]> git.sur5r.net Git - openocd/blob - src/flash/nor/stm32f1x.c
f05a4aaa3f8a4d4df3d2edbd594bc5ccebaa1b6b
[openocd] / src / flash / nor / stm32f1x.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2011 by Andreas Fritiofson                              *
9  *   andreas.fritiofson@gmail.com                                          *
10  *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
35
36 /* stm32x register locations */
37
38 #define FLASH_REG_BASE_B0 0x40022000
39 #define FLASH_REG_BASE_B1 0x40022040
40
41 #define STM32_FLASH_ACR     0x00
42 #define STM32_FLASH_KEYR    0x04
43 #define STM32_FLASH_OPTKEYR 0x08
44 #define STM32_FLASH_SR      0x0C
45 #define STM32_FLASH_CR      0x10
46 #define STM32_FLASH_AR      0x14
47 #define STM32_FLASH_OBR     0x1C
48 #define STM32_FLASH_WRPR    0x20
49
50 /* TODO: Check if code using these really should be hard coded to bank 0.
51  * There are valid cases, on dual flash devices the protection of the
52  * second bank is done on the bank0 reg's. */
53 #define STM32_FLASH_ACR_B0     0x40022000
54 #define STM32_FLASH_KEYR_B0    0x40022004
55 #define STM32_FLASH_OPTKEYR_B0 0x40022008
56 #define STM32_FLASH_SR_B0      0x4002200C
57 #define STM32_FLASH_CR_B0      0x40022010
58 #define STM32_FLASH_AR_B0      0x40022014
59 #define STM32_FLASH_OBR_B0     0x4002201C
60 #define STM32_FLASH_WRPR_B0    0x40022020
61
62 /* option byte location */
63
64 #define STM32_OB_RDP            0x1FFFF800
65 #define STM32_OB_USER           0x1FFFF802
66 #define STM32_OB_DATA0          0x1FFFF804
67 #define STM32_OB_DATA1          0x1FFFF806
68 #define STM32_OB_WRP0           0x1FFFF808
69 #define STM32_OB_WRP1           0x1FFFF80A
70 #define STM32_OB_WRP2           0x1FFFF80C
71 #define STM32_OB_WRP3           0x1FFFF80E
72
73 /* FLASH_CR register bits */
74
75 #define FLASH_PG                (1 << 0)
76 #define FLASH_PER               (1 << 1)
77 #define FLASH_MER               (1 << 2)
78 #define FLASH_OPTPG             (1 << 4)
79 #define FLASH_OPTER             (1 << 5)
80 #define FLASH_STRT              (1 << 6)
81 #define FLASH_LOCK              (1 << 7)
82 #define FLASH_OPTWRE    (1 << 9)
83
84 /* FLASH_SR register bits */
85
86 #define FLASH_BSY               (1 << 0)
87 #define FLASH_PGERR             (1 << 2)
88 #define FLASH_WRPRTERR  (1 << 4)
89 #define FLASH_EOP               (1 << 5)
90
91 /* STM32_FLASH_OBR bit definitions (reading) */
92
93 #define OPT_ERROR               0
94 #define OPT_READOUT             1
95 #define OPT_RDWDGSW             2
96 #define OPT_RDRSTSTOP   3
97 #define OPT_RDRSTSTDBY  4
98 #define OPT_BFB2                5       /* dual flash bank only */
99
100 /* register unlock keys */
101
102 #define KEY1                    0x45670123
103 #define KEY2                    0xCDEF89AB
104
105 struct stm32x_options {
106         uint16_t RDP;
107         uint16_t user_options;
108         uint16_t protection[4];
109 };
110
111 struct stm32x_flash_bank {
112         struct stm32x_options option_bytes;
113         struct working_area *write_algorithm;
114         int ppage_size;
115         int probed;
116
117         bool has_dual_banks;
118         /* used to access dual flash bank stm32xl */
119         uint32_t register_base;
120 };
121
122 static int stm32x_mass_erase(struct flash_bank *bank);
123 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id);
124
125 /* flash bank stm32x <base> <size> 0 0 <target#>
126  */
127 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
128 {
129         struct stm32x_flash_bank *stm32x_info;
130
131         if (CMD_ARGC < 6)
132                 return ERROR_COMMAND_SYNTAX_ERROR;
133
134         stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
135
136         bank->driver_priv = stm32x_info;
137         stm32x_info->write_algorithm = NULL;
138         stm32x_info->probed = 0;
139         stm32x_info->has_dual_banks = false;
140         stm32x_info->register_base = FLASH_REG_BASE_B0;
141
142         return ERROR_OK;
143 }
144
145 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
146 {
147         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
148         return reg + stm32x_info->register_base;
149 }
150
151 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
152 {
153         struct target *target = bank->target;
154         return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
155 }
156
157 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
158 {
159         struct target *target = bank->target;
160         uint32_t status;
161         int retval = ERROR_OK;
162
163         /* wait for busy to clear */
164         for (;;) {
165                 retval = stm32x_get_flash_status(bank, &status);
166                 if (retval != ERROR_OK)
167                         return retval;
168                 LOG_DEBUG("status: 0x%" PRIx32 "", status);
169                 if ((status & FLASH_BSY) == 0)
170                         break;
171                 if (timeout-- <= 0) {
172                         LOG_ERROR("timed out waiting for flash");
173                         return ERROR_FAIL;
174                 }
175                 alive_sleep(1);
176         }
177
178         if (status & FLASH_WRPRTERR) {
179                 LOG_ERROR("stm32x device protected");
180                 retval = ERROR_FAIL;
181         }
182
183         if (status & FLASH_PGERR) {
184                 LOG_ERROR("stm32x device programming failed");
185                 retval = ERROR_FAIL;
186         }
187
188         /* Clear but report errors */
189         if (status & (FLASH_WRPRTERR | FLASH_PGERR)) {
190                 /* If this operation fails, we ignore it and report the original
191                  * retval
192                  */
193                 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
194                                 FLASH_WRPRTERR | FLASH_PGERR);
195         }
196         return retval;
197 }
198
199 int stm32x_check_operation_supported(struct flash_bank *bank)
200 {
201         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
202
203         /* if we have a dual flash bank device then
204          * we need to perform option byte stuff on bank0 only */
205         if (stm32x_info->register_base != FLASH_REG_BASE_B0) {
206                 LOG_ERROR("Option Byte Operation's must use bank0");
207                 return ERROR_FLASH_OPERATION_FAILED;
208         }
209
210         return ERROR_OK;
211 }
212
213 static int stm32x_read_options(struct flash_bank *bank)
214 {
215         uint32_t optiondata;
216         struct stm32x_flash_bank *stm32x_info = NULL;
217         struct target *target = bank->target;
218
219         stm32x_info = bank->driver_priv;
220
221         /* read current option bytes */
222         int retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optiondata);
223         if (retval != ERROR_OK)
224                 return retval;
225
226         stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07);
227         stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5;
228
229         if (optiondata & (1 << OPT_READOUT))
230                 LOG_INFO("Device Security Bit Set");
231
232         /* each bit refers to a 4bank protection */
233         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &optiondata);
234         if (retval != ERROR_OK)
235                 return retval;
236
237         stm32x_info->option_bytes.protection[0] = (uint16_t)optiondata;
238         stm32x_info->option_bytes.protection[1] = (uint16_t)(optiondata >> 8);
239         stm32x_info->option_bytes.protection[2] = (uint16_t)(optiondata >> 16);
240         stm32x_info->option_bytes.protection[3] = (uint16_t)(optiondata >> 24);
241
242         return ERROR_OK;
243 }
244
245 static int stm32x_erase_options(struct flash_bank *bank)
246 {
247         struct stm32x_flash_bank *stm32x_info = NULL;
248         struct target *target = bank->target;
249
250         stm32x_info = bank->driver_priv;
251
252         /* read current options */
253         stm32x_read_options(bank);
254
255         /* unlock flash registers */
256         int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
257         if (retval != ERROR_OK)
258                 return retval;
259
260         retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
261         if (retval != ERROR_OK)
262                 return retval;
263
264         /* unlock option flash registers */
265         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
266         if (retval != ERROR_OK)
267                 return retval;
268         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
269         if (retval != ERROR_OK)
270                 return retval;
271
272         /* erase option bytes */
273         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
274         if (retval != ERROR_OK)
275                 return retval;
276         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
277         if (retval != ERROR_OK)
278                 return retval;
279
280         retval = stm32x_wait_status_busy(bank, 10);
281         if (retval != ERROR_OK)
282                 return retval;
283
284         /* clear readout protection and complementary option bytes
285          * this will also force a device unlock if set */
286         stm32x_info->option_bytes.RDP = 0x5AA5;
287
288         return ERROR_OK;
289 }
290
291 static int stm32x_write_options(struct flash_bank *bank)
292 {
293         struct stm32x_flash_bank *stm32x_info = NULL;
294         struct target *target = bank->target;
295
296         stm32x_info = bank->driver_priv;
297
298         /* unlock flash registers */
299         int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
300         if (retval != ERROR_OK)
301                 return retval;
302         retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
303         if (retval != ERROR_OK)
304                 return retval;
305
306         /* unlock option flash registers */
307         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
308         if (retval != ERROR_OK)
309                 return retval;
310         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
311         if (retval != ERROR_OK)
312                 return retval;
313
314         /* program option bytes */
315         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
316         if (retval != ERROR_OK)
317                 return retval;
318
319         /* write user option byte */
320         retval = target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options);
321         if (retval != ERROR_OK)
322                 return retval;
323
324         retval = stm32x_wait_status_busy(bank, 10);
325         if (retval != ERROR_OK)
326                 return retval;
327
328         /* write protection byte 1 */
329         retval = target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]);
330         if (retval != ERROR_OK)
331                 return retval;
332
333         retval = stm32x_wait_status_busy(bank, 10);
334         if (retval != ERROR_OK)
335                 return retval;
336
337         /* write protection byte 2 */
338         retval = target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]);
339         if (retval != ERROR_OK)
340                 return retval;
341
342         retval = stm32x_wait_status_busy(bank, 10);
343         if (retval != ERROR_OK)
344                 return retval;
345
346         /* write protection byte 3 */
347         retval = target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]);
348         if (retval != ERROR_OK)
349                 return retval;
350
351         retval = stm32x_wait_status_busy(bank, 10);
352         if (retval != ERROR_OK)
353                 return retval;
354
355         /* write protection byte 4 */
356         retval = target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]);
357         if (retval != ERROR_OK)
358                 return retval;
359
360         retval = stm32x_wait_status_busy(bank, 10);
361         if (retval != ERROR_OK)
362                 return retval;
363
364         /* write readout protection bit */
365         retval = target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP);
366         if (retval != ERROR_OK)
367                 return retval;
368
369         retval = stm32x_wait_status_busy(bank, 10);
370         if (retval != ERROR_OK)
371                 return retval;
372
373         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
374         if (retval != ERROR_OK)
375                 return retval;
376
377         return ERROR_OK;
378 }
379
380 static int stm32x_protect_check(struct flash_bank *bank)
381 {
382         struct target *target = bank->target;
383         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
384
385         uint32_t protection;
386         int i, s;
387         int num_bits;
388         int set;
389
390         if (target->state != TARGET_HALTED) {
391                 LOG_ERROR("Target not halted");
392                 return ERROR_TARGET_NOT_HALTED;
393         }
394
395         int retval = stm32x_check_operation_supported(bank);
396         if (ERROR_OK != retval)
397                 return retval;
398
399         /* medium density - each bit refers to a 4bank protection
400          * high density - each bit refers to a 2bank protection */
401         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
402         if (retval != ERROR_OK)
403                 return retval;
404
405         /* medium density - each protection bit is for 4 * 1K pages
406          * high density - each protection bit is for 2 * 2K pages */
407         num_bits = (bank->num_sectors / stm32x_info->ppage_size);
408
409         if (stm32x_info->ppage_size == 2) {
410                 /* high density flash/connectivity line protection */
411
412                 set = 1;
413
414                 if (protection & (1 << 31))
415                         set = 0;
416
417                 /* bit 31 controls sector 62 - 255 protection for high density
418                  * bit 31 controls sector 62 - 127 protection for connectivity line */
419                 for (s = 62; s < bank->num_sectors; s++)
420                         bank->sectors[s].is_protected = set;
421
422                 if (bank->num_sectors > 61)
423                         num_bits = 31;
424
425                 for (i = 0; i < num_bits; i++) {
426                         set = 1;
427
428                         if (protection & (1 << i))
429                                 set = 0;
430
431                         for (s = 0; s < stm32x_info->ppage_size; s++)
432                                 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
433                 }
434         } else {
435                 /* low/medium density flash protection */
436                 for (i = 0; i < num_bits; i++) {
437                         set = 1;
438
439                         if (protection & (1 << i))
440                                 set = 0;
441
442                         for (s = 0; s < stm32x_info->ppage_size; s++)
443                                 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
444                 }
445         }
446
447         return ERROR_OK;
448 }
449
450 static int stm32x_erase(struct flash_bank *bank, int first, int last)
451 {
452         struct target *target = bank->target;
453         int i;
454
455         if (bank->target->state != TARGET_HALTED) {
456                 LOG_ERROR("Target not halted");
457                 return ERROR_TARGET_NOT_HALTED;
458         }
459
460         if ((first == 0) && (last == (bank->num_sectors - 1)))
461                 return stm32x_mass_erase(bank);
462
463         /* unlock flash registers */
464         int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
465         if (retval != ERROR_OK)
466                 return retval;
467         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
468         if (retval != ERROR_OK)
469                 return retval;
470
471         for (i = first; i <= last; i++) {
472                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
473                 if (retval != ERROR_OK)
474                         return retval;
475                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
476                                 bank->base + bank->sectors[i].offset);
477                 if (retval != ERROR_OK)
478                         return retval;
479                 retval = target_write_u32(target,
480                                 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
481                 if (retval != ERROR_OK)
482                         return retval;
483
484                 retval = stm32x_wait_status_busy(bank, 100);
485                 if (retval != ERROR_OK)
486                         return retval;
487
488                 bank->sectors[i].is_erased = 1;
489         }
490
491         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
492         if (retval != ERROR_OK)
493                 return retval;
494
495         return ERROR_OK;
496 }
497
498 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
499 {
500         struct stm32x_flash_bank *stm32x_info = NULL;
501         struct target *target = bank->target;
502         uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
503         int i, reg, bit;
504         int status;
505         uint32_t protection;
506
507         stm32x_info = bank->driver_priv;
508
509         if (target->state != TARGET_HALTED) {
510                 LOG_ERROR("Target not halted");
511                 return ERROR_TARGET_NOT_HALTED;
512         }
513
514         int retval = stm32x_check_operation_supported(bank);
515         if (ERROR_OK != retval)
516                 return retval;
517
518         if ((first % stm32x_info->ppage_size) != 0) {
519                 LOG_WARNING("aligned start protect sector to a %d sector boundary",
520                                 stm32x_info->ppage_size);
521                 first = first - (first % stm32x_info->ppage_size);
522         }
523         if (((last + 1) % stm32x_info->ppage_size) != 0) {
524                 LOG_WARNING("aligned end protect sector to a %d sector boundary",
525                                 stm32x_info->ppage_size);
526                 last++;
527                 last = last - (last % stm32x_info->ppage_size);
528                 last--;
529         }
530
531         /* medium density - each bit refers to a 4bank protection
532          * high density - each bit refers to a 2bank protection */
533         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
534         if (retval != ERROR_OK)
535                 return retval;
536
537         prot_reg[0] = (uint16_t)protection;
538         prot_reg[1] = (uint16_t)(protection >> 8);
539         prot_reg[2] = (uint16_t)(protection >> 16);
540         prot_reg[3] = (uint16_t)(protection >> 24);
541
542         if (stm32x_info->ppage_size == 2) {
543                 /* high density flash */
544
545                 /* bit 7 controls sector 62 - 255 protection */
546                 if (last > 61) {
547                         if (set)
548                                 prot_reg[3] &= ~(1 << 7);
549                         else
550                                 prot_reg[3] |= (1 << 7);
551                 }
552
553                 if (first > 61)
554                         first = 62;
555                 if (last > 61)
556                         last = 61;
557
558                 for (i = first; i <= last; i++) {
559                         reg = (i / stm32x_info->ppage_size) / 8;
560                         bit = (i / stm32x_info->ppage_size) - (reg * 8);
561
562                         if (set)
563                                 prot_reg[reg] &= ~(1 << bit);
564                         else
565                                 prot_reg[reg] |= (1 << bit);
566                 }
567         } else {
568                 /* medium density flash */
569                 for (i = first; i <= last; i++) {
570                         reg = (i / stm32x_info->ppage_size) / 8;
571                         bit = (i / stm32x_info->ppage_size) - (reg * 8);
572
573                         if (set)
574                                 prot_reg[reg] &= ~(1 << bit);
575                         else
576                                 prot_reg[reg] |= (1 << bit);
577                 }
578         }
579
580         status = stm32x_erase_options(bank);
581         if (status != ERROR_OK)
582                 return status;
583
584         stm32x_info->option_bytes.protection[0] = prot_reg[0];
585         stm32x_info->option_bytes.protection[1] = prot_reg[1];
586         stm32x_info->option_bytes.protection[2] = prot_reg[2];
587         stm32x_info->option_bytes.protection[3] = prot_reg[3];
588
589         return stm32x_write_options(bank);
590 }
591
592 static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
593                 uint32_t offset, uint32_t count)
594 {
595         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
596         struct target *target = bank->target;
597         uint32_t buffer_size = 16384;
598         struct working_area *source;
599         uint32_t address = bank->base + offset;
600         struct reg_param reg_params[5];
601         struct armv7m_algorithm armv7m_info;
602         int retval = ERROR_OK;
603
604         /* see contrib/loaders/flash/stm32f1x.S for src */
605
606         static const uint8_t stm32x_flash_write_code[] = {
607                 /* #define STM32_FLASH_CR_OFFSET 0x10 */
608                 /* #define STM32_FLASH_SR_OFFSET 0x0C */
609                 /* wait_fifo: */
610                         0x16, 0x68,   /* ldr   r6, [r2, #0] */
611                         0x00, 0x2e,   /* cmp   r6, #0 */
612                         0x1a, 0xd0,   /* beq   exit */
613                         0x55, 0x68,   /* ldr   r5, [r2, #4] */
614                         0xb5, 0x42,   /* cmp   r5, r6 */
615                         0xf9, 0xd0,   /* beq   wait_fifo */
616                         0x01, 0x26,   /* movs  r6, #1 */
617                         0x06, 0x61,   /* str   r6, [r0, #STM32_FLASH_CR_OFFSET] */
618                         0x2e, 0x88,   /* ldrh  r6, [r5, #0] */
619                         0x26, 0x80,   /* strh  r6, [r4, #0] */
620                         0x02, 0x35,   /* adds  r5, #2 */
621                         0x02, 0x34,   /* adds  r4, #2 */
622                 /* busy: */
623                         0xc6, 0x68,   /* ldr   r6, [r0, #STM32_FLASH_SR_OFFSET] */
624                         0x01, 0x27,   /* movs  r7, #1 */
625                         0x3e, 0x42,   /* tst   r6, r7 */
626                         0xfb, 0xd1,   /* bne   busy */
627                         0x14, 0x27,   /* movs  r7, #0x14 */
628                         0x3e, 0x42,   /* tst   r6, r7 */
629                         0x08, 0xd1,   /* bne   error */
630                         0x9d, 0x42,   /* cmp   r5, r3 */
631                         0x01, 0xd3,   /* bcc   no_wrap */
632                         0x15, 0x46,   /* mov   r5, r2 */
633                         0x08, 0x35,   /* adds  r5, #8 */
634                 /* no_wrap: */
635                         0x55, 0x60,   /* str   r5, [r2, #4] */
636                         0x01, 0x39,   /* subs  r1, r1, #1 */
637                         0x00, 0x29,   /* cmp   r1, #0 */
638                         0x02, 0xd0,   /* beq   exit */
639                         0xe3, 0xe7,   /* b     wait_fifo */
640                 /* error: */
641                         0x00, 0x20,   /* movs  r0, #0 */
642                         0x50, 0x60,   /* str   r0, [r2, #4] */
643                 /* exit: */
644                         0x30, 0x46,   /* mov   r0, r6 */
645                         0x00, 0xbe,   /* bkpt  #0 */
646         };
647
648         /* flash write code */
649         if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
650                         &stm32x_info->write_algorithm) != ERROR_OK) {
651                 LOG_WARNING("no working area available, can't do block memory writes");
652                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
653         };
654
655         retval = target_write_buffer(target, stm32x_info->write_algorithm->address,
656                         sizeof(stm32x_flash_write_code), (uint8_t *)stm32x_flash_write_code);
657         if (retval != ERROR_OK)
658                 return retval;
659
660         /* memory buffer */
661         while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
662                 buffer_size /= 2;
663                 buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
664                 if (buffer_size <= 256) {
665                         /* if we already allocated the writing code, but failed to get a
666                          * buffer, free the algorithm */
667                         if (stm32x_info->write_algorithm)
668                                 target_free_working_area(target, stm32x_info->write_algorithm);
669
670                         LOG_WARNING("no large enough working area available, can't do block memory writes");
671                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
672                 }
673         };
674
675         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
676         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);    /* count (halfword-16bit) */
677         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);    /* buffer start */
678         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);    /* buffer end */
679         init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
680
681         buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
682         buf_set_u32(reg_params[1].value, 0, 32, count);
683         buf_set_u32(reg_params[2].value, 0, 32, source->address);
684         buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
685         buf_set_u32(reg_params[4].value, 0, 32, address);
686
687         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
688         armv7m_info.core_mode = ARMV7M_MODE_ANY;
689
690         retval = target_run_flash_async_algorithm(target, buffer, count, 2,
691                         0, NULL,
692                         5, reg_params,
693                         source->address, source->size,
694                         stm32x_info->write_algorithm->address, 0,
695                         &armv7m_info);
696
697         if (retval == ERROR_FLASH_OPERATION_FAILED) {
698                 LOG_ERROR("flash write failed at address 0x%"PRIx32,
699                                 buf_get_u32(reg_params[4].value, 0, 32));
700
701                 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR) {
702                         LOG_ERROR("flash memory not erased before writing");
703                         /* Clear but report errors */
704                         target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_PGERR);
705                 }
706
707                 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR) {
708                         LOG_ERROR("flash memory write protected");
709                         /* Clear but report errors */
710                         target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_WRPRTERR);
711                 }
712         }
713
714         target_free_working_area(target, source);
715         target_free_working_area(target, stm32x_info->write_algorithm);
716
717         destroy_reg_param(&reg_params[0]);
718         destroy_reg_param(&reg_params[1]);
719         destroy_reg_param(&reg_params[2]);
720         destroy_reg_param(&reg_params[3]);
721         destroy_reg_param(&reg_params[4]);
722
723         return retval;
724 }
725
726 static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
727                 uint32_t offset, uint32_t count)
728 {
729         struct target *target = bank->target;
730         uint32_t words_remaining = (count / 2);
731         uint32_t bytes_remaining = (count & 0x00000001);
732         uint32_t address = bank->base + offset;
733         uint32_t bytes_written = 0;
734         int retval;
735
736         if (bank->target->state != TARGET_HALTED) {
737                 LOG_ERROR("Target not halted");
738                 return ERROR_TARGET_NOT_HALTED;
739         }
740
741         if (offset & 0x1) {
742                 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
743                 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
744         }
745
746         /* unlock flash registers */
747         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
748         if (retval != ERROR_OK)
749                 return retval;
750         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
751         if (retval != ERROR_OK)
752                 return retval;
753
754         /* multiple half words (2-byte) to be programmed? */
755         if (words_remaining > 0) {
756                 /* try using a block write */
757                 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
758                 if (retval != ERROR_OK) {
759                         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
760                                 /* if block write failed (no sufficient working area),
761                                  * we use normal (slow) single dword accesses */
762                                 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
763                         }
764                 } else {
765                         buffer += words_remaining * 2;
766                         address += words_remaining * 2;
767                         words_remaining = 0;
768                 }
769         }
770
771         if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
772                 return retval;
773
774         while (words_remaining > 0) {
775                 uint16_t value;
776                 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
777
778                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
779                 if (retval != ERROR_OK)
780                         return retval;
781                 retval = target_write_u16(target, address, value);
782                 if (retval != ERROR_OK)
783                         return retval;
784
785                 retval = stm32x_wait_status_busy(bank, 5);
786                 if (retval != ERROR_OK)
787                         return retval;
788
789                 bytes_written += 2;
790                 words_remaining--;
791                 address += 2;
792         }
793
794         if (bytes_remaining) {
795                 uint16_t value = 0xffff;
796                 memcpy(&value, buffer + bytes_written, bytes_remaining);
797
798                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
799                 if (retval != ERROR_OK)
800                         return retval;
801                 retval = target_write_u16(target, address, value);
802                 if (retval != ERROR_OK)
803                         return retval;
804
805                 retval = stm32x_wait_status_busy(bank, 5);
806                 if (retval != ERROR_OK)
807                         return retval;
808         }
809
810         return target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
811 }
812
813 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
814 {
815         /* This check the device CPUID core register to detect
816          * the M0 from the M3 devices. */
817
818         struct target *target = bank->target;
819         uint32_t cpuid, device_id_register = 0;
820
821         /* Get the CPUID from the ARM Core
822          * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf 4.2.1 */
823         int retval = target_read_u32(target, 0xE000ED00, &cpuid);
824         if (retval != ERROR_OK)
825                 return retval;
826
827         if (((cpuid >> 4) & 0xFFF) == 0xC20) {
828                 /* 0xC20 is M0 devices */
829                 device_id_register = 0x40015800;
830         } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
831                 /* 0xC23 is M3 devices */
832                 device_id_register = 0xE0042000;
833         } else {
834                 LOG_ERROR("Cannot identify target as a stm32x");
835                 return ERROR_FAIL;
836         }
837
838         /* read stm32 device id register */
839         retval = target_read_u32(target, device_id_register, device_id);
840         if (retval != ERROR_OK)
841                 return retval;
842
843         return retval;
844 }
845
846 static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb)
847 {
848         struct target *target = bank->target;
849         uint32_t cpuid, flash_size_reg;
850
851         int retval = target_read_u32(target, 0xE000ED00, &cpuid);
852         if (retval != ERROR_OK)
853                 return retval;
854
855         if (((cpuid >> 4) & 0xFFF) == 0xC20) {
856                 /* 0xC20 is M0 devices */
857                 flash_size_reg = 0x1FFFF7CC;
858         } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
859                 /* 0xC23 is M3 devices */
860                 flash_size_reg = 0x1FFFF7E0;
861         } else {
862                 LOG_ERROR("Cannot identify target as a stm32x");
863                 return ERROR_FAIL;
864         }
865
866         retval = target_read_u16(target, flash_size_reg, flash_size_in_kb);
867         if (retval != ERROR_OK)
868                 return retval;
869
870         return retval;
871 }
872
873 static int stm32x_probe(struct flash_bank *bank)
874 {
875         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
876         int i;
877         uint16_t flash_size_in_kb;
878         uint32_t device_id;
879         int page_size;
880         uint32_t base_address = 0x08000000;
881
882         stm32x_info->probed = 0;
883         stm32x_info->register_base = FLASH_REG_BASE_B0;
884
885         /* read stm32 device id register */
886         int retval = stm32x_get_device_id(bank, &device_id);
887         if (retval != ERROR_OK)
888                 return retval;
889
890         LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
891
892         /* get flash size from target. */
893         retval = stm32x_get_flash_size(bank, &flash_size_in_kb);
894         if (retval != ERROR_OK) {
895                 LOG_WARNING("failed reading flash size, default to max target family");
896                 /* failed reading flash size, default to max target family */
897                 flash_size_in_kb = 0xffff;
898         }
899
900         if ((device_id & 0xfff) == 0x410) {
901                 /* medium density - we have 1k pages
902                  * 4 pages for a protection area */
903                 page_size = 1024;
904                 stm32x_info->ppage_size = 4;
905
906                 /* check for early silicon */
907                 if (flash_size_in_kb == 0xffff) {
908                         /* number of sectors incorrect on revA */
909                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
910                         flash_size_in_kb = 128;
911                 }
912         } else if ((device_id & 0xfff) == 0x412) {
913                 /* low density - we have 1k pages
914                  * 4 pages for a protection area */
915                 page_size = 1024;
916                 stm32x_info->ppage_size = 4;
917
918                 /* check for early silicon */
919                 if (flash_size_in_kb == 0xffff) {
920                         /* number of sectors incorrect on revA */
921                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 32k flash");
922                         flash_size_in_kb = 32;
923                 }
924         } else if ((device_id & 0xfff) == 0x414) {
925                 /* high density - we have 2k pages
926                  * 2 pages for a protection area */
927                 page_size = 2048;
928                 stm32x_info->ppage_size = 2;
929
930                 /* check for early silicon */
931                 if (flash_size_in_kb == 0xffff) {
932                         /* number of sectors incorrect on revZ */
933                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 512k flash");
934                         flash_size_in_kb = 512;
935                 }
936         } else if ((device_id & 0xfff) == 0x418) {
937                 /* connectivity line density - we have 2k pages
938                  * 2 pages for a protection area */
939                 page_size = 2048;
940                 stm32x_info->ppage_size = 2;
941
942                 /* check for early silicon */
943                 if (flash_size_in_kb == 0xffff) {
944                         /* number of sectors incorrect on revZ */
945                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash");
946                         flash_size_in_kb = 256;
947                 }
948         } else if ((device_id & 0xfff) == 0x420) {
949                 /* value line density - we have 1k pages
950                  * 4 pages for a protection area */
951                 page_size = 1024;
952                 stm32x_info->ppage_size = 4;
953
954                 /* check for early silicon */
955                 if (flash_size_in_kb == 0xffff) {
956                         /* number of sectors may be incorrrect on early silicon */
957                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
958                         flash_size_in_kb = 128;
959                 }
960         } else if ((device_id & 0xfff) == 0x428) {
961                 /* value line High density - we have 2k pages
962                  * 4 pages for a protection area */
963                 page_size = 2048;
964                 stm32x_info->ppage_size = 4;
965
966                 /* check for early silicon */
967                 if (flash_size_in_kb == 0xffff) {
968                         /* number of sectors may be incorrrect on early silicon */
969                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
970                         flash_size_in_kb = 128;
971                 }
972         } else if ((device_id & 0xfff) == 0x430) {
973                 /* xl line density - we have 2k pages
974                  * 2 pages for a protection area */
975                 page_size = 2048;
976                 stm32x_info->ppage_size = 2;
977                 stm32x_info->has_dual_banks = true;
978
979                 /* check for early silicon */
980                 if (flash_size_in_kb == 0xffff) {
981                         /* number of sectors may be incorrrect on early silicon */
982                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 1024k flash");
983                         flash_size_in_kb = 1024;
984                 }
985
986                 /* split reported size into matching bank */
987                 if (bank->base != 0x08080000) {
988                         /* bank 0 will be fixed 512k */
989                         flash_size_in_kb = 512;
990                 } else {
991                         flash_size_in_kb -= 512;
992                         /* bank1 also uses a register offset */
993                         stm32x_info->register_base = FLASH_REG_BASE_B1;
994                         base_address = 0x08080000;
995                 }
996         } else if ((device_id & 0xfff) == 0x440) {
997                 /* stm32f0x - we have 1k pages
998                  * 4 pages for a protection area */
999                 page_size = 1024;
1000                 stm32x_info->ppage_size = 4;
1001
1002                 /* check for early silicon */
1003                 if (flash_size_in_kb == 0xffff) {
1004                         /* number of sectors incorrect on revZ */
1005                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 64k flash");
1006                         flash_size_in_kb = 64;
1007                 }
1008         } else {
1009                 LOG_WARNING("Cannot identify target as a STM32 family.");
1010                 return ERROR_FAIL;
1011         }
1012
1013         LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
1014
1015         /* did we assign flash size? */
1016         assert(flash_size_in_kb != 0xffff);
1017
1018         /* calculate numbers of pages */
1019         int num_pages = flash_size_in_kb * 1024 / page_size;
1020
1021         /* check that calculation result makes sense */
1022         assert(num_pages > 0);
1023
1024         if (bank->sectors) {
1025                 free(bank->sectors);
1026                 bank->sectors = NULL;
1027         }
1028
1029         bank->base = base_address;
1030         bank->size = (num_pages * page_size);
1031         bank->num_sectors = num_pages;
1032         bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
1033
1034         for (i = 0; i < num_pages; i++) {
1035                 bank->sectors[i].offset = i * page_size;
1036                 bank->sectors[i].size = page_size;
1037                 bank->sectors[i].is_erased = -1;
1038                 bank->sectors[i].is_protected = 1;
1039         }
1040
1041         stm32x_info->probed = 1;
1042
1043         return ERROR_OK;
1044 }
1045
1046 static int stm32x_auto_probe(struct flash_bank *bank)
1047 {
1048         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1049         if (stm32x_info->probed)
1050                 return ERROR_OK;
1051         return stm32x_probe(bank);
1052 }
1053
1054 #if 0
1055 COMMAND_HANDLER(stm32x_handle_part_id_command)
1056 {
1057         return ERROR_OK;
1058 }
1059 #endif
1060
1061 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
1062 {
1063         uint32_t device_id;
1064         int printed;
1065
1066                 /* read stm32 device id register */
1067         int retval = stm32x_get_device_id(bank, &device_id);
1068         if (retval != ERROR_OK)
1069                 return retval;
1070
1071         if ((device_id & 0xfff) == 0x410) {
1072                 printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: ");
1073                 buf += printed;
1074                 buf_size -= printed;
1075
1076                 switch (device_id >> 16) {
1077                         case 0x0000:
1078                                 snprintf(buf, buf_size, "A");
1079                                 break;
1080
1081                         case 0x2000:
1082                                 snprintf(buf, buf_size, "B");
1083                                 break;
1084
1085                         case 0x2001:
1086                                 snprintf(buf, buf_size, "Z");
1087                                 break;
1088
1089                         case 0x2003:
1090                                 snprintf(buf, buf_size, "Y");
1091                                 break;
1092
1093                         default:
1094                                 snprintf(buf, buf_size, "unknown");
1095                                 break;
1096                 }
1097         } else if ((device_id & 0xfff) == 0x412) {
1098                 printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: ");
1099                 buf += printed;
1100                 buf_size -= printed;
1101
1102                 switch (device_id >> 16) {
1103                         case 0x1000:
1104                                 snprintf(buf, buf_size, "A");
1105                                 break;
1106
1107                         default:
1108                                 snprintf(buf, buf_size, "unknown");
1109                                 break;
1110                 }
1111         } else if ((device_id & 0xfff) == 0x414) {
1112                 printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: ");
1113                 buf += printed;
1114                 buf_size -= printed;
1115
1116                 switch (device_id >> 16) {
1117                         case 0x1000:
1118                                 snprintf(buf, buf_size, "A");
1119                                 break;
1120
1121                         case 0x1001:
1122                                 snprintf(buf, buf_size, "Z");
1123                                 break;
1124
1125                         default:
1126                                 snprintf(buf, buf_size, "unknown");
1127                                 break;
1128                 }
1129         } else if ((device_id & 0xfff) == 0x418) {
1130                 printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: ");
1131                 buf += printed;
1132                 buf_size -= printed;
1133
1134                 switch (device_id >> 16) {
1135                         case 0x1000:
1136                                 snprintf(buf, buf_size, "A");
1137                                 break;
1138
1139                         case 0x1001:
1140                                 snprintf(buf, buf_size, "Z");
1141                                 break;
1142
1143                         default:
1144                                 snprintf(buf, buf_size, "unknown");
1145                                 break;
1146                 }
1147         } else if ((device_id & 0xfff) == 0x420) {
1148                 printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: ");
1149                 buf += printed;
1150                 buf_size -= printed;
1151
1152                 switch (device_id >> 16) {
1153                         case 0x1000:
1154                                 snprintf(buf, buf_size, "A");
1155                                 break;
1156
1157                         case 0x1001:
1158                                 snprintf(buf, buf_size, "Z");
1159                                 break;
1160
1161                         default:
1162                                 snprintf(buf, buf_size, "unknown");
1163                                 break;
1164                 }
1165         } else if ((device_id & 0xfff) == 0x428) {
1166                 printed = snprintf(buf, buf_size, "stm32x (Value HD) - Rev: ");
1167                 buf += printed;
1168                 buf_size -= printed;
1169
1170                 switch (device_id >> 16) {
1171                         case 0x1000:
1172                                 snprintf(buf, buf_size, "A");
1173                                 break;
1174
1175                         case 0x1001:
1176                                 snprintf(buf, buf_size, "Z");
1177                                 break;
1178
1179                         default:
1180                                 snprintf(buf, buf_size, "unknown");
1181                                 break;
1182                 }
1183         } else if ((device_id & 0xfff) == 0x430) {
1184                 printed = snprintf(buf, buf_size, "stm32x (XL) - Rev: ");
1185                 buf += printed;
1186                 buf_size -= printed;
1187
1188                 switch (device_id >> 16) {
1189                         case 0x1000:
1190                                 snprintf(buf, buf_size, "A");
1191                                 break;
1192
1193                         default:
1194                                 snprintf(buf, buf_size, "unknown");
1195                                 break;
1196                 }
1197         } else if ((device_id & 0xfff) == 0x440) {
1198                 printed = snprintf(buf, buf_size, "stm32f0x - Rev: ");
1199                 buf += printed;
1200                 buf_size -= printed;
1201
1202                 switch (device_id >> 16) {
1203                         case 0x1000:
1204                                 snprintf(buf, buf_size, "1.0");
1205                                 break;
1206
1207                         case 0x2000:
1208                                 snprintf(buf, buf_size, "2.0");
1209                                 break;
1210
1211                         default:
1212                                 snprintf(buf, buf_size, "unknown");
1213                                 break;
1214                 }
1215         } else {
1216                 snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
1217                 return ERROR_FAIL;
1218         }
1219
1220         return ERROR_OK;
1221 }
1222
1223 COMMAND_HANDLER(stm32x_handle_lock_command)
1224 {
1225         struct target *target = NULL;
1226         struct stm32x_flash_bank *stm32x_info = NULL;
1227
1228         if (CMD_ARGC < 1)
1229                 return ERROR_COMMAND_SYNTAX_ERROR;
1230
1231         struct flash_bank *bank;
1232         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1233         if (ERROR_OK != retval)
1234                 return retval;
1235
1236         stm32x_info = bank->driver_priv;
1237
1238         target = bank->target;
1239
1240         if (target->state != TARGET_HALTED) {
1241                 LOG_ERROR("Target not halted");
1242                 return ERROR_TARGET_NOT_HALTED;
1243         }
1244
1245         retval = stm32x_check_operation_supported(bank);
1246         if (ERROR_OK != retval)
1247                 return retval;
1248
1249         if (stm32x_erase_options(bank) != ERROR_OK) {
1250                 command_print(CMD_CTX, "stm32x failed to erase options");
1251                 return ERROR_OK;
1252         }
1253
1254         /* set readout protection */
1255         stm32x_info->option_bytes.RDP = 0;
1256
1257         if (stm32x_write_options(bank) != ERROR_OK) {
1258                 command_print(CMD_CTX, "stm32x failed to lock device");
1259                 return ERROR_OK;
1260         }
1261
1262         command_print(CMD_CTX, "stm32x locked");
1263
1264         return ERROR_OK;
1265 }
1266
1267 COMMAND_HANDLER(stm32x_handle_unlock_command)
1268 {
1269         struct target *target = NULL;
1270
1271         if (CMD_ARGC < 1)
1272                 return ERROR_COMMAND_SYNTAX_ERROR;
1273
1274         struct flash_bank *bank;
1275         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1276         if (ERROR_OK != retval)
1277                 return retval;
1278
1279         target = bank->target;
1280
1281         if (target->state != TARGET_HALTED) {
1282                 LOG_ERROR("Target not halted");
1283                 return ERROR_TARGET_NOT_HALTED;
1284         }
1285
1286         retval = stm32x_check_operation_supported(bank);
1287         if (ERROR_OK != retval)
1288                 return retval;
1289
1290         if (stm32x_erase_options(bank) != ERROR_OK) {
1291                 command_print(CMD_CTX, "stm32x failed to unlock device");
1292                 return ERROR_OK;
1293         }
1294
1295         if (stm32x_write_options(bank) != ERROR_OK) {
1296                 command_print(CMD_CTX, "stm32x failed to lock device");
1297                 return ERROR_OK;
1298         }
1299
1300         command_print(CMD_CTX, "stm32x unlocked.\n"
1301                         "INFO: a reset or power cycle is required "
1302                         "for the new settings to take effect.");
1303
1304         return ERROR_OK;
1305 }
1306
1307 COMMAND_HANDLER(stm32x_handle_options_read_command)
1308 {
1309         uint32_t optionbyte;
1310         struct target *target = NULL;
1311         struct stm32x_flash_bank *stm32x_info = NULL;
1312
1313         if (CMD_ARGC < 1)
1314                 return ERROR_COMMAND_SYNTAX_ERROR;
1315
1316         struct flash_bank *bank;
1317         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1318         if (ERROR_OK != retval)
1319                 return retval;
1320
1321         stm32x_info = bank->driver_priv;
1322
1323         target = bank->target;
1324
1325         if (target->state != TARGET_HALTED) {
1326                 LOG_ERROR("Target not halted");
1327                 return ERROR_TARGET_NOT_HALTED;
1328         }
1329
1330         retval = stm32x_check_operation_supported(bank);
1331         if (ERROR_OK != retval)
1332                 return retval;
1333
1334         retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
1335         if (retval != ERROR_OK)
1336                 return retval;
1337         command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte);
1338
1339         if (buf_get_u32((uint8_t *)&optionbyte, OPT_ERROR, 1))
1340                 command_print(CMD_CTX, "Option Byte Complement Error");
1341
1342         if (buf_get_u32((uint8_t *)&optionbyte, OPT_READOUT, 1))
1343                 command_print(CMD_CTX, "Readout Protection On");
1344         else
1345                 command_print(CMD_CTX, "Readout Protection Off");
1346
1347         if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDWDGSW, 1))
1348                 command_print(CMD_CTX, "Software Watchdog");
1349         else
1350                 command_print(CMD_CTX, "Hardware Watchdog");
1351
1352         if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTOP, 1))
1353                 command_print(CMD_CTX, "Stop: No reset generated");
1354         else
1355                 command_print(CMD_CTX, "Stop: Reset generated");
1356
1357         if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTDBY, 1))
1358                 command_print(CMD_CTX, "Standby: No reset generated");
1359         else
1360                 command_print(CMD_CTX, "Standby: Reset generated");
1361
1362         if (stm32x_info->has_dual_banks) {
1363                 if (buf_get_u32((uint8_t *)&optionbyte, OPT_BFB2, 1))
1364                         command_print(CMD_CTX, "Boot: Bank 0");
1365                 else
1366                         command_print(CMD_CTX, "Boot: Bank 1");
1367         }
1368
1369         return ERROR_OK;
1370 }
1371
1372 COMMAND_HANDLER(stm32x_handle_options_write_command)
1373 {
1374         struct target *target = NULL;
1375         struct stm32x_flash_bank *stm32x_info = NULL;
1376         uint16_t optionbyte = 0xF8;
1377
1378         if (CMD_ARGC < 4)
1379                 return ERROR_COMMAND_SYNTAX_ERROR;
1380
1381         struct flash_bank *bank;
1382         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1383         if (ERROR_OK != retval)
1384                 return retval;
1385
1386         stm32x_info = bank->driver_priv;
1387
1388         target = bank->target;
1389
1390         if (target->state != TARGET_HALTED) {
1391                 LOG_ERROR("Target not halted");
1392                 return ERROR_TARGET_NOT_HALTED;
1393         }
1394
1395         retval = stm32x_check_operation_supported(bank);
1396         if (ERROR_OK != retval)
1397                 return retval;
1398
1399         /* REVISIT: ignores some options which we will display...
1400          * and doesn't insist on the specified syntax.
1401          */
1402
1403         /* OPT_RDWDGSW */
1404         if (strcmp(CMD_ARGV[1], "SWWDG") == 0)
1405                 optionbyte |= (1 << 0);
1406         else    /* REVISIT must be "HWWDG" then ... */
1407                 optionbyte &= ~(1 << 0);
1408
1409         /* OPT_RDRSTSTOP */
1410         if (strcmp(CMD_ARGV[2], "NORSTSTOP") == 0)
1411                 optionbyte |= (1 << 1);
1412         else    /* REVISIT must be "RSTSTNDBY" then ... */
1413                 optionbyte &= ~(1 << 1);
1414
1415         /* OPT_RDRSTSTDBY */
1416         if (strcmp(CMD_ARGV[3], "NORSTSTNDBY") == 0)
1417                 optionbyte |= (1 << 2);
1418         else    /* REVISIT must be "RSTSTOP" then ... */
1419                 optionbyte &= ~(1 << 2);
1420
1421         if (CMD_ARGC > 4 && stm32x_info->has_dual_banks) {
1422                 /* OPT_BFB2 */
1423                 if (strcmp(CMD_ARGV[4], "BOOT0") == 0)
1424                         optionbyte |= (1 << 3);
1425                 else
1426                         optionbyte &= ~(1 << 3);
1427         }
1428
1429         if (stm32x_erase_options(bank) != ERROR_OK) {
1430                 command_print(CMD_CTX, "stm32x failed to erase options");
1431                 return ERROR_OK;
1432         }
1433
1434         stm32x_info->option_bytes.user_options = optionbyte;
1435
1436         if (stm32x_write_options(bank) != ERROR_OK) {
1437                 command_print(CMD_CTX, "stm32x failed to write options");
1438                 return ERROR_OK;
1439         }
1440
1441         command_print(CMD_CTX, "stm32x write options complete.\n"
1442                                 "INFO: a reset or power cycle is required "
1443                                 "for the new settings to take effect.");
1444
1445         return ERROR_OK;
1446 }
1447
1448 static int stm32x_mass_erase(struct flash_bank *bank)
1449 {
1450         struct target *target = bank->target;
1451
1452         if (target->state != TARGET_HALTED) {
1453                 LOG_ERROR("Target not halted");
1454                 return ERROR_TARGET_NOT_HALTED;
1455         }
1456
1457         /* unlock option flash registers */
1458         int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
1459         if (retval != ERROR_OK)
1460                 return retval;
1461         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
1462         if (retval != ERROR_OK)
1463                 return retval;
1464
1465         /* mass erase flash memory */
1466         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
1467         if (retval != ERROR_OK)
1468                 return retval;
1469         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1470                         FLASH_MER | FLASH_STRT);
1471         if (retval != ERROR_OK)
1472                 return retval;
1473
1474         retval = stm32x_wait_status_busy(bank, 100);
1475         if (retval != ERROR_OK)
1476                 return retval;
1477
1478         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1479         if (retval != ERROR_OK)
1480                 return retval;
1481
1482         return ERROR_OK;
1483 }
1484
1485 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1486 {
1487         int i;
1488
1489         if (CMD_ARGC < 1)
1490                 return ERROR_COMMAND_SYNTAX_ERROR;
1491
1492         struct flash_bank *bank;
1493         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1494         if (ERROR_OK != retval)
1495                 return retval;
1496
1497         retval = stm32x_mass_erase(bank);
1498         if (retval == ERROR_OK) {
1499                 /* set all sectors as erased */
1500                 for (i = 0; i < bank->num_sectors; i++)
1501                         bank->sectors[i].is_erased = 1;
1502
1503                 command_print(CMD_CTX, "stm32x mass erase complete");
1504         } else
1505                 command_print(CMD_CTX, "stm32x mass erase failed");
1506
1507         return retval;
1508 }
1509
1510 static const struct command_registration stm32x_exec_command_handlers[] = {
1511         {
1512                 .name = "lock",
1513                 .handler = stm32x_handle_lock_command,
1514                 .mode = COMMAND_EXEC,
1515                 .usage = "bank_id",
1516                 .help = "Lock entire flash device.",
1517         },
1518         {
1519                 .name = "unlock",
1520                 .handler = stm32x_handle_unlock_command,
1521                 .mode = COMMAND_EXEC,
1522                 .usage = "bank_id",
1523                 .help = "Unlock entire protected flash device.",
1524         },
1525         {
1526                 .name = "mass_erase",
1527                 .handler = stm32x_handle_mass_erase_command,
1528                 .mode = COMMAND_EXEC,
1529                 .usage = "bank_id",
1530                 .help = "Erase entire flash device.",
1531         },
1532         {
1533                 .name = "options_read",
1534                 .handler = stm32x_handle_options_read_command,
1535                 .mode = COMMAND_EXEC,
1536                 .usage = "bank_id",
1537                 .help = "Read and display device option byte.",
1538         },
1539         {
1540                 .name = "options_write",
1541                 .handler = stm32x_handle_options_write_command,
1542                 .mode = COMMAND_EXEC,
1543                 .usage = "bank_id ('SWWDG'|'HWWDG') "
1544                         "('RSTSTNDBY'|'NORSTSTNDBY') "
1545                         "('RSTSTOP'|'NORSTSTOP')",
1546                 .help = "Replace bits in device option byte.",
1547         },
1548         COMMAND_REGISTRATION_DONE
1549 };
1550
1551 static const struct command_registration stm32x_command_handlers[] = {
1552         {
1553                 .name = "stm32f1x",
1554                 .mode = COMMAND_ANY,
1555                 .help = "stm32f1x flash command group",
1556                 .usage = "",
1557                 .chain = stm32x_exec_command_handlers,
1558         },
1559         COMMAND_REGISTRATION_DONE
1560 };
1561
1562 struct flash_driver stm32f1x_flash = {
1563         .name = "stm32f1x",
1564         .commands = stm32x_command_handlers,
1565         .flash_bank_command = stm32x_flash_bank_command,
1566         .erase = stm32x_erase,
1567         .protect = stm32x_protect,
1568         .write = stm32x_write,
1569         .read = default_flash_read,
1570         .probe = stm32x_probe,
1571         .auto_probe = stm32x_auto_probe,
1572         .erase_check = default_flash_blank_check,
1573         .protect_check = stm32x_protect_check,
1574         .info = get_stm32x_info,
1575 };