SoC overviews are getting repeated across board folders.
So, Organize SoC overview at common location i.e. fsl-layerscape/doc
Also move README.lsch2 and README.lsch3 in same folder.
Signed-off-by: Prabhakar Kushwaha <prabhakar.kushwaha@nxp.com>
Reviewed-by: York Sun <york.sun@nxp.com>
+++ /dev/null
-#
-# Copyright 2015 Freescale Semiconductor
-#
-# SPDX-License-Identifier: GPL-2.0+
-#
-
-Freescale LayerScape with Chassis Generation 2
-
-This architecture supports Freescale ARMv8 SoCs with Chassis generation 2,
-for example LS1043A.
+++ /dev/null
-#
-# Copyright 2014-2015 Freescale Semiconductor
-#
-# SPDX-License-Identifier: GPL-2.0+
-#
-
-Freescale LayerScape with Chassis Generation 3
-
-This architecture supports Freescale ARMv8 SoCs with Chassis generation 3,
-for example LS2080A.
-
-DDR Layout
-============
-Entire DDR region splits into two regions.
- - Region 1 is at address 0x8000_0000 to 0xffff_ffff.
- - Region 2 is at 0x80_8000_0000 to the top of total memory,
- for example 16GB, 0x83_ffff_ffff.
-
-All DDR memory is marked as cache-enabled.
-
-When MC and Debug server is enabled, they carve 512MB away from the high
-end of DDR. For example, if the total DDR is 16GB, it shrinks to 15.5GB
-with MC and Debug server enabled. Linux only sees 15.5GB.
-
-The reserved 512MB layout looks like
-
- +---------------+ <-- top/end of memory
- | 256MB | debug server
- +---------------+
- | 256MB | MC
- +---------------+
- | ... |
-
-MC requires the memory to be aligned with 512MB, so even debug server is
-not enabled, 512MB is reserved, not 256MB.
-
-Flash Layout
-============
-
-(1) A typical layout of various images (including Linux and other firmware images)
- is shown below considering a 32MB NOR flash device present on most
- pre-silicon platforms (simulator and emulator):
-
- -------------------------
- | FIT Image |
- | (linux + DTB + RFS) |
- ------------------------- ----> 0x0120_0000
- | Debug Server FW |
- ------------------------- ----> 0x00C0_0000
- | AIOP FW |
- ------------------------- ----> 0x0070_0000
- | MC FW |
- ------------------------- ----> 0x006C_0000
- | MC DPL Blob |
- ------------------------- ----> 0x0020_0000
- | BootLoader + Env|
- ------------------------- ----> 0x0000_1000
- | PBI |
- ------------------------- ----> 0x0000_0080
- | RCW |
- ------------------------- ----> 0x0000_0000
-
- 32-MB NOR flash layout for pre-silicon platforms (simulator and emulator)
-
-(2) A typical layout of various images (including Linux and other firmware images)
- is shown below considering a 128MB NOR flash device present on QDS and RDB
- boards:
- ----------------------------------------- ----> 0x5_8800_0000 ---
- | .. Unused .. (7M) | |
- ----------------------------------------- ----> 0x5_8790_0000 |
- | FIT Image (linux + DTB + RFS) (40M) | |
- ----------------------------------------- ----> 0x5_8510_0000 |
- | PHY firmware (2M) | |
- ----------------------------------------- ----> 0x5_84F0_0000 | 64K
- | Debug Server FW (2M) | | Alt
- ----------------------------------------- ----> 0x5_84D0_0000 | Bank
- | AIOP FW (4M) | |
- ----------------------------------------- ----> 0x5_8490_0000 (vbank4)
- | MC DPC Blob (1M) | |
- ----------------------------------------- ----> 0x5_8480_0000 |
- | MC DPL Blob (1M) | |
- ----------------------------------------- ----> 0x5_8470_0000 |
- | MC FW (4M) | |
- ----------------------------------------- ----> 0x5_8430_0000 |
- | BootLoader Environment (1M) | |
- ----------------------------------------- ----> 0x5_8420_0000 |
- | BootLoader (1M) | |
- ----------------------------------------- ----> 0x5_8410_0000 |
- | RCW and PBI (1M) | |
- ----------------------------------------- ----> 0x5_8400_0000 ---
- | .. Unused .. (7M) | |
- ----------------------------------------- ----> 0x5_8390_0000 |
- | FIT Image (linux + DTB + RFS) (40M) | |
- ----------------------------------------- ----> 0x5_8110_0000 |
- | PHY firmware (2M) | |
- ----------------------------------------- ----> 0x5_80F0_0000 | 64K
- | Debug Server FW (2M) | | Bank
- ----------------------------------------- ----> 0x5_80D0_0000 |
- | AIOP FW (4M) | |
- ----------------------------------------- ----> 0x5_8090_0000 (vbank0)
- | MC DPC Blob (1M) | |
- ----------------------------------------- ----> 0x5_8080_0000 |
- | MC DPL Blob (1M) | |
- ----------------------------------------- ----> 0x5_8070_0000 |
- | MC FW (4M) | |
- ----------------------------------------- ----> 0x5_8030_0000 |
- | BootLoader Environment (1M) | |
- ----------------------------------------- ----> 0x5_8020_0000 |
- | BootLoader (1M) | |
- ----------------------------------------- ----> 0x5_8010_0000 |
- | RCW and PBI (1M) | |
- ----------------------------------------- ----> 0x5_8000_0000 ---
-
- 128-MB NOR flash layout for QDS and RDB boards
-
-Environment Variables
-=====================
-mcboottimeout: MC boot timeout in milliseconds. If this variable is not defined
- the value CONFIG_SYS_LS_MC_BOOT_TIMEOUT_MS will be assumed.
-
-mcmemsize: MC DRAM block size. If this variable is not defined, the value
- CONFIG_SYS_LS_MC_DRAM_BLOCK_MIN_SIZE will be assumed.
-
-Booting from NAND
--------------------
-Booting from NAND requires two images, RCW and u-boot-with-spl.bin.
-The difference between NAND boot RCW image and NOR boot image is the PBI
-command sequence. Below is one example for PBI commands for QDS which uses
-NAND device with 2KB/page, block size 128KB.
-
-1) CCSR 4-byte write to 0x00e00404, data=0x00000000
-2) CCSR 4-byte write to 0x00e00400, data=0x1800a000
-The above two commands set bootloc register to 0x00000000_1800a000 where
-the u-boot code will be running in OCRAM.
-
-3) Block Copy: SRC=0x0107, SRC_ADDR=0x00020000, DEST_ADDR=0x1800a000,
-BLOCK_SIZE=0x00014000
-This command copies u-boot image from NAND device into OCRAM. The values need
-to adjust accordingly.
-
-SRC should match the cfg_rcw_src, the reset config pins. It depends
- on the NAND device. See reference manual for cfg_rcw_src.
-SRC_ADDR is the offset of u-boot-with-spl.bin image in NAND device. In
- the example above, 128KB. For easy maintenance, we put it at
- the beginning of next block from RCW.
-DEST_ADDR is fixed at 0x1800a000, matching bootloc set above.
-BLOCK_SIZE is the size to be copied by PBI.
-
-RCW image should be written to the beginning of NAND device. Example of using
-u-boot command
-
-nand write <rcw image in memory> 0 <size of rcw image>
-
-To form the NAND image, build u-boot with NAND config, for example,
-ls2080aqds_nand_defconfig. The image needed is u-boot-with-spl.bin.
-The u-boot image should be written to match SRC_ADDR, in above example 0x20000.
-
-nand write <u-boot image in memory> 200000 <size of u-boot image>
-
-With these two images in NAND device, the board can boot from NAND.
-
-Another example for RDB boards,
-
-1) CCSR 4-byte write to 0x00e00404, data=0x00000000
-2) CCSR 4-byte write to 0x00e00400, data=0x1800a000
-3) Block Copy: SRC=0x0119, SRC_ADDR=0x00080000, DEST_ADDR=0x1800a000,
-BLOCK_SIZE=0x00014000
-
-nand write <rcw image in memory> 0 <size of rcw image>
-nand write <u-boot image in memory> 80000 <size of u-boot image>
-
-Notice the difference from QDS is SRC, SRC_ADDR and the offset of u-boot image
-to match board NAND device with 4KB/page, block size 512KB.
-
-MMU Translation Tables
-======================
-
-(1) Early MMU Tables:
-
- Level 0 Level 1 Level 2
------------------- ------------------ ------------------
-| 0x00_0000_0000 | -----> | 0x00_0000_0000 | -----> | 0x00_0000_0000 |
------------------- ------------------ ------------------
-| 0x80_0000_0000 | --| | 0x00_4000_0000 | | 0x00_0020_0000 |
------------------- | ------------------ ------------------
-| invalid | | | 0x00_8000_0000 | | 0x00_0040_0000 |
------------------- | ------------------ ------------------
- | | 0x00_c000_0000 | | 0x00_0060_0000 |
- | ------------------ ------------------
- | | 0x01_0000_0000 | | 0x00_0080_0000 |
- | ------------------ ------------------
- | ... ...
- | ------------------
- | | 0x05_8000_0000 | --|
- | ------------------ |
- | | 0x05_c000_0000 | |
- | ------------------ |
- | ... |
- | ------------------ | ------------------
- |--> | 0x80_0000_0000 | |-> | 0x00_3000_0000 |
- ------------------ ------------------
- | 0x80_4000_0000 | | 0x00_3020_0000 |
- ------------------ ------------------
- | 0x80_8000_0000 | | 0x00_3040_0000 |
- ------------------ ------------------
- | 0x80_c000_0000 | | 0x00_3060_0000 |
- ------------------ ------------------
- | 0x81_0000_0000 | | 0x00_3080_0000 |
- ------------------ ------------------
- ... ...
-
-(2) Final MMU Tables:
-
- Level 0 Level 1 Level 2
------------------- ------------------ ------------------
-| 0x00_0000_0000 | -----> | 0x00_0000_0000 | -----> | 0x00_0000_0000 |
------------------- ------------------ ------------------
-| 0x80_0000_0000 | --| | 0x00_4000_0000 | | 0x00_0020_0000 |
------------------- | ------------------ ------------------
-| invalid | | | 0x00_8000_0000 | | 0x00_0040_0000 |
------------------- | ------------------ ------------------
- | | 0x00_c000_0000 | | 0x00_0060_0000 |
- | ------------------ ------------------
- | | 0x01_0000_0000 | | 0x00_0080_0000 |
- | ------------------ ------------------
- | ... ...
- | ------------------
- | | 0x08_0000_0000 | --|
- | ------------------ |
- | | 0x08_4000_0000 | |
- | ------------------ |
- | ... |
- | ------------------ | ------------------
- |--> | 0x80_0000_0000 | |--> | 0x08_0000_0000 |
- ------------------ ------------------
- | 0x80_4000_0000 | | 0x08_0020_0000 |
- ------------------ ------------------
- | 0x80_8000_0000 | | 0x08_0040_0000 |
- ------------------ ------------------
- | 0x80_c000_0000 | | 0x08_0060_0000 |
- ------------------ ------------------
- | 0x81_0000_0000 | | 0x08_0080_0000 |
- ------------------ ------------------
- ... ...
-
-
-DPAA2 commands to manage Management Complex (MC)
-------------------------------------------------
-DPAA2 commands has been introduced to manage Management Complex
-(MC). These commands are used to start mc, aiop and apply DPL
-from u-boot command prompt.
-
-Please note Management complex Firmware(MC), DPL and DPC are no
-more deployed during u-boot boot-sequence.
-
-Commands:
-a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
-b) fsl_mc apply DPL <DPL_addr> - Apply DPL file
-c) fsl_mc start aiop <FW_addr> - Start AIOP
-
-How to use commands :-
-1. Command sequence for u-boot ethernet:
- a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
- b) DPMAC net-devices are now available for use
-
- Example-
- Assumption: MC firmware, DPL and DPC dtb is already programmed
- on NOR flash.
-
- => fsl_mc start mc 580300000 580800000
- => setenv ethact DPMAC1@xgmii
- => ping $serverip
-
-2. Command sequence for Linux boot:
- a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
- b) fsl_mc apply DPL <DPL_addr> - Apply DPL file
- c) No DPMAC net-devices are available for use in u-boot
- d) boot Linux
-
- Example-
- Assumption: MC firmware, DPL and DPC dtb is already programmed
- on NOR flash.
-
- => fsl_mc start mc 580300000 580800000
- => setenv ethact DPMAC1@xgmii
- => tftp a0000000 kernel.itb
- => fsl_mc apply dpl 580700000
- => bootm a0000000
-
-3. Command sequence for AIOP boot:
- a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
- b) fsl_mc start aiop <FW_addr> - Start AIOP
- c) fsl_mc apply DPL <DPL_addr> - Apply DPL file
- d) No DPMAC net-devices are availabe for use in u-boot
- Please note actual AIOP start will happen during DPL parsing of
- Management complex
-
- Example-
- Assumption: MC firmware, DPL, DPC dtb and AIOP firmware is already
- programmed on NOR flash.
-
- => fsl_mc start mc 580300000 580800000
- => fsl_mc start aiop 0x580900000
- => setenv ethact DPMAC1@xgmii
- => fsl_mc apply dpl 580700000
-
-Errata A009635
----------------
-If the core runs at higher than x3 speed of the platform, there is
-possiblity about sev instruction to getting missed by other cores.
-This is because of SoC Run Control block may not able to sample
-the EVENTI(Sev) signals.
-
-Workaround: Configure Run Control and EPU to periodically send out EVENTI signals to
-wake up A57 cores
-
-Errata workaround uses Env variable "a009635_interval_val". It uses decimal
-value.
-- Default value of env variable is platform clock (MHz)
-
-- User can modify default value by updating the env variable
- setenv a009635_interval_val 600; saveenv;
- It configure platform clock as 600 MHz
-
-- Env variable as 0 signifies no workaround
--- /dev/null
+#
+# Copyright 2015 Freescale Semiconductor
+#
+# SPDX-License-Identifier: GPL-2.0+
+#
+
+Freescale LayerScape with Chassis Generation 2
+
+This architecture supports Freescale ARMv8 SoCs with Chassis generation 2,
+for example LS1043A.
--- /dev/null
+#
+# Copyright 2014-2015 Freescale Semiconductor
+#
+# SPDX-License-Identifier: GPL-2.0+
+#
+
+Freescale LayerScape with Chassis Generation 3
+
+This architecture supports Freescale ARMv8 SoCs with Chassis generation 3,
+for example LS2080A.
+
+DDR Layout
+============
+Entire DDR region splits into two regions.
+ - Region 1 is at address 0x8000_0000 to 0xffff_ffff.
+ - Region 2 is at 0x80_8000_0000 to the top of total memory,
+ for example 16GB, 0x83_ffff_ffff.
+
+All DDR memory is marked as cache-enabled.
+
+When MC and Debug server is enabled, they carve 512MB away from the high
+end of DDR. For example, if the total DDR is 16GB, it shrinks to 15.5GB
+with MC and Debug server enabled. Linux only sees 15.5GB.
+
+The reserved 512MB layout looks like
+
+ +---------------+ <-- top/end of memory
+ | 256MB | debug server
+ +---------------+
+ | 256MB | MC
+ +---------------+
+ | ... |
+
+MC requires the memory to be aligned with 512MB, so even debug server is
+not enabled, 512MB is reserved, not 256MB.
+
+Flash Layout
+============
+
+(1) A typical layout of various images (including Linux and other firmware images)
+ is shown below considering a 32MB NOR flash device present on most
+ pre-silicon platforms (simulator and emulator):
+
+ -------------------------
+ | FIT Image |
+ | (linux + DTB + RFS) |
+ ------------------------- ----> 0x0120_0000
+ | Debug Server FW |
+ ------------------------- ----> 0x00C0_0000
+ | AIOP FW |
+ ------------------------- ----> 0x0070_0000
+ | MC FW |
+ ------------------------- ----> 0x006C_0000
+ | MC DPL Blob |
+ ------------------------- ----> 0x0020_0000
+ | BootLoader + Env|
+ ------------------------- ----> 0x0000_1000
+ | PBI |
+ ------------------------- ----> 0x0000_0080
+ | RCW |
+ ------------------------- ----> 0x0000_0000
+
+ 32-MB NOR flash layout for pre-silicon platforms (simulator and emulator)
+
+(2) A typical layout of various images (including Linux and other firmware images)
+ is shown below considering a 128MB NOR flash device present on QDS and RDB
+ boards:
+ ----------------------------------------- ----> 0x5_8800_0000 ---
+ | .. Unused .. (7M) | |
+ ----------------------------------------- ----> 0x5_8790_0000 |
+ | FIT Image (linux + DTB + RFS) (40M) | |
+ ----------------------------------------- ----> 0x5_8510_0000 |
+ | PHY firmware (2M) | |
+ ----------------------------------------- ----> 0x5_84F0_0000 | 64K
+ | Debug Server FW (2M) | | Alt
+ ----------------------------------------- ----> 0x5_84D0_0000 | Bank
+ | AIOP FW (4M) | |
+ ----------------------------------------- ----> 0x5_8490_0000 (vbank4)
+ | MC DPC Blob (1M) | |
+ ----------------------------------------- ----> 0x5_8480_0000 |
+ | MC DPL Blob (1M) | |
+ ----------------------------------------- ----> 0x5_8470_0000 |
+ | MC FW (4M) | |
+ ----------------------------------------- ----> 0x5_8430_0000 |
+ | BootLoader Environment (1M) | |
+ ----------------------------------------- ----> 0x5_8420_0000 |
+ | BootLoader (1M) | |
+ ----------------------------------------- ----> 0x5_8410_0000 |
+ | RCW and PBI (1M) | |
+ ----------------------------------------- ----> 0x5_8400_0000 ---
+ | .. Unused .. (7M) | |
+ ----------------------------------------- ----> 0x5_8390_0000 |
+ | FIT Image (linux + DTB + RFS) (40M) | |
+ ----------------------------------------- ----> 0x5_8110_0000 |
+ | PHY firmware (2M) | |
+ ----------------------------------------- ----> 0x5_80F0_0000 | 64K
+ | Debug Server FW (2M) | | Bank
+ ----------------------------------------- ----> 0x5_80D0_0000 |
+ | AIOP FW (4M) | |
+ ----------------------------------------- ----> 0x5_8090_0000 (vbank0)
+ | MC DPC Blob (1M) | |
+ ----------------------------------------- ----> 0x5_8080_0000 |
+ | MC DPL Blob (1M) | |
+ ----------------------------------------- ----> 0x5_8070_0000 |
+ | MC FW (4M) | |
+ ----------------------------------------- ----> 0x5_8030_0000 |
+ | BootLoader Environment (1M) | |
+ ----------------------------------------- ----> 0x5_8020_0000 |
+ | BootLoader (1M) | |
+ ----------------------------------------- ----> 0x5_8010_0000 |
+ | RCW and PBI (1M) | |
+ ----------------------------------------- ----> 0x5_8000_0000 ---
+
+ 128-MB NOR flash layout for QDS and RDB boards
+
+Environment Variables
+=====================
+mcboottimeout: MC boot timeout in milliseconds. If this variable is not defined
+ the value CONFIG_SYS_LS_MC_BOOT_TIMEOUT_MS will be assumed.
+
+mcmemsize: MC DRAM block size. If this variable is not defined, the value
+ CONFIG_SYS_LS_MC_DRAM_BLOCK_MIN_SIZE will be assumed.
+
+Booting from NAND
+-------------------
+Booting from NAND requires two images, RCW and u-boot-with-spl.bin.
+The difference between NAND boot RCW image and NOR boot image is the PBI
+command sequence. Below is one example for PBI commands for QDS which uses
+NAND device with 2KB/page, block size 128KB.
+
+1) CCSR 4-byte write to 0x00e00404, data=0x00000000
+2) CCSR 4-byte write to 0x00e00400, data=0x1800a000
+The above two commands set bootloc register to 0x00000000_1800a000 where
+the u-boot code will be running in OCRAM.
+
+3) Block Copy: SRC=0x0107, SRC_ADDR=0x00020000, DEST_ADDR=0x1800a000,
+BLOCK_SIZE=0x00014000
+This command copies u-boot image from NAND device into OCRAM. The values need
+to adjust accordingly.
+
+SRC should match the cfg_rcw_src, the reset config pins. It depends
+ on the NAND device. See reference manual for cfg_rcw_src.
+SRC_ADDR is the offset of u-boot-with-spl.bin image in NAND device. In
+ the example above, 128KB. For easy maintenance, we put it at
+ the beginning of next block from RCW.
+DEST_ADDR is fixed at 0x1800a000, matching bootloc set above.
+BLOCK_SIZE is the size to be copied by PBI.
+
+RCW image should be written to the beginning of NAND device. Example of using
+u-boot command
+
+nand write <rcw image in memory> 0 <size of rcw image>
+
+To form the NAND image, build u-boot with NAND config, for example,
+ls2080aqds_nand_defconfig. The image needed is u-boot-with-spl.bin.
+The u-boot image should be written to match SRC_ADDR, in above example 0x20000.
+
+nand write <u-boot image in memory> 200000 <size of u-boot image>
+
+With these two images in NAND device, the board can boot from NAND.
+
+Another example for RDB boards,
+
+1) CCSR 4-byte write to 0x00e00404, data=0x00000000
+2) CCSR 4-byte write to 0x00e00400, data=0x1800a000
+3) Block Copy: SRC=0x0119, SRC_ADDR=0x00080000, DEST_ADDR=0x1800a000,
+BLOCK_SIZE=0x00014000
+
+nand write <rcw image in memory> 0 <size of rcw image>
+nand write <u-boot image in memory> 80000 <size of u-boot image>
+
+Notice the difference from QDS is SRC, SRC_ADDR and the offset of u-boot image
+to match board NAND device with 4KB/page, block size 512KB.
+
+MMU Translation Tables
+======================
+
+(1) Early MMU Tables:
+
+ Level 0 Level 1 Level 2
+------------------ ------------------ ------------------
+| 0x00_0000_0000 | -----> | 0x00_0000_0000 | -----> | 0x00_0000_0000 |
+------------------ ------------------ ------------------
+| 0x80_0000_0000 | --| | 0x00_4000_0000 | | 0x00_0020_0000 |
+------------------ | ------------------ ------------------
+| invalid | | | 0x00_8000_0000 | | 0x00_0040_0000 |
+------------------ | ------------------ ------------------
+ | | 0x00_c000_0000 | | 0x00_0060_0000 |
+ | ------------------ ------------------
+ | | 0x01_0000_0000 | | 0x00_0080_0000 |
+ | ------------------ ------------------
+ | ... ...
+ | ------------------
+ | | 0x05_8000_0000 | --|
+ | ------------------ |
+ | | 0x05_c000_0000 | |
+ | ------------------ |
+ | ... |
+ | ------------------ | ------------------
+ |--> | 0x80_0000_0000 | |-> | 0x00_3000_0000 |
+ ------------------ ------------------
+ | 0x80_4000_0000 | | 0x00_3020_0000 |
+ ------------------ ------------------
+ | 0x80_8000_0000 | | 0x00_3040_0000 |
+ ------------------ ------------------
+ | 0x80_c000_0000 | | 0x00_3060_0000 |
+ ------------------ ------------------
+ | 0x81_0000_0000 | | 0x00_3080_0000 |
+ ------------------ ------------------
+ ... ...
+
+(2) Final MMU Tables:
+
+ Level 0 Level 1 Level 2
+------------------ ------------------ ------------------
+| 0x00_0000_0000 | -----> | 0x00_0000_0000 | -----> | 0x00_0000_0000 |
+------------------ ------------------ ------------------
+| 0x80_0000_0000 | --| | 0x00_4000_0000 | | 0x00_0020_0000 |
+------------------ | ------------------ ------------------
+| invalid | | | 0x00_8000_0000 | | 0x00_0040_0000 |
+------------------ | ------------------ ------------------
+ | | 0x00_c000_0000 | | 0x00_0060_0000 |
+ | ------------------ ------------------
+ | | 0x01_0000_0000 | | 0x00_0080_0000 |
+ | ------------------ ------------------
+ | ... ...
+ | ------------------
+ | | 0x08_0000_0000 | --|
+ | ------------------ |
+ | | 0x08_4000_0000 | |
+ | ------------------ |
+ | ... |
+ | ------------------ | ------------------
+ |--> | 0x80_0000_0000 | |--> | 0x08_0000_0000 |
+ ------------------ ------------------
+ | 0x80_4000_0000 | | 0x08_0020_0000 |
+ ------------------ ------------------
+ | 0x80_8000_0000 | | 0x08_0040_0000 |
+ ------------------ ------------------
+ | 0x80_c000_0000 | | 0x08_0060_0000 |
+ ------------------ ------------------
+ | 0x81_0000_0000 | | 0x08_0080_0000 |
+ ------------------ ------------------
+ ... ...
+
+
+DPAA2 commands to manage Management Complex (MC)
+------------------------------------------------
+DPAA2 commands has been introduced to manage Management Complex
+(MC). These commands are used to start mc, aiop and apply DPL
+from u-boot command prompt.
+
+Please note Management complex Firmware(MC), DPL and DPC are no
+more deployed during u-boot boot-sequence.
+
+Commands:
+a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
+b) fsl_mc apply DPL <DPL_addr> - Apply DPL file
+c) fsl_mc start aiop <FW_addr> - Start AIOP
+
+How to use commands :-
+1. Command sequence for u-boot ethernet:
+ a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
+ b) DPMAC net-devices are now available for use
+
+ Example-
+ Assumption: MC firmware, DPL and DPC dtb is already programmed
+ on NOR flash.
+
+ => fsl_mc start mc 580300000 580800000
+ => setenv ethact DPMAC1@xgmii
+ => ping $serverip
+
+2. Command sequence for Linux boot:
+ a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
+ b) fsl_mc apply DPL <DPL_addr> - Apply DPL file
+ c) No DPMAC net-devices are available for use in u-boot
+ d) boot Linux
+
+ Example-
+ Assumption: MC firmware, DPL and DPC dtb is already programmed
+ on NOR flash.
+
+ => fsl_mc start mc 580300000 580800000
+ => setenv ethact DPMAC1@xgmii
+ => tftp a0000000 kernel.itb
+ => fsl_mc apply dpl 580700000
+ => bootm a0000000
+
+3. Command sequence for AIOP boot:
+ a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
+ b) fsl_mc start aiop <FW_addr> - Start AIOP
+ c) fsl_mc apply DPL <DPL_addr> - Apply DPL file
+ d) No DPMAC net-devices are availabe for use in u-boot
+ Please note actual AIOP start will happen during DPL parsing of
+ Management complex
+
+ Example-
+ Assumption: MC firmware, DPL, DPC dtb and AIOP firmware is already
+ programmed on NOR flash.
+
+ => fsl_mc start mc 580300000 580800000
+ => fsl_mc start aiop 0x580900000
+ => setenv ethact DPMAC1@xgmii
+ => fsl_mc apply dpl 580700000
+
+Errata A009635
+---------------
+If the core runs at higher than x3 speed of the platform, there is
+possiblity about sev instruction to getting missed by other cores.
+This is because of SoC Run Control block may not able to sample
+the EVENTI(Sev) signals.
+
+Workaround: Configure Run Control and EPU to periodically send out EVENTI signals to
+wake up A57 cores
+
+Errata workaround uses Env variable "a009635_interval_val". It uses decimal
+value.
+- Default value of env variable is platform clock (MHz)
+
+- User can modify default value by updating the env variable
+ setenv a009635_interval_val 600; saveenv;
+ It configure platform clock as 600 MHz
+
+- Env variable as 0 signifies no workaround
--- /dev/null
+SoC overview
+
+ 1. LS1043A
+ 2. LS2080A
+
+LS1043A
+---------
+The LS1043A integrated multicore processor combines four ARM Cortex-A53
+processor cores with datapath acceleration optimized for L2/3 packet
+processing, single pass security offload and robust traffic management
+and quality of service.
+
+The LS1043A SoC includes the following function and features:
+ - Four 64-bit ARM Cortex-A53 CPUs
+ - 1 MB unified L2 Cache
+ - One 32-bit DDR3L/DDR4 SDRAM memory controllers with ECC and interleaving
+ support
+ - Data Path Acceleration Architecture (DPAA) incorporating acceleration the
+ the following functions:
+ - Packet parsing, classification, and distribution (FMan)
+ - Queue management for scheduling, packet sequencing, and congestion
+ management (QMan)
+ - Hardware buffer management for buffer allocation and de-allocation (BMan)
+ - Cryptography acceleration (SEC)
+ - Ethernet interfaces by FMan
+ - Up to 1 x XFI supporting 10G interface
+ - Up to 1 x QSGMII
+ - Up to 4 x SGMII supporting 1000Mbps
+ - Up to 2 x SGMII supporting 2500Mbps
+ - Up to 2 x RGMII supporting 1000Mbps
+ - High-speed peripheral interfaces
+ - Three PCIe 2.0 controllers, one supporting x4 operation
+ - One serial ATA (SATA 3.0) controllers
+ - Additional peripheral interfaces
+ - Three high-speed USB 3.0 controllers with integrated PHY
+ - Enhanced secure digital host controller (eSDXC/eMMC)
+ - Quad Serial Peripheral Interface (QSPI) Controller
+ - Serial peripheral interface (SPI) controller
+ - Four I2C controllers
+ - Two DUARTs
+ - Integrated flash controller supporting NAND and NOR flash
+ - QorIQ platform's trust architecture 2.1
+
+LS2080A
+--------
+The LS2080A integrated multicore processor combines eight ARM Cortex-A57
+processor cores with high-performance data path acceleration logic and network
+and peripheral bus interfaces required for networking, telecom/datacom,
+wireless infrastructure, and mil/aerospace applications.
+
+The LS2080A SoC includes the following function and features:
+
+ - Eight 64-bit ARM Cortex-A57 CPUs
+ - 1 MB platform cache with ECC
+ - Two 64-bit DDR4 SDRAM memory controllers with ECC and interleaving support
+ - One secondary 32-bit DDR4 SDRAM memory controller, intended for use by
+ the AIOP
+ - Data path acceleration architecture (DPAA2) incorporating acceleration for
+ the following functions:
+ - Packet parsing, classification, and distribution (WRIOP)
+ - Queue and Hardware buffer management for scheduling, packet sequencing, and
+ congestion management, buffer allocation and de-allocation (QBMan)
+ - Cryptography acceleration (SEC) at up to 10 Gbps
+ - RegEx pattern matching acceleration (PME) at up to 10 Gbps
+ - Decompression/compression acceleration (DCE) at up to 20 Gbps
+ - Accelerated I/O processing (AIOP) at up to 20 Gbps
+ - QDMA engine
+ - 16 SerDes lanes at up to 10.3125 GHz
+ - Ethernet interfaces
+ - Up to eight 10 Gbps Ethernet MACs
+ - Up to eight 1 / 2.5 Gbps Ethernet MACs
+ - High-speed peripheral interfaces
+ - Four PCIe 3.0 controllers, one supporting SR-IOV
+ - Additional peripheral interfaces
+ - Two serial ATA (SATA 3.0) controllers
+ - Two high-speed USB 3.0 controllers with integrated PHY
+ - Enhanced secure digital host controller (eSDXC/eMMC)
+ - Serial peripheral interface (SPI) controller
+ - Quad Serial Peripheral Interface (QSPI) Controller
+ - Four I2C controllers
+ - Two DUARTs
+ - Integrated flash controller (IFC 2.0) supporting NAND and NOR flash
+ - Support for hardware virtualization and partitioning enforcement
+ - QorIQ platform's trust architecture 3.0
+ - Service processor (SP) provides pre-boot initialization and secure-boot
+ capabilities
LS1043A SoC Overview
--------------------
-The LS1043A integrated multicore processor combines four ARM Cortex-A53
-processor cores with datapath acceleration optimized for L2/3 packet
-processing, single pass security offload and robust traffic management
-and quality of service.
-
-The LS1043A SoC includes the following function and features:
- - Four 64-bit ARM Cortex-A53 CPUs
- - 1 MB unified L2 Cache
- - One 32-bit DDR3L/DDR4 SDRAM memory controllers with ECC and interleaving
- support
- - Data Path Acceleration Architecture (DPAA) incorporating acceleration the
- the following functions:
- - Packet parsing, classification, and distribution (FMan)
- - Queue management for scheduling, packet sequencing, and congestion
- management (QMan)
- - Hardware buffer management for buffer allocation and de-allocation (BMan)
- - Cryptography acceleration (SEC)
- - Ethernet interfaces by FMan
- - Up to 1 x XFI supporting 10G interface
- - Up to 1 x QSGMII
- - Up to 4 x SGMII supporting 1000Mbps
- - Up to 2 x SGMII supporting 2500Mbps
- - Up to 2 x RGMII supporting 1000Mbps
- - High-speed peripheral interfaces
- - Three PCIe 2.0 controllers, one supporting x4 operation
- - One serial ATA (SATA 3.0) controllers
- - Additional peripheral interfaces
- - Three high-speed USB 3.0 controllers with integrated PHY
- - Enhanced secure digital host controller (eSDXC/eMMC)
- - Quad Serial Peripheral Interface (QSPI) Controller
- - Serial peripheral interface (SPI) controller
- - Four I2C controllers
- - Two DUARTs
- - Integrated flash controller supporting NAND and NOR flash
- - QorIQ platform's trust architecture 2.1
+Please refer arch/arm/cpu/armv8/fsl-layerscape/doc/README.soc for LS1043A
+SoC overview.
LS1043AQDS board Overview
-----------------------
LS1043A SoC Overview
--------------------
-The LS1043A integrated multicore processor combines four ARM Cortex-A53
-processor cores with datapath acceleration optimized for L2/3 packet
-processing, single pass security offload and robust traffic management
-and quality of service.
-
-The LS1043A SoC includes the following function and features:
- - Four 64-bit ARM Cortex-A53 CPUs
- - 1 MB unified L2 Cache
- - One 32-bit DDR3L/DDR4 SDRAM memory controllers with ECC and interleaving
- support
- - Data Path Acceleration Architecture (DPAA) incorporating acceleration the
- the following functions:
- - Packet parsing, classification, and distribution (FMan)
- - Queue management for scheduling, packet sequencing, and congestion
- management (QMan)
- - Hardware buffer management for buffer allocation and de-allocation (BMan)
- - Cryptography acceleration (SEC)
- - Ethernet interfaces by FMan
- - Up to 1 x XFI supporting 10G interface
- - Up to 1 x QSGMII
- - Up to 4 x SGMII supporting 1000Mbps
- - Up to 2 x SGMII supporting 2500Mbps
- - Up to 2 x RGMII supporting 1000Mbps
- - High-speed peripheral interfaces
- - Three PCIe 2.0 controllers, one supporting x4 operation
- - One serial ATA (SATA 3.0) controllers
- - Additional peripheral interfaces
- - Three high-speed USB 3.0 controllers with integrated PHY
- - Enhanced secure digital host controller (eSDXC/eMMC)
- - Quad Serial Peripheral Interface (QSPI) Controller
- - Serial peripheral interface (SPI) controller
- - Four I2C controllers
- - Two DUARTs
- - Integrated flash controller supporting NAND and NOR flash
- - QorIQ platform's trust architecture 2.1
+Please refer arch/arm/cpu/armv8/fsl-layerscape/doc/README.soc for LS1043A
+SoC overview.
LS1043ARDB board Overview
-----------------------
a complete debugging environment.
LS2080A SoC Overview
-------------------
-The LS2080A integrated multicore processor combines eight ARM Cortex-A57
-processor cores with high-performance data path acceleration logic and network
-and peripheral bus interfaces required for networking, telecom/datacom,
-wireless infrastructure, and mil/aerospace applications.
-
-The LS2080A SoC includes the following function and features:
-
- - Eight 64-bit ARM Cortex-A57 CPUs
- - 1 MB platform cache with ECC
- - Two 64-bit DDR4 SDRAM memory controllers with ECC and interleaving support
- - One secondary 32-bit DDR4 SDRAM memory controller, intended for use by
- the AIOP
- - Data path acceleration architecture (DPAA2) incorporating acceleration for
- the following functions:
- - Packet parsing, classification, and distribution (WRIOP)
- - Queue and Hardware buffer management for scheduling, packet sequencing, and
- congestion management, buffer allocation and de-allocation (QBMan)
- - Cryptography acceleration (SEC) at up to 10 Gbps
- - RegEx pattern matching acceleration (PME) at up to 10 Gbps
- - Decompression/compression acceleration (DCE) at up to 20 Gbps
- - Accelerated I/O processing (AIOP) at up to 20 Gbps
- - QDMA engine
- - 16 SerDes lanes at up to 10.3125 GHz
- - Ethernet interfaces
- - Up to eight 10 Gbps Ethernet MACs
- - Up to eight 1 / 2.5 Gbps Ethernet MACs
- - High-speed peripheral interfaces
- - Four PCIe 3.0 controllers, one supporting SR-IOV
- - Additional peripheral interfaces
- - Two serial ATA (SATA 3.0) controllers
- - Two high-speed USB 3.0 controllers with integrated PHY
- - Enhanced secure digital host controller (eSDXC/eMMC)
- - Serial peripheral interface (SPI) controller
- - Quad Serial Peripheral Interface (QSPI) Controller
- - Four I2C controllers
- - Two DUARTs
- - Integrated flash controller (IFC 2.0) supporting NAND and NOR flash
- - Support for hardware virtualization and partitioning enforcement
- - QorIQ platform's trust architecture 3.0
- - Service processor (SP) provides pre-boot initialization and secure-boot
- capabilities
+--------------------
+Please refer arch/arm/cpu/armv8/fsl-layerscape/doc/README.soc for LS2080A
+SoC overview.
LS2080AQDS board Overview
-----------------------
Layerscape Architecture processor.
LS2080A SoC Overview
-------------------
-The LS2080A integrated multicore processor combines eight ARM Cortex-A57
-processor cores with high-performance data path acceleration logic and network
-and peripheral bus interfaces required for networking, telecom/datacom,
-wireless infrastructure, and mil/aerospace applications.
-
-The LS2080A SoC includes the following function and features:
-
- - Eight 64-bit ARM Cortex-A57 CPUs
- - 1 MB platform cache with ECC
- - Two 64-bit DDR4 SDRAM memory controllers with ECC and interleaving support
- - One secondary 32-bit DDR4 SDRAM memory controller, intended for use by
- the AIOP
- - Data path acceleration architecture (DPAA2) incorporating acceleration for
- the following functions:
- - Packet parsing, classification, and distribution (WRIOP)
- - Queue and Hardware buffer management for scheduling, packet sequencing, and
- congestion management, buffer allocation and de-allocation (QBMan)
- - Cryptography acceleration (SEC) at up to 10 Gbps
- - RegEx pattern matching acceleration (PME) at up to 10 Gbps
- - Decompression/compression acceleration (DCE) at up to 20 Gbps
- - Accelerated I/O processing (AIOP) at up to 20 Gbps
- - QDMA engine
- - 16 SerDes lanes at up to 10.3125 GHz
- - Ethernet interfaces
- - Up to eight 10 Gbps Ethernet MACs
- - Up to eight 1 / 2.5 Gbps Ethernet MACs
- - High-speed peripheral interfaces
- - Four PCIe 3.0 controllers, one supporting SR-IOV
- - Additional peripheral interfaces
- - Two serial ATA (SATA 3.0) controllers
- - Two high-speed USB 3.0 controllers with integrated PHY
- - Enhanced secure digital host controller (eSDXC/eMMC)
- - Serial peripheral interface (SPI) controller
- - Quad Serial Peripheral Interface (QSPI) Controller
- - Four I2C controllers
- - Two DUARTs
- - Integrated flash controller (IFC 2.0) supporting NAND and NOR flash
- - Support for hardware virtualization and partitioning enforcement
- - QorIQ platform's trust architecture 3.0
- - Service processor (SP) provides pre-boot initialization and secure-boot
- capabilities
+--------------------
+Please refer arch/arm/cpu/armv8/fsl-layerscape/doc/README.soc for LS2080A
+SoC overview.
LS2080ARDB board Overview
-----------------------