) += ../../../drivers/ddr/marvell/a38x/xor.o
obj-$(CONFIG_ARMADA_XP) += ../../../drivers/ddr/marvell/axp/xor.o
+obj-$(CONFIG_MVEBU_EFUSE) += efuse.o
endif # CONFIG_SPL_BUILD
obj-y += gpio.o
obj-y += mbus.o
--- /dev/null
+/*
+ * Copyright (C) 2015-2016 Reinhard Pfau <reinhard.pfau@gdsys.cc>
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <config.h>
+#include <common.h>
+#include <errno.h>
+#include <asm/io.h>
+#include <asm/arch/cpu.h>
+#include <asm/arch/efuse.h>
+#include <asm/arch/soc.h>
+#include <linux/mbus.h>
+
+#if defined(CONFIG_MVEBU_EFUSE_FAKE)
+#define DRY_RUN
+#else
+#undef DRY_RUN
+#endif
+
+#define MBUS_EFUSE_BASE 0xF6000000
+#define MBUS_EFUSE_SIZE BIT(20)
+
+#define MVEBU_EFUSE_CONTROL (MVEBU_REGISTER(0xE4008))
+
+enum {
+ MVEBU_EFUSE_CTRL_PROGRAM_ENABLE = (1 << 31),
+};
+
+struct mvebu_hd_efuse {
+ u32 bits_31_0;
+ u32 bits_63_32;
+ u32 bit64;
+ u32 reserved0;
+};
+
+#ifndef DRY_RUN
+static struct mvebu_hd_efuse *efuses =
+ (struct mvebu_hd_efuse *)(MBUS_EFUSE_BASE + 0xF9000);
+#else
+static struct mvebu_hd_efuse efuses[EFUSE_LINE_MAX + 1];
+#endif
+
+static int efuse_initialised;
+
+static struct mvebu_hd_efuse *get_efuse_line(int nr)
+{
+ if (nr < 0 || nr > 63 || !efuse_initialised)
+ return NULL;
+
+ return efuses + nr;
+}
+
+static void enable_efuse_program(void)
+{
+#ifndef DRY_RUN
+ setbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_CTRL_PROGRAM_ENABLE);
+#endif
+}
+
+static void disable_efuse_program(void)
+{
+#ifndef DRY_RUN
+ clrbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_CTRL_PROGRAM_ENABLE);
+#endif
+}
+
+static int do_prog_efuse(struct mvebu_hd_efuse *efuse,
+ struct efuse_val *new_val, u32 mask0, u32 mask1)
+{
+ struct efuse_val val;
+
+ val.dwords.d[0] = readl(&efuse->bits_31_0);
+ val.dwords.d[1] = readl(&efuse->bits_63_32);
+ val.lock = readl(&efuse->bit64);
+
+ if (val.lock & 1)
+ return -EPERM;
+
+ val.dwords.d[0] |= (new_val->dwords.d[0] & mask0);
+ val.dwords.d[1] |= (new_val->dwords.d[1] & mask1);
+ val.lock |= new_val->lock;
+
+ writel(val.dwords.d[0], &efuse->bits_31_0);
+ mdelay(1);
+ writel(val.dwords.d[1], &efuse->bits_63_32);
+ mdelay(1);
+ writel(val.lock, &efuse->bit64);
+ mdelay(5);
+
+ return 0;
+}
+
+static int prog_efuse(int nr, struct efuse_val *new_val, u32 mask0, u32 mask1)
+{
+ struct mvebu_hd_efuse *efuse;
+ int res = 0;
+
+ res = mvebu_efuse_init_hw();
+ if (res)
+ return res;
+
+ efuse = get_efuse_line(nr);
+ if (!efuse)
+ return -ENODEV;
+
+ if (!new_val)
+ return -EINVAL;
+
+ /* only write a fuse line with lock bit */
+ if (!new_val->lock)
+ return -EINVAL;
+
+ /* according to specs ECC protection bits must be 0 on write */
+ if (new_val->bytes.d[7] & 0xFE)
+ return -EINVAL;
+
+ if (!new_val->dwords.d[0] && !new_val->dwords.d[1] && (mask0 | mask1))
+ return 0;
+
+ enable_efuse_program();
+
+ res = do_prog_efuse(efuse, new_val, mask0, mask1);
+
+ disable_efuse_program();
+
+ return res;
+}
+
+int mvebu_efuse_init_hw(void)
+{
+ int ret;
+
+ if (efuse_initialised)
+ return 0;
+
+ ret = mvebu_mbus_add_window_by_id(
+ CPU_TARGET_SATA23_DFX, 0xA, MBUS_EFUSE_BASE, MBUS_EFUSE_SIZE);
+
+ if (ret)
+ return ret;
+
+ efuse_initialised = 1;
+
+ return 0;
+}
+
+int mvebu_read_efuse(int nr, struct efuse_val *val)
+{
+ struct mvebu_hd_efuse *efuse;
+ int res;
+
+ res = mvebu_efuse_init_hw();
+ if (res)
+ return res;
+
+ efuse = get_efuse_line(nr);
+ if (!efuse)
+ return -ENODEV;
+
+ if (!val)
+ return -EINVAL;
+
+ val->dwords.d[0] = readl(&efuse->bits_31_0);
+ val->dwords.d[1] = readl(&efuse->bits_63_32);
+ val->lock = readl(&efuse->bit64);
+ return 0;
+}
+
+int mvebu_write_efuse(int nr, struct efuse_val *val)
+{
+ return prog_efuse(nr, val, ~0, ~0);
+}
+
+int mvebu_lock_efuse(int nr)
+{
+ struct efuse_val val = {
+ .lock = 1,
+ };
+
+ return prog_efuse(nr, &val, 0, 0);
+}
+
+/*
+ * wrapper funcs providing the fuse API
+ *
+ * we use the following mapping:
+ * "bank" -> eFuse line
+ * "word" -> 0: bits 0-31
+ * 1: bits 32-63
+ * 2: bit 64 (lock)
+ */
+
+static struct efuse_val prog_val;
+static int valid_prog_words;
+
+int fuse_read(u32 bank, u32 word, u32 *val)
+{
+ struct efuse_val fuse_line;
+ int res;
+
+ if (bank < EFUSE_LINE_MIN || bank > EFUSE_LINE_MAX || word > 2)
+ return -EINVAL;
+
+ res = mvebu_read_efuse(bank, &fuse_line);
+ if (res)
+ return res;
+
+ if (word < 2)
+ *val = fuse_line.dwords.d[word];
+ else
+ *val = fuse_line.lock;
+
+ return res;
+}
+
+int fuse_sense(u32 bank, u32 word, u32 *val)
+{
+ /* not supported */
+ return -ENOSYS;
+}
+
+int fuse_prog(u32 bank, u32 word, u32 val)
+{
+ int res = 0;
+
+ /*
+ * NOTE: Fuse line should be written as whole.
+ * So how can we do that with this API?
+ * For now: remember values for word == 0 and word == 1 and write the
+ * whole line when word == 2.
+ * This implies that we always require all 3 fuse prog cmds (one for
+ * for each word) to write a single fuse line.
+ * Exception is a single write to word 2 which will lock the fuse line.
+ *
+ * Hope that will be OK.
+ */
+
+ if (bank < EFUSE_LINE_MIN || bank > EFUSE_LINE_MAX || word > 2)
+ return -EINVAL;
+
+ if (word < 2) {
+ prog_val.dwords.d[word] = val;
+ valid_prog_words |= (1 << word);
+ } else if ((valid_prog_words & 3) == 0 && val) {
+ res = mvebu_lock_efuse(bank);
+ valid_prog_words = 0;
+ } else if ((valid_prog_words & 3) != 3 || !val) {
+ res = -EINVAL;
+ } else {
+ prog_val.lock = val != 0;
+ res = mvebu_write_efuse(bank, &prog_val);
+ valid_prog_words = 0;
+ }
+
+ return res;
+}
+
+int fuse_override(u32 bank, u32 word, u32 val)
+{
+ /* not supported */
+ return -ENOSYS;
+}
CPU_TARGET_ETH01 = 0x7,
CPU_TARGET_PCIE13 = 0x8,
CPU_TARGET_SASRAM = 0x9,
+ CPU_TARGET_SATA01 = 0xa, /* A38X */
CPU_TARGET_NAND = 0xd,
+ CPU_TARGET_SATA23_DFX = 0xe, /* A38X */
};
enum cpu_attrib {
--- /dev/null
+/*
+ * Copyright (C) 2015 Reinhard Pfau <reinhard.pfau@gdsys.cc>
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#ifndef _MVEBU_EFUSE_H
+#define _MVEBU_EFUSE_H
+
+#include <common.h>
+
+struct efuse_val {
+ union {
+ struct {
+ u8 d[8];
+ } bytes;
+ struct {
+ u16 d[4];
+ } words;
+ struct {
+ u32 d[2];
+ } dwords;
+ };
+ u32 lock;
+};
+
+#if defined(CONFIG_ARMADA_38X)
+
+enum efuse_line {
+ EFUSE_LINE_SECURE_BOOT = 24,
+ EFUSE_LINE_PUBKEY_DIGEST_0 = 26,
+ EFUSE_LINE_PUBKEY_DIGEST_1 = 27,
+ EFUSE_LINE_PUBKEY_DIGEST_2 = 28,
+ EFUSE_LINE_PUBKEY_DIGEST_3 = 29,
+ EFUSE_LINE_PUBKEY_DIGEST_4 = 30,
+ EFUSE_LINE_CSK_0_VALID = 31,
+ EFUSE_LINE_CSK_1_VALID = 32,
+ EFUSE_LINE_CSK_2_VALID = 33,
+ EFUSE_LINE_CSK_3_VALID = 34,
+ EFUSE_LINE_CSK_4_VALID = 35,
+ EFUSE_LINE_CSK_5_VALID = 36,
+ EFUSE_LINE_CSK_6_VALID = 37,
+ EFUSE_LINE_CSK_7_VALID = 38,
+ EFUSE_LINE_CSK_8_VALID = 39,
+ EFUSE_LINE_CSK_9_VALID = 40,
+ EFUSE_LINE_CSK_10_VALID = 41,
+ EFUSE_LINE_CSK_11_VALID = 42,
+ EFUSE_LINE_CSK_12_VALID = 43,
+ EFUSE_LINE_CSK_13_VALID = 44,
+ EFUSE_LINE_CSK_14_VALID = 45,
+ EFUSE_LINE_CSK_15_VALID = 46,
+ EFUSE_LINE_FLASH_ID = 47,
+ EFUSE_LINE_BOX_ID = 48,
+
+ EFUSE_LINE_MIN = 0,
+ EFUSE_LINE_MAX = 63,
+};
+
+#endif
+
+int mvebu_efuse_init_hw(void);
+
+int mvebu_read_efuse(int nr, struct efuse_val *val);
+
+int mvebu_write_efuse(int nr, struct efuse_val *val);
+
+int mvebu_lock_efuse(int nr);
+
+#endif
--- /dev/null
+The trusted boot framework on Marvell Armada 38x
+================================================
+
+Contents:
+
+1. Overview of the trusted boot
+2. Terminology
+3. Boot image layout
+4. The secured header
+5. The secured boot flow
+6. Usage example
+7. Work to be done
+8. Bibliography
+
+1. Overview of the trusted boot
+-------------------------------
+
+The Armada's trusted boot framework enables the SoC to cryptographically verify
+a specially prepared boot image. This can be used to establish a chain of trust
+from the boot firmware all the way to the OS.
+
+To achieve this, the Armada SoC requires a specially prepared boot image, which
+contains the relevant cryptographic data, as well as other information
+pertaining to the boot process. Furthermore, a eFuse structure (a
+one-time-writeable memory) need to be configured in the correct way.
+
+Roughly, the secure boot process works as follows:
+
+* Load the header block of the boot image, extract a special "root" public RSA
+ key from it, and verify its SHA-256 hash against a SHA-256 stored in a eFuse
+ field.
+* Load an array of code signing public RSA keys from the header block, and
+ verify its RSA signature (contained in the header block as well) using the
+ "root" RSA key.
+* Choose a code signing key, and use it to verify the header block (excluding
+ the key array).
+* Verify the binary image's signature (contained in the header block) using the
+ code signing key.
+* If all checks pass successfully, boot the image.
+
+The chain of trust is thus as follows:
+
+* The SHA-256 value in the eFuse field verifies the "root" public key.
+* The "root" public key verifies the code signing key array.
+* The selected code signing key verifies the header block and the binary image.
+
+In the special case of building a boot image containing U-Boot as the binary
+image, which employs this trusted boot framework, the following tasks need to
+be addressed:
+
+1. Creation of the needed cryptographic key material.
+2. Creation of a conforming boot image containing the U-Boot image as binary
+ image.
+3. Burning the necessary eFuse values.
+
+(1) will be addressed later, (2) will be taken care of by U-Boot's build
+system (some user configuration is required, though), and for (3) the necessary
+data (essentially a series of U-Boot commands to be entered at the U-Boot
+command prompt) will be created by the build system as well.
+
+The documentation of the trusted boot mode is contained in part 1, chapter
+7.2.5 in the functional specification [1], and in application note [2].
+
+2. Terminology
+--------------
+
+ CSK - Code Signing Key(s): An array of RSA key pairs, which
+ are used to sign and verify the secured header and the
+ boot loader image.
+ KAK - Key Authentication Key: A RSA key pair, which is used
+ to sign and verify the array of CSKs.
+ Header block - The first part of the boot image, which contains the
+ image's headers (also known as "headers block", "boot
+ header", and "image header")
+ eFuse - A one-time-writeable memory.
+ BootROM - The Armada's built-in boot firmware, which is
+ responsible for verifying and starting secure images.
+ Boot image - The complete image the SoC's boot firmware loads
+ (contains the header block and the binary image)
+ Main header - The header in the header block containing information
+ and data pertaining to the boot process (used for both
+ the regular and secured boot processes)
+ Binary image - The binary code payload of the boot image; in this
+ case the U-Boot's code (also known as "source image",
+ or just "image")
+ Secured header - The specialized header in the header block that
+ contains information and data pertaining to the
+ trusted boot (also known as "security header")
+ Secured boot mode - A special boot mode of the Armada SoC in which secured
+ images are verified (non-secure images won't boot);
+ the mode is activated by setting a eFuse field.
+ Trusted debug mode - A special mode for the trusted boot that allows
+ debugging of devices employing the trusted boot
+ framework in a secure manner (untested in the current
+ implementation).
+Trusted boot framework - The ARMADA SoC's implementation of a secure verified
+ boot process.
+
+3. Boot image layout
+--------------------
+
++-- Boot image --------------------------------------------+
+| |
+| +-- Header block --------------------------------------+ |
+| | Main header | |
+| +------------------------------------------------------+ |
+| | Secured header | |
+| +------------------------------------------------------+ |
+| | BIN header(s) | |
+| +------------------------------------------------------+ |
+| | REG header(s) | |
+| +------------------------------------------------------+ |
+| | Padding | |
+| +------------------------------------------------------+ |
+| |
+| +------------------------------------------------------+ |
+| | Binary image + checksum | |
+| +------------------------------------------------------+ |
++----------------------------------------------------------+
+
+4. The secured header
+---------------------
+
+For the trusted boot framework, a additional header is added to the boot image.
+The following data are relevant for the secure boot:
+
+ KAK: The KAK is contained in the secured header in the form
+ of a RSA-2048 public key in DER format with a length of
+ 524 bytes.
+Header block signature: The RSA signature of the header block (excluding the
+ CSK array), created using the selected CSK.
+Binary image signature: The RSA signature of the binary image, created using
+ the selected CSK.
+ CSK array: The array of the 16 CSKs as RSA-2048 public keys in DER
+ format with a length of 8384 = 16 * 524 bytes.
+ CSK block signature: The RSA signature of the CSK array, created using the
+ KAK.
+
+NOTE: The JTAG delay, Box ID, and Flash ID header fields do play a role in the
+trusted boot process to enable and configure secure debugging, but they were
+not tested in the current implementation of the trusted boot in U-Boot.
+
+5. The secured boot flow
+------------------------
+
+The steps in the boot flow that are relevant for the trusted boot framework
+proceed as follows:
+
+1) Check if trusted boot is enabled, and perform regular boot if it is not.
+2) Load the secured header, and verify its checksum.
+3) Select the lowest valid CSK from CSK0 to CSK15.
+4) Verify the SHA-256 hash of the KAK embedded in the secured header.
+5) Verify the RSA signature of the CSK block from the secured header with the
+ KAK.
+6) Verify the header block signature (which excludes the CSK block) from the
+ secured header with the selected CSK.
+7) Load the binary image to the main memory and verify its checksum.
+8) Verify the binary image's RSA signature from the secured header with the
+ selected CSK.
+9) Continue the boot process as in the case of the regular boot.
+
+NOTE: All RSA signatures are verified according to the PKCS #1 v2.1 standard
+described in [3].
+
+NOTE: The Box ID and Flash ID are checked after step 6, and the trusted debug
+mode may be entered there, but since this mode is untested in the current
+implementation, it is not described further.
+
+6. Usage example
+----------------
+
+### Create key material
+
+To employ the trusted boot framework, cryptographic key material needs to be
+created. In the current implementation, two keys are needed to build a valid
+secured boot image: The KAK private key and a CSK private key (both have to be
+2048 bit RSA keys in PEM format). Note that the usage of more than one CSK is
+currently not supported.
+
+NOTE: Since the public key can be generated from the private key, it is
+sufficient to store the private key for each key pair.
+
+OpenSSL can be used to generate the needed files kwb_kak.key and kwb_csk.key
+(the names of these files have to be configured, see the next section on
+kwbimage.cfg settings):
+
+openssl genrsa -out kwb_kak.key 2048
+openssl genrsa -out kwb_csk.key 2048
+
+The generated files have to be placed in the U-Boot root directory.
+
+Alternatively, instead of copying the files, symlinks to the private keys can
+be placed in the U-Boot root directory.
+
+WARNING: Knowledge of the KAK or CSK private key would enable an attacker to
+generate secured boot images containing arbitrary code. Hence, the private keys
+should be carefully guarded.
+
+### Create/Modifiy kwbimage.cfg
+
+The Kirkwook architecture in U-Boot employs a special board-specific
+configuration file (kwbimage.cfg), which controls various boot image settings
+that are interpreted by the BootROM, such as the boot medium. The support the
+trusted boot framework, several new options were added to faciliate
+configuration of the secured boot.
+
+The configuration file's layout has been retained, only the following new
+options were added:
+
+ KAK - The name of the KAK RSA private key file in the U-Boot
+ root directory, without the trailing extension of ".key".
+ CSK - The name of the (active) CSK RSA private key file in the
+ U-Boot root directory, without the trailing extension of
+ ".key".
+ BOX_ID - The BoxID to be used for trusted debugging (a integer
+ value).
+ FLASH_ID - The FlashID to be used for trusted debugging (a integer
+ value).
+ JTAG_DELAY - The JTAG delay to be used for trusted debugging (a
+ integer value).
+ CSK_INDEX - The index of the active CSK (a integer value).
+SEC_SPECIALIZED_IMG - Flag to indicate whether to include the BoxID and FlashID
+ in the image (that is, whether to use the trusted debug
+ mode or not); no parameters.
+ SEC_BOOT_DEV - The boot device from which the trusted boot is allowed to
+ proceed, identified via a numeric ID. The tested values
+ are 0x34 = NOR flash, 0x31 = SDIO/MMC card; for
+ additional ID values, consult the documentation in [1].
+ SEC_FUSE_DUMP - Dump the "fuse prog" commands necessary for writing the
+ correct eFuse values to a text file in the U-Boot root
+ directory. The parameter is the architecture for which to
+ dump the commands (currently only "a38x" is supported).
+
+The parameter values may be hardcoded into the file, but it is also possible to
+employ a dynamic approach of creating a Autoconf-like kwbimage.cfg.in, then
+reading configuration values from Kconfig options or from the board config
+file, and generating the actual kwbimage.cfg from this template using Makefile
+mechanisms (see board/gdsys/a38x/Makefile as an example for this approach).
+
+### Set config options
+
+To enable the generation of trusted boot images, the corresponding support
+needs to be activated, and a index for the active CSK needs to be selected as
+well.
+
+Furthermore, eFuse writing support has to be activated in order to burn the
+eFuse structure's values (this option is just needed for programming the eFuse
+structure; production boot images may disable it).
+
+ARM architecture
+ -> [*] Build image for trusted boot
+ (0) Index of active CSK
+ -> [*] Enable eFuse support
+ [ ] Fake eFuse access (dry run)
+
+### Build and test boot image
+
+The creation of the boot image is done via the usual invocation of make (with a
+suitably set CROSS_COMPILE environment variable, of course). The resulting boot
+image u-boot-spl.kwb can then be tested, if so desired. The hdrparser from [5]
+can be used for this purpose. To build the tool, invoke make in the
+'tools/marvell/doimage_mv' directory of [5], which builds a stand-alone
+hdrparser executable. A test can be conducted by calling hdrparser with the
+produced boot image and the following (mandatory) parameters:
+
+./hdrparser -k 0 -t u-boot-spl.kwb
+
+Here we assume that the CSK index is 0 and the boot image file resides in the
+same directory (adapt accordingly if needed). The tool should report that all
+checksums are valid ("GOOD"), that all signature verifications succeed
+("PASSED"), and, finally, that the overall test was successful
+("T E S T S U C C E E D E D" in the last line of output).
+
+### Burn eFuse structure
+
++----------------------------------------------------------+
+| WARNING: Burning the eFuse structure is a irreversible |
+| operation! Should wrong or corrupted values be used, the |
+| board won't boot anymore, and recovery is likely |
+| impossible! |
++----------------------------------------------------------+
+
+After the build process has finished, and the SEC_FUSE_DUMP option was set in
+the kwbimage.cfg was set, a text file kwb_fuses_a38x.txt should be present in
+the U-Boot top-level directory. It contains all the necessary commands to set
+the eFuse structure to the values needed for the used KAK digest, as well as
+the CSK index, Flash ID and Box ID that were selected in kwbimage.cfg.
+
+Sequentially executing the commands in this file at the U-Boot command prompt
+will write these values to the eFuse structure.
+
+If the SEC_FUSE_DUMP option was not set, the commands needed to burn the fuses
+have to be crafted by hand. The needed fuse lines can be looked up in [1]; a
+rough overview of the process is:
+
+* Burn the KAK public key hash. The hash itself can be found in the file
+ pub_kak_hash.txt in the U-Boot top-level directory; be careful to account for
+ the endianness!
+* Burn the CSK selection, BoxID, and FlashID
+* Enable trusted boot by burning the corresponding fuse (WARNING: this must be
+ the last fuse line written!)
+* Lock the unused fuse lines
+
+The command to employ is the "fuse prog" command previously enabled by setting
+the corresponding configuration option.
+
+For the trusted boot, the fuse prog command has a special syntax, since the
+ARMADA SoC demands that whole fuse lines (64 bit values) have to be written as
+a whole. The fuse prog command itself allows lists of 32 bit words to be
+written at a time, but this is translated to a series of single 32 bit write
+operations to the fuse line, where the individual 32 bit words are identified
+by a "word" counter that is increased for each write.
+
+To work around this restriction, we interpret each line to have three "words"
+(0-2): The first and second words are the values to be written to the fuse
+line, and the third is a lock flag, which is supposed to lock the fuse line
+when set to 1. Writes to the first and second words are memoized between
+function calls, and the fuse line is only really written and locked (on writing
+the third word) if both words were previously set, so that "incomplete" writes
+are prevented. An exception to this is a single write to the third word (index
+2) without previously writing neither the first nor the second word, which
+locks the fuse line without setting any value; this is needed to lock the
+unused fuse lines.
+
+As an example, to write the value 0011223344556677 to fuse line 10, we would
+use the following command:
+
+fuse prog -y 10 0 00112233 44556677 1
+
+Here 10 is the fuse line number, 0 is the index of the first word to be
+written, 00112233 and 44556677 are the values to be written to the fuse line
+(first and second word) and the trailing 1 is the value for the third word
+responsible for locking the line.
+
+A "lock-only" command would look like this:
+
+fuse prog -y 11 2 1
+
+Here 11 is the fuse number, 2 is the index of the first word to be written
+(notice that we only write to word 2 here; the third word for fuse line
+locking), and the 1 is the value for the word we are writing to.
+
+WARNING: According to application note [4], the VHV pin of the SoC must be
+connected to a 1.8V source during eFuse programming, but *must* be disconnected
+for normal operation. The AN [4] describes a software-controlled circuit (based
+on a N-channel or P-channel FET and a free GPIO pin of the SoC) to achieve
+this, but a jumper-based circuit should suffice as well. Regardless of the
+chosen circuit, the issue needs to be addressed accordingly!
+
+7. Work to be done
+------------------
+
+* Add the ability to populate more than one CSK
+* Test secure debug
+* Test on Armada XP
+
+8. Bibliography
+---------------
+
+[1] ARMADA(R) 38x Family High-Performance Single/Dual CPU System on Chip
+ Functional Specification; MV-S109094-00, Rev. C; August 2, 2015,
+ Preliminary
+[2] AN-383: ARMADA(R) 38x Families Secure Boot Mode Support; MV-S302501-00
+ Rev. A; March 11, 2015, Preliminary
+[3] Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
+ Specifications Version 2.1; February 2003;
+ https://www.ietf.org/rfc/rfc3447.txt
+[4] AN-389: ARMADA(R) VHV Power; MV-S302545-00 Rev. B; January 28, 2016,
+ Released
+[5] Marvell Armada 38x U-Boot support; November 25, 2015;
+ https://github.com/MarvellEmbeddedProcessors/u-boot-marvell
+
+2017-01-05, Mario Six <mario.six@gdsys.cc>
HOSTCFLAGS_kwbimage.o += -DCONFIG_SYS_U_BOOT_OFFS=$(CONFIG_SYS_U_BOOT_OFFS)
endif
+ifneq ($(CONFIG_ARMADA_38X)$(CONFIG_ARMADA_39X),)
+HOSTCFLAGS_kwbimage.o += -DCONFIG_KWB_SECURE
+endif
+
# MXSImage needs LibSSL
-ifneq ($(CONFIG_MX23)$(CONFIG_MX28)$(CONFIG_FIT_SIGNATURE),)
+ifneq ($(CONFIG_MX23)$(CONFIG_MX28)$(CONFIG_ARMADA_38X)$(CONFIG_ARMADA_39X)$(CONFIG_FIT_SIGNATURE),)
HOSTLOADLIBES_mkimage += \
$(shell pkg-config --libs libssl libcrypto 2> /dev/null || echo "-lssl -lcrypto")
/*
* Image manipulator for Marvell SoCs
- * supports Kirkwood, Dove, Armada 370, and Armada XP
+ * supports Kirkwood, Dove, Armada 370, Armada XP, and Armada 38x
*
* (C) Copyright 2013 Thomas Petazzoni
* <thomas.petazzoni@free-electrons.com>
*
* SPDX-License-Identifier: GPL-2.0+
*
- * Not implemented: support for the register headers and secure
- * headers in v1 images
+ * Not implemented: support for the register headers in v1 images
*/
#include "imagetool.h"
#include <limits.h>
#include <image.h>
+#include <stdarg.h>
#include <stdint.h>
#include "kwbimage.h"
+#ifdef CONFIG_KWB_SECURE
+#include <openssl/rsa.h>
+#include <openssl/pem.h>
+#include <openssl/err.h>
+#include <openssl/evp.h>
+#endif
+
static struct image_cfg_element *image_cfg;
static int cfgn;
+#ifdef CONFIG_KWB_SECURE
+static int verbose_mode;
+#endif
struct boot_mode {
unsigned int id;
const char *name;
};
+/*
+ * SHA2-256 hash
+ */
+struct hash_v1 {
+ uint8_t hash[32];
+};
+
struct boot_mode boot_modes[] = {
{ 0x4D, "i2c" },
{ 0x5A, "spi" },
IMAGE_CFG_DATA,
IMAGE_CFG_BAUDRATE,
IMAGE_CFG_DEBUG,
+ IMAGE_CFG_KAK,
+ IMAGE_CFG_CSK,
+ IMAGE_CFG_CSK_INDEX,
+ IMAGE_CFG_JTAG_DELAY,
+ IMAGE_CFG_BOX_ID,
+ IMAGE_CFG_FLASH_ID,
+ IMAGE_CFG_SEC_COMMON_IMG,
+ IMAGE_CFG_SEC_SPECIALIZED_IMG,
+ IMAGE_CFG_SEC_BOOT_DEV,
+ IMAGE_CFG_SEC_FUSE_DUMP,
IMAGE_CFG_COUNT
} type;
[IMAGE_CFG_DATA] = "DATA",
[IMAGE_CFG_BAUDRATE] = "BAUDRATE",
[IMAGE_CFG_DEBUG] = "DEBUG",
+ [IMAGE_CFG_KAK] = "KAK",
+ [IMAGE_CFG_CSK] = "CSK",
+ [IMAGE_CFG_CSK_INDEX] = "CSK_INDEX",
+ [IMAGE_CFG_JTAG_DELAY] = "JTAG_DELAY",
+ [IMAGE_CFG_BOX_ID] = "BOX_ID",
+ [IMAGE_CFG_FLASH_ID] = "FLASH_ID",
+ [IMAGE_CFG_SEC_COMMON_IMG] = "SEC_COMMON_IMG",
+ [IMAGE_CFG_SEC_SPECIALIZED_IMG] = "SEC_SPECIALIZED_IMG",
+ [IMAGE_CFG_SEC_BOOT_DEV] = "SEC_BOOT_DEV",
+ [IMAGE_CFG_SEC_FUSE_DUMP] = "SEC_FUSE_DUMP"
};
struct image_cfg_element {
struct ext_hdr_v0_reg regdata;
unsigned int baudrate;
unsigned int debug;
+ const char *key_name;
+ int csk_idx;
+ uint8_t jtag_delay;
+ uint32_t boxid;
+ uint32_t flashid;
+ bool sec_specialized_img;
+ unsigned int sec_boot_dev;
+ const char *name;
};
};
return count;
}
+#if defined(CONFIG_KWB_SECURE)
+
+static int image_get_csk_index(void)
+{
+ struct image_cfg_element *e;
+
+ e = image_find_option(IMAGE_CFG_CSK_INDEX);
+ if (!e)
+ return -1;
+
+ return e->csk_idx;
+}
+
+static bool image_get_spezialized_img(void)
+{
+ struct image_cfg_element *e;
+
+ e = image_find_option(IMAGE_CFG_SEC_SPECIALIZED_IMG);
+ if (!e)
+ return false;
+
+ return e->sec_specialized_img;
+}
+
+#endif
+
/*
* Compute a 8-bit checksum of a memory area. This algorithm follows
* the requirements of the Marvell SoC BootROM specifications.
}
}
+#if defined(CONFIG_KWB_SECURE)
+static void kwb_msg(const char *fmt, ...)
+{
+ if (verbose_mode) {
+ va_list ap;
+
+ va_start(ap, fmt);
+ vfprintf(stdout, fmt, ap);
+ va_end(ap);
+ }
+}
+
+static int openssl_err(const char *msg)
+{
+ unsigned long ssl_err = ERR_get_error();
+
+ fprintf(stderr, "%s", msg);
+ fprintf(stderr, ": %s\n",
+ ERR_error_string(ssl_err, 0));
+
+ return -1;
+}
+
+static int kwb_load_rsa_key(const char *keydir, const char *name, RSA **p_rsa)
+{
+ char path[PATH_MAX];
+ RSA *rsa;
+ FILE *f;
+
+ if (!keydir)
+ keydir = ".";
+
+ snprintf(path, sizeof(path), "%s/%s.key", keydir, name);
+ f = fopen(path, "r");
+ if (!f) {
+ fprintf(stderr, "Couldn't open RSA private key: '%s': %s\n",
+ path, strerror(errno));
+ return -ENOENT;
+ }
+
+ rsa = PEM_read_RSAPrivateKey(f, 0, NULL, "");
+ if (!rsa) {
+ openssl_err("Failure reading private key");
+ fclose(f);
+ return -EPROTO;
+ }
+ fclose(f);
+ *p_rsa = rsa;
+
+ return 0;
+}
+
+static int kwb_load_cfg_key(struct image_tool_params *params,
+ unsigned int cfg_option, const char *key_name,
+ RSA **p_key)
+{
+ struct image_cfg_element *e_key;
+ RSA *key;
+ int res;
+
+ *p_key = NULL;
+
+ e_key = image_find_option(cfg_option);
+ if (!e_key) {
+ fprintf(stderr, "%s not configured\n", key_name);
+ return -ENOENT;
+ }
+
+ res = kwb_load_rsa_key(params->keydir, e_key->key_name, &key);
+ if (res < 0) {
+ fprintf(stderr, "Failed to load %s\n", key_name);
+ return -ENOENT;
+ }
+
+ *p_key = key;
+
+ return 0;
+}
+
+static int kwb_load_kak(struct image_tool_params *params, RSA **p_kak)
+{
+ return kwb_load_cfg_key(params, IMAGE_CFG_KAK, "KAK", p_kak);
+}
+
+static int kwb_load_csk(struct image_tool_params *params, RSA **p_csk)
+{
+ return kwb_load_cfg_key(params, IMAGE_CFG_CSK, "CSK", p_csk);
+}
+
+static int kwb_compute_pubkey_hash(struct pubkey_der_v1 *pk,
+ struct hash_v1 *hash)
+{
+ EVP_MD_CTX *ctx;
+ unsigned int key_size;
+ unsigned int hash_size;
+ int ret = 0;
+
+ if (!pk || !hash || pk->key[0] != 0x30 || pk->key[1] != 0x82)
+ return -EINVAL;
+
+ key_size = (pk->key[2] << 8) + pk->key[3] + 4;
+
+ ctx = EVP_MD_CTX_create();
+ if (!ctx)
+ return openssl_err("EVP context creation failed");
+
+ EVP_MD_CTX_init(ctx);
+ if (!EVP_DigestInit(ctx, EVP_sha256())) {
+ ret = openssl_err("Digest setup failed");
+ goto hash_err_ctx;
+ }
+
+ if (!EVP_DigestUpdate(ctx, pk->key, key_size)) {
+ ret = openssl_err("Hashing data failed");
+ goto hash_err_ctx;
+ }
+
+ if (!EVP_DigestFinal(ctx, hash->hash, &hash_size)) {
+ ret = openssl_err("Could not obtain hash");
+ goto hash_err_ctx;
+ }
+
+ EVP_MD_CTX_cleanup(ctx);
+
+hash_err_ctx:
+ EVP_MD_CTX_destroy(ctx);
+ return ret;
+}
+
+static int kwb_import_pubkey(RSA **key, struct pubkey_der_v1 *src, char *keyname)
+{
+ RSA *rsa;
+ const unsigned char *ptr;
+
+ if (!key || !src)
+ goto fail;
+
+ ptr = src->key;
+ rsa = d2i_RSAPublicKey(key, &ptr, sizeof(src->key));
+ if (!rsa) {
+ openssl_err("error decoding public key");
+ goto fail;
+ }
+
+ return 0;
+fail:
+ fprintf(stderr, "Failed to decode %s pubkey\n", keyname);
+ return -EINVAL;
+}
+
+static int kwb_export_pubkey(RSA *key, struct pubkey_der_v1 *dst, FILE *hashf,
+ char *keyname)
+{
+ int size_exp, size_mod, size_seq;
+ uint8_t *cur;
+ char *errmsg = "Failed to encode %s\n";
+
+ if (!key || !key->e || !key->n || !dst) {
+ fprintf(stderr, "export pk failed: (%p, %p, %p, %p)",
+ key, key->e, key->n, dst);
+ fprintf(stderr, errmsg, keyname);
+ return -EINVAL;
+ }
+
+ /*
+ * According to the specs, the key should be PKCS#1 DER encoded.
+ * But unfortunately the really required encoding seems to be different;
+ * it violates DER...! (But it still conformes to BER.)
+ * (Length always in long form w/ 2 byte length code; no leading zero
+ * when MSB of first byte is set...)
+ * So we cannot use the encoding func provided by OpenSSL and have to
+ * do the encoding manually.
+ */
+
+ size_exp = BN_num_bytes(key->e);
+ size_mod = BN_num_bytes(key->n);
+ size_seq = 4 + size_mod + 4 + size_exp;
+
+ if (size_mod > 256) {
+ fprintf(stderr, "export pk failed: wrong mod size: %d\n",
+ size_mod);
+ fprintf(stderr, errmsg, keyname);
+ return -EINVAL;
+ }
+
+ if (4 + size_seq > sizeof(dst->key)) {
+ fprintf(stderr, "export pk failed: seq too large (%d, %lu)\n",
+ 4 + size_seq, sizeof(dst->key));
+ fprintf(stderr, errmsg, keyname);
+ return -ENOBUFS;
+ }
+
+ cur = dst->key;
+
+ /* PKCS#1 (RFC3447) RSAPublicKey structure */
+ *cur++ = 0x30; /* SEQUENCE */
+ *cur++ = 0x82;
+ *cur++ = (size_seq >> 8) & 0xFF;
+ *cur++ = size_seq & 0xFF;
+ /* Modulus */
+ *cur++ = 0x02; /* INTEGER */
+ *cur++ = 0x82;
+ *cur++ = (size_mod >> 8) & 0xFF;
+ *cur++ = size_mod & 0xFF;
+ BN_bn2bin(key->n, cur);
+ cur += size_mod;
+ /* Exponent */
+ *cur++ = 0x02; /* INTEGER */
+ *cur++ = 0x82;
+ *cur++ = (size_exp >> 8) & 0xFF;
+ *cur++ = size_exp & 0xFF;
+ BN_bn2bin(key->e, cur);
+
+ if (hashf) {
+ struct hash_v1 pk_hash;
+ int i;
+ int ret = 0;
+
+ ret = kwb_compute_pubkey_hash(dst, &pk_hash);
+ if (ret < 0) {
+ fprintf(stderr, errmsg, keyname);
+ return ret;
+ }
+
+ fprintf(hashf, "SHA256 = ");
+ for (i = 0 ; i < sizeof(pk_hash.hash); ++i)
+ fprintf(hashf, "%02X", pk_hash.hash[i]);
+ fprintf(hashf, "\n");
+ }
+
+ return 0;
+}
+
+int kwb_sign(RSA *key, void *data, int datasz, struct sig_v1 *sig, char *signame)
+{
+ EVP_PKEY *evp_key;
+ EVP_MD_CTX *ctx;
+ unsigned int sig_size;
+ int size;
+ int ret = 0;
+
+ evp_key = EVP_PKEY_new();
+ if (!evp_key)
+ return openssl_err("EVP_PKEY object creation failed");
+
+ if (!EVP_PKEY_set1_RSA(evp_key, key)) {
+ ret = openssl_err("EVP key setup failed");
+ goto err_key;
+ }
+
+ size = EVP_PKEY_size(evp_key);
+ if (size > sizeof(sig->sig)) {
+ fprintf(stderr, "Buffer to small for signature (%d bytes)\n",
+ size);
+ ret = -ENOBUFS;
+ goto err_key;
+ }
+
+ ctx = EVP_MD_CTX_create();
+ if (!ctx) {
+ ret = openssl_err("EVP context creation failed");
+ goto err_key;
+ }
+ EVP_MD_CTX_init(ctx);
+ if (!EVP_SignInit(ctx, EVP_sha256())) {
+ ret = openssl_err("Signer setup failed");
+ goto err_ctx;
+ }
+
+ if (!EVP_SignUpdate(ctx, data, datasz)) {
+ ret = openssl_err("Signing data failed");
+ goto err_ctx;
+ }
+
+ if (!EVP_SignFinal(ctx, sig->sig, &sig_size, evp_key)) {
+ ret = openssl_err("Could not obtain signature");
+ goto err_ctx;
+ }
+
+ EVP_MD_CTX_cleanup(ctx);
+ EVP_MD_CTX_destroy(ctx);
+ EVP_PKEY_free(evp_key);
+
+ return 0;
+
+err_ctx:
+ EVP_MD_CTX_destroy(ctx);
+err_key:
+ EVP_PKEY_free(evp_key);
+ fprintf(stderr, "Failed to create %s signature\n", signame);
+ return ret;
+}
+
+int kwb_verify(RSA *key, void *data, int datasz, struct sig_v1 *sig,
+ char *signame)
+{
+ EVP_PKEY *evp_key;
+ EVP_MD_CTX *ctx;
+ int size;
+ int ret = 0;
+
+ evp_key = EVP_PKEY_new();
+ if (!evp_key)
+ return openssl_err("EVP_PKEY object creation failed");
+
+ if (!EVP_PKEY_set1_RSA(evp_key, key)) {
+ ret = openssl_err("EVP key setup failed");
+ goto err_key;
+ }
+
+ size = EVP_PKEY_size(evp_key);
+ if (size > sizeof(sig->sig)) {
+ fprintf(stderr, "Invalid signature size (%d bytes)\n",
+ size);
+ ret = -EINVAL;
+ goto err_key;
+ }
+
+ ctx = EVP_MD_CTX_create();
+ if (!ctx) {
+ ret = openssl_err("EVP context creation failed");
+ goto err_key;
+ }
+ EVP_MD_CTX_init(ctx);
+ if (!EVP_VerifyInit(ctx, EVP_sha256())) {
+ ret = openssl_err("Verifier setup failed");
+ goto err_ctx;
+ }
+
+ if (!EVP_VerifyUpdate(ctx, data, datasz)) {
+ ret = openssl_err("Hashing data failed");
+ goto err_ctx;
+ }
+
+ if (!EVP_VerifyFinal(ctx, sig->sig, sizeof(sig->sig), evp_key)) {
+ ret = openssl_err("Could not verify signature");
+ goto err_ctx;
+ }
+
+ EVP_MD_CTX_cleanup(ctx);
+ EVP_MD_CTX_destroy(ctx);
+ EVP_PKEY_free(evp_key);
+
+ return 0;
+
+err_ctx:
+ EVP_MD_CTX_destroy(ctx);
+err_key:
+ EVP_PKEY_free(evp_key);
+ fprintf(stderr, "Failed to verify %s signature\n", signame);
+ return ret;
+}
+
+int kwb_sign_and_verify(RSA *key, void *data, int datasz, struct sig_v1 *sig,
+ char *signame)
+{
+ if (kwb_sign(key, data, datasz, sig, signame) < 0)
+ return -1;
+
+ if (kwb_verify(key, data, datasz, sig, signame) < 0)
+ return -1;
+
+ return 0;
+}
+
+
+int kwb_dump_fuse_cmds_38x(FILE *out, struct secure_hdr_v1 *sec_hdr)
+{
+ struct hash_v1 kak_pub_hash;
+ struct image_cfg_element *e;
+ unsigned int fuse_line;
+ int i, idx;
+ uint8_t *ptr;
+ uint32_t val;
+ int ret = 0;
+
+ if (!out || !sec_hdr)
+ return -EINVAL;
+
+ ret = kwb_compute_pubkey_hash(&sec_hdr->kak, &kak_pub_hash);
+ if (ret < 0)
+ goto done;
+
+ fprintf(out, "# burn KAK pub key hash\n");
+ ptr = kak_pub_hash.hash;
+ for (fuse_line = 26; fuse_line <= 30; ++fuse_line) {
+ fprintf(out, "fuse prog -y %u 0 ", fuse_line);
+
+ for (i = 4; i-- > 0;)
+ fprintf(out, "%02hx", (ushort)ptr[i]);
+ ptr += 4;
+ fprintf(out, " 00");
+
+ if (fuse_line < 30) {
+ for (i = 3; i-- > 0;)
+ fprintf(out, "%02hx", (ushort)ptr[i]);
+ ptr += 3;
+ } else {
+ fprintf(out, "000000");
+ }
+
+ fprintf(out, " 1\n");
+ }
+
+ fprintf(out, "# burn CSK selection\n");
+
+ idx = image_get_csk_index();
+ if (idx < 0 || idx > 15) {
+ ret = -EINVAL;
+ goto done;
+ }
+ if (idx > 0) {
+ for (fuse_line = 31; fuse_line < 31 + idx; ++fuse_line)
+ fprintf(out, "fuse prog -y %u 0 00000001 00000000 1\n",
+ fuse_line);
+ } else {
+ fprintf(out, "# CSK index is 0; no mods needed\n");
+ }
+
+ e = image_find_option(IMAGE_CFG_BOX_ID);
+ if (e) {
+ fprintf(out, "# set box ID\n");
+ fprintf(out, "fuse prog -y 48 0 %08x 00000000 1\n", e->boxid);
+ }
+
+ e = image_find_option(IMAGE_CFG_FLASH_ID);
+ if (e) {
+ fprintf(out, "# set flash ID\n");
+ fprintf(out, "fuse prog -y 47 0 %08x 00000000 1\n", e->flashid);
+ }
+
+ fprintf(out, "# enable secure mode ");
+ fprintf(out, "(must be the last fuse line written)\n");
+
+ val = 1;
+ e = image_find_option(IMAGE_CFG_SEC_BOOT_DEV);
+ if (!e) {
+ fprintf(stderr, "ERROR: secured mode boot device not given\n");
+ ret = -EINVAL;
+ goto done;
+ }
+
+ if (e->sec_boot_dev > 0xff) {
+ fprintf(stderr, "ERROR: secured mode boot device invalid\n");
+ ret = -EINVAL;
+ goto done;
+ }
+
+ val |= (e->sec_boot_dev << 8);
+
+ fprintf(out, "fuse prog -y 24 0 %08x 0103e0a9 1\n", val);
+
+ fprintf(out, "# lock (unused) fuse lines (0-23)s\n");
+ for (fuse_line = 0; fuse_line < 24; ++fuse_line)
+ fprintf(out, "fuse prog -y %u 2 1\n", fuse_line);
+
+ fprintf(out, "# OK, that's all :-)\n");
+
+done:
+ return ret;
+}
+
+static int kwb_dump_fuse_cmds(struct secure_hdr_v1 *sec_hdr)
+{
+ int ret = 0;
+ struct image_cfg_element *e;
+
+ e = image_find_option(IMAGE_CFG_SEC_FUSE_DUMP);
+ if (!e)
+ return 0;
+
+ if (!strcmp(e->name, "a38x")) {
+ FILE *out = fopen("kwb_fuses_a38x.txt", "w+");
+
+ kwb_dump_fuse_cmds_38x(out, sec_hdr);
+ fclose(out);
+ goto done;
+ }
+
+ ret = -ENOSYS;
+
+done:
+ return ret;
+}
+
+#endif
+
static void *image_create_v0(size_t *imagesz, struct image_tool_params *params,
int payloadsz)
{
*hasext = 1;
}
+#if defined(CONFIG_KWB_SECURE)
+ if (image_get_csk_index() >= 0) {
+ headersz += sizeof(struct secure_hdr_v1);
+ if (hasext)
+ *hasext = 1;
+ }
+#endif
+
#if defined(CONFIG_SYS_U_BOOT_OFFS)
if (headersz > CONFIG_SYS_U_BOOT_OFFS) {
fprintf(stderr,
return 0;
}
+#if defined(CONFIG_KWB_SECURE)
+
+int export_pub_kak_hash(RSA *kak, struct secure_hdr_v1 *secure_hdr)
+{
+ FILE *hashf;
+ int res;
+
+ hashf = fopen("pub_kak_hash.txt", "w");
+
+ res = kwb_export_pubkey(kak, &secure_hdr->kak, hashf, "KAK");
+
+ fclose(hashf);
+
+ return res < 0 ? 1 : 0;
+}
+
+int kwb_sign_csk_with_kak(struct image_tool_params *params,
+ struct secure_hdr_v1 *secure_hdr, RSA *csk)
+{
+ RSA *kak = NULL;
+ RSA *kak_pub = NULL;
+ int csk_idx = image_get_csk_index();
+ struct sig_v1 tmp_sig;
+
+ if (csk_idx >= 16) {
+ fprintf(stderr, "Invalid CSK index %d\n", csk_idx);
+ return 1;
+ }
+
+ if (kwb_load_kak(params, &kak) < 0)
+ return 1;
+
+ if (export_pub_kak_hash(kak, secure_hdr))
+ return 1;
+
+ if (kwb_import_pubkey(&kak_pub, &secure_hdr->kak, "KAK") < 0)
+ return 1;
+
+ if (kwb_export_pubkey(csk, &secure_hdr->csk[csk_idx], NULL, "CSK") < 0)
+ return 1;
+
+ if (kwb_sign_and_verify(kak, &secure_hdr->csk,
+ sizeof(secure_hdr->csk) +
+ sizeof(secure_hdr->csksig),
+ &tmp_sig, "CSK") < 0)
+ return 1;
+
+ if (kwb_verify(kak_pub, &secure_hdr->csk,
+ sizeof(secure_hdr->csk) +
+ sizeof(secure_hdr->csksig),
+ &tmp_sig, "CSK (2)") < 0)
+ return 1;
+
+ secure_hdr->csksig = tmp_sig;
+
+ return 0;
+}
+
+int add_secure_header_v1(struct image_tool_params *params, uint8_t *ptr,
+ int payloadsz, size_t headersz, uint8_t *image,
+ struct secure_hdr_v1 *secure_hdr)
+{
+ struct image_cfg_element *e_jtagdelay;
+ struct image_cfg_element *e_boxid;
+ struct image_cfg_element *e_flashid;
+ RSA *csk = NULL;
+ unsigned char *image_ptr;
+ size_t image_size;
+ struct sig_v1 tmp_sig;
+ bool specialized_img = image_get_spezialized_img();
+
+ kwb_msg("Create secure header content\n");
+
+ e_jtagdelay = image_find_option(IMAGE_CFG_JTAG_DELAY);
+ e_boxid = image_find_option(IMAGE_CFG_BOX_ID);
+ e_flashid = image_find_option(IMAGE_CFG_FLASH_ID);
+
+ if (kwb_load_csk(params, &csk) < 0)
+ return 1;
+
+ secure_hdr->headertype = OPT_HDR_V1_SECURE_TYPE;
+ secure_hdr->headersz_msb = 0;
+ secure_hdr->headersz_lsb = cpu_to_le16(sizeof(struct secure_hdr_v1));
+ if (e_jtagdelay)
+ secure_hdr->jtag_delay = e_jtagdelay->jtag_delay;
+ if (e_boxid && specialized_img)
+ secure_hdr->boxid = cpu_to_le32(e_boxid->boxid);
+ if (e_flashid && specialized_img)
+ secure_hdr->flashid = cpu_to_le32(e_flashid->flashid);
+
+ if (kwb_sign_csk_with_kak(params, secure_hdr, csk))
+ return 1;
+
+ image_ptr = ptr + headersz;
+ image_size = payloadsz - headersz;
+
+ if (kwb_sign_and_verify(csk, image_ptr, image_size,
+ &secure_hdr->imgsig, "image") < 0)
+ return 1;
+
+ if (kwb_sign_and_verify(csk, image, headersz, &tmp_sig, "header") < 0)
+ return 1;
+
+ secure_hdr->hdrsig = tmp_sig;
+
+ kwb_dump_fuse_cmds(secure_hdr);
+
+ return 0;
+}
+#endif
+
static void *image_create_v1(size_t *imagesz, struct image_tool_params *params,
- int payloadsz)
+ uint8_t *ptr, int payloadsz)
{
struct image_cfg_element *e;
struct main_hdr_v1 *main_hdr;
+#if defined(CONFIG_KWB_SECURE)
+ struct secure_hdr_v1 *secure_hdr = NULL;
+#endif
size_t headersz;
uint8_t *image, *cur;
int hasext = 0;
+ uint8_t *next_ext = NULL;
/*
* Calculate the size of the header and the size of the
memset(image, 0, headersz);
main_hdr = (struct main_hdr_v1 *)image;
- cur = image + sizeof(struct main_hdr_v1);
+ cur = image;
+ cur += sizeof(struct main_hdr_v1);
+ next_ext = &main_hdr->ext;
/* Fill the main header */
main_hdr->blocksize =
if (e)
main_hdr->flags = e->debug ? 0x1 : 0;
+#if defined(CONFIG_KWB_SECURE)
+ if (image_get_csk_index() >= 0) {
+ /*
+ * only reserve the space here; we fill the header later since
+ * we need the header to be complete to compute the signatures
+ */
+ secure_hdr = (struct secure_hdr_v1 *)cur;
+ cur += sizeof(struct secure_hdr_v1);
+ next_ext = &secure_hdr->next;
+ }
+#endif
+ *next_ext = 1;
+
if (add_binary_header_v1(cur))
return NULL;
+#if defined(CONFIG_KWB_SECURE)
+ if (secure_hdr && add_secure_header_v1(params, ptr, payloadsz,
+ headersz, image, secure_hdr))
+ return NULL;
+#endif
+
/* Calculate and set the header checksum */
main_hdr->checksum = image_checksum8(main_hdr, headersz);
case IMAGE_CFG_DEBUG:
el->debug = strtoul(value1, NULL, 10);
break;
+ case IMAGE_CFG_KAK:
+ el->key_name = strdup(value1);
+ break;
+ case IMAGE_CFG_CSK:
+ el->key_name = strdup(value1);
+ break;
+ case IMAGE_CFG_CSK_INDEX:
+ el->csk_idx = strtol(value1, NULL, 0);
+ break;
+ case IMAGE_CFG_JTAG_DELAY:
+ el->jtag_delay = strtoul(value1, NULL, 0);
+ break;
+ case IMAGE_CFG_BOX_ID:
+ el->boxid = strtoul(value1, NULL, 0);
+ break;
+ case IMAGE_CFG_FLASH_ID:
+ el->flashid = strtoul(value1, NULL, 0);
+ break;
+ case IMAGE_CFG_SEC_SPECIALIZED_IMG:
+ el->sec_specialized_img = true;
+ break;
+ case IMAGE_CFG_SEC_COMMON_IMG:
+ el->sec_specialized_img = false;
+ break;
+ case IMAGE_CFG_SEC_BOOT_DEV:
+ el->sec_boot_dev = strtoul(value1, NULL, 0);
+ break;
+ case IMAGE_CFG_SEC_FUSE_DUMP:
+ el->name = strdup(value1);
+ break;
default:
fprintf(stderr, unknown_msg, line);
}
break;
case 1:
- image = image_create_v1(&headersz, params, sbuf->st_size);
+ image = image_create_v1(&headersz, params, ptr, sbuf->st_size);
break;
default:
char data[0];
};
+/*
+ * Public Key data in DER format
+ */
+struct pubkey_der_v1 {
+ uint8_t key[524];
+};
+
+/*
+ * Signature (RSA 2048)
+ */
+struct sig_v1 {
+ uint8_t sig[256];
+};
+
+/*
+ * Structure of secure header (Armada 38x)
+ */
+struct secure_hdr_v1 {
+ uint8_t headertype; /* 0x0 */
+ uint8_t headersz_msb; /* 0x1 */
+ uint16_t headersz_lsb; /* 0x2 - 0x3 */
+ uint32_t reserved1; /* 0x4 - 0x7 */
+ struct pubkey_der_v1 kak; /* 0x8 - 0x213 */
+ uint8_t jtag_delay; /* 0x214 */
+ uint8_t reserved2; /* 0x215 */
+ uint16_t reserved3; /* 0x216 - 0x217 */
+ uint32_t boxid; /* 0x218 - 0x21B */
+ uint32_t flashid; /* 0x21C - 0x21F */
+ struct sig_v1 hdrsig; /* 0x220 - 0x31F */
+ struct sig_v1 imgsig; /* 0x320 - 0x41F */
+ struct pubkey_der_v1 csk[16]; /* 0x420 - 0x24DF */
+ struct sig_v1 csksig; /* 0x24E0 - 0x25DF */
+ uint8_t next; /* 0x25E0 */
+ uint8_t reserved4; /* 0x25E1 */
+ uint16_t reserved5; /* 0x25E2 - 0x25E3 */
+};
+
/*
* Various values for the opt_hdr_v1->headertype field, describing the
* different types of optional headers. The "secure" header contains