]> git.sur5r.net Git - u-boot/commitdiff
Add 440EPx DDR2 SPD DIMM support
authorLarry Johnson <lrj@arlinx.com>
Thu, 27 Dec 2007 15:54:48 +0000 (10:54 -0500)
committerStefan Roese <sr@denx.de>
Thu, 27 Dec 2007 18:35:36 +0000 (19:35 +0100)
This patch adds SPD DDR2 support for the 440EPx ("Denali") SDRAM
controller.  It should also work on the 440GRx.  It is based on the DDR2
SPD code for the 440EP/440EPx, but makes no provision for DDR1 support.

This code has been tested on prototype Korat boards with three Kingston
DIMMS: 512 MiB ECC (one rank), 512 MiB non-ECC (one rank) and 1 GiB ECC
(two ranks).  The Korat board has a single DIMM socket, but support has
been provided (though not tested) for boards with two DIMM sockets.

Signed-off-by: Larry Johnson <lrj@acm.org>
cpu/ppc4xx/denali_spd_ddr2.c [new file with mode: 0644]

diff --git a/cpu/ppc4xx/denali_spd_ddr2.c b/cpu/ppc4xx/denali_spd_ddr2.c
new file mode 100644 (file)
index 0000000..825bc21
--- /dev/null
@@ -0,0 +1,1254 @@
+/*
+ * cpu/ppc4xx/denali_spd_ddr2.c
+ * This SPD SDRAM detection code supports AMCC PPC44x CPUs with a Denali-core
+ * DDR2 controller, specifically the 440EPx/GRx.
+ *
+ * (C) Copyright 2007
+ * Larry Johnson, lrj@acm.org.
+ *
+ * Based primarily on cpu/ppc4xx/4xx_spd_ddr2.c, which is...
+ *
+ * (C) Copyright 2007
+ * Stefan Roese, DENX Software Engineering, sr@denx.de.
+ *
+ * COPYRIGHT   AMCC   CORPORATION 2004
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.         See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ *
+ */
+
+/* define DEBUG for debugging output (obviously ;-)) */
+#if 0
+#define DEBUG
+#endif
+
+#include <common.h>
+#include <command.h>
+#include <ppc4xx.h>
+#include <i2c.h>
+#include <asm/io.h>
+#include <asm/processor.h>
+#include <asm/mmu.h>
+
+#if defined(CONFIG_SPD_EEPROM) &&                              \
+       (defined(CONFIG_440EPX) || defined(CONFIG_440GRX))
+
+/*-----------------------------------------------------------------------------+
+ * Defines
+ *-----------------------------------------------------------------------------*/
+#ifndef        TRUE
+#define TRUE           1
+#endif
+#ifndef FALSE
+#define FALSE          0
+#endif
+
+#define MAXDIMMS       2
+#define MAXRANKS       2
+
+#define ONE_BILLION    1000000000
+
+#define MULDIV64(m1, m2, d)    (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
+
+#define DLL_DQS_DELAY  0x19
+#define DLL_DQS_BYPASS 0x0B
+#define DQS_OUT_SHIFT  0x7F
+
+/*
+ * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
+ * region. Right now the cache should still be disabled in U-Boot because of the
+ * EMAC driver, that need it's buffer descriptor to be located in non cached
+ * memory.
+ *
+ * If at some time this restriction doesn't apply anymore, just define
+ * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup
+ * everything correctly.
+ */
+#if defined(CFG_ENABLE_SDRAM_CACHE)
+#define MY_TLB_WORD2_I_ENABLE  0                       /* enable caching on SDRAM */
+#else
+#define MY_TLB_WORD2_I_ENABLE  TLB_WORD2_I_ENABLE      /* disable caching on SDRAM */
+#endif
+
+/*-----------------------------------------------------------------------------+
+ * Prototypes
+ *-----------------------------------------------------------------------------*/
+extern int denali_wait_for_dlllock(void);
+extern void denali_core_search_data_eye(void);
+extern void dcbz_area(u32 start_address, u32 num_bytes);
+extern void dflush(void);
+
+/*
+ * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
+ */
+void __spd_ddr_init_hang(void)
+{
+       hang();
+}
+void spd_ddr_init_hang(void)
+    __attribute__ ((weak, alias("__spd_ddr_init_hang")));
+
+#if defined(DEBUG)
+static void print_mcsr(void)
+{
+       printf("MCSR = 0x%08X\n", mfspr(SPRN_MCSR));
+}
+
+static void denali_sdram_register_dump(void)
+{
+       unsigned int sdram_data;
+
+       printf("\n  Register Dump:\n");
+       mfsdram(DDR0_00, sdram_data);
+       printf("        DDR0_00 = 0x%08X", sdram_data);
+       mfsdram(DDR0_01, sdram_data);
+       printf("        DDR0_01 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_02, sdram_data);
+       printf("        DDR0_02 = 0x%08X", sdram_data);
+       mfsdram(DDR0_03, sdram_data);
+       printf("        DDR0_03 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_04, sdram_data);
+       printf("        DDR0_04 = 0x%08X", sdram_data);
+       mfsdram(DDR0_05, sdram_data);
+       printf("        DDR0_05 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_06, sdram_data);
+       printf("        DDR0_06 = 0x%08X", sdram_data);
+       mfsdram(DDR0_07, sdram_data);
+       printf("        DDR0_07 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_08, sdram_data);
+       printf("        DDR0_08 = 0x%08X", sdram_data);
+       mfsdram(DDR0_09, sdram_data);
+       printf("        DDR0_09 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_10, sdram_data);
+       printf("        DDR0_10 = 0x%08X", sdram_data);
+       mfsdram(DDR0_11, sdram_data);
+       printf("        DDR0_11 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_12, sdram_data);
+       printf("        DDR0_12 = 0x%08X", sdram_data);
+       mfsdram(DDR0_14, sdram_data);
+       printf("        DDR0_14 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_17, sdram_data);
+       printf("        DDR0_17 = 0x%08X", sdram_data);
+       mfsdram(DDR0_18, sdram_data);
+       printf("        DDR0_18 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_19, sdram_data);
+       printf("        DDR0_19 = 0x%08X", sdram_data);
+       mfsdram(DDR0_20, sdram_data);
+       printf("        DDR0_20 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_21, sdram_data);
+       printf("        DDR0_21 = 0x%08X", sdram_data);
+       mfsdram(DDR0_22, sdram_data);
+       printf("        DDR0_22 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_23, sdram_data);
+       printf("        DDR0_23 = 0x%08X", sdram_data);
+       mfsdram(DDR0_24, sdram_data);
+       printf("        DDR0_24 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_25, sdram_data);
+       printf("        DDR0_25 = 0x%08X", sdram_data);
+       mfsdram(DDR0_26, sdram_data);
+       printf("        DDR0_26 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_27, sdram_data);
+       printf("        DDR0_27 = 0x%08X", sdram_data);
+       mfsdram(DDR0_28, sdram_data);
+       printf("        DDR0_28 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_31, sdram_data);
+       printf("        DDR0_31 = 0x%08X", sdram_data);
+       mfsdram(DDR0_32, sdram_data);
+       printf("        DDR0_32 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_33, sdram_data);
+       printf("        DDR0_33 = 0x%08X", sdram_data);
+       mfsdram(DDR0_34, sdram_data);
+       printf("        DDR0_34 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_35, sdram_data);
+       printf("        DDR0_35 = 0x%08X", sdram_data);
+       mfsdram(DDR0_36, sdram_data);
+       printf("        DDR0_36 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_37, sdram_data);
+       printf("        DDR0_37 = 0x%08X", sdram_data);
+       mfsdram(DDR0_38, sdram_data);
+       printf("        DDR0_38 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_39, sdram_data);
+       printf("        DDR0_39 = 0x%08X", sdram_data);
+       mfsdram(DDR0_40, sdram_data);
+       printf("        DDR0_40 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_41, sdram_data);
+       printf("        DDR0_41 = 0x%08X", sdram_data);
+       mfsdram(DDR0_42, sdram_data);
+       printf("        DDR0_42 = 0x%08X\n", sdram_data);
+       mfsdram(DDR0_43, sdram_data);
+       printf("        DDR0_43 = 0x%08X", sdram_data);
+       mfsdram(DDR0_44, sdram_data);
+       printf("        DDR0_44 = 0x%08X\n", sdram_data);
+}
+#else
+static inline void denali_sdram_register_dump(void)
+{
+}
+
+inline static void print_mcsr(void)
+{
+}
+#endif /* defined(DEBUG) */
+
+static int is_ecc_enabled(void)
+{
+       u32 val;
+
+       mfsdram(DDR0_22, val);
+       return 0x3 == DDR0_22_CTRL_RAW_DECODE(val);
+}
+
+static unsigned char spd_read(u8 chip, unsigned int addr)
+{
+       u8 data[2];
+
+       if (0 != i2c_probe(chip) || 0 != i2c_read(chip, addr, 1, data, 1)) {
+               debug("spd_read(0x%02X, 0x%02X) failed\n", chip, addr);
+               return 0;
+       }
+       debug("spd_read(0x%02X, 0x%02X) returned 0x%02X\n",
+             chip, addr, data[0]);
+       return data[0];
+}
+
+static unsigned long get_tcyc(unsigned char reg)
+{
+       /*
+        * Byte 9, et al: Cycle time for CAS Latency=X, is split into two
+        * nibbles: the higher order nibble (bits 4-7) designates the cycle time
+        * to a granularity of 1ns; the value presented by the lower order
+        * nibble (bits 0-3) has a granularity of .1ns and is added to the value
+        * designated by the higher nibble. In addition, four lines of the lower
+        * order nibble are assigned to support +.25, +.33, +.66, and +.75.
+        */
+
+       unsigned char subfield_b = reg & 0x0F;
+
+       switch (subfield_b & 0x0F) {
+       case 0x0:
+       case 0x1:
+       case 0x2:
+       case 0x3:
+       case 0x4:
+       case 0x5:
+       case 0x6:
+       case 0x7:
+       case 0x8:
+       case 0x9:
+               return 1000 * (reg >> 4) + 100 * subfield_b;
+       case 0xA:
+               return 1000 * (reg >> 4) + 250;
+       case 0xB:
+               return 1000 * (reg >> 4) + 333;
+       case 0xC:
+               return 1000 * (reg >> 4) + 667;
+       case 0xD:
+               return 1000 * (reg >> 4) + 750;
+       }
+       return 0;
+}
+
+/*------------------------------------------------------------------
+ * Find the installed DIMMs, make sure that the are DDR2, and fill
+ * in the dimm_ranks array.  Then dimm_ranks[dimm_num] > 0 iff the
+ * DIMM and dimm_num is present.
+ * Note: Because there are only two chip-select lines, it is assumed
+ * that a board with a single socket can support two ranks on that
+ * socket, while a board with two sockets can support only one rank
+ * on each socket.
+ *-----------------------------------------------------------------*/
+static void get_spd_info(unsigned long dimm_ranks[],
+                        unsigned long *ranks,
+                        unsigned char const iic0_dimm_addr[],
+                        unsigned long num_dimm_banks)
+{
+       unsigned long dimm_num;
+       unsigned long dimm_found = FALSE;
+       unsigned long const max_ranks_per_dimm = (1 == num_dimm_banks) ? 2 : 1;
+       unsigned char num_of_bytes;
+       unsigned char total_size;
+
+       *ranks = 0;
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               num_of_bytes = 0;
+               total_size = 0;
+
+               num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
+               total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
+               if ((num_of_bytes != 0) && (total_size != 0)) {
+                       unsigned char const dimm_type =
+                           spd_read(iic0_dimm_addr[dimm_num], 2);
+
+                       unsigned long ranks_on_dimm =
+                           (spd_read(iic0_dimm_addr[dimm_num], 5) & 0x07) + 1;
+
+                       if (8 != dimm_type) {
+                               switch (dimm_type) {
+                               case 1:
+                                       printf("ERROR: Standard Fast Page Mode "
+                                              "DRAM DIMM");
+                                       break;
+                               case 2:
+                                       printf("ERROR: EDO DIMM");
+                                       break;
+                               case 3:
+                                       printf("ERROR: Pipelined Nibble DIMM");
+                                       break;
+                               case 4:
+                                       printf("ERROR: SDRAM DIMM");
+                                       break;
+                               case 5:
+                                       printf("ERROR: Multiplexed ROM DIMM");
+                                       break;
+                               case 6:
+                                       printf("ERROR: SGRAM DIMM");
+                                       break;
+                               case 7:
+                                       printf("ERROR: DDR1 DIMM");
+                                       break;
+                               default:
+                                       printf("ERROR: Unknown DIMM (type %d)",
+                                              (unsigned int)dimm_type);
+                                       break;
+                               }
+                               printf(" detected in slot %lu.\n", dimm_num);
+                               printf("Only DDR2 SDRAM DIMMs are supported."
+                                      "\n");
+                               printf("Replace the module with a DDR2 DIMM."
+                                      "\n\n");
+                               spd_ddr_init_hang();
+                       }
+                       dimm_found = TRUE;
+                       debug("DIMM slot %lu: populated with %lu-rank DDR2 DIMM"
+                             "\n", dimm_num, ranks_on_dimm);
+                       if (ranks_on_dimm > max_ranks_per_dimm) {
+                               printf("WARNING: DRAM DIMM in slot %lu has %lu "
+                                      "ranks.\n");
+                               if (1 == max_ranks_per_dimm) {
+                                       printf("Only one rank will be used.\n");
+                               } else {
+                                       printf
+                                           ("Only two ranks will be used.\n");
+                               }
+                               ranks_on_dimm = max_ranks_per_dimm;
+                       }
+                       dimm_ranks[dimm_num] = ranks_on_dimm;
+                       *ranks += ranks_on_dimm;
+               } else {
+                       dimm_ranks[dimm_num] = 0;
+                       debug("DIMM slot %lu: Not populated\n", dimm_num);
+               }
+       }
+       if (dimm_found == FALSE) {
+               printf("ERROR: No memory installed.\n");
+               printf("Install at least one DDR2 DIMM.\n\n");
+               spd_ddr_init_hang();
+       }
+       debug("Total number of ranks = %d\n", *ranks);
+}
+
+/*------------------------------------------------------------------
+ * For the memory DIMMs installed, this routine verifies that
+ * frequency previously calculated is supported.
+ *-----------------------------------------------------------------*/
+static void check_frequency(unsigned long *dimm_ranks,
+                           unsigned char const iic0_dimm_addr[],
+                           unsigned long num_dimm_banks,
+                           unsigned long sdram_freq)
+{
+       unsigned long dimm_num;
+       unsigned long cycle_time;
+       unsigned long calc_cycle_time;
+
+       /*
+        * calc_cycle_time is calculated from DDR frequency set by board/chip
+        * and is expressed in picoseconds to match the way DIMM cycle time is
+        * calculated below.
+        */
+       calc_cycle_time = MULDIV64(ONE_BILLION, 1000, sdram_freq);
+
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               if (dimm_ranks[dimm_num]) {
+                       cycle_time =
+                           get_tcyc(spd_read(iic0_dimm_addr[dimm_num], 9));
+                       debug("cycle_time=%d ps\n", cycle_time);
+
+                       if (cycle_time > (calc_cycle_time + 10)) {
+                               /*
+                                * the provided sdram cycle_time is too small
+                                * for the available DIMM cycle_time. The
+                                * additionnal 10ps is here to accept a small
+                                * incertainty.
+                                */
+                               printf
+                                   ("ERROR: DRAM DIMM detected with cycle_time %d ps in "
+                                    "slot %d \n while calculated cycle time is %d ps.\n",
+                                    (unsigned int)cycle_time,
+                                    (unsigned int)dimm_num,
+                                    (unsigned int)calc_cycle_time);
+                               printf
+                                   ("Replace the DIMM, or change DDR frequency via "
+                                    "strapping bits.\n\n");
+                               spd_ddr_init_hang();
+                       }
+               }
+       }
+}
+
+/*------------------------------------------------------------------
+ * This routine gets size information for the installed memory
+ * DIMMs.
+ *-----------------------------------------------------------------*/
+static void get_dimm_size(unsigned long dimm_ranks[],
+                         unsigned char const iic0_dimm_addr[],
+                         unsigned long num_dimm_banks,
+                         unsigned long *const rows,
+                         unsigned long *const banks,
+                         unsigned long *const cols, unsigned long *const width)
+{
+       unsigned long dimm_num;
+
+       *rows = 0;
+       *banks = 0;
+       *cols = 0;
+       *width = 0;
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               if (dimm_ranks[dimm_num]) {
+                       unsigned long t;
+
+                       /* Rows */
+                       t = spd_read(iic0_dimm_addr[dimm_num], 3);
+                       if (0 == *rows) {
+                               *rows = t;
+                       } else if (t != *rows) {
+                               printf("ERROR: DRAM DIMM modules do not all "
+                                      "have the same number of rows.\n\n");
+                               spd_ddr_init_hang();
+                       }
+                       /* Banks */
+                       t = spd_read(iic0_dimm_addr[dimm_num], 17);
+                       if (0 == *banks) {
+                               *banks = t;
+                       } else if (t != *banks) {
+                               printf("ERROR: DRAM DIMM modules do not all "
+                                      "have the same number of banks.\n\n");
+                               spd_ddr_init_hang();
+                       }
+                       /* Columns */
+                       t = spd_read(iic0_dimm_addr[dimm_num], 4);
+                       if (0 == *cols) {
+                               *cols = t;
+                       } else if (t != *cols) {
+                               printf("ERROR: DRAM DIMM modules do not all "
+                                      "have the same number of columns.\n\n");
+                               spd_ddr_init_hang();
+                       }
+                       /* Data width */
+                       t = spd_read(iic0_dimm_addr[dimm_num], 6);
+                       if (0 == *width) {
+                               *width = t;
+                       } else if (t != *width) {
+                               printf("ERROR: DRAM DIMM modules do not all "
+                                      "have the same data width.\n\n");
+                               spd_ddr_init_hang();
+                       }
+               }
+       }
+       debug("Number of rows = %d\n", *rows);
+       debug("Number of columns = %d\n", *cols);
+       debug("Number of banks = %d\n", *banks);
+       debug("Data width = %d\n", *width);
+       if (*rows > 14) {
+               printf("ERROR: DRAM DIMM modules have %lu address rows.\n",
+                      *rows);
+               printf("Only modules with 14 or fewer rows are supported.\n\n");
+               spd_ddr_init_hang();
+       }
+       if (4 != *banks && 8 != *banks) {
+               printf("ERROR: DRAM DIMM modules have %lu banks.\n", *banks);
+               printf("Only modules with 4 or 8 banks are supported.\n\n");
+               spd_ddr_init_hang();
+       }
+       if (*cols > 12) {
+               printf("ERROR: DRAM DIMM modules have %lu address columns.\n",
+                      *cols);
+               printf("Only modules with 12 or fewer columns are "
+                      "supported.\n\n");
+               spd_ddr_init_hang();
+       }
+       if (32 != *width && 40 != *width && 64 != *width && 72 != *width) {
+               printf("ERROR: DRAM DIMM modules have a width of %lu bit.\n",
+                      *width);
+               printf("Only modules with widths of 32, 40, 64, and 72 bits "
+                      "are supported.\n\n");
+               spd_ddr_init_hang();
+       }
+}
+
+/*------------------------------------------------------------------
+ * Only 1.8V modules are supported.  This routine verifies this.
+ *-----------------------------------------------------------------*/
+static void check_voltage_type(unsigned long dimm_ranks[],
+                              unsigned char const iic0_dimm_addr[],
+                              unsigned long num_dimm_banks)
+{
+       unsigned long dimm_num;
+       unsigned long voltage_type;
+
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               if (dimm_ranks[dimm_num]) {
+                       voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
+                       if (0x05 != voltage_type) {     /* 1.8V for DDR2 */
+                               printf("ERROR: Slot %lu provides 1.8V for DDR2 "
+                                      "DIMMs.\n", dimm_num);
+                               switch (voltage_type) {
+                               case 0x00:
+                                       printf("This DIMM is 5.0 Volt/TTL.\n");
+                                       break;
+                               case 0x01:
+                                       printf("This DIMM is LVTTL.\n");
+                                       break;
+                               case 0x02:
+                                       printf("This DIMM is 1.5 Volt.\n");
+                                       break;
+                               case 0x03:
+                                       printf("This DIMM is 3.3 Volt/TTL.\n");
+                                       break;
+                               case 0x04:
+                                       printf("This DIMM is 2.5 Volt.\n");
+                                       break;
+                               default:
+                                       printf("This DIMM is an unknown "
+                                              "voltage.\n");
+                                       break;
+                               }
+                               printf("Replace it with a 1.8V DDR2 DIMM.\n\n");
+                               spd_ddr_init_hang();
+                       }
+               }
+       }
+}
+
+static void program_ddr0_03(unsigned long dimm_ranks[],
+                           unsigned char const iic0_dimm_addr[],
+                           unsigned long num_dimm_banks,
+                           unsigned long sdram_freq,
+                           unsigned long rows, unsigned long *cas_latency)
+{
+       unsigned long dimm_num;
+       unsigned long cas_index;
+       unsigned long cycle_2_0_clk;
+       unsigned long cycle_3_0_clk;
+       unsigned long cycle_4_0_clk;
+       unsigned long cycle_5_0_clk;
+       unsigned long max_2_0_tcyc_ps = 100;
+       unsigned long max_3_0_tcyc_ps = 100;
+       unsigned long max_4_0_tcyc_ps = 100;
+       unsigned long max_5_0_tcyc_ps = 100;
+       unsigned char cas_available = 0x3C;     /* value for DDR2 */
+       u32 ddr0_03 = DDR0_03_BSTLEN_ENCODE(0x2) | DDR0_03_INITAREF_ENCODE(0x2);
+       unsigned int const tcyc_addr[3] = { 9, 23, 25 };
+
+       /*------------------------------------------------------------------
+        * Get the board configuration info.
+        *-----------------------------------------------------------------*/
+       debug("sdram_freq = %d\n", sdram_freq);
+
+       /*------------------------------------------------------------------
+        * Handle the timing.  We need to find the worst case timing of all
+        * the dimm modules installed.
+        *-----------------------------------------------------------------*/
+       /* loop through all the DIMM slots on the board */
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               /* If a dimm is installed in a particular slot ... */
+               if (dimm_ranks[dimm_num]) {
+                       unsigned char const cas_bit =
+                           spd_read(iic0_dimm_addr[dimm_num], 18);
+                       unsigned char cas_mask;
+
+                       cas_available &= cas_bit;
+                       for (cas_mask = 0x80; cas_mask; cas_mask >>= 1) {
+                               if (cas_bit & cas_mask)
+                                       break;
+                       }
+                       debug("cas_bit (SPD byte 18) = %02X, cas_mask = %02X\n",
+                             cas_bit, cas_mask);
+
+                       for (cas_index = 0; cas_index < 3;
+                            cas_mask >>= 1, cas_index++) {
+                               unsigned long cycle_time_ps;
+
+                               if (!(cas_available & cas_mask)) {
+                                       continue;
+                               }
+                               cycle_time_ps =
+                                   get_tcyc(spd_read(iic0_dimm_addr[dimm_num],
+                                                     tcyc_addr[cas_index]));
+
+                               debug("cas_index = %d: cycle_time_ps = %d\n",
+                                     cas_index, cycle_time_ps);
+                               /*
+                                * DDR2 devices use the following bitmask for CAS latency:
+                                *  Bit   7    6    5    4    3    2    1    0
+                                *       TBD  6.0  5.0  4.0  3.0  2.0  TBD  TBD
+                                */
+                               switch (cas_mask) {
+                               case 0x20:
+                                       max_5_0_tcyc_ps =
+                                           max(max_5_0_tcyc_ps, cycle_time_ps);
+                                       break;
+                               case 0x10:
+                                       max_4_0_tcyc_ps =
+                                           max(max_4_0_tcyc_ps, cycle_time_ps);
+                                       break;
+                               case 0x08:
+                                       max_3_0_tcyc_ps =
+                                           max(max_3_0_tcyc_ps, cycle_time_ps);
+                                       break;
+                               case 0x04:
+                                       max_2_0_tcyc_ps =
+                                           max(max_2_0_tcyc_ps, cycle_time_ps);
+                                       break;
+                               }
+                       }
+               }
+       }
+       debug("cas_available (bit map) = 0x%02X\n", cas_available);
+
+       /*------------------------------------------------------------------
+        * Set the SDRAM mode, SDRAM_MMODE
+        *-----------------------------------------------------------------*/
+
+       /* add 10 here because of rounding problems */
+       cycle_2_0_clk = MULDIV64(ONE_BILLION, 1000, max_2_0_tcyc_ps) + 10;
+       cycle_3_0_clk = MULDIV64(ONE_BILLION, 1000, max_3_0_tcyc_ps) + 10;
+       cycle_4_0_clk = MULDIV64(ONE_BILLION, 1000, max_4_0_tcyc_ps) + 10;
+       cycle_5_0_clk = MULDIV64(ONE_BILLION, 1000, max_5_0_tcyc_ps) + 10;
+       debug("cycle_2_0_clk = %d\n", cycle_2_0_clk);
+       debug("cycle_3_0_clk = %d\n", cycle_3_0_clk);
+       debug("cycle_4_0_clk = %d\n", cycle_4_0_clk);
+       debug("cycle_5_0_clk = %d\n", cycle_5_0_clk);
+
+       if ((cas_available & 0x04) && (sdram_freq <= cycle_2_0_clk)) {
+               *cas_latency = 2;
+               ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x2) |
+                   DDR0_03_CASLAT_LIN_ENCODE(0x4);
+       } else if ((cas_available & 0x08) && (sdram_freq <= cycle_3_0_clk)) {
+               *cas_latency = 3;
+               ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x3) |
+                   DDR0_03_CASLAT_LIN_ENCODE(0x6);
+       } else if ((cas_available & 0x10) && (sdram_freq <= cycle_4_0_clk)) {
+               *cas_latency = 4;
+               ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x4) |
+                   DDR0_03_CASLAT_LIN_ENCODE(0x8);
+       } else if ((cas_available & 0x20) && (sdram_freq <= cycle_5_0_clk)) {
+               *cas_latency = 5;
+               ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x5) |
+                   DDR0_03_CASLAT_LIN_ENCODE(0xA);
+       } else {
+               printf("ERROR: Cannot find a supported CAS latency with the "
+                      "installed DIMMs.\n");
+               printf("Only DDR2 DIMMs with CAS latencies of 2.0, 3.0, 4.0, "
+                      "and 5.0 are supported.\n");
+               printf("Make sure the PLB speed is within the supported range "
+                      "of the DIMMs.\n");
+               printf("sdram_freq=%d cycle2=%d cycle3=%d cycle4=%d "
+                      "cycle5=%d\n\n", sdram_freq, cycle_2_0_clk,
+                      cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
+               spd_ddr_init_hang();
+       }
+       debug("CAS latency = %d\n", *cas_latency);
+       mtsdram(DDR0_03, ddr0_03);
+}
+
+static void program_ddr0_04(unsigned long dimm_ranks[],
+                           unsigned char const iic0_dimm_addr[],
+                           unsigned long num_dimm_banks,
+                           unsigned long sdram_freq)
+{
+       unsigned long dimm_num;
+       unsigned long t_rc_ps = 0;
+       unsigned long t_rrd_ps = 0;
+       unsigned long t_rtp_ps = 0;
+       unsigned long t_rc_clk;
+       unsigned long t_rrd_clk;
+       unsigned long t_rtp_clk;
+
+       /*------------------------------------------------------------------
+        * Handle the timing.  We need to find the worst case timing of all
+        * the dimm modules installed.
+        *-----------------------------------------------------------------*/
+       /* loop through all the DIMM slots on the board */
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               /* If a dimm is installed in a particular slot ... */
+               if (dimm_ranks[dimm_num]) {
+                       unsigned long ps;
+
+                       /* tRC */
+                       ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 41);
+                       switch (spd_read(iic0_dimm_addr[dimm_num], 40) >> 4) {
+                       case 0x1:
+                               ps += 250;
+                               break;
+                       case 0x2:
+                               ps += 333;
+                               break;
+                       case 0x3:
+                               ps += 500;
+                               break;
+                       case 0x4:
+                               ps += 667;
+                               break;
+                       case 0x5:
+                               ps += 750;
+                               break;
+                       }
+                       t_rc_ps = max(t_rc_ps, ps);
+                       /* tRRD */
+                       ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 28);
+                       t_rrd_ps = max(t_rrd_ps, ps);
+                       /* tRTP */
+                       ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 38);
+                       t_rtp_ps = max(t_rtp_ps, ps);
+               }
+       }
+       debug("t_rc_ps  = %d\n", t_rc_ps);
+       t_rc_clk = (MULDIV64(sdram_freq, t_rc_ps, ONE_BILLION) + 999) / 1000;
+       debug("t_rrd_ps = %d\n", t_rrd_ps);
+       t_rrd_clk = (MULDIV64(sdram_freq, t_rrd_ps, ONE_BILLION) + 999) / 1000;
+       debug("t_rtp_ps = %d\n", t_rtp_ps);
+       t_rtp_clk = (MULDIV64(sdram_freq, t_rtp_ps, ONE_BILLION) + 999) / 1000;
+       mtsdram(DDR0_04, DDR0_04_TRC_ENCODE(t_rc_clk) |
+               DDR0_04_TRRD_ENCODE(t_rrd_clk) |
+               DDR0_04_TRTP_ENCODE(t_rtp_clk));
+}
+
+static void program_ddr0_05(unsigned long dimm_ranks[],
+                           unsigned char const iic0_dimm_addr[],
+                           unsigned long num_dimm_banks,
+                           unsigned long sdram_freq)
+{
+       unsigned long dimm_num;
+       unsigned long t_rp_ps = 0;
+       unsigned long t_ras_ps = 0;
+       unsigned long t_rp_clk;
+       unsigned long t_ras_clk;
+       u32 ddr0_05 = DDR0_05_TMRD_ENCODE(0x2) | DDR0_05_TEMRS_ENCODE(0x2);
+
+       /*------------------------------------------------------------------
+        * Handle the timing.  We need to find the worst case timing of all
+        * the dimm modules installed.
+        *-----------------------------------------------------------------*/
+       /* loop through all the DIMM slots on the board */
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               /* If a dimm is installed in a particular slot ... */
+               if (dimm_ranks[dimm_num]) {
+                       unsigned long ps;
+
+                       /* tRP */
+                       ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 27);
+                       t_rp_ps = max(t_rp_ps, ps);
+                       /* tRAS */
+                       ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 30);
+                       t_ras_ps = max(t_ras_ps, ps);
+               }
+       }
+       debug("t_rp_ps  = %d\n", t_rp_ps);
+       t_rp_clk = (MULDIV64(sdram_freq, t_rp_ps, ONE_BILLION) + 999) / 1000;
+       debug("t_ras_ps = %d\n", t_ras_ps);
+       t_ras_clk = (MULDIV64(sdram_freq, t_ras_ps, ONE_BILLION) + 999) / 1000;
+       mtsdram(DDR0_05, ddr0_05 | DDR0_05_TRP_ENCODE(t_rp_clk) |
+               DDR0_05_TRAS_MIN_ENCODE(t_ras_clk));
+}
+
+static void program_ddr0_06(unsigned long dimm_ranks[],
+                           unsigned char const iic0_dimm_addr[],
+                           unsigned long num_dimm_banks,
+                           unsigned long sdram_freq)
+{
+       unsigned long dimm_num;
+       unsigned char spd_40;
+       unsigned long t_wtr_ps = 0;
+       unsigned long t_rfc_ps = 0;
+       unsigned long t_wtr_clk;
+       unsigned long t_rfc_clk;
+       u32 ddr0_06 =
+           DDR0_06_WRITEINTERP_ENCODE(0x1) | DDR0_06_TDLL_ENCODE(200);
+
+       /*------------------------------------------------------------------
+        * Handle the timing.  We need to find the worst case timing of all
+        * the dimm modules installed.
+        *-----------------------------------------------------------------*/
+       /* loop through all the DIMM slots on the board */
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               /* If a dimm is installed in a particular slot ... */
+               if (dimm_ranks[dimm_num]) {
+                       unsigned long ps;
+
+                       /* tWTR */
+                       ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 37);
+                       t_wtr_ps = max(t_wtr_ps, ps);
+                       /* tRFC */
+                       ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 42);
+                       spd_40 = spd_read(iic0_dimm_addr[dimm_num], 40);
+                       ps += 256000 * (spd_40 & 0x01);
+                       switch ((spd_40 & 0x0E) >> 1) {
+                       case 0x1:
+                               ps += 250;
+                               break;
+                       case 0x2:
+                               ps += 333;
+                               break;
+                       case 0x3:
+                               ps += 500;
+                               break;
+                       case 0x4:
+                               ps += 667;
+                               break;
+                       case 0x5:
+                               ps += 750;
+                               break;
+                       }
+                       t_rfc_ps = max(t_rfc_ps, ps);
+               }
+       }
+       debug("t_wtr_ps = %d\n", t_wtr_ps);
+       t_wtr_clk = (MULDIV64(sdram_freq, t_wtr_ps, ONE_BILLION) + 999) / 1000;
+       debug("t_rfc_ps = %d\n", t_rfc_ps);
+       t_rfc_clk = (MULDIV64(sdram_freq, t_rfc_ps, ONE_BILLION) + 999) / 1000;
+       mtsdram(DDR0_06, ddr0_06 | DDR0_06_TWTR_ENCODE(t_wtr_clk) |
+               DDR0_06_TRFC_ENCODE(t_rfc_clk));
+}
+
+static void program_ddr0_10(unsigned long dimm_ranks[], unsigned long ranks)
+{
+       unsigned long csmap;
+
+       if (2 == ranks) {
+               /* Both chip selects in use */
+               csmap = 0x03;
+       } else {
+               /* One chip select in use */
+               csmap = (1 == dimm_ranks[0]) ? 0x1 : 0x2;
+       }
+       mtsdram(DDR0_10, DDR0_10_WRITE_MODEREG_ENCODE(0x0) |
+               DDR0_10_CS_MAP_ENCODE(csmap) |
+               DDR0_10_OCD_ADJUST_PUP_CS_0_ENCODE(0));
+}
+
+static void program_ddr0_11(unsigned long sdram_freq)
+{
+       unsigned long const t_xsnr_ps = 200000; /* 200 ns */
+       unsigned long t_xsnr_clk;
+
+       debug("t_xsnr_ps = %d\n", t_xsnr_ps);
+       t_xsnr_clk =
+           (MULDIV64(sdram_freq, t_xsnr_ps, ONE_BILLION) + 999) / 1000;
+       mtsdram(DDR0_11, DDR0_11_SREFRESH_ENCODE(0) |
+               DDR0_11_TXSNR_ENCODE(t_xsnr_clk) | DDR0_11_TXSR_ENCODE(200));
+}
+
+static void program_ddr0_22(unsigned long dimm_ranks[],
+                           unsigned char const iic0_dimm_addr[],
+                           unsigned long num_dimm_banks, unsigned long width)
+{
+#if defined(CONFIG_DDR_ECC)
+       unsigned long dimm_num;
+       unsigned long ecc_available = width >= 64;
+       u32 ddr0_22 = DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) |
+           DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) |
+           DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS);
+
+       /* loop through all the DIMM slots on the board */
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               /* If a dimm is installed in a particular slot ... */
+               if (dimm_ranks[dimm_num]) {
+                       /* Check for ECC */
+                       if (0 == (spd_read(iic0_dimm_addr[dimm_num], 11) &
+                                 0x02)) {
+                               ecc_available = FALSE;
+                       }
+               }
+       }
+       if (ecc_available) {
+               debug("ECC found on all DIMMs present\n");
+               mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x3));
+       } else {
+               debug("ECC not found on some or all DIMMs present\n");
+               mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x0));
+       }
+#else
+       mtsdram(DDR0_22, DDR0_22_CTRL_RAW_ENCODE(0x0) |
+               DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) |
+               DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) |
+               DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS));
+#endif /* defined(CONFIG_DDR_ECC) */
+}
+
+static void program_ddr0_24(unsigned long ranks)
+{
+       u32 ddr0_24 = DDR0_24_RTT_PAD_TERMINATION_ENCODE(0x1) | /* 75 ohm */
+           DDR0_24_ODT_RD_MAP_CS1_ENCODE(0x0);
+
+       if (2 == ranks) {
+               /* Both chip selects in use */
+               ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x1) |
+                   DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x2);
+       } else {
+               /* One chip select in use */
+               /* One of the two fields added to ddr0_24 is a "don't care" */
+               ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x2) |
+                   DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x1);
+       }
+       mtsdram(DDR0_24, ddr0_24);
+}
+
+static void program_ddr0_26(unsigned long sdram_freq)
+{
+       unsigned long const t_ref_ps = 7800000; /* 7.8 us. refresh */
+       /* TODO: check definition of tRAS_MAX */
+       unsigned long const t_ras_max_ps = 9 * t_ref_ps;
+       unsigned long t_ras_max_clk;
+       unsigned long t_ref_clk;
+
+       /* Round down t_ras_max_clk and t_ref_clk */
+       debug("t_ras_max_ps = %d\n", t_ras_max_ps);
+       t_ras_max_clk = MULDIV64(sdram_freq, t_ras_max_ps, ONE_BILLION) / 1000;
+       debug("t_ref_ps     = %d\n", t_ref_ps);
+       t_ref_clk = MULDIV64(sdram_freq, t_ref_ps, ONE_BILLION) / 1000;
+       mtsdram(DDR0_26, DDR0_26_TRAS_MAX_ENCODE(t_ras_max_clk) |
+               DDR0_26_TREF_ENCODE(t_ref_clk));
+}
+
+static void program_ddr0_27(unsigned long sdram_freq)
+{
+       unsigned long const t_init_ps = 200000000;      /* 200 us. init */
+       unsigned long t_init_clk;
+
+       debug("t_init_ps = %d\n", t_init_ps);
+       t_init_clk =
+           (MULDIV64(sdram_freq, t_init_ps, ONE_BILLION) + 999) / 1000;
+       mtsdram(DDR0_27, DDR0_27_EMRS_DATA_ENCODE(0x0000) |
+               DDR0_27_TINIT_ENCODE(t_init_clk));
+}
+
+static void program_ddr0_43(unsigned long dimm_ranks[],
+                           unsigned char const iic0_dimm_addr[],
+                           unsigned long num_dimm_banks,
+                           unsigned long sdram_freq,
+                           unsigned long cols, unsigned long banks)
+{
+       unsigned long dimm_num;
+       unsigned long t_wr_ps = 0;
+       unsigned long t_wr_clk;
+       u32 ddr0_43 = DDR0_43_APREBIT_ENCODE(10) |
+           DDR0_43_COLUMN_SIZE_ENCODE(12 - cols) |
+           DDR0_43_EIGHT_BANK_MODE_ENCODE(8 == banks ? 1 : 0);
+
+       /*------------------------------------------------------------------
+        * Handle the timing.  We need to find the worst case timing of all
+        * the dimm modules installed.
+        *-----------------------------------------------------------------*/
+       /* loop through all the DIMM slots on the board */
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               /* If a dimm is installed in a particular slot ... */
+               if (dimm_ranks[dimm_num]) {
+                       unsigned long ps;
+
+                       ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 36);
+                       t_wr_ps = max(t_wr_ps, ps);
+               }
+       }
+       debug("t_wr_ps = %d\n", t_wr_ps);
+       t_wr_clk = (MULDIV64(sdram_freq, t_wr_ps, ONE_BILLION) + 999) / 1000;
+       mtsdram(DDR0_43, ddr0_43 | DDR0_43_TWR_ENCODE(t_wr_clk));
+}
+
+static void program_ddr0_44(unsigned long dimm_ranks[],
+                           unsigned char const iic0_dimm_addr[],
+                           unsigned long num_dimm_banks,
+                           unsigned long sdram_freq)
+{
+       unsigned long dimm_num;
+       unsigned long t_rcd_ps = 0;
+       unsigned long t_rcd_clk;
+
+       /*------------------------------------------------------------------
+        * Handle the timing.  We need to find the worst case timing of all
+        * the dimm modules installed.
+        *-----------------------------------------------------------------*/
+       /* loop through all the DIMM slots on the board */
+       for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
+               /* If a dimm is installed in a particular slot ... */
+               if (dimm_ranks[dimm_num]) {
+                       unsigned long ps;
+
+                       ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 29);
+                       t_rcd_ps = max(t_rcd_ps, ps);
+               }
+       }
+       debug("t_rcd_ps = %d\n", t_rcd_ps);
+       t_rcd_clk = (MULDIV64(sdram_freq, t_rcd_ps, ONE_BILLION) + 999) / 1000;
+       mtsdram(DDR0_44, DDR0_44_TRCD_ENCODE(t_rcd_clk));
+}
+
+/*-----------------------------------------------------------------------------+
+ * initdram.  Initializes the 440EPx/GPx DDR SDRAM controller.
+ * Note: This routine runs from flash with a stack set up in the chip's
+ * sram space.  It is important that the routine does not require .sbss, .bss or
+ * .data sections.  It also cannot call routines that require these sections.
+ *-----------------------------------------------------------------------------*/
+/*-----------------------------------------------------------------------------
+ * Function:    initdram
+ * Description:  Configures SDRAM memory banks for DDR operation.
+ *              Auto Memory Configuration option reads the DDR SDRAM EEPROMs
+ *              via the IIC bus and then configures the DDR SDRAM memory
+ *              banks appropriately. If Auto Memory Configuration is
+ *              not used, it is assumed that no DIMM is plugged
+ *-----------------------------------------------------------------------------*/
+long int initdram(int board_type)
+{
+       unsigned char const iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
+       unsigned long dimm_ranks[MAXDIMMS];
+       unsigned long ranks;
+       unsigned long rows;
+       unsigned long banks;
+       unsigned long cols;
+       unsigned long width;
+       unsigned long const sdram_freq = get_bus_freq(0);
+       unsigned long const num_dimm_banks = sizeof(iic0_dimm_addr);    /* on board dimm banks */
+       unsigned long cas_latency = 0;  /* to quiet initialization warning */
+       unsigned long dram_size;
+
+       debug("\nEntering initdram()\n");
+
+       /*------------------------------------------------------------------
+        * Stop the DDR-SDRAM controller.
+        *-----------------------------------------------------------------*/
+       mtsdram(DDR0_02, DDR0_02_START_ENCODE(0));
+
+       /*
+        * Make sure I2C controller is initialized
+        * before continuing.
+        */
+       /* switch to correct I2C bus */
+       I2C_SET_BUS(CFG_SPD_BUS_NUM);
+       i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
+
+       /*------------------------------------------------------------------
+        * Clear out the serial presence detect buffers.
+        * Perform IIC reads from the dimm.  Fill in the spds.
+        * Check to see if the dimm slots are populated
+        *-----------------------------------------------------------------*/
+       get_spd_info(dimm_ranks, &ranks, iic0_dimm_addr, num_dimm_banks);
+
+       /*------------------------------------------------------------------
+        * Check the frequency supported for the dimms plugged.
+        *-----------------------------------------------------------------*/
+       check_frequency(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
+
+       /*------------------------------------------------------------------
+        * Check and get size information.
+        *-----------------------------------------------------------------*/
+       get_dimm_size(dimm_ranks, iic0_dimm_addr, num_dimm_banks, &rows, &banks,
+                     &cols, &width);
+
+       /*------------------------------------------------------------------
+        * Check the voltage type for the dimms plugged.
+        *-----------------------------------------------------------------*/
+       check_voltage_type(dimm_ranks, iic0_dimm_addr, num_dimm_banks);
+
+       /*------------------------------------------------------------------
+        * Program registers for SDRAM controller.
+        *-----------------------------------------------------------------*/
+       mtsdram(DDR0_00, DDR0_00_DLL_INCREMENT_ENCODE(0x19) |
+               DDR0_00_DLL_START_POINT_DECODE(0x0A));
+
+       mtsdram(DDR0_01, DDR0_01_PLB0_DB_CS_LOWER_ENCODE(0x01) |
+               DDR0_01_PLB0_DB_CS_UPPER_ENCODE(0x00) |
+               DDR0_01_INT_MASK_ENCODE(0xFF));
+
+       program_ddr0_03(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq,
+                       rows, &cas_latency);
+
+       program_ddr0_04(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
+
+       program_ddr0_05(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
+
+       program_ddr0_06(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
+
+       /*------------------------------------------------------------------
+        * TODO: tFAW not found in SPD.  Value of 13 taken from Sequoia
+        * board SDRAM, but may be overly concervate.
+        *-----------------------------------------------------------------*/
+       mtsdram(DDR0_07, DDR0_07_NO_CMD_INIT_ENCODE(0) |
+               DDR0_07_TFAW_ENCODE(13) |
+               DDR0_07_AUTO_REFRESH_MODE_ENCODE(1) |
+               DDR0_07_AREFRESH_ENCODE(0));
+
+       mtsdram(DDR0_08, DDR0_08_WRLAT_ENCODE(cas_latency - 1) |
+               DDR0_08_TCPD_ENCODE(200) | DDR0_08_DQS_N_EN_ENCODE(0) |
+               DDR0_08_DDRII_ENCODE(1));
+
+       mtsdram(DDR0_09, DDR0_09_OCD_ADJUST_PDN_CS_0_ENCODE(0x00) |
+               DDR0_09_RTT_0_ENCODE(0x1) |
+               DDR0_09_WR_DQS_SHIFT_BYPASS_ENCODE(0x1D) |
+               DDR0_09_WR_DQS_SHIFT_ENCODE(DQS_OUT_SHIFT - 0x20));
+
+       program_ddr0_10(dimm_ranks, ranks);
+
+       program_ddr0_11(sdram_freq);
+
+       mtsdram(DDR0_12, DDR0_12_TCKE_ENCODE(3));
+
+       mtsdram(DDR0_14, DDR0_14_DLL_BYPASS_MODE_ENCODE(0) |
+               DDR0_14_REDUC_ENCODE(width <= 40 ? 1 : 0) |
+               DDR0_14_REG_DIMM_ENABLE_ENCODE(0));
+
+       mtsdram(DDR0_17, DDR0_17_DLL_DQS_DELAY_0_ENCODE(DLL_DQS_DELAY));
+
+       mtsdram(DDR0_18, DDR0_18_DLL_DQS_DELAY_4_ENCODE(DLL_DQS_DELAY) |
+               DDR0_18_DLL_DQS_DELAY_3_ENCODE(DLL_DQS_DELAY) |
+               DDR0_18_DLL_DQS_DELAY_2_ENCODE(DLL_DQS_DELAY) |
+               DDR0_18_DLL_DQS_DELAY_1_ENCODE(DLL_DQS_DELAY));
+
+       mtsdram(DDR0_19, DDR0_19_DLL_DQS_DELAY_8_ENCODE(DLL_DQS_DELAY) |
+               DDR0_19_DLL_DQS_DELAY_7_ENCODE(DLL_DQS_DELAY) |
+               DDR0_19_DLL_DQS_DELAY_6_ENCODE(DLL_DQS_DELAY) |
+               DDR0_19_DLL_DQS_DELAY_5_ENCODE(DLL_DQS_DELAY));
+
+       mtsdram(DDR0_20, DDR0_20_DLL_DQS_BYPASS_3_ENCODE(DLL_DQS_BYPASS) |
+               DDR0_20_DLL_DQS_BYPASS_2_ENCODE(DLL_DQS_BYPASS) |
+               DDR0_20_DLL_DQS_BYPASS_1_ENCODE(DLL_DQS_BYPASS) |
+               DDR0_20_DLL_DQS_BYPASS_0_ENCODE(DLL_DQS_BYPASS));
+
+       mtsdram(DDR0_21, DDR0_21_DLL_DQS_BYPASS_7_ENCODE(DLL_DQS_BYPASS) |
+               DDR0_21_DLL_DQS_BYPASS_6_ENCODE(DLL_DQS_BYPASS) |
+               DDR0_21_DLL_DQS_BYPASS_5_ENCODE(DLL_DQS_BYPASS) |
+               DDR0_21_DLL_DQS_BYPASS_4_ENCODE(DLL_DQS_BYPASS));
+
+       program_ddr0_22(dimm_ranks, iic0_dimm_addr, num_dimm_banks, width);
+
+       mtsdram(DDR0_23, DDR0_23_ODT_RD_MAP_CS0_ENCODE(0x0) |
+               DDR0_23_FWC_ENCODE(0));
+
+       program_ddr0_24(ranks);
+
+       program_ddr0_26(sdram_freq);
+
+       program_ddr0_27(sdram_freq);
+
+       mtsdram(DDR0_28, DDR0_28_EMRS3_DATA_ENCODE(0x0000) |
+               DDR0_28_EMRS2_DATA_ENCODE(0x0000));
+
+       mtsdram(DDR0_31, DDR0_31_XOR_CHECK_BITS_ENCODE(0x0000));
+
+       mtsdram(DDR0_42, DDR0_42_ADDR_PINS_DECODE(14 - rows) |
+               DDR0_42_CASLAT_LIN_GATE_ENCODE(2 * cas_latency));
+
+       program_ddr0_43(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq,
+                       cols, banks);
+
+       program_ddr0_44(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
+
+       denali_sdram_register_dump();
+
+       dram_size = (width >= 64) ? 8 : 4;
+       dram_size *= 1 << cols;
+       dram_size *= banks;
+       dram_size *= 1 << rows;
+       dram_size *= ranks;
+       debug("dram_size = %lu\n", dram_size);
+
+       /* Start the SDRAM controler */
+       mtsdram(DDR0_02, DDR0_02_START_ENCODE(1));
+       denali_wait_for_dlllock();
+
+#if defined(CONFIG_DDR_DATA_EYE)
+       /* -----------------------------------------------------------+
+        * Perform data eye search if requested.
+        * ----------------------------------------------------------*/
+       program_tlb(0, CFG_SDRAM_BASE, dram_size, TLB_WORD2_I_ENABLE);
+       denali_core_search_data_eye();
+       denali_sdram_register_dump();
+       remove_tlb(CFG_SDRAM_BASE, dram_size);
+#endif
+
+#if defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC)
+       program_tlb(0, CFG_SDRAM_BASE, dram_size, 0);
+       sync();
+       eieio();
+       /* Zero the memory */
+       debug("Zeroing SDRAM...");
+       dcbz_area(CFG_SDRAM_BASE, dram_size);
+       dflush();
+       debug("Completed\n");
+       sync();
+       eieio();
+       remove_tlb(CFG_SDRAM_BASE, dram_size);
+
+#if defined(CONFIG_DDR_ECC)
+       /*
+        * If ECC is enabled, clear and enable interrupts
+        */
+       if (is_ecc_enabled()) {
+               u32 val;
+
+               sync();
+               eieio();
+               /* Clear error status */
+               mfsdram(DDR0_00, val);
+               mtsdram(DDR0_00, val | DDR0_00_INT_ACK_ALL);
+               /* Set 'int_mask' parameter to functionnal value */
+               mfsdram(DDR0_01, val);
+               mtsdram(DDR0_01, (val & ~DDR0_01_INT_MASK_MASK) |
+                       DDR0_01_INT_MASK_ALL_OFF);
+#if defined(CONFIG_DDR_DATA_EYE)
+               /*
+                * Running denali_core_search_data_eye() when ECC is enabled
+                * causes non-ECC machine checks.  This clears them.
+                */
+               print_mcsr();
+               mtspr(SPRN_MCSR, mfspr(SPRN_MCSR));
+               print_mcsr();
+#endif
+               sync();
+               eieio();
+       }
+#endif /* defined(CONFIG_DDR_ECC) */
+#endif /* defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC) */
+
+       program_tlb(0, CFG_SDRAM_BASE, dram_size, MY_TLB_WORD2_I_ENABLE);
+       return dram_size;
+}
+
+void board_add_ram_info(int use_default)
+{
+       u32 val;
+
+       printf(" (ECC");
+       if (!is_ecc_enabled()) {
+               printf(" not");
+       }
+       printf(" enabled, %d MHz", (2 * get_bus_freq(0)) / 1000000);
+
+       mfsdram(DDR0_03, val);
+       printf(", CL%d)", DDR0_03_CASLAT_LIN_DECODE(val) >> 1);
+}
+#endif /* CONFIG_SPD_EEPROM */