}
#if defined(CONFIG_DISPLAY_CPUINFO)
+
+#if defined(CONFIG_ARMADA_38X)
+/* SAR values for Armada 38x */
+#define CONFIG_SAR_REG (MVEBU_REGISTER(0x18600))
+#define SAR_CPU_FREQ_OFFS 10
+#define SAR_CPU_FREQ_MASK (0x1f << SAR_CPU_FREQ_OFFS)
+
+struct sar_freq_modes sar_freq_tab[] = {
+ { 0x0, 0x0, 666, 333, 333 },
+ { 0x2, 0x0, 800, 400, 400 },
+ { 0x4, 0x0, 1066, 533, 533 },
+ { 0x6, 0x0, 1200, 600, 600 },
+ { 0x8, 0x0, 1332, 666, 666 },
+ { 0xc, 0x0, 1600, 800, 800 },
+ { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
+};
+#else
+/* SAR values for Armada XP */
+#define CONFIG_SAR_REG (MVEBU_REGISTER(0x18230))
+#define CONFIG_SAR2_REG (MVEBU_REGISTER(0x18234))
+#define SAR_CPU_FREQ_OFFS 21
+#define SAR_CPU_FREQ_MASK (0x7 << SAR_CPU_FREQ_OFFS)
+#define SAR_FFC_FREQ_OFFS 24
+#define SAR_FFC_FREQ_MASK (0xf << SAR_FFC_FREQ_OFFS)
+#define SAR2_CPU_FREQ_OFFS 20
+#define SAR2_CPU_FREQ_MASK (0x1 << SAR2_CPU_FREQ_OFFS)
+
+struct sar_freq_modes sar_freq_tab[] = {
+ { 0xa, 0x5, 800, 400, 400 },
+ { 0x1, 0x5, 1066, 533, 533 },
+ { 0x2, 0x5, 1200, 600, 600 },
+ { 0x2, 0x9, 1200, 600, 400 },
+ { 0x3, 0x5, 1333, 667, 667 },
+ { 0x4, 0x5, 1500, 750, 750 },
+ { 0x4, 0x9, 1500, 750, 500 },
+ { 0xb, 0x9, 1600, 800, 533 },
+ { 0xb, 0xa, 1600, 800, 640 },
+ { 0xb, 0x5, 1600, 800, 800 },
+ { 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
+};
+#endif
+
+void get_sar_freq(struct sar_freq_modes *sar_freq)
+{
+ u32 val;
+ u32 freq;
+ int i;
+
+ val = readl(CONFIG_SAR_REG); /* SAR - Sample At Reset */
+ freq = (val & SAR_CPU_FREQ_MASK) >> SAR_CPU_FREQ_OFFS;
+#if !defined(CONFIG_ARMADA_38X)
+ /*
+ * Shift CPU0 clock frequency select bit from SAR2 register
+ * into correct position
+ */
+ freq |= ((readl(CONFIG_SAR2_REG) & SAR2_CPU_FREQ_MASK)
+ >> SAR2_CPU_FREQ_OFFS) << 3;
+#endif
+ for (i = 0; sar_freq_tab[i].val != 0xff; i++) {
+ if (sar_freq_tab[i].val == freq) {
+#if defined(CONFIG_ARMADA_38X)
+ *sar_freq = sar_freq_tab[i];
+ return;
+#else
+ int k;
+ u8 ffc;
+
+ ffc = (val & SAR_FFC_FREQ_MASK) >>
+ SAR_FFC_FREQ_OFFS;
+ for (k = i; sar_freq_tab[k].ffc != 0xff; k++) {
+ if (sar_freq_tab[k].ffc == ffc) {
+ *sar_freq = sar_freq_tab[k];
+ return;
+ }
+ }
+ i = k;
+#endif
+ }
+ }
+
+ /* SAR value not found, return 0 for frequencies */
+ *sar_freq = sar_freq_tab[i - 1];
+}
+
int print_cpuinfo(void)
{
u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
u8 revid = readl(MVEBU_REG_PCIE_REVID) & 0xff;
+ struct sar_freq_modes sar_freq;
puts("SoC: ");
if (mvebu_soc_family() == MVEBU_SOC_AXP) {
switch (revid) {
case 1:
- puts("A0\n");
+ puts("A0");
break;
case 2:
- puts("B0\n");
+ puts("B0");
break;
default:
- printf("?? (%x)\n", revid);
+ printf("?? (%x)", revid);
break;
}
}
if (mvebu_soc_family() == MVEBU_SOC_A38X) {
switch (revid) {
case MV_88F68XX_Z1_ID:
- puts("Z1\n");
+ puts("Z1");
break;
case MV_88F68XX_A0_ID:
- puts("A0\n");
+ puts("A0");
break;
default:
- printf("?? (%x)\n", revid);
+ printf("?? (%x)", revid);
break;
}
}
+ get_sar_freq(&sar_freq);
+ printf(" at %d MHz\n", sar_freq.p_clk);
+
return 0;
}
#endif /* CONFIG_DISPLAY_CPUINFO */