]> git.sur5r.net Git - openldap/blob - doc/man/man5/slapd-meta.5
458ac74c9ac4fc5512fb362b787dbef8860fc278
[openldap] / doc / man / man5 / slapd-meta.5
1 .TH SLAPD-META 5 "RELEASEDATE" "OpenLDAP LDVERSION"
2 .\" Copyright 1998-2017 The OpenLDAP Foundation, All Rights Reserved.
3 .\" Copying restrictions apply.  See the COPYRIGHT file.
4 .\" Copyright 2001, Pierangelo Masarati, All rights reserved. <ando@sys-net.it>
5 .\" $OpenLDAP$
6 .\"
7 .\" Portions of this document should probably be moved to slapd-ldap(5)
8 .\" and maybe manual pages for librewrite.
9 .\"
10 .SH NAME
11 slapd\-meta \- metadirectory backend to slapd
12 .SH SYNOPSIS
13 ETCDIR/slapd.conf
14 .SH DESCRIPTION
15 The
16 .B meta
17 backend to
18 .BR slapd (8)
19 performs basic LDAP proxying with respect to a set of remote LDAP
20 servers, called "targets".
21 The information contained in these servers can be presented as
22 belonging to a single Directory Information Tree (DIT).
23 .LP
24 A basic knowledge of the functionality of the
25 .BR slapd\-ldap (5)
26 backend is recommended.
27 This backend has been designed as an enhancement of the ldap backend.
28 The two backends share many features (actually they also share
29 portions of code).
30 While the
31 .B ldap
32 backend is intended to proxy operations directed to a single server, the
33 .B meta
34 backend is mainly intended for proxying of multiple servers and possibly
35 naming context masquerading.
36 These features, although useful in many scenarios, may result in
37 excessive overhead for some applications, so its use should be
38 carefully considered.
39 In the examples section, some typical scenarios will be discussed.
40
41 The proxy instance of
42 .BR slapd (8)
43 must contain schema information for the attributes and objectClasses
44 used in filters, request DN and request-related data in general.
45 It should also contain schema information for the data returned
46 by the proxied server.
47 It is the responsibility of the proxy administrator to keep the schema
48 of the proxy lined up with that of the proxied server.
49
50 .LP
51 Note: When looping back to the same instance of \fBslapd\fP(8), 
52 each connection requires a new thread; as a consequence, \fBslapd\fP(8)
53 must be compiled with thread support, and the \fBthreads\fP parameter 
54 may need some tuning; in those cases, unless the multiple target feature
55 is required, one may consider using \fBslapd\-relay\fP(5) instead, 
56 which performs the relayed operation internally and thus reuses 
57 the same connection.
58
59 .SH EXAMPLES
60 There are examples in various places in this document, as well as in the
61 slapd/back\-meta/data/ directory in the OpenLDAP source tree.
62 .SH CONFIGURATION
63 These
64 .B slapd.conf
65 options apply to the META backend database.
66 That is, they must follow a "database meta" line and come before any
67 subsequent "backend" or "database" lines.
68 Other database options are described in the
69 .BR slapd.conf (5)
70 manual page.
71 .LP
72 Note: In early versions of back-ldap and back-meta it was recommended to always set
73 .LP
74 .RS
75 .nf
76 lastmod  off
77 .fi
78 .RE
79 .LP
80 for 
81 .B ldap
82 and
83 .B meta
84 databases.
85 This was required because operational attributes related to entry creation 
86 and modification should not be proxied, as they could be mistakenly written
87 to the target server(s), generating an error.
88 The current implementation automatically sets lastmod to \fBoff\fP, 
89 so its use is redundant and should be omitted.
90
91 .SH SPECIAL CONFIGURATION DIRECTIVES
92 Target configuration starts with the "uri" directive.
93 All the configuration directives that are not specific to targets
94 should be defined first for clarity, including those that are common
95 to all backends.
96 They are:
97
98 .TP
99 .B conn\-ttl <time>
100 This directive causes a cached connection to be dropped an recreated
101 after a given ttl, regardless of being idle or not.
102
103 .TP
104 .B default\-target none
105 This directive forces the backend to reject all those operations
106 that must resolve to a single target in case none or multiple
107 targets are selected.
108 They include: add, delete, modify, modrdn; compare is not included, as
109 well as bind since, as they don't alter entries, in case of multiple
110 matches an attempt is made to perform the operation on any candidate
111 target, with the constraint that at most one must succeed.
112 This directive can also be used when processing targets to mark a
113 specific target as default.
114
115 .TP
116 .B dncache\-ttl {DISABLED|forever|<ttl>}
117 This directive sets the time-to-live of the DN cache.
118 This caches the target that holds a given DN to speed up target
119 selection in case multiple targets would result from an uncached
120 search; forever means cache never expires; disabled means no DN
121 caching; otherwise a valid ( > 0 ) ttl is required, in the format
122 illustrated for the 
123 .B idle\-timeout
124 directive.
125
126 .TP
127 .B onerr {CONTINUE|report|stop}
128 This directive allows one to select the behavior in case an error is returned
129 by one target during a search.
130 The default, \fBcontinue\fP, consists in continuing the operation, 
131 trying to return as much data as possible.
132 If the value is set to \fBstop\fP, the search is terminated as soon 
133 as an error is returned by one target, and the error is immediately 
134 propagated to the client.
135 If the value is set to \fBreport\fP, the search is continued to the end
136 but, in case at least one target returned an error code, the first
137 non-success error code is returned.
138
139 .TP
140 .B norefs <NO|yes>
141 If
142 .BR yes ,
143 do not return search reference responses.
144 By default, they are returned unless request is LDAPv2.
145 If set before any target specification, it affects all targets, unless
146 overridden by any per-target directive.
147
148 .TP
149 .B noundeffilter <NO|yes>
150 If
151 .BR yes ,
152 return success instead of searching if a filter is undefined or contains
153 undefined portions.
154 By default, the search is propagated after replacing undefined portions
155 with
156 .BR (!(objectClass=*)) ,
157 which corresponds to the empty result set.
158 If set before any target specification, it affects all targets, unless
159 overridden by any per-target directive.
160
161 .TP
162 .B protocol\-version {0,2,3}
163 This directive indicates what protocol version must be used to contact
164 the remote server.
165 If set to 0 (the default), the proxy uses the same protocol version 
166 used by the client, otherwise the requested protocol is used.
167 The proxy returns \fIunwillingToPerform\fP if an operation that is 
168 incompatible with the requested protocol is attempted.
169 If set before any target specification, it affects all targets, unless
170 overridden by any per-target directive.
171
172 .TP
173 .B pseudoroot\-bind\-defer {YES|no}
174 This directive, when set to 
175 .BR yes ,
176 causes the authentication to the remote servers with the pseudo-root
177 identity (the identity defined in each
178 .B idassert-bind
179 directive) to be deferred until actually needed by subsequent operations.
180 Otherwise, all binds as the rootdn are propagated to the targets.
181
182 .TP
183 .B quarantine <interval>,<num>[;<interval>,<num>[...]]
184 Turns on quarantine of URIs that returned
185 .IR LDAP_UNAVAILABLE ,
186 so that an attempt to reconnect only occurs at given intervals instead
187 of any time a client requests an operation.
188 The pattern is: retry only after at least
189 .I interval
190 seconds elapsed since last attempt, for exactly
191 .I num
192 times; then use the next pattern.
193 If
194 .I num
195 for the last pattern is "\fB+\fP", it retries forever; otherwise, 
196 no more retries occur.
197 This directive must appear before any target specification;
198 it affects all targets with the same pattern.
199
200 .TP
201 .B rebind\-as\-user {NO|yes}
202 If this option is given, the client's bind credentials are remembered
203 for rebinds, when trying to re-establish a broken connection,
204 or when chasing a referral, if 
205 .B chase\-referrals
206 is set to
207 .IR yes .
208
209 .TP
210 .B session\-tracking\-request {NO|yes}
211 Adds session tracking control for all requests.
212 The client's IP and hostname, and the identity associated to each request,
213 if known, are sent to the remote server for informational purposes.
214 This directive is incompatible with setting \fIprotocol\-version\fP to 2.
215 If set before any target specification, it affects all targets, unless
216 overridden by any per-target directive.
217
218 .TP
219 .B single\-conn {NO|yes}
220 Discards current cached connection when the client rebinds.
221
222 .TP
223 .B use\-temporary\-conn {NO|yes}
224 when set to 
225 .BR yes ,
226 create a temporary connection whenever competing with other threads
227 for a shared one; otherwise, wait until the shared connection is available.
228
229 .SH TARGET SPECIFICATION
230 Target specification starts with a "uri" directive:
231
232 .TP
233 .B uri <protocol>://[<host>]/<naming context> [...]
234 The <protocol> part can be anything
235 .BR ldap_initialize (3)
236 accepts ({ldap|ldaps|ldapi} and variants); the <host> may be
237 omitted, defaulting to whatever is set in
238 .BR ldap.conf (5).
239 The <naming context> part is \fImandatory\fP for the first URI,
240 but it \fImust be omitted\fP for subsequent ones, if any.
241 The naming context part must be within the naming context defined for the backend,
242 e.g.:
243 .LP
244 .RS
245 .nf
246 suffix "\fBdc=foo,dc=com\fP"
247 uri    "ldap://x.foo.com/dc=x,\fBdc=foo,dc=com\fP"
248 .fi
249
250 .RE
251 .RS
252 The <naming context> part doesn't need to be unique across the targets;
253 it may also match one of the values of the "suffix" directive.
254 Multiple URIs may be defined in a single URI statement.
255 The additional URIs must be separate arguments and must not have any
256 <naming context> part.  This causes the underlying library
257 to contact the first server of the list that responds.
258 For example, if \fIl1.foo.com\fP and \fIl2.foo.com\fP are shadows
259 of the same server, the directive
260 .LP
261 .nf
262 suffix "\fBdc=foo,dc=com\fP"
263 uri    "ldap://l1.foo.com/\fBdc=foo,dc=com\fP" "ldap://l2.foo.com/"
264 .fi
265
266 .RE
267 .RS
268 causes \fIl2.foo.com\fP to be contacted whenever \fIl1.foo.com\fP
269 does not respond.
270 In that case, the URI list is internally rearranged, by moving unavailable
271 URIs to the end, so that further connection attempts occur with respect to
272 the last URI that succeeded.
273 .RE
274
275 .TP
276 .B acl\-authcDN "<administrative DN for access control purposes>"
277 DN which is used to query the target server for acl checking,
278 as in the LDAP backend; it is supposed to have read access 
279 on the target server to attributes used on the proxy for acl checking.
280 There is no risk of giving away such values; they are only used to
281 check permissions.
282 .B The acl\-authcDN identity is by no means implicitly used by the proxy 
283 .B when the client connects anonymously.
284
285 .TP
286 .B acl\-passwd <password>
287 Password used with the
288 .B 
289 acl\-authcDN
290 above.
291
292 .TP
293 .B bind\-timeout <microseconds>
294 This directive defines the timeout, in microseconds, used when polling
295 for response after an asynchronous bind connection.  The initial call
296 to ldap_result(3) is performed with a trade-off timeout of 100000 us;
297 if that results in a timeout exceeded, subsequent calls use the value
298 provided with
299 .BR bind\-timeout .
300 The default value is used also for subsequent calls if
301 .B bind\-timeout
302 is not specified.
303 If set before any target specification, it affects all targets, unless
304 overridden by any per-target directive.
305
306 .TP
307 .B chase\-referrals {YES|no}
308 enable/disable automatic referral chasing, which is delegated to the
309 underlying libldap, with rebinding eventually performed if the
310 \fBrebind\-as\-user\fP directive is used.  The default is to chase referrals.
311 If set before any target specification, it affects all targets, unless
312 overridden by any per-target directive.
313
314 .TP
315 .B client\-pr {accept-unsolicited|DISABLE|<size>}
316 This feature allows one to use RFC 2696 Paged Results control when performing
317 search operations with a specific target,
318 irrespective of the client's request.
319 When set to a numeric value, Paged Results control is always
320 used with \fIsize\fP as the page size.
321 When set to \fIaccept-unsolicited\fP, unsolicited Paged Results
322 control responses are accepted and honored
323 for compatibility with broken remote DSAs.
324 The client is not exposed to paged results handling
325 between
326 .BR slapd\-meta (5)
327 and the remote servers.
328 By default (disabled), Paged Results control is not used
329 and responses are not accepted.
330 If set before any target specification, it affects all targets, unless
331 overridden by any per-target directive.
332
333 .TP
334 .B default\-target [<target>]
335 The "default\-target" directive can also be used during target specification.
336 With no arguments it marks the current target as the default.
337 The optional number marks target <target> as the default one, starting
338 from 1.
339 Target <target> must be defined.
340
341 .TP
342 .B filter <pattern>
343 This directive allows specifying a
344 .BR regex (5)
345 pattern to indicate what search filter terms are actually served by a target.
346
347 In a search request, if the search filter matches the \fIpattern\fP
348 the target is considered while fulfilling the request; otherwise
349 the target is ignored. There may be multiple occurrences of
350 the
351 .B filter
352 directive for each target.
353
354 .TP
355 .B idassert\-authzFrom <authz-regexp>
356 if defined, selects what
357 .I local
358 identities are authorized to exploit the identity assertion feature.
359 The string
360 .B <authz-regexp>
361 follows the rules defined for the
362 .I authzFrom
363 attribute.
364 See 
365 .BR slapd.conf (5),
366 section related to
367 .BR authz\-policy ,
368 for details on the syntax of this field.
369
370 .HP
371 .hy 0
372 .B idassert\-bind
373 .B bindmethod=none|simple|sasl [binddn=<simple DN>] [credentials=<simple password>]
374 .B [saslmech=<SASL mech>] [secprops=<properties>] [realm=<realm>]
375 .B [authcId=<authentication ID>] [authzId=<authorization ID>]
376 .B [authz={native|proxyauthz}] [mode=<mode>] [flags=<flags>]
377 .B [starttls=no|yes|critical]
378 .B [tls_cert=<file>]
379 .B [tls_key=<file>]
380 .B [tls_cacert=<file>]
381 .B [tls_cacertdir=<path>]
382 .B [tls_reqcert=never|allow|try|demand]
383 .B [tls_cipher_suite=<ciphers>]
384 .B [tls_protocol_min=<major>[.<minor>]]
385 .B [tls_crlcheck=none|peer|all]
386 .RS
387 Allows one to define the parameters of the authentication method that is
388 internally used by the proxy to authorize connections that are 
389 authenticated by other databases.
390 The identity defined by this directive, according to the properties
391 associated to the authentication method, is supposed to have auth access 
392 on the target server to attributes used on the proxy for authentication
393 and authorization, and to be allowed to authorize the users.
394 This requires to have
395 .B proxyAuthz
396 privileges on a wide set of DNs, e.g.
397 .BR authzTo=dn.subtree:"" ,
398 and the remote server to have
399 .B authz\-policy
400 set to
401 .B to
402 or
403 .BR both .
404 See
405 .BR slapd.conf (5)
406 for details on these statements and for remarks and drawbacks about
407 their usage.
408 The supported bindmethods are
409
410 \fBnone|simple|sasl\fP
411
412 where
413 .B none
414 is the default, i.e. no \fIidentity assertion\fP is performed.
415
416 The authz parameter is used to instruct the SASL bind to exploit 
417 .B native 
418 SASL authorization, if available; since connections are cached,
419 this should only be used when authorizing with a fixed identity
420 (e.g. by means of the 
421 .B authzDN
422 or
423 .B authzID
424 parameters).
425 Otherwise, the default
426 .B proxyauthz
427 is used, i.e. the proxyAuthz control (Proxied Authorization, RFC 4370)
428 is added to all operations.
429
430 The supported modes are:
431
432 \fB<mode> := {legacy|anonymous|none|self}\fP
433
434 If 
435 .B <mode>
436 is not present, and 
437 .B authzId
438 is given, the proxy always authorizes that identity.
439 .B <authorization ID>
440 can be 
441
442 \fBu:<user>\fP
443
444 \fB[dn:]<DN>\fP
445
446 The former is supposed to be expanded by the remote server according 
447 to the authz rules; see
448 .BR slapd.conf (5)
449 for details.
450 In the latter case, whether or not the 
451 .B dn:
452 prefix is present, the string must pass DN validation and normalization.
453
454 The default mode is 
455 .BR legacy ,
456 which implies that the proxy will either perform a simple bind as the
457 .I authcDN
458 or a SASL bind as the
459 .I authcID
460 and assert the client's identity when it is not anonymous.
461 Direct binds are always proxied.
462 The other modes imply that the proxy will always either perform a simple bind 
463 as the
464 .IR authcDN
465 or a SASL bind as the
466 .IR authcID ,
467 unless restricted by
468 .BR idassert\-authzFrom
469 rules (see below), in which case the operation will fail;
470 eventually, it will assert some other identity according to
471 .BR <mode> .
472 Other identity assertion modes are
473 .BR anonymous
474 and
475 .BR self ,
476 which respectively mean that the 
477 .I empty 
478 or the 
479 .IR client 's 
480 identity
481 will be asserted;
482 .BR none ,
483 which means that no proxyAuthz control will be used, so the
484 .I authcDN
485 or the
486 .I authcID
487 identity will be asserted.
488 For all modes that require the use of the
489 .I proxyAuthz 
490 control, on the remote server the proxy identity must have appropriate 
491 .I authzTo
492 permissions, or the asserted identities must have appropriate
493 .I authzFrom 
494 permissions.  Note, however, that the ID assertion feature is mostly 
495 useful when the asserted identities do not exist on the remote server.
496 When
497 .I bindmethod
498 is
499 .BR SASL ,
500 the 
501 .I authcDN
502 must be specified in addition to the
503 .IR authcID ,
504 although it is not used within the authentication process.
505
506 Flags can be
507
508 \fBoverride,[non\-]prescriptive,proxy\-authz\-[non\-]critical\fP
509
510 When the 
511 .B override
512 flag is used, identity assertion takes place even when the database
513 is authorizing for the identity of the client, i.e. after binding
514 with the provided identity, and thus authenticating it, the proxy
515 performs the identity assertion using the configured identity and
516 authentication method.
517
518 When the
519 .B prescriptive
520 flag is used (the default), operations fail with
521 \fIinappropriateAuthentication\fP
522 for those identities whose assertion is not allowed by the
523 .B idassert\-authzFrom
524 patterns.
525 If the 
526 .B non\-prescriptive
527 flag is used, operations are performed anonymously for those identities 
528 whose assertion is not allowed by the
529 .B idassert\-authzFrom
530 patterns.
531
532 When the
533 .B proxy\-authz\-non\-critical
534 flag is used (the default), the proxyAuthz control is not marked as critical,
535 in violation of RFC 4370.  Use of
536 .B proxy\-authz\-critical
537 is recommended.
538
539 The TLS settings default to the same as the main slapd TLS settings,
540 except for
541 .B tls_reqcert
542 which defaults to "demand".
543
544 The identity associated to this directive is also used for privileged
545 operations whenever \fBidassert\-bind\fP is defined and \fBacl\-bind\fP
546 is not.  See \fBacl\-bind\fP for details.
547 .RE
548
549 .TP
550 .B idle\-timeout <time>
551 This directive causes a cached connection to be dropped an recreated
552 after it has been idle for the specified time.
553 The value can be specified as
554
555 [<d>d][<h>h][<m>m][<s>[s]]
556
557 where <d>, <h>, <m> and <s> are respectively treated as days, hours, 
558 minutes and seconds.
559 If set before any target specification, it affects all targets, unless
560 overridden by any per-target directive.
561
562 .TP
563 .B keepalive  <idle>:<probes>:<interval>
564 The
565 .B keepalive
566 parameter sets the values of \fIidle\fP, \fIprobes\fP, and \fIinterval\fP
567 used to check whether a socket is alive;
568 .I idle
569 is the number of seconds a connection needs to remain idle before TCP
570 starts sending keepalive probes;
571 .I probes
572 is the maximum number of keepalive probes TCP should send before dropping
573 the connection;
574 .I interval
575 is interval in seconds between individual keepalive probes.
576 Only some systems support the customization of these values;
577 the
578 .B keepalive
579 parameter is ignored otherwise, and system-wide settings are used.
580
581 .TP
582 .B map "{attribute|objectclass} [<local name>|*] {<foreign name>|*}"
583 This maps object classes and attributes as in the LDAP backend.
584 See
585 .BR slapd\-ldap (5).
586
587 .TP
588 .B network\-timeout <time>
589 Sets the network timeout value after which
590 .BR poll (2)/ select (2) 
591 following a 
592 .BR connect (2) 
593 returns in case of no activity.
594 The value is in seconds, and it can be specified as for
595 .BR idle\-timeout .
596 If set before any target specification, it affects all targets, unless
597 overridden by any per-target directive.
598
599 .TP
600 .B nretries {forever|never|<nretries>}
601 This directive defines how many times a bind should be retried
602 in case of temporary failure in contacting a target.  If defined
603 before any target specification, it applies to all targets (by default,
604 .BR 3
605 times);
606 the global value can be overridden by redefinitions inside each target
607 specification.
608
609 .TP
610 .B rewrite* ...
611 The rewrite options are described in the "REWRITING" section.
612
613 .TP
614 .B subtree\-{exclude|include} "<rule>"
615 This directive allows one to indicate what subtrees are actually served
616 by a target.
617 The syntax of the supported rules is
618
619 \fB<rule>: [dn[.<style>]:]<pattern>\fP
620
621 \fB<style>: subtree|children|regex\fP
622
623 When \fB<style>\fP is either \fBsubtree\fP or \fBchildren\fP
624 the \fB<pattern>\fP is a DN that must be within the naming context
625 served by the target.
626 When \fB<style>\fP is \fBregex\fP the \fB<pattern>\fP is a
627 .BR regex (5)
628 pattern.
629 If the \fBdn.<style>:\fP prefix is omitted, \fBdn.subtree:\fP
630 is implicitly assumed for backward compatibility.
631
632 In the
633 .B subtree\-exclude
634 form if the \fIrequest DN\fP matches at least one rule,
635 the target is not considered while fulfilling the request;
636 otherwise, the target is considered based on the value of the \fIrequest DN\fP.
637 When the request is a search, also the \fIscope\fP is considered.
638
639 In the
640 .B subtree\-include
641 form if the \fIrequest DN\fP matches at least one rule,
642 the target is considered while fulfilling the request;
643 otherwise the target is ignored.
644
645 .LP
646 .RS
647 .nf
648     |  match  | exclude |
649     +---------+---------+-------------------+
650     |    T    |    T    | not candidate     |
651     |    F    |    T    | continue checking |
652     +---------+---------+-------------------+
653     |    T    |    F    | candidate         |
654     |    F    |    F    | not candidate     |
655     +---------+---------+-------------------+
656 .fi
657
658 .RE
659 .RS
660 There may be multiple occurrences of the
661 .B subtree\-exclude
662 or
663 .B subtree\-include
664 directive for each of the targets, but they are mutually exclusive.
665 .RE
666
667 .TP
668 .B suffixmassage "<virtual naming context>" "<real naming context>"
669 All the directives starting with "rewrite" refer to the rewrite engine
670 that has been added to slapd.
671 The "suffixmassage" directive was introduced in the LDAP backend to
672 allow suffix massaging while proxying.
673 It has been obsoleted by the rewriting tools.
674 However, both for backward compatibility and for ease of configuration
675 when simple suffix massage is required, it has been preserved.
676 It wraps the basic rewriting instructions that perform suffix
677 massaging.  See the "REWRITING" section for a detailed list 
678 of the rewrite rules it implies.
679
680 .TP
681 .B t\-f\-support {NO|yes|discover}
682 enable if the remote server supports absolute filters
683 (see \fIRFC 4526\fP for details).
684 If set to
685 .BR discover ,
686 support is detected by reading the remote server's root DSE.
687 If set before any target specification, it affects all targets, unless
688 overridden by any per-target directive.
689
690 .TP
691 .B timeout [<op>=]<val> [...]
692 This directive allows one to set per-operation timeouts.
693 Operations can be
694
695 \fB<op> ::= bind, add, delete, modrdn, modify, compare, search\fP
696
697 The overall duration of the \fBsearch\fP operation is controlled either
698 by the \fBtimelimit\fP parameter or by server-side enforced
699 time limits (see \fBtimelimit\fP and \fBlimits\fP in
700 .BR slapd.conf (5)
701 for details).
702 This \fBtimeout\fP parameter controls how long the target can be 
703 irresponsive before the operation is aborted.
704 Timeout is meaningless for the remaining operations,
705 \fBunbind\fP and \fBabandon\fP, which do not imply any response,
706 while it is not yet implemented in currently supported \fBextended\fP 
707 operations.
708 If no operation is specified, the timeout \fBval\fP affects all
709 supported operations.
710 If specified before any target definition, it affects all targets
711 unless overridden by per-target directives.
712
713 Note: if the timeout is exceeded, the operation is cancelled
714 (according to the \fBcancel\fP directive);
715 the protocol does not provide any means to rollback operations,
716 so the client will not be notified about the result of the operation,
717 which may eventually succeeded or not.
718 In case the timeout is exceeded during a bind operation, the connection
719 is destroyed, according to RFC4511.
720
721 .TP
722 .B tls {[try\-]start|[try\-]propagate}
723 execute the StartTLS extended operation when the connection is initialized;
724 only works if the URI directive protocol scheme is not \fBldaps://\fP.
725 \fBpropagate\fP issues the StartTLS operation only if the original
726 connection did.
727 The \fBtry\-\fP prefix instructs the proxy to continue operations
728 if the StartTLS operation failed; its use is highly deprecated.
729 If set before any target specification, it affects all targets, unless
730 overridden by any per-target directive.
731
732 .SH SCENARIOS
733 A powerful (and in some sense dangerous) rewrite engine has been added
734 to both the LDAP and Meta backends.
735 While the former can gain limited beneficial effects from rewriting
736 stuff, the latter can become an amazingly powerful tool.
737 .LP
738 Consider a couple of scenarios first.
739 .LP
740 1) Two directory servers share two levels of naming context;
741 say "dc=a,dc=foo,dc=com" and "dc=b,dc=foo,dc=com".
742 Then, an unambiguous Meta database can be configured as:
743 .LP
744 .RS
745 .nf
746 database meta
747 suffix   "\fBdc=foo,dc=com\fP"
748 uri      "ldap://a.foo.com/dc=a,\fBdc=foo,dc=com\fP"
749 uri      "ldap://b.foo.com/dc=b,\fBdc=foo,dc=com\fP"
750 .fi
751 .RE
752 .LP
753 Operations directed to a specific target can be easily resolved
754 because there are no ambiguities.
755 The only operation that may resolve to multiple targets is a search
756 with base "dc=foo,dc=com" and scope at least "one", which results in
757 spawning two searches to the targets.
758 .LP
759 2a) Two directory servers don't share any portion of naming context,
760 but they'd present as a single DIT
761 [Caveat: uniqueness of (massaged) entries among the two servers is
762 assumed; integrity checks risk to incur in excessive overhead and have
763 not been implemented].
764 Say we have "dc=bar,dc=org" and "o=Foo,c=US",
765 and we'd like them to appear as branches of "dc=foo,dc=com", say
766 "dc=a,dc=foo,dc=com" and "dc=b,dc=foo,dc=com".
767 Then we need to configure our Meta backend as:
768 .LP
769 .RS
770 .nf
771 database      meta
772 suffix        "dc=foo,dc=com"
773
774 uri           "ldap://a.bar.com/\fBdc=a,dc=foo,dc=com\fP"
775 suffixmassage "\fBdc=a,dc=foo,dc=com\fP" "dc=bar,dc=org"
776
777 uri           "ldap://b.foo.com/\fBdc=b,dc=foo,dc=com\fP"
778 suffixmassage "\fBdc=b,dc=foo,dc=com\fP" "o=Foo,c=US"
779 .fi
780 .RE
781 .LP
782 Again, operations can be resolved without ambiguity, although
783 some rewriting is required.
784 Notice that the virtual naming context of each target is a branch of
785 the database's naming context; it is rewritten back and forth when
786 operations are performed towards the target servers.
787 What "back and forth" means will be clarified later.
788 .LP
789 When a search with base "dc=foo,dc=com" is attempted, if the 
790 scope is "base" it fails with "no such object"; in fact, the
791 common root of the two targets (prior to massaging) does not
792 exist.
793 If the scope is "one", both targets are contacted with the base
794 replaced by each target's base; the scope is derated to "base".
795 In general, a scope "one" search is honored, and the scope is derated,
796 only when the incoming base is at most one level lower of a target's
797 naming context (prior to massaging).
798 .LP
799 Finally, if the scope is "sub" the incoming base is replaced
800 by each target's unmassaged naming context, and the scope
801 is not altered.
802 .LP
803 2b) Consider the above reported scenario with the two servers
804 sharing the same naming context:
805 .LP
806 .RS
807 .nf
808 database      meta
809 suffix        "\fBdc=foo,dc=com\fP"
810
811 uri           "ldap://a.bar.com/\fBdc=foo,dc=com\fP"
812 suffixmassage "\fBdc=foo,dc=com\fP" "dc=bar,dc=org"
813
814 uri           "ldap://b.foo.com/\fBdc=foo,dc=com\fP"
815 suffixmassage "\fBdc=foo,dc=com\fP" "o=Foo,c=US"
816 .fi
817 .RE
818 .LP
819 All the previous considerations hold, except that now there is
820 no way to unambiguously resolve a DN.
821 In this case, all the operations that require an unambiguous target
822 selection will fail unless the DN is already cached or a default
823 target has been set.
824 Practical configurations may result as a combination of all the
825 above scenarios.
826 .SH ACLs
827 Note on ACLs: at present you may add whatever ACL rule you desire
828 to the Meta (and LDAP) backends.
829 However, the meaning of an ACL on a proxy may require some
830 considerations.
831 Two philosophies may be considered:
832 .LP
833 a) the remote server dictates the permissions; the proxy simply passes
834 back what it gets from the remote server.
835 .LP
836 b) the remote server unveils "everything"; the proxy is responsible
837 for protecting data from unauthorized access.
838 .LP
839 Of course the latter sounds unreasonable, but it is not.
840 It is possible to imagine scenarios in which a remote host discloses
841 data that can be considered "public" inside an intranet, and a proxy
842 that connects it to the internet may impose additional constraints.
843 To this purpose, the proxy should be able to comply with all the ACL
844 matching criteria that the server supports.
845 This has been achieved with regard to all the criteria supported by
846 slapd except a special subtle case (please file an ITS if you can
847 find other exceptions: <http://www.openldap.org/its/>).
848 The rule
849 .LP
850 .RS
851 .nf
852 access to dn="<dn>" attrs=<attr>
853        by dnattr=<dnattr> read
854        by * none
855 .fi
856 .RE
857 .LP
858 cannot be matched iff the attribute that is being requested, <attr>,
859 is NOT <dnattr>, and the attribute that determines membership,
860 <dnattr>, has not been requested (e.g. in a search)
861 .LP
862 In fact this ACL is resolved by slapd using the portion of entry it
863 retrieved from the remote server without requiring any further
864 intervention of the backend, so, if the <dnattr> attribute has not
865 been fetched, the match cannot be assessed because the attribute is
866 not present, not because no value matches the requirement!
867 .LP
868 Note on ACLs and attribute mapping: ACLs are applied to the mapped
869 attributes; for instance, if the attribute locally known as "foo" is
870 mapped to "bar" on a remote server, then local ACLs apply to attribute
871 "foo" and are totally unaware of its remote name.
872 The remote server will check permissions for "bar", and the local
873 server will possibly enforce additional restrictions to "foo".
874 .\"
875 .\" If this section is moved, also update the reference in
876 .\" libraries/librewrite/RATIONALE.
877 .\"
878 .SH REWRITING
879 A string is rewritten according to a set of rules, called a `rewrite
880 context'.
881 The rules are based on POSIX (''extended'') regular expressions (regex)
882 with substring matching; basic variable substitution and map resolution 
883 of substrings is allowed by specific mechanisms detailed in the following.
884 The behavior of pattern matching/substitution can be altered by a set
885 of flags.
886 .LP
887 The underlying concept is to build a lightweight rewrite module
888 for the slapd server (initially dedicated to the LDAP backend).
889 .SH Passes
890 An incoming string is matched against a set of rules.
891 Rules are made of a regex match pattern, a substitution pattern
892 and a set of actions, described by a set of flags.
893 In case of match a string rewriting is performed according to the
894 substitution pattern that allows one to refer to substrings matched in the
895 incoming string.
896 The actions, if any, are finally performed.
897 The substitution pattern allows map resolution of substrings.
898 A map is a generic object that maps a substitution pattern to a value.
899 The flags are divided in "Pattern matching Flags" and "Action Flags";
900 the former alter the regex match pattern behavior while the latter
901 alter the action that is taken after substitution.
902 .SH "Pattern Matching Flags"
903 .TP
904 .B `C'
905 honors case in matching (default is case insensitive)
906 .TP
907 .B `R'
908 use POSIX ''basic'' regular expressions (default is ''extended'')
909 .TP
910 .B `M{n}'
911 allow no more than
912 .B n
913 recursive passes for a specific rule; does not alter the max total count
914 of passes, so it can only enforce a stricter limit for a specific rule.
915 .SH "Action Flags"
916 .TP
917 .B `:'
918 apply the rule once only (default is recursive)
919 .TP
920 .B `@'
921 stop applying rules in case of match; the current rule is still applied 
922 recursively; combine with `:' to apply the current rule only once 
923 and then stop.
924 .TP
925 .B `#'
926 stop current operation if the rule matches, and issue an `unwilling to
927 perform' error.
928 .TP
929 .B `G{n}'
930 jump
931 .B n
932 rules back and forth (watch for loops!).
933 Note that `G{1}' is implicit in every rule.
934 .TP
935 .B `I'
936 ignores errors in rule; this means, in case of error, e.g. issued by a
937 map, the error is treated as a missed match.
938 The `unwilling to perform' is not overridden.
939 .TP
940 .B `U{n}'
941 uses
942 .B
943 n
944 as return code if the rule matches; the flag does not alter the recursive
945 behavior of the rule, so, to have it performed only once, it must be used 
946 in combination with `:', e.g.
947 .B `:U{16}'
948 returns the value `16' after exactly one execution of the rule, if the
949 pattern matches.
950 As a consequence, its behavior is equivalent to `@', with the return
951 code set to
952 .BR n ;
953 or, in other words, `@' is equivalent to `U{0}'.
954 By convention, the freely available codes are above 16 included;
955 the others are reserved.
956 .LP
957 The ordering of the flags can be significant.
958 For instance: `IG{2}' means ignore errors and jump two lines ahead
959 both in case of match and in case of error, while `G{2}I' means ignore
960 errors, but jump two lines ahead only in case of match.
961 .LP
962 More flags (mainly Action Flags) will be added as needed.
963 .SH "Pattern matching:"
964 See
965 .BR regex (7)
966 and/or
967 .BR re_format (7).
968 .SH "Substitution Pattern Syntax:"
969 Everything starting with `%' requires substitution;
970 .LP
971 the only obvious exception is `%%', which is left as is;
972 .LP
973 the basic substitution is `%d', where `d' is a digit;
974 0 means the whole string, while 1-9 is a submatch;
975 .LP
976 a `%' followed by a `{' invokes an advanced substitution.
977 The pattern is:
978 .LP
979 .RS
980 `%' `{' [ <op> ] <name> `(' <substitution> `)' `}'
981 .RE
982 .LP
983 where <name> must be a legal name for the map, i.e.
984 .LP
985 .RS
986 .nf
987 <name> ::= [a-z][a-z0-9]* (case insensitive)
988 <op> ::= `>' `|' `&' `&&' `*' `**' `$'
989 .fi
990 .RE
991 .LP
992 and <substitution> must be a legal substitution
993 pattern, with no limits on the nesting level.
994 .LP
995 The operators are:
996 .TP
997 .B >
998 sub context invocation; <name> must be a legal, already defined
999 rewrite context name
1000 .TP
1001 .B |
1002 external command invocation; <name> must refer to a legal, already
1003 defined command name (NOT IMPL.)
1004 .TP
1005 .B &
1006 variable assignment; <name> defines a variable in the running
1007 operation structure which can be dereferenced later; operator
1008 .B &
1009 assigns a variable in the rewrite context scope; operator
1010 .B &&
1011 assigns a variable that scopes the entire session, e.g. its value
1012 can be dereferenced later by other rewrite contexts
1013 .TP
1014 .B *
1015 variable dereferencing; <name> must refer to a variable that is
1016 defined and assigned for the running operation; operator
1017 .B *
1018 dereferences a variable scoping the rewrite context; operator
1019 .B **
1020 dereferences a variable scoping the whole session, e.g. the value
1021 is passed across rewrite contexts
1022 .TP
1023 .B $
1024 parameter dereferencing; <name> must refer to an existing parameter;
1025 the idea is to make some run-time parameters set by the system
1026 available to the rewrite engine, as the client host name, the bind DN
1027 if any, constant parameters initialized at config time, and so on;
1028 no parameter is currently set by either 
1029 .B back\-ldap
1030 or
1031 .BR back\-meta ,
1032 but constant parameters can be defined in the configuration file
1033 by using the
1034 .B rewriteParam
1035 directive.
1036 .LP
1037 Substitution escaping has been delegated to the `%' symbol, 
1038 which is used instead of `\e' in string substitution patterns
1039 because `\e' is already escaped by slapd's low level parsing routines;
1040 as a consequence, regex escaping requires two `\e' symbols,
1041 e.g. `\fB.*\e.foo\e.bar\fP' must be written as `\fB.*\e\e.foo\e\e.bar\fP'.
1042 .\"
1043 .\" The symbol can be altered at will by redefining the related macro in
1044 .\" "rewrite-int.h".
1045 .\"
1046 .SH "Rewrite context:"
1047 A rewrite context is a set of rules which are applied in sequence.
1048 The basic idea is to have an application initialize a rewrite
1049 engine (think of Apache's mod_rewrite ...) with a set of rewrite
1050 contexts; when string rewriting is required, one invokes the
1051 appropriate rewrite context with the input string and obtains the
1052 newly rewritten one if no errors occur.
1053 .LP
1054 Each basic server operation is associated to a rewrite context;
1055 they are divided in two main groups: client \-> server and
1056 server \-> client rewriting.
1057 .LP
1058 client \-> server:
1059 .LP
1060 .RS
1061 .nf
1062 (default)            if defined and no specific context 
1063                      is available
1064 bindDN               bind
1065 searchBase           search
1066 searchFilter         search
1067 searchFilterAttrDN   search
1068 compareDN            compare
1069 compareAttrDN        compare AVA
1070 addDN                add
1071 addAttrDN            add AVA
1072 modifyDN             modify
1073 modifyAttrDN         modify AVA
1074 modrDN               modrdn
1075 newSuperiorDN        modrdn
1076 deleteDN             delete
1077 exopPasswdDN         password modify extended operation DN if proxy
1078 .fi
1079 .RE
1080 .LP
1081 server \-> client:
1082 .LP
1083 .RS
1084 .nf
1085 searchResult         search (only if defined; no default;
1086                      acts on DN and DN-syntax attributes 
1087                      of search results)
1088 searchAttrDN         search AVA
1089 matchedDN            all ops (only if applicable)
1090 .fi
1091 .RE
1092 .LP
1093 .SH "Basic configuration syntax"
1094 .TP
1095 .B rewriteEngine { on | off }
1096 If `on', the requested rewriting is performed; if `off', no
1097 rewriting takes place (an easy way to stop rewriting without
1098 altering too much the configuration file).
1099 .TP
1100 .B rewriteContext <context name> "[ alias <aliased context name> ]"
1101 <Context name> is the name that identifies the context, i.e. the name
1102 used by the application to refer to the set of rules it contains.
1103 It is used also to reference sub contexts in string rewriting.
1104 A context may alias another one.
1105 In this case the alias context contains no rule, and any reference to
1106 it will result in accessing the aliased one.
1107 .TP
1108 .B rewriteRule "<regex match pattern>" "<substitution pattern>" "[ <flags> ]"
1109 Determines how a string can be rewritten if a pattern is matched.
1110 Examples are reported below.
1111 .SH "Additional configuration syntax:"
1112 .TP
1113 .B rewriteMap "<map type>" "<map name>" "[ <map attrs> ]"
1114 Allows one to define a map that transforms substring rewriting into
1115 something else.
1116 The map is referenced inside the substitution pattern of a rule.
1117 .TP
1118 .B rewriteParam <param name> <param value>
1119 Sets a value with global scope, that can be dereferenced by the
1120 command `%{$paramName}'.
1121 .TP
1122 .B rewriteMaxPasses <number of passes> [<number of passes per rule>]
1123 Sets the maximum number of total rewriting passes that can be
1124 performed in a single rewrite operation (to avoid loops).
1125 A safe default is set to 100; note that reaching this limit is still
1126 treated as a success; recursive invocation of rules is simply 
1127 interrupted.
1128 The count applies to the rewriting operation as a whole, not 
1129 to any single rule; an optional per-rule limit can be set.
1130 This limit is overridden by setting specific per-rule limits
1131 with the `M{n}' flag.
1132 .SH "Configuration examples:"
1133 .nf
1134 # set to `off' to disable rewriting
1135 rewriteEngine on
1136
1137 # the rules the "suffixmassage" directive implies
1138 rewriteEngine on
1139 # all dataflow from client to server referring to DNs
1140 rewriteContext default
1141 rewriteRule "(.*)<virtualnamingcontext>$" "%1<realnamingcontext>" ":"
1142 # empty filter rule
1143 rewriteContext searchFilter
1144 # all dataflow from server to client
1145 rewriteContext searchResult
1146 rewriteRule "(.*)<realnamingcontext>$" "%1<virtualnamingcontext>" ":"
1147 rewriteContext searchAttrDN alias searchResult
1148 rewriteContext matchedDN alias searchResult
1149
1150 # Everything defined here goes into the `default' context.
1151 # This rule changes the naming context of anything sent
1152 # to `dc=home,dc=net' to `dc=OpenLDAP, dc=org'
1153
1154 rewriteRule "(.*)dc=home,[ ]?dc=net"
1155             "%1dc=OpenLDAP, dc=org"  ":"
1156
1157 # since a pretty/normalized DN does not include spaces
1158 # after rdn separators, e.g. `,', this rule suffices:
1159
1160 rewriteRule "(.*)dc=home,dc=net"
1161             "%1dc=OpenLDAP,dc=org"  ":"
1162
1163 # Start a new context (ends input of the previous one).
1164 # This rule adds blanks between DN parts if not present.
1165 rewriteContext  addBlanks
1166 rewriteRule     "(.*),([^ ].*)" "%1, %2"
1167
1168 # This one eats blanks
1169 rewriteContext  eatBlanks
1170 rewriteRule     "(.*),[ ](.*)" "%1,%2"
1171
1172 # Here control goes back to the default rewrite
1173 # context; rules are appended to the existing ones.
1174 # anything that gets here is piped into rule `addBlanks'
1175 rewriteContext  default
1176 rewriteRule     ".*" "%{>addBlanks(%0)}" ":"
1177
1178 .\" # Anything with `uid=username' is looked up in
1179 .\" # /etc/passwd for gecos (I know it's nearly useless,
1180 .\" # but it is there just as a guideline to implementing
1181 .\" # custom maps).
1182 .\" # Note the `I' flag that leaves `uid=username' in place 
1183 .\" # if `username' does not have a valid account, and the
1184 .\" # `:' that forces the rule to be processed exactly once.
1185 .\" rewriteContext  uid2Gecos
1186 .\" rewriteRule     "(.*)uid=([a-z0-9]+),(.+)"
1187 .\"                 "%1cn=%2{xpasswd},%3"      "I:"
1188 .\" 
1189 .\" # Finally, in a bind, if one uses a `uid=username' DN,
1190 .\" # it is rewritten in `cn=name surname' if possible.
1191 .\" rewriteContext  bindDN
1192 .\" rewriteRule     ".*" "%{>addBlanks(%{>uid2Gecos(%0)})}" ":"
1193 .\" 
1194 # Rewrite the search base according to `default' rules.
1195 rewriteContext  searchBase alias default
1196
1197 # Search results with OpenLDAP DN are rewritten back with
1198 # `dc=home,dc=net' naming context, with spaces eaten.
1199 rewriteContext  searchResult
1200 rewriteRule     "(.*[^ ]?)[ ]?dc=OpenLDAP,[ ]?dc=org"
1201                 "%{>eatBlanks(%1)}dc=home,dc=net"    ":"
1202
1203 # Bind with email instead of full DN: we first need
1204 # an ldap map that turns attributes into a DN (the
1205 # argument used when invoking the map is appended to 
1206 # the URI and acts as the filter portion)
1207 rewriteMap ldap attr2dn "ldap://host/dc=my,dc=org?dn?sub"
1208
1209 # Then we need to detect DN made up of a single email,
1210 # e.g. `mail=someone@example.com'; note that the rule
1211 # in case of match stops rewriting; in case of error,
1212 # it is ignored.  In case we are mapping virtual
1213 # to real naming contexts, we also need to rewrite
1214 # regular DNs, because the definition of a bindDn
1215 # rewrite context overrides the default definition.
1216 rewriteContext bindDN
1217 rewriteRule "^mail=[^,]+@[^,]+$" "%{attr2dn(%0)}" ":@I"
1218
1219 # This is a rather sophisticated example. It massages a
1220 # search filter in case who performs the search has
1221 # administrative privileges.  First we need to keep
1222 # track of the bind DN of the incoming request, which is
1223 # stored in a variable called `binddn' with session scope,
1224 # and left in place to allow regular binding:
1225 rewriteContext  bindDN
1226 rewriteRule     ".+" "%{&&binddn(%0)}%0" ":"
1227
1228 # A search filter containing `uid=' is rewritten only
1229 # if an appropriate DN is bound.
1230 # To do this, in the first rule the bound DN is
1231 # dereferenced, while the filter is decomposed in a
1232 # prefix, in the value of the `uid=<arg>' AVA, and 
1233 # in a suffix. A tag `<>' is appended to the DN. 
1234 # If the DN refers to an entry in the `ou=admin' subtree, 
1235 # the filter is rewritten OR-ing the `uid=<arg>' with
1236 # `cn=<arg>'; otherwise it is left as is. This could be
1237 # useful, for instance, to allow apache's auth_ldap-1.4
1238 # module to authenticate users with both `uid' and
1239 # `cn', but only if the request comes from a possible
1240 # `cn=Web auth,ou=admin,dc=home,dc=net' user.
1241 rewriteContext searchFilter
1242 rewriteRule "(.*\e\e()uid=([a-z0-9_]+)(\e\e).*)"
1243   "%{**binddn}<>%{&prefix(%1)}%{&arg(%2)}%{&suffix(%3)}"
1244   ":I"
1245 rewriteRule "[^,]+,ou=admin,dc=home,dc=net"
1246   "%{*prefix}|(uid=%{*arg})(cn=%{*arg})%{*suffix}" ":@I"
1247 rewriteRule ".*<>" "%{*prefix}uid=%{*arg}%{*suffix}" ":"
1248
1249 # This example shows how to strip unwanted DN-valued
1250 # attribute values from a search result; the first rule
1251 # matches DN values below "ou=People,dc=example,dc=com";
1252 # in case of match the rewriting exits successfully.
1253 # The second rule matches everything else and causes
1254 # the value to be rejected.
1255 rewriteContext searchResult
1256 rewriteRule ".*,ou=People,dc=example,dc=com" "%0" ":@"
1257 rewriteRule ".*" "" "#"
1258 .fi
1259 .SH "LDAP Proxy resolution (a possible evolution of slapd\-ldap(5)):"
1260 In case the rewritten DN is an LDAP URI, the operation is initiated
1261 towards the host[:port] indicated in the uri, if it does not refer
1262 to the local server.
1263 E.g.:
1264 .LP
1265 .nf
1266   rewriteRule '^cn=root,.*' '%0'                     'G{3}'
1267   rewriteRule '^cn=[a-l].*' 'ldap://ldap1.my.org/%0' ':@'
1268   rewriteRule '^cn=[m-z].*' 'ldap://ldap2.my.org/%0' ':@'
1269   rewriteRule '.*'          'ldap://ldap3.my.org/%0' ':@'
1270 .fi
1271 .LP
1272 (Rule 1 is simply there to illustrate the `G{n}' action; it could have
1273 been written:
1274 .LP
1275 .nf
1276   rewriteRule '^cn=root,.*' 'ldap://ldap3.my.org/%0' ':@'
1277 .fi
1278 .LP
1279 with the advantage of saving one rewrite pass ...)
1280
1281 .SH ACCESS CONTROL
1282 The
1283 .B meta
1284 backend does not honor all ACL semantics as described in
1285 .BR slapd.access (5).
1286 In general, access checking is delegated to the remote server(s).
1287 Only
1288 .B read (=r)
1289 access to the
1290 .B entry
1291 pseudo-attribute and to the other attribute values of the entries
1292 returned by the
1293 .B search
1294 operation is honored, which is performed by the frontend.
1295
1296 .SH PROXY CACHE OVERLAY
1297 The proxy cache overlay 
1298 allows caching of LDAP search requests (queries) in a local database.
1299 See 
1300 .BR slapo\-pcache (5)
1301 for details.
1302
1303 .SH DEPRECATED STATEMENTS
1304 The following statements have been deprecated and should no longer be used.
1305
1306 .TP
1307 .B pseudorootdn "<substitute DN in case of rootdn bind>"
1308 Use
1309 .B idassert\-bind
1310 instead.
1311
1312 .TP
1313 .B pseudorootpw "<substitute password in case of rootdn bind>"
1314 Use
1315 .B idassert\-bind
1316 instead.
1317
1318
1319
1320 .SH FILES
1321 .TP
1322 ETCDIR/slapd.conf
1323 default slapd configuration file
1324 .SH SEE ALSO
1325 .BR slapd.conf (5),
1326 .BR slapd\-ldap (5),
1327 .BR slapo\-pcache (5),
1328 .BR slapd (8),
1329 .BR regex (7),
1330 .BR re_format (7).
1331 .SH AUTHOR
1332 Pierangelo Masarati, based on back-ldap by Howard Chu