]> git.sur5r.net Git - openocd/blob - src/target/aarch64.c
e215206b468293ef1f42886d2b4ff9964360b0ec
[openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include <helper/time_support.h>
31
32 static int aarch64_poll(struct target *target);
33 static int aarch64_debug_entry(struct target *target);
34 static int aarch64_restore_context(struct target *target, bool bpwp);
35 static int aarch64_set_breakpoint(struct target *target,
36         struct breakpoint *breakpoint, uint8_t matchmode);
37 static int aarch64_set_context_breakpoint(struct target *target,
38         struct breakpoint *breakpoint, uint8_t matchmode);
39 static int aarch64_set_hybrid_breakpoint(struct target *target,
40         struct breakpoint *breakpoint);
41 static int aarch64_unset_breakpoint(struct target *target,
42         struct breakpoint *breakpoint);
43 static int aarch64_mmu(struct target *target, int *enabled);
44 static int aarch64_virt2phys(struct target *target,
45         target_addr_t virt, target_addr_t *phys);
46 static int aarch64_read_apb_ap_memory(struct target *target,
47         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
48 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
49         uint32_t opcode, uint32_t data);
50
51 static int aarch64_restore_system_control_reg(struct target *target)
52 {
53         int retval = ERROR_OK;
54
55         struct aarch64_common *aarch64 = target_to_aarch64(target);
56         struct armv8_common *armv8 = target_to_armv8(target);
57
58         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
59                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
60                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
61
62                 switch (armv8->arm.core_mode) {
63                         case ARMV8_64_EL0T:
64                         case ARMV8_64_EL1T:
65                         case ARMV8_64_EL1H:
66                                 retval = armv8->arm.msr(target, 3, /*op 0*/
67                                                 0, 1,   /* op1, op2 */
68                                                 0, 0,   /* CRn, CRm */
69                                                 aarch64->system_control_reg);
70                                 if (retval != ERROR_OK)
71                                         return retval;
72                         break;
73                         case ARMV8_64_EL2T:
74                         case ARMV8_64_EL2H:
75                                 retval = armv8->arm.msr(target, 3, /*op 0*/
76                                                 4, 1,   /* op1, op2 */
77                                                 0, 0,   /* CRn, CRm */
78                                                 aarch64->system_control_reg);
79                                 if (retval != ERROR_OK)
80                                         return retval;
81                         break;
82                         case ARMV8_64_EL3H:
83                         case ARMV8_64_EL3T:
84                                 retval = armv8->arm.msr(target, 3, /*op 0*/
85                                                 6, 1,   /* op1, op2 */
86                                                 0, 0,   /* CRn, CRm */
87                                                 aarch64->system_control_reg);
88                                 if (retval != ERROR_OK)
89                                         return retval;
90                         break;
91                         default:
92                                 LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
93                         }
94         }
95         return retval;
96 }
97
98 /*  check address before aarch64_apb read write access with mmu on
99  *  remove apb predictible data abort */
100 static int aarch64_check_address(struct target *target, uint32_t address)
101 {
102         /* TODO */
103         return ERROR_OK;
104 }
105 /*  modify system_control_reg in order to enable or disable mmu for :
106  *  - virt2phys address conversion
107  *  - read or write memory in phys or virt address */
108 static int aarch64_mmu_modify(struct target *target, int enable)
109 {
110         struct aarch64_common *aarch64 = target_to_aarch64(target);
111         struct armv8_common *armv8 = &aarch64->armv8_common;
112         int retval = ERROR_OK;
113
114         if (enable) {
115                 /*      if mmu enabled at target stop and mmu not enable */
116                 if (!(aarch64->system_control_reg & 0x1U)) {
117                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
118                         return ERROR_FAIL;
119                 }
120                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
121                         aarch64->system_control_reg_curr |= 0x1U;
122                         switch (armv8->arm.core_mode) {
123                                 case ARMV8_64_EL0T:
124                                 case ARMV8_64_EL1T:
125                                 case ARMV8_64_EL1H:
126                                         retval = armv8->arm.msr(target, 3, /*op 0*/
127                                                         0, 0,   /* op1, op2 */
128                                                         1, 0,   /* CRn, CRm */
129                                                         aarch64->system_control_reg_curr);
130                                         if (retval != ERROR_OK)
131                                                 return retval;
132                                 break;
133                                 case ARMV8_64_EL2T:
134                                 case ARMV8_64_EL2H:
135                                         retval = armv8->arm.msr(target, 3, /*op 0*/
136                                                         4, 0,   /* op1, op2 */
137                                                         1, 0,   /* CRn, CRm */
138                                                         aarch64->system_control_reg_curr);
139                                         if (retval != ERROR_OK)
140                                                 return retval;
141                                 break;
142                                 case ARMV8_64_EL3H:
143                                 case ARMV8_64_EL3T:
144                                         retval = armv8->arm.msr(target, 3, /*op 0*/
145                                                         6, 0,   /* op1, op2 */
146                                                         1, 0,   /* CRn, CRm */
147                                                         aarch64->system_control_reg_curr);
148                                         if (retval != ERROR_OK)
149                                                 return retval;
150                                 break;
151                                 default:
152                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
153                         }
154                 }
155         } else {
156                 if (aarch64->system_control_reg_curr & 0x4U) {
157                         /*  data cache is active */
158                         aarch64->system_control_reg_curr &= ~0x4U;
159                         /* flush data cache armv7 function to be called */
160                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
161                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
162                 }
163                 if ((aarch64->system_control_reg_curr & 0x1U)) {
164                         aarch64->system_control_reg_curr &= ~0x1U;
165                         switch (armv8->arm.core_mode) {
166                                 case ARMV8_64_EL0T:
167                                 case ARMV8_64_EL1T:
168                                 case ARMV8_64_EL1H:
169                                         retval = armv8->arm.msr(target, 3, /*op 0*/
170                                                         0, 0,   /* op1, op2 */
171                                                         1, 0,   /* CRn, CRm */
172                                                         aarch64->system_control_reg_curr);
173                                         if (retval != ERROR_OK)
174                                                 return retval;
175                                         break;
176                                 case ARMV8_64_EL2T:
177                                 case ARMV8_64_EL2H:
178                                         retval = armv8->arm.msr(target, 3, /*op 0*/
179                                                         4, 0,   /* op1, op2 */
180                                                         1, 0,   /* CRn, CRm */
181                                                         aarch64->system_control_reg_curr);
182                                         if (retval != ERROR_OK)
183                                                 return retval;
184                                         break;
185                                 case ARMV8_64_EL3H:
186                                 case ARMV8_64_EL3T:
187                                         retval = armv8->arm.msr(target, 3, /*op 0*/
188                                                         6, 0,   /* op1, op2 */
189                                                         1, 0,   /* CRn, CRm */
190                                                         aarch64->system_control_reg_curr);
191                                         if (retval != ERROR_OK)
192                                                 return retval;
193                                         break;
194                                 default:
195                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
196                                         break;
197                         }
198                 }
199         }
200         return retval;
201 }
202
203 /*
204  * Basic debug access, very low level assumes state is saved
205  */
206 static int aarch64_init_debug_access(struct target *target)
207 {
208         struct armv8_common *armv8 = target_to_armv8(target);
209         int retval;
210         uint32_t dummy;
211
212         LOG_DEBUG(" ");
213
214         /* Unlocking the debug registers for modification
215          * The debugport might be uninitialised so try twice */
216         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
217                              armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
218         if (retval != ERROR_OK) {
219                 /* try again */
220                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
221                              armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
222                 if (retval == ERROR_OK)
223                         LOG_USER("Locking debug access failed on first, but succeeded on second try.");
224         }
225         if (retval != ERROR_OK)
226                 return retval;
227         /* Clear Sticky Power Down status Bit in PRSR to enable access to
228            the registers in the Core Power Domain */
229         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
230                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
231         if (retval != ERROR_OK)
232                 return retval;
233
234         /* Enabling of instruction execution in debug mode is done in debug_entry code */
235
236         /* Resync breakpoint registers */
237
238         /* Since this is likely called from init or reset, update target state information*/
239         return aarch64_poll(target);
240 }
241
242 /* To reduce needless round-trips, pass in a pointer to the current
243  * DSCR value.  Initialize it to zero if you just need to know the
244  * value on return from this function; or DSCR_ITE if you
245  * happen to know that no instruction is pending.
246  */
247 static int aarch64_exec_opcode(struct target *target,
248         uint32_t opcode, uint32_t *dscr_p)
249 {
250         uint32_t dscr;
251         int retval;
252         struct armv8_common *armv8 = target_to_armv8(target);
253         dscr = dscr_p ? *dscr_p : 0;
254
255         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
256
257         /* Wait for InstrCompl bit to be set */
258         long long then = timeval_ms();
259         while ((dscr & DSCR_ITE) == 0) {
260                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
261                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
262                 if (retval != ERROR_OK) {
263                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
264                         return retval;
265                 }
266                 if (timeval_ms() > then + 1000) {
267                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
268                         return ERROR_FAIL;
269                 }
270         }
271
272         retval = mem_ap_write_u32(armv8->debug_ap,
273                         armv8->debug_base + CPUV8_DBG_ITR, opcode);
274         if (retval != ERROR_OK)
275                 return retval;
276
277         then = timeval_ms();
278         do {
279                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
280                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
281                 if (retval != ERROR_OK) {
282                         LOG_ERROR("Could not read DSCR register");
283                         return retval;
284                 }
285                 if (timeval_ms() > then + 1000) {
286                         LOG_ERROR("Timeout waiting for aarch64_exec_opcode");
287                         return ERROR_FAIL;
288                 }
289         } while ((dscr & DSCR_ITE) == 0);       /* Wait for InstrCompl bit to be set */
290
291         if (dscr_p)
292                 *dscr_p = dscr;
293
294         return retval;
295 }
296
297 /* Write to memory mapped registers directly with no cache or mmu handling */
298 static int aarch64_dap_write_memap_register_u32(struct target *target,
299         uint32_t address,
300         uint32_t value)
301 {
302         int retval;
303         struct armv8_common *armv8 = target_to_armv8(target);
304
305         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
306
307         return retval;
308 }
309
310 /*
311  * AARCH64 implementation of Debug Programmer's Model
312  *
313  * NOTE the invariant:  these routines return with DSCR_ITE set,
314  * so there's no need to poll for it before executing an instruction.
315  *
316  * NOTE that in several of these cases the "stall" mode might be useful.
317  * It'd let us queue a few operations together... prepare/finish might
318  * be the places to enable/disable that mode.
319  */
320
321 static inline struct aarch64_common *dpm_to_a8(struct arm_dpm *dpm)
322 {
323         return container_of(dpm, struct aarch64_common, armv8_common.dpm);
324 }
325
326 static int aarch64_write_dcc(struct armv8_common *armv8, uint32_t data)
327 {
328         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
329         return mem_ap_write_u32(armv8->debug_ap,
330                                 armv8->debug_base + CPUV8_DBG_DTRRX, data);
331 }
332
333 static int aarch64_write_dcc_64(struct armv8_common *armv8, uint64_t data)
334 {
335         int ret;
336         LOG_DEBUG("write DCC Low word0x%08" PRIx32, (unsigned)data);
337         LOG_DEBUG("write DCC High word 0x%08" PRIx32, (unsigned)(data >> 32));
338         ret = mem_ap_write_u32(armv8->debug_ap,
339                                armv8->debug_base + CPUV8_DBG_DTRRX, data);
340         ret += mem_ap_write_u32(armv8->debug_ap,
341                                 armv8->debug_base + CPUV8_DBG_DTRTX, data >> 32);
342         return ret;
343 }
344
345 static int aarch64_read_dcc(struct armv8_common *armv8, uint32_t *data,
346         uint32_t *dscr_p)
347 {
348         uint32_t dscr = DSCR_ITE;
349         int retval;
350
351         if (dscr_p)
352                 dscr = *dscr_p;
353
354         /* Wait for DTRRXfull */
355         long long then = timeval_ms();
356         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
357                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
358                                 armv8->debug_base + CPUV8_DBG_DSCR,
359                                 &dscr);
360                 if (retval != ERROR_OK)
361                         return retval;
362                 if (timeval_ms() > then + 1000) {
363                         LOG_ERROR("Timeout waiting for read dcc");
364                         return ERROR_FAIL;
365                 }
366         }
367
368         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
369                                             armv8->debug_base + CPUV8_DBG_DTRTX,
370                                             data);
371         if (retval != ERROR_OK)
372                 return retval;
373         LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
374
375         if (dscr_p)
376                 *dscr_p = dscr;
377
378         return retval;
379 }
380
381 static int aarch64_read_dcc_64(struct armv8_common *armv8, uint64_t *data,
382         uint32_t *dscr_p)
383 {
384         uint32_t dscr = DSCR_ITE;
385         uint32_t higher;
386         int retval;
387
388         if (dscr_p)
389                 dscr = *dscr_p;
390
391         /* Wait for DTRRXfull */
392         long long then = timeval_ms();
393         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
394                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
395                                 armv8->debug_base + CPUV8_DBG_DSCR,
396                                 &dscr);
397                 if (retval != ERROR_OK)
398                         return retval;
399                 if (timeval_ms() > then + 1000) {
400                         LOG_ERROR("Timeout waiting for read dcc");
401                         return ERROR_FAIL;
402                 }
403         }
404
405         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
406                                             armv8->debug_base + CPUV8_DBG_DTRTX,
407                                             (uint32_t *)data);
408         if (retval != ERROR_OK)
409                 return retval;
410
411         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
412                                             armv8->debug_base + CPUV8_DBG_DTRRX,
413                                             &higher);
414         if (retval != ERROR_OK)
415                 return retval;
416
417         *data = *(uint32_t *)data | (uint64_t)higher << 32;
418         LOG_DEBUG("read DCC 0x%16.16" PRIx64, *data);
419
420         if (dscr_p)
421                 *dscr_p = dscr;
422
423         return retval;
424 }
425
426 static int aarch64_dpm_prepare(struct arm_dpm *dpm)
427 {
428         struct aarch64_common *a8 = dpm_to_a8(dpm);
429         uint32_t dscr;
430         int retval;
431
432         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
433         long long then = timeval_ms();
434         for (;; ) {
435                 retval = mem_ap_read_atomic_u32(a8->armv8_common.debug_ap,
436                                 a8->armv8_common.debug_base + CPUV8_DBG_DSCR,
437                                 &dscr);
438                 if (retval != ERROR_OK)
439                         return retval;
440                 if ((dscr & DSCR_ITE) != 0)
441                         break;
442                 if (timeval_ms() > then + 1000) {
443                         LOG_ERROR("Timeout waiting for dpm prepare");
444                         return ERROR_FAIL;
445                 }
446         }
447
448         /* this "should never happen" ... */
449         if (dscr & DSCR_DTR_RX_FULL) {
450                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
451                 /* Clear DCCRX */
452                 retval = mem_ap_read_u32(a8->armv8_common.debug_ap,
453                         a8->armv8_common.debug_base + CPUV8_DBG_DTRRX, &dscr);
454                 if (retval != ERROR_OK)
455                         return retval;
456
457                 /* Clear sticky error */
458                 retval = mem_ap_write_u32(a8->armv8_common.debug_ap,
459                         a8->armv8_common.debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
460                 if (retval != ERROR_OK)
461                         return retval;
462         }
463
464         return retval;
465 }
466
467 static int aarch64_dpm_finish(struct arm_dpm *dpm)
468 {
469         /* REVISIT what could be done here? */
470         return ERROR_OK;
471 }
472
473 static int aarch64_instr_execute(struct arm_dpm *dpm,
474         uint32_t opcode)
475 {
476         struct aarch64_common *a8 = dpm_to_a8(dpm);
477         uint32_t dscr = DSCR_ITE;
478
479         return aarch64_exec_opcode(
480                         a8->armv8_common.arm.target,
481                         opcode,
482                         &dscr);
483 }
484
485 static int aarch64_instr_write_data_dcc(struct arm_dpm *dpm,
486         uint32_t opcode, uint32_t data)
487 {
488         struct aarch64_common *a8 = dpm_to_a8(dpm);
489         int retval;
490         uint32_t dscr = DSCR_ITE;
491
492         retval = aarch64_write_dcc(&a8->armv8_common, data);
493         if (retval != ERROR_OK)
494                 return retval;
495
496         return aarch64_exec_opcode(
497                         a8->armv8_common.arm.target,
498                         opcode,
499                         &dscr);
500 }
501
502 static int aarch64_instr_write_data_dcc_64(struct arm_dpm *dpm,
503         uint32_t opcode, uint64_t data)
504 {
505         struct aarch64_common *a8 = dpm_to_a8(dpm);
506         int retval;
507         uint32_t dscr = DSCR_ITE;
508
509         retval = aarch64_write_dcc_64(&a8->armv8_common, data);
510         if (retval != ERROR_OK)
511                 return retval;
512
513         return aarch64_exec_opcode(
514                         a8->armv8_common.arm.target,
515                         opcode,
516                         &dscr);
517 }
518
519 static int aarch64_instr_write_data_r0(struct arm_dpm *dpm,
520         uint32_t opcode, uint32_t data)
521 {
522         struct aarch64_common *a8 = dpm_to_a8(dpm);
523         uint32_t dscr = DSCR_ITE;
524         int retval;
525
526         retval = aarch64_write_dcc(&a8->armv8_common, data);
527         if (retval != ERROR_OK)
528                 return retval;
529
530         retval = aarch64_exec_opcode(
531                         a8->armv8_common.arm.target,
532                         ARMV8_MRS(SYSTEM_DBG_DTRRX_EL0, 0),
533                         &dscr);
534         if (retval != ERROR_OK)
535                 return retval;
536
537         /* then the opcode, taking data from R0 */
538         retval = aarch64_exec_opcode(
539                         a8->armv8_common.arm.target,
540                         opcode,
541                         &dscr);
542
543         return retval;
544 }
545
546 static int aarch64_instr_write_data_r0_64(struct arm_dpm *dpm,
547         uint32_t opcode, uint64_t data)
548 {
549         struct aarch64_common *a8 = dpm_to_a8(dpm);
550         uint32_t dscr = DSCR_ITE;
551         int retval;
552
553         retval = aarch64_write_dcc_64(&a8->armv8_common, data);
554         if (retval != ERROR_OK)
555                 return retval;
556
557         retval = aarch64_exec_opcode(
558                         a8->armv8_common.arm.target,
559                         ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0),
560                         &dscr);
561         if (retval != ERROR_OK)
562                 return retval;
563
564         /* then the opcode, taking data from R0 */
565         retval = aarch64_exec_opcode(
566                         a8->armv8_common.arm.target,
567                         opcode,
568                         &dscr);
569
570         return retval;
571 }
572
573 static int aarch64_instr_cpsr_sync(struct arm_dpm *dpm)
574 {
575         struct target *target = dpm->arm->target;
576         uint32_t dscr = DSCR_ITE;
577
578         /* "Prefetch flush" after modifying execution status in CPSR */
579         return aarch64_exec_opcode(target,
580                         DSB_SY,
581                         &dscr);
582 }
583
584 static int aarch64_instr_read_data_dcc(struct arm_dpm *dpm,
585         uint32_t opcode, uint32_t *data)
586 {
587         struct aarch64_common *a8 = dpm_to_a8(dpm);
588         int retval;
589         uint32_t dscr = DSCR_ITE;
590
591         /* the opcode, writing data to DCC */
592         retval = aarch64_exec_opcode(
593                         a8->armv8_common.arm.target,
594                         opcode,
595                         &dscr);
596         if (retval != ERROR_OK)
597                 return retval;
598
599         return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
600 }
601
602 static int aarch64_instr_read_data_dcc_64(struct arm_dpm *dpm,
603         uint32_t opcode, uint64_t *data)
604 {
605         struct aarch64_common *a8 = dpm_to_a8(dpm);
606         int retval;
607         uint32_t dscr = DSCR_ITE;
608
609         /* the opcode, writing data to DCC */
610         retval = aarch64_exec_opcode(
611                         a8->armv8_common.arm.target,
612                         opcode,
613                         &dscr);
614         if (retval != ERROR_OK)
615                 return retval;
616
617         return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
618 }
619
620 static int aarch64_instr_read_data_r0(struct arm_dpm *dpm,
621         uint32_t opcode, uint32_t *data)
622 {
623         struct aarch64_common *a8 = dpm_to_a8(dpm);
624         uint32_t dscr = DSCR_ITE;
625         int retval;
626
627         /* the opcode, writing data to R0 */
628         retval = aarch64_exec_opcode(
629                         a8->armv8_common.arm.target,
630                         opcode,
631                         &dscr);
632         if (retval != ERROR_OK)
633                 return retval;
634
635         /* write R0 to DCC */
636         retval = aarch64_exec_opcode(
637                         a8->armv8_common.arm.target,
638                         ARMV8_MSR_GP(SYSTEM_DBG_DTRTX_EL0, 0),  /* msr dbgdtr_el0, x0 */
639                         &dscr);
640         if (retval != ERROR_OK)
641                 return retval;
642
643         return aarch64_read_dcc(&a8->armv8_common, data, &dscr);
644 }
645
646 static int aarch64_instr_read_data_r0_64(struct arm_dpm *dpm,
647         uint32_t opcode, uint64_t *data)
648 {
649         struct aarch64_common *a8 = dpm_to_a8(dpm);
650         uint32_t dscr = DSCR_ITE;
651         int retval;
652
653         /* the opcode, writing data to R0 */
654         retval = aarch64_exec_opcode(
655                         a8->armv8_common.arm.target,
656                         opcode,
657                         &dscr);
658         if (retval != ERROR_OK)
659                 return retval;
660
661         /* write R0 to DCC */
662         retval = aarch64_exec_opcode(
663                         a8->armv8_common.arm.target,
664                         ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0),  /* msr dbgdtr_el0, x0 */
665                         &dscr);
666         if (retval != ERROR_OK)
667                 return retval;
668
669         return aarch64_read_dcc_64(&a8->armv8_common, data, &dscr);
670 }
671
672 static int aarch64_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
673         uint32_t addr, uint32_t control)
674 {
675         struct aarch64_common *a8 = dpm_to_a8(dpm);
676         uint32_t vr = a8->armv8_common.debug_base;
677         uint32_t cr = a8->armv8_common.debug_base;
678         int retval;
679
680         switch (index_t) {
681                 case 0 ... 15:  /* breakpoints */
682                         vr += CPUV8_DBG_BVR_BASE;
683                         cr += CPUV8_DBG_BCR_BASE;
684                         break;
685                 case 16 ... 31: /* watchpoints */
686                         vr += CPUV8_DBG_WVR_BASE;
687                         cr += CPUV8_DBG_WCR_BASE;
688                         index_t -= 16;
689                         break;
690                 default:
691                         return ERROR_FAIL;
692         }
693         vr += 16 * index_t;
694         cr += 16 * index_t;
695
696         LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
697                 (unsigned) vr, (unsigned) cr);
698
699         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
700                         vr, addr);
701         if (retval != ERROR_OK)
702                 return retval;
703         retval = aarch64_dap_write_memap_register_u32(dpm->arm->target,
704                         cr, control);
705         return retval;
706 }
707
708 static int aarch64_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
709 {
710         struct aarch64_common *a = dpm_to_a8(dpm);
711         uint32_t cr;
712
713         switch (index_t) {
714                 case 0 ... 15:
715                         cr = a->armv8_common.debug_base + CPUV8_DBG_BCR_BASE;
716                         break;
717                 case 16 ... 31:
718                         cr = a->armv8_common.debug_base + CPUV8_DBG_WCR_BASE;
719                         index_t -= 16;
720                         break;
721                 default:
722                         return ERROR_FAIL;
723         }
724         cr += 16 * index_t;
725
726         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
727
728         /* clear control register */
729         return aarch64_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
730
731 }
732
733 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
734 {
735         struct arm_dpm *dpm = &a8->armv8_common.dpm;
736         int retval;
737
738         dpm->arm = &a8->armv8_common.arm;
739         dpm->didr = debug;
740
741         dpm->prepare = aarch64_dpm_prepare;
742         dpm->finish = aarch64_dpm_finish;
743
744         dpm->instr_execute = aarch64_instr_execute;
745         dpm->instr_write_data_dcc = aarch64_instr_write_data_dcc;
746         dpm->instr_write_data_dcc_64 = aarch64_instr_write_data_dcc_64;
747         dpm->instr_write_data_r0 = aarch64_instr_write_data_r0;
748         dpm->instr_write_data_r0_64 = aarch64_instr_write_data_r0_64;
749         dpm->instr_cpsr_sync = aarch64_instr_cpsr_sync;
750
751         dpm->instr_read_data_dcc = aarch64_instr_read_data_dcc;
752         dpm->instr_read_data_dcc_64 = aarch64_instr_read_data_dcc_64;
753         dpm->instr_read_data_r0 = aarch64_instr_read_data_r0;
754         dpm->instr_read_data_r0_64 = aarch64_instr_read_data_r0_64;
755
756         dpm->arm_reg_current = armv8_reg_current;
757
758         dpm->bpwp_enable = aarch64_bpwp_enable;
759         dpm->bpwp_disable = aarch64_bpwp_disable;
760
761         retval = armv8_dpm_setup(dpm);
762         if (retval == ERROR_OK)
763                 retval = armv8_dpm_initialize(dpm);
764
765         return retval;
766 }
767 static struct target *get_aarch64(struct target *target, int32_t coreid)
768 {
769         struct target_list *head;
770         struct target *curr;
771
772         head = target->head;
773         while (head != (struct target_list *)NULL) {
774                 curr = head->target;
775                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
776                         return curr;
777                 head = head->next;
778         }
779         return target;
780 }
781 static int aarch64_halt(struct target *target);
782
783 static int aarch64_halt_smp(struct target *target)
784 {
785         int retval = 0;
786         struct target_list *head;
787         struct target *curr;
788         head = target->head;
789         while (head != (struct target_list *)NULL) {
790                 curr = head->target;
791                 if ((curr != target) && (curr->state != TARGET_HALTED))
792                         retval += aarch64_halt(curr);
793                 head = head->next;
794         }
795         return retval;
796 }
797
798 static int update_halt_gdb(struct target *target)
799 {
800         int retval = 0;
801         if (target->gdb_service && target->gdb_service->core[0] == -1) {
802                 target->gdb_service->target = target;
803                 target->gdb_service->core[0] = target->coreid;
804                 retval += aarch64_halt_smp(target);
805         }
806         return retval;
807 }
808
809 /*
810  * Cortex-A8 Run control
811  */
812
813 static int aarch64_poll(struct target *target)
814 {
815         int retval = ERROR_OK;
816         uint32_t dscr;
817         struct aarch64_common *aarch64 = target_to_aarch64(target);
818         struct armv8_common *armv8 = &aarch64->armv8_common;
819         enum target_state prev_target_state = target->state;
820         /*  toggle to another core is done by gdb as follow */
821         /*  maint packet J core_id */
822         /*  continue */
823         /*  the next polling trigger an halt event sent to gdb */
824         if ((target->state == TARGET_HALTED) && (target->smp) &&
825                 (target->gdb_service) &&
826                 (target->gdb_service->target == NULL)) {
827                 target->gdb_service->target =
828                         get_aarch64(target, target->gdb_service->core[1]);
829                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
830                 return retval;
831         }
832         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
833                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
834         if (retval != ERROR_OK)
835                 return retval;
836         aarch64->cpudbg_dscr = dscr;
837
838         if (DSCR_RUN_MODE(dscr) == 0x3) {
839                 if (prev_target_state != TARGET_HALTED) {
840                         /* We have a halting debug event */
841                         LOG_DEBUG("Target halted");
842                         target->state = TARGET_HALTED;
843                         if ((prev_target_state == TARGET_RUNNING)
844                                 || (prev_target_state == TARGET_UNKNOWN)
845                                 || (prev_target_state == TARGET_RESET)) {
846                                 retval = aarch64_debug_entry(target);
847                                 if (retval != ERROR_OK)
848                                         return retval;
849                                 if (target->smp) {
850                                         retval = update_halt_gdb(target);
851                                         if (retval != ERROR_OK)
852                                                 return retval;
853                                 }
854                                 target_call_event_callbacks(target,
855                                         TARGET_EVENT_HALTED);
856                         }
857                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
858                                 LOG_DEBUG(" ");
859
860                                 retval = aarch64_debug_entry(target);
861                                 if (retval != ERROR_OK)
862                                         return retval;
863                                 if (target->smp) {
864                                         retval = update_halt_gdb(target);
865                                         if (retval != ERROR_OK)
866                                                 return retval;
867                                 }
868
869                                 target_call_event_callbacks(target,
870                                         TARGET_EVENT_DEBUG_HALTED);
871                         }
872                 }
873         } else
874                 target->state = TARGET_RUNNING;
875
876         return retval;
877 }
878
879 static int aarch64_halt(struct target *target)
880 {
881         int retval = ERROR_OK;
882         uint32_t dscr;
883         struct armv8_common *armv8 = target_to_armv8(target);
884
885         /* enable CTI*/
886         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
887                         armv8->cti_base + CTI_CTR, 1);
888         if (retval != ERROR_OK)
889                 return retval;
890
891         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
892                         armv8->cti_base + CTI_GATE, 3);
893         if (retval != ERROR_OK)
894                 return retval;
895
896         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
897                         armv8->cti_base + CTI_OUTEN0, 1);
898         if (retval != ERROR_OK)
899                 return retval;
900
901         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
902                         armv8->cti_base + CTI_OUTEN1, 2);
903         if (retval != ERROR_OK)
904                 return retval;
905
906         /*
907          * add HDE in halting debug mode
908          */
909         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
910                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
911         if (retval != ERROR_OK)
912                 return retval;
913
914         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
915                         armv8->debug_base + CPUV8_DBG_DSCR, dscr | DSCR_HDE);
916         if (retval != ERROR_OK)
917                 return retval;
918
919         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
920                         armv8->cti_base + CTI_APPPULSE, 1);
921         if (retval != ERROR_OK)
922                 return retval;
923
924         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
925                         armv8->cti_base + CTI_INACK, 1);
926         if (retval != ERROR_OK)
927                 return retval;
928
929
930         long long then = timeval_ms();
931         for (;; ) {
932                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
933                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
934                 if (retval != ERROR_OK)
935                         return retval;
936                 if ((dscr & DSCRV8_HALT_MASK) != 0)
937                         break;
938                 if (timeval_ms() > then + 1000) {
939                         LOG_ERROR("Timeout waiting for halt");
940                         return ERROR_FAIL;
941                 }
942         }
943
944         target->debug_reason = DBG_REASON_DBGRQ;
945
946         return ERROR_OK;
947 }
948
949 static int aarch64_internal_restore(struct target *target, int current,
950         uint64_t *address, int handle_breakpoints, int debug_execution)
951 {
952         struct armv8_common *armv8 = target_to_armv8(target);
953         struct arm *arm = &armv8->arm;
954         int retval;
955         uint64_t resume_pc;
956
957         if (!debug_execution)
958                 target_free_all_working_areas(target);
959
960         /* current = 1: continue on current pc, otherwise continue at <address> */
961         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
962         if (!current)
963                 resume_pc = *address;
964         else
965                 *address = resume_pc;
966
967         /* Make sure that the Armv7 gdb thumb fixups does not
968          * kill the return address
969          */
970         switch (arm->core_state) {
971                 case ARM_STATE_ARM:
972                         resume_pc &= 0xFFFFFFFC;
973                         break;
974                 case ARM_STATE_AARCH64:
975                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
976                         break;
977                 case ARM_STATE_THUMB:
978                 case ARM_STATE_THUMB_EE:
979                         /* When the return address is loaded into PC
980                          * bit 0 must be 1 to stay in Thumb state
981                          */
982                         resume_pc |= 0x1;
983                         break;
984                 case ARM_STATE_JAZELLE:
985                         LOG_ERROR("How do I resume into Jazelle state??");
986                         return ERROR_FAIL;
987         }
988         LOG_DEBUG("resume pc = 0x%16" PRIx64, resume_pc);
989         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
990         arm->pc->dirty = 1;
991         arm->pc->valid = 1;
992         dpmv8_modeswitch(&armv8->dpm, ARM_MODE_ANY);
993
994         /* called it now before restoring context because it uses cpu
995          * register r0 for restoring system control register */
996         retval = aarch64_restore_system_control_reg(target);
997         if (retval != ERROR_OK)
998                 return retval;
999         retval = aarch64_restore_context(target, handle_breakpoints);
1000         if (retval != ERROR_OK)
1001                 return retval;
1002         target->debug_reason = DBG_REASON_NOTHALTED;
1003         target->state = TARGET_RUNNING;
1004
1005         /* registers are now invalid */
1006         register_cache_invalidate(arm->core_cache);
1007
1008 #if 0
1009         /* the front-end may request us not to handle breakpoints */
1010         if (handle_breakpoints) {
1011                 /* Single step past breakpoint at current address */
1012                 breakpoint = breakpoint_find(target, resume_pc);
1013                 if (breakpoint) {
1014                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1015                         cortex_m3_unset_breakpoint(target, breakpoint);
1016                         cortex_m3_single_step_core(target);
1017                         cortex_m3_set_breakpoint(target, breakpoint);
1018                 }
1019         }
1020 #endif
1021
1022         return retval;
1023 }
1024
1025 static int aarch64_internal_restart(struct target *target)
1026 {
1027         struct armv8_common *armv8 = target_to_armv8(target);
1028         struct arm *arm = &armv8->arm;
1029         int retval;
1030         uint32_t dscr;
1031         /*
1032          * * Restart core and wait for it to be started.  Clear ITRen and sticky
1033          * * exception flags: see ARMv7 ARM, C5.9.
1034          *
1035          * REVISIT: for single stepping, we probably want to
1036          * disable IRQs by default, with optional override...
1037          */
1038
1039         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1040                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1041         if (retval != ERROR_OK)
1042                 return retval;
1043
1044         if ((dscr & DSCR_ITE) == 0)
1045                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1046
1047         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1048                         armv8->cti_base + CTI_APPPULSE, 2);
1049         if (retval != ERROR_OK)
1050                 return retval;
1051
1052         long long then = timeval_ms();
1053         for (;; ) {
1054                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1055                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1056                 if (retval != ERROR_OK)
1057                         return retval;
1058                 if ((dscr & DSCR_HDE) != 0)
1059                         break;
1060                 if (timeval_ms() > then + 1000) {
1061                         LOG_ERROR("Timeout waiting for resume");
1062                         return ERROR_FAIL;
1063                 }
1064         }
1065
1066         target->debug_reason = DBG_REASON_NOTHALTED;
1067         target->state = TARGET_RUNNING;
1068
1069         /* registers are now invalid */
1070         register_cache_invalidate(arm->core_cache);
1071
1072         return ERROR_OK;
1073 }
1074
1075 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
1076 {
1077         int retval = 0;
1078         struct target_list *head;
1079         struct target *curr;
1080         uint64_t address;
1081         head = target->head;
1082         while (head != (struct target_list *)NULL) {
1083                 curr = head->target;
1084                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1085                         /*  resume current address , not in step mode */
1086                         retval += aarch64_internal_restore(curr, 1, &address,
1087                                         handle_breakpoints, 0);
1088                         retval += aarch64_internal_restart(curr);
1089                 }
1090                 head = head->next;
1091
1092         }
1093         return retval;
1094 }
1095
1096 static int aarch64_resume(struct target *target, int current,
1097         target_addr_t address, int handle_breakpoints, int debug_execution)
1098 {
1099         int retval = 0;
1100         uint64_t addr = address;
1101
1102         /* dummy resume for smp toggle in order to reduce gdb impact  */
1103         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1104                 /*   simulate a start and halt of target */
1105                 target->gdb_service->target = NULL;
1106                 target->gdb_service->core[0] = target->gdb_service->core[1];
1107                 /*  fake resume at next poll we play the  target core[1], see poll*/
1108                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1109                 return 0;
1110         }
1111         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
1112                                  debug_execution);
1113         if (target->smp) {
1114                 target->gdb_service->core[0] = -1;
1115                 retval = aarch64_restore_smp(target, handle_breakpoints);
1116                 if (retval != ERROR_OK)
1117                         return retval;
1118         }
1119         aarch64_internal_restart(target);
1120
1121         if (!debug_execution) {
1122                 target->state = TARGET_RUNNING;
1123                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1124                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
1125         } else {
1126                 target->state = TARGET_DEBUG_RUNNING;
1127                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1128                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
1129         }
1130
1131         return ERROR_OK;
1132 }
1133
1134 static int aarch64_debug_entry(struct target *target)
1135 {
1136         int retval = ERROR_OK;
1137         struct aarch64_common *aarch64 = target_to_aarch64(target);
1138         struct armv8_common *armv8 = target_to_armv8(target);
1139
1140         LOG_DEBUG("dscr = 0x%08" PRIx32, aarch64->cpudbg_dscr);
1141
1142         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
1143          * imprecise data aborts get discarded by issuing a Data
1144          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1145          */
1146
1147         /* make sure to clear all sticky errors */
1148         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1149                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1150         if (retval != ERROR_OK)
1151                 return retval;
1152
1153         /* Examine debug reason */
1154         armv8_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
1155
1156         /* save address of instruction that triggered the watchpoint? */
1157         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1158                 uint32_t tmp;
1159                 uint64_t wfar = 0;
1160
1161                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1162                                 armv8->debug_base + CPUV8_DBG_WFAR1,
1163                                 &tmp);
1164                 if (retval != ERROR_OK)
1165                         return retval;
1166                 wfar = tmp;
1167                 wfar = (wfar << 32);
1168                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1169                                 armv8->debug_base + CPUV8_DBG_WFAR0,
1170                                 &tmp);
1171                 if (retval != ERROR_OK)
1172                         return retval;
1173                 wfar |= tmp;
1174                 armv8_dpm_report_wfar(&armv8->dpm, wfar);
1175         }
1176
1177         retval = armv8_dpm_read_current_registers(&armv8->dpm);
1178
1179         if (armv8->post_debug_entry) {
1180                 retval = armv8->post_debug_entry(target);
1181                 if (retval != ERROR_OK)
1182                         return retval;
1183         }
1184
1185         return retval;
1186 }
1187
1188 static int aarch64_post_debug_entry(struct target *target)
1189 {
1190         struct aarch64_common *aarch64 = target_to_aarch64(target);
1191         struct armv8_common *armv8 = &aarch64->armv8_common;
1192         int retval;
1193
1194         mem_ap_write_atomic_u32(armv8->debug_ap,
1195                                     armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1196         switch (armv8->arm.core_mode) {
1197                 case ARMV8_64_EL0T:
1198                 case ARMV8_64_EL1T:
1199                 case ARMV8_64_EL1H:
1200                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1201                                         0, 0,   /* op1, op2 */
1202                                         1, 0,   /* CRn, CRm */
1203                                         &aarch64->system_control_reg);
1204                         if (retval != ERROR_OK)
1205                                 return retval;
1206                 break;
1207                 case ARMV8_64_EL2T:
1208                 case ARMV8_64_EL2H:
1209                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1210                                         4, 0,   /* op1, op2 */
1211                                         1, 0,   /* CRn, CRm */
1212                                         &aarch64->system_control_reg);
1213                         if (retval != ERROR_OK)
1214                                 return retval;
1215                 break;
1216                 case ARMV8_64_EL3H:
1217                 case ARMV8_64_EL3T:
1218                         retval = armv8->arm.mrs(target, 3, /*op 0*/
1219                                         6, 0,   /* op1, op2 */
1220                                         1, 0,   /* CRn, CRm */
1221                                         &aarch64->system_control_reg);
1222                         if (retval != ERROR_OK)
1223                                 return retval;
1224                 break;
1225                 default:
1226                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
1227         }
1228         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
1229         aarch64->system_control_reg_curr = aarch64->system_control_reg;
1230
1231         if (armv8->armv8_mmu.armv8_cache.ctype == -1)
1232                 armv8_identify_cache(target);
1233
1234         armv8->armv8_mmu.mmu_enabled =
1235                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
1236         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
1237                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
1238         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
1239                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
1240         aarch64->curr_mode = armv8->arm.core_mode;
1241         return ERROR_OK;
1242 }
1243
1244 static int aarch64_step(struct target *target, int current, target_addr_t address,
1245         int handle_breakpoints)
1246 {
1247         struct armv8_common *armv8 = target_to_armv8(target);
1248         int retval;
1249         uint32_t tmp;
1250
1251         if (target->state != TARGET_HALTED) {
1252                 LOG_WARNING("target not halted");
1253                 return ERROR_TARGET_NOT_HALTED;
1254         }
1255
1256         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1257                         armv8->debug_base + CPUV8_DBG_EDECR, &tmp);
1258         if (retval != ERROR_OK)
1259                 return retval;
1260
1261         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1262                         armv8->debug_base + CPUV8_DBG_EDECR, (tmp|0x4));
1263         if (retval != ERROR_OK)
1264                 return retval;
1265
1266         target->debug_reason = DBG_REASON_SINGLESTEP;
1267         retval = aarch64_resume(target, 1, address, 0, 0);
1268         if (retval != ERROR_OK)
1269                 return retval;
1270
1271         long long then = timeval_ms();
1272         while (target->state != TARGET_HALTED) {
1273                 mem_ap_read_atomic_u32(armv8->debug_ap,
1274                         armv8->debug_base + CPUV8_DBG_EDESR, &tmp);
1275                 LOG_DEBUG("DESR = %#x", tmp);
1276                 retval = aarch64_poll(target);
1277                 if (retval != ERROR_OK)
1278                         return retval;
1279                 if (timeval_ms() > then + 1000) {
1280                         LOG_ERROR("timeout waiting for target halt");
1281                         return ERROR_FAIL;
1282                 }
1283         }
1284
1285         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1286                         armv8->debug_base + CPUV8_DBG_EDECR, (tmp&(~0x4)));
1287         if (retval != ERROR_OK)
1288                 return retval;
1289
1290         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1291         if (target->state == TARGET_HALTED)
1292                 LOG_DEBUG("target stepped");
1293
1294         return ERROR_OK;
1295 }
1296
1297 static int aarch64_restore_context(struct target *target, bool bpwp)
1298 {
1299         struct armv8_common *armv8 = target_to_armv8(target);
1300
1301         LOG_DEBUG(" ");
1302
1303         if (armv8->pre_restore_context)
1304                 armv8->pre_restore_context(target);
1305
1306         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1307
1308 }
1309
1310 /*
1311  * Cortex-A8 Breakpoint and watchpoint functions
1312  */
1313
1314 /* Setup hardware Breakpoint Register Pair */
1315 static int aarch64_set_breakpoint(struct target *target,
1316         struct breakpoint *breakpoint, uint8_t matchmode)
1317 {
1318         int retval;
1319         int brp_i = 0;
1320         uint32_t control;
1321         uint8_t byte_addr_select = 0x0F;
1322         struct aarch64_common *aarch64 = target_to_aarch64(target);
1323         struct armv8_common *armv8 = &aarch64->armv8_common;
1324         struct aarch64_brp *brp_list = aarch64->brp_list;
1325         uint32_t dscr;
1326
1327         if (breakpoint->set) {
1328                 LOG_WARNING("breakpoint already set");
1329                 return ERROR_OK;
1330         }
1331
1332         if (breakpoint->type == BKPT_HARD) {
1333                 int64_t bpt_value;
1334                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1335                         brp_i++;
1336                 if (brp_i >= aarch64->brp_num) {
1337                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1338                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1339                 }
1340                 breakpoint->set = brp_i + 1;
1341                 if (breakpoint->length == 2)
1342                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1343                 control = ((matchmode & 0x7) << 20)
1344                         | (1 << 13)
1345                         | (byte_addr_select << 5)
1346                         | (3 << 1) | 1;
1347                 brp_list[brp_i].used = 1;
1348                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1349                 brp_list[brp_i].control = control;
1350                 bpt_value = brp_list[brp_i].value;
1351
1352                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1353                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1354                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
1355                 if (retval != ERROR_OK)
1356                         return retval;
1357                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1358                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1359                                 (uint32_t)(bpt_value >> 32));
1360                 if (retval != ERROR_OK)
1361                         return retval;
1362
1363                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1364                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1365                                 brp_list[brp_i].control);
1366                 if (retval != ERROR_OK)
1367                         return retval;
1368                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1369                         brp_list[brp_i].control,
1370                         brp_list[brp_i].value);
1371
1372         } else if (breakpoint->type == BKPT_SOFT) {
1373                 uint8_t code[4];
1374                 buf_set_u32(code, 0, 32, ARMV8_BKPT(0x11));
1375                 retval = target_read_memory(target,
1376                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1377                                 breakpoint->length, 1,
1378                                 breakpoint->orig_instr);
1379                 if (retval != ERROR_OK)
1380                         return retval;
1381                 retval = target_write_memory(target,
1382                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1383                                 breakpoint->length, 1, code);
1384                 if (retval != ERROR_OK)
1385                         return retval;
1386                 breakpoint->set = 0x11; /* Any nice value but 0 */
1387         }
1388
1389         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1390                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1391         /* Ensure that halting debug mode is enable */
1392         dscr = dscr | DSCR_HDE;
1393         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1394                                          armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1395         if (retval != ERROR_OK) {
1396                 LOG_DEBUG("Failed to set DSCR.HDE");
1397                 return retval;
1398         }
1399
1400         return ERROR_OK;
1401 }
1402
1403 static int aarch64_set_context_breakpoint(struct target *target,
1404         struct breakpoint *breakpoint, uint8_t matchmode)
1405 {
1406         int retval = ERROR_FAIL;
1407         int brp_i = 0;
1408         uint32_t control;
1409         uint8_t byte_addr_select = 0x0F;
1410         struct aarch64_common *aarch64 = target_to_aarch64(target);
1411         struct armv8_common *armv8 = &aarch64->armv8_common;
1412         struct aarch64_brp *brp_list = aarch64->brp_list;
1413
1414         if (breakpoint->set) {
1415                 LOG_WARNING("breakpoint already set");
1416                 return retval;
1417         }
1418         /*check available context BRPs*/
1419         while ((brp_list[brp_i].used ||
1420                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1421                 brp_i++;
1422
1423         if (brp_i >= aarch64->brp_num) {
1424                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1425                 return ERROR_FAIL;
1426         }
1427
1428         breakpoint->set = brp_i + 1;
1429         control = ((matchmode & 0x7) << 20)
1430                 | (1 << 13)
1431                 | (byte_addr_select << 5)
1432                 | (3 << 1) | 1;
1433         brp_list[brp_i].used = 1;
1434         brp_list[brp_i].value = (breakpoint->asid);
1435         brp_list[brp_i].control = control;
1436         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1437                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1438                         brp_list[brp_i].value);
1439         if (retval != ERROR_OK)
1440                 return retval;
1441         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1442                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1443                         brp_list[brp_i].control);
1444         if (retval != ERROR_OK)
1445                 return retval;
1446         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1447                 brp_list[brp_i].control,
1448                 brp_list[brp_i].value);
1449         return ERROR_OK;
1450
1451 }
1452
1453 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1454 {
1455         int retval = ERROR_FAIL;
1456         int brp_1 = 0;  /* holds the contextID pair */
1457         int brp_2 = 0;  /* holds the IVA pair */
1458         uint32_t control_CTX, control_IVA;
1459         uint8_t CTX_byte_addr_select = 0x0F;
1460         uint8_t IVA_byte_addr_select = 0x0F;
1461         uint8_t CTX_machmode = 0x03;
1462         uint8_t IVA_machmode = 0x01;
1463         struct aarch64_common *aarch64 = target_to_aarch64(target);
1464         struct armv8_common *armv8 = &aarch64->armv8_common;
1465         struct aarch64_brp *brp_list = aarch64->brp_list;
1466
1467         if (breakpoint->set) {
1468                 LOG_WARNING("breakpoint already set");
1469                 return retval;
1470         }
1471         /*check available context BRPs*/
1472         while ((brp_list[brp_1].used ||
1473                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1474                 brp_1++;
1475
1476         printf("brp(CTX) found num: %d\n", brp_1);
1477         if (brp_1 >= aarch64->brp_num) {
1478                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1479                 return ERROR_FAIL;
1480         }
1481
1482         while ((brp_list[brp_2].used ||
1483                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1484                 brp_2++;
1485
1486         printf("brp(IVA) found num: %d\n", brp_2);
1487         if (brp_2 >= aarch64->brp_num) {
1488                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1489                 return ERROR_FAIL;
1490         }
1491
1492         breakpoint->set = brp_1 + 1;
1493         breakpoint->linked_BRP = brp_2;
1494         control_CTX = ((CTX_machmode & 0x7) << 20)
1495                 | (brp_2 << 16)
1496                 | (0 << 14)
1497                 | (CTX_byte_addr_select << 5)
1498                 | (3 << 1) | 1;
1499         brp_list[brp_1].used = 1;
1500         brp_list[brp_1].value = (breakpoint->asid);
1501         brp_list[brp_1].control = control_CTX;
1502         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1503                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1504                         brp_list[brp_1].value);
1505         if (retval != ERROR_OK)
1506                 return retval;
1507         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1508                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1509                         brp_list[brp_1].control);
1510         if (retval != ERROR_OK)
1511                 return retval;
1512
1513         control_IVA = ((IVA_machmode & 0x7) << 20)
1514                 | (brp_1 << 16)
1515                 | (1 << 13)
1516                 | (IVA_byte_addr_select << 5)
1517                 | (3 << 1) | 1;
1518         brp_list[brp_2].used = 1;
1519         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1520         brp_list[brp_2].control = control_IVA;
1521         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1522                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1523                         brp_list[brp_2].value & 0xFFFFFFFF);
1524         if (retval != ERROR_OK)
1525                 return retval;
1526         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1527                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1528                         brp_list[brp_2].value >> 32);
1529         if (retval != ERROR_OK)
1530                 return retval;
1531         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1532                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1533                         brp_list[brp_2].control);
1534         if (retval != ERROR_OK)
1535                 return retval;
1536
1537         return ERROR_OK;
1538 }
1539
1540 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1541 {
1542         int retval;
1543         struct aarch64_common *aarch64 = target_to_aarch64(target);
1544         struct armv8_common *armv8 = &aarch64->armv8_common;
1545         struct aarch64_brp *brp_list = aarch64->brp_list;
1546
1547         if (!breakpoint->set) {
1548                 LOG_WARNING("breakpoint not set");
1549                 return ERROR_OK;
1550         }
1551
1552         if (breakpoint->type == BKPT_HARD) {
1553                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1554                         int brp_i = breakpoint->set - 1;
1555                         int brp_j = breakpoint->linked_BRP;
1556                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1557                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1558                                 return ERROR_OK;
1559                         }
1560                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1561                                 brp_list[brp_i].control, brp_list[brp_i].value);
1562                         brp_list[brp_i].used = 0;
1563                         brp_list[brp_i].value = 0;
1564                         brp_list[brp_i].control = 0;
1565                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1566                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1567                                         brp_list[brp_i].control);
1568                         if (retval != ERROR_OK)
1569                                 return retval;
1570                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1571                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1572                                         (uint32_t)brp_list[brp_i].value);
1573                         if (retval != ERROR_OK)
1574                                 return retval;
1575                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1576                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1577                                         (uint32_t)brp_list[brp_i].value);
1578                         if (retval != ERROR_OK)
1579                                 return retval;
1580                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1581                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1582                                 return ERROR_OK;
1583                         }
1584                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1585                                 brp_list[brp_j].control, brp_list[brp_j].value);
1586                         brp_list[brp_j].used = 0;
1587                         brp_list[brp_j].value = 0;
1588                         brp_list[brp_j].control = 0;
1589                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1590                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1591                                         brp_list[brp_j].control);
1592                         if (retval != ERROR_OK)
1593                                 return retval;
1594                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1595                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].BRPn,
1596                                         (uint32_t)brp_list[brp_j].value);
1597                         if (retval != ERROR_OK)
1598                                 return retval;
1599                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1600                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].BRPn,
1601                                         (uint32_t)brp_list[brp_j].value);
1602                         if (retval != ERROR_OK)
1603                                 return retval;
1604
1605                         breakpoint->linked_BRP = 0;
1606                         breakpoint->set = 0;
1607                         return ERROR_OK;
1608
1609                 } else {
1610                         int brp_i = breakpoint->set - 1;
1611                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1612                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1613                                 return ERROR_OK;
1614                         }
1615                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1616                                 brp_list[brp_i].control, brp_list[brp_i].value);
1617                         brp_list[brp_i].used = 0;
1618                         brp_list[brp_i].value = 0;
1619                         brp_list[brp_i].control = 0;
1620                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1621                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1622                                         brp_list[brp_i].control);
1623                         if (retval != ERROR_OK)
1624                                 return retval;
1625                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1626                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1627                                         brp_list[brp_i].value);
1628                         if (retval != ERROR_OK)
1629                                 return retval;
1630
1631                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1632                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1633                                         (uint32_t)brp_list[brp_i].value);
1634                         if (retval != ERROR_OK)
1635                                 return retval;
1636                         breakpoint->set = 0;
1637                         return ERROR_OK;
1638                 }
1639         } else {
1640                 /* restore original instruction (kept in target endianness) */
1641                 if (breakpoint->length == 4) {
1642                         retval = target_write_memory(target,
1643                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1644                                         4, 1, breakpoint->orig_instr);
1645                         if (retval != ERROR_OK)
1646                                 return retval;
1647                 } else {
1648                         retval = target_write_memory(target,
1649                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1650                                         2, 1, breakpoint->orig_instr);
1651                         if (retval != ERROR_OK)
1652                                 return retval;
1653                 }
1654         }
1655         breakpoint->set = 0;
1656
1657         return ERROR_OK;
1658 }
1659
1660 static int aarch64_add_breakpoint(struct target *target,
1661         struct breakpoint *breakpoint)
1662 {
1663         struct aarch64_common *aarch64 = target_to_aarch64(target);
1664
1665         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1666                 LOG_INFO("no hardware breakpoint available");
1667                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1668         }
1669
1670         if (breakpoint->type == BKPT_HARD)
1671                 aarch64->brp_num_available--;
1672
1673         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1674 }
1675
1676 static int aarch64_add_context_breakpoint(struct target *target,
1677         struct breakpoint *breakpoint)
1678 {
1679         struct aarch64_common *aarch64 = target_to_aarch64(target);
1680
1681         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1682                 LOG_INFO("no hardware breakpoint available");
1683                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1684         }
1685
1686         if (breakpoint->type == BKPT_HARD)
1687                 aarch64->brp_num_available--;
1688
1689         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1690 }
1691
1692 static int aarch64_add_hybrid_breakpoint(struct target *target,
1693         struct breakpoint *breakpoint)
1694 {
1695         struct aarch64_common *aarch64 = target_to_aarch64(target);
1696
1697         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1698                 LOG_INFO("no hardware breakpoint available");
1699                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1700         }
1701
1702         if (breakpoint->type == BKPT_HARD)
1703                 aarch64->brp_num_available--;
1704
1705         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1706 }
1707
1708
1709 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1710 {
1711         struct aarch64_common *aarch64 = target_to_aarch64(target);
1712
1713 #if 0
1714 /* It is perfectly possible to remove breakpoints while the target is running */
1715         if (target->state != TARGET_HALTED) {
1716                 LOG_WARNING("target not halted");
1717                 return ERROR_TARGET_NOT_HALTED;
1718         }
1719 #endif
1720
1721         if (breakpoint->set) {
1722                 aarch64_unset_breakpoint(target, breakpoint);
1723                 if (breakpoint->type == BKPT_HARD)
1724                         aarch64->brp_num_available++;
1725         }
1726
1727         return ERROR_OK;
1728 }
1729
1730 /*
1731  * Cortex-A8 Reset functions
1732  */
1733
1734 static int aarch64_assert_reset(struct target *target)
1735 {
1736         struct armv8_common *armv8 = target_to_armv8(target);
1737
1738         LOG_DEBUG(" ");
1739
1740         /* FIXME when halt is requested, make it work somehow... */
1741
1742         /* Issue some kind of warm reset. */
1743         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1744                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1745         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1746                 /* REVISIT handle "pulls" cases, if there's
1747                  * hardware that needs them to work.
1748                  */
1749                 jtag_add_reset(0, 1);
1750         } else {
1751                 LOG_ERROR("%s: how to reset?", target_name(target));
1752                 return ERROR_FAIL;
1753         }
1754
1755         /* registers are now invalid */
1756         register_cache_invalidate(armv8->arm.core_cache);
1757
1758         target->state = TARGET_RESET;
1759
1760         return ERROR_OK;
1761 }
1762
1763 static int aarch64_deassert_reset(struct target *target)
1764 {
1765         int retval;
1766
1767         LOG_DEBUG(" ");
1768
1769         /* be certain SRST is off */
1770         jtag_add_reset(0, 0);
1771
1772         retval = aarch64_poll(target);
1773         if (retval != ERROR_OK)
1774                 return retval;
1775
1776         if (target->reset_halt) {
1777                 if (target->state != TARGET_HALTED) {
1778                         LOG_WARNING("%s: ran after reset and before halt ...",
1779                                 target_name(target));
1780                         retval = target_halt(target);
1781                         if (retval != ERROR_OK)
1782                                 return retval;
1783                 }
1784         }
1785
1786         return ERROR_OK;
1787 }
1788
1789 static int aarch64_write_apb_ap_memory(struct target *target,
1790         uint64_t address, uint32_t size,
1791         uint32_t count, const uint8_t *buffer)
1792 {
1793         /* write memory through APB-AP */
1794         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1795         struct armv8_common *armv8 = target_to_armv8(target);
1796         struct arm *arm = &armv8->arm;
1797         int total_bytes = count * size;
1798         int total_u32;
1799         int start_byte = address & 0x3;
1800         int end_byte   = (address + total_bytes) & 0x3;
1801         struct reg *reg;
1802         uint32_t dscr;
1803         uint8_t *tmp_buff = NULL;
1804
1805         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count%"  PRIu32,
1806                           address, size, count);
1807         if (target->state != TARGET_HALTED) {
1808                 LOG_WARNING("target not halted");
1809                 return ERROR_TARGET_NOT_HALTED;
1810         }
1811
1812         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1813
1814         /* Mark register R0 as dirty, as it will be used
1815          * for transferring the data.
1816          * It will be restored automatically when exiting
1817          * debug mode
1818          */
1819         reg = armv8_reg_current(arm, 1);
1820         reg->dirty = true;
1821
1822         reg = armv8_reg_current(arm, 0);
1823         reg->dirty = true;
1824
1825         /*  clear any abort  */
1826         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1827                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1828         if (retval != ERROR_OK)
1829                 return retval;
1830
1831
1832         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1833
1834         /* The algorithm only copies 32 bit words, so the buffer
1835          * should be expanded to include the words at either end.
1836          * The first and last words will be read first to avoid
1837          * corruption if needed.
1838          */
1839         tmp_buff = malloc(total_u32 * 4);
1840
1841         if ((start_byte != 0) && (total_u32 > 1)) {
1842                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1843                  * the other bytes in the word.
1844                  */
1845                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1846                 if (retval != ERROR_OK)
1847                         goto error_free_buff_w;
1848         }
1849
1850         /* If end of write is not aligned, or the write is less than 4 bytes */
1851         if ((end_byte != 0) ||
1852                 ((total_u32 == 1) && (total_bytes != 4))) {
1853
1854                 /* Read the last word to avoid corruption during 32 bit write */
1855                 int mem_offset = (total_u32-1) * 4;
1856                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1857                 if (retval != ERROR_OK)
1858                         goto error_free_buff_w;
1859         }
1860
1861         /* Copy the write buffer over the top of the temporary buffer */
1862         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1863
1864         /* We now have a 32 bit aligned buffer that can be written */
1865
1866         /* Read DSCR */
1867         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1868                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1869         if (retval != ERROR_OK)
1870                 goto error_free_buff_w;
1871
1872         /* Set Normal access mode  */
1873         dscr = (dscr & ~DSCR_MA);
1874         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1875                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1876
1877         if (arm->core_state == ARM_STATE_AARCH64) {
1878                 /* Write X0 with value 'address' using write procedure */
1879                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1880                 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
1881                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1882                 retval += aarch64_exec_opcode(target,
1883                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
1884         } else {
1885                 /* Write R0 with value 'address' using write procedure */
1886                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1887                 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
1888                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1889                 retval += aarch64_exec_opcode(target,
1890                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
1891
1892         }
1893         /* Step 1.d   - Change DCC to memory mode */
1894         dscr = dscr | DSCR_MA;
1895         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1896                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1897         if (retval != ERROR_OK)
1898                 goto error_unset_dtr_w;
1899
1900
1901         /* Step 2.a   - Do the write */
1902         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1903                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1904         if (retval != ERROR_OK)
1905                 goto error_unset_dtr_w;
1906
1907         /* Step 3.a   - Switch DTR mode back to Normal mode */
1908         dscr = (dscr & ~DSCR_MA);
1909         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1910                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1911         if (retval != ERROR_OK)
1912                 goto error_unset_dtr_w;
1913
1914         /* Check for sticky abort flags in the DSCR */
1915         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1916                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1917         if (retval != ERROR_OK)
1918                 goto error_free_buff_w;
1919         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1920                 /* Abort occurred - clear it and exit */
1921                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1922                 mem_ap_write_atomic_u32(armv8->debug_ap,
1923                                         armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1924                 goto error_free_buff_w;
1925         }
1926
1927         /* Done */
1928         free(tmp_buff);
1929         return ERROR_OK;
1930
1931 error_unset_dtr_w:
1932         /* Unset DTR mode */
1933         mem_ap_read_atomic_u32(armv8->debug_ap,
1934                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1935         dscr = (dscr & ~DSCR_MA);
1936         mem_ap_write_atomic_u32(armv8->debug_ap,
1937                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1938 error_free_buff_w:
1939         LOG_ERROR("error");
1940         free(tmp_buff);
1941         return ERROR_FAIL;
1942 }
1943
1944 static int aarch64_read_apb_ap_memory(struct target *target,
1945         target_addr_t address, uint32_t size,
1946         uint32_t count, uint8_t *buffer)
1947 {
1948         /* read memory through APB-AP */
1949         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1950         struct armv8_common *armv8 = target_to_armv8(target);
1951         struct arm *arm = &armv8->arm;
1952         int total_bytes = count * size;
1953         int total_u32;
1954         int start_byte = address & 0x3;
1955         int end_byte   = (address + total_bytes) & 0x3;
1956         struct reg *reg;
1957         uint32_t dscr;
1958         uint8_t *tmp_buff = NULL;
1959         uint8_t *u8buf_ptr;
1960         uint32_t value;
1961
1962         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%"  PRIu32,
1963                           address, size, count);
1964         if (target->state != TARGET_HALTED) {
1965                 LOG_WARNING("target not halted");
1966                 return ERROR_TARGET_NOT_HALTED;
1967         }
1968
1969         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1970         /* Mark register X0, X1 as dirty, as it will be used
1971          * for transferring the data.
1972          * It will be restored automatically when exiting
1973          * debug mode
1974          */
1975         reg = armv8_reg_current(arm, 1);
1976         reg->dirty = true;
1977
1978         reg = armv8_reg_current(arm, 0);
1979         reg->dirty = true;
1980
1981         /*      clear any abort  */
1982         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1983                                 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1984         if (retval != ERROR_OK)
1985                 goto error_free_buff_r;
1986
1987         /* Read DSCR */
1988         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1989                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1990
1991         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1992
1993         /* Set Normal access mode  */
1994         dscr = (dscr & ~DSCR_MA);
1995         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1996                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1997
1998         if (arm->core_state == ARM_STATE_AARCH64) {
1999                 /* Write X0 with value 'address' using write procedure */
2000                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2001                 retval += aarch64_write_dcc_64(armv8, address & ~0x3ULL);
2002                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2003                 retval += aarch64_exec_opcode(target, ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
2004                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2005                 retval += aarch64_exec_opcode(target, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0), &dscr);
2006                 /* Step 1.e - Change DCC to memory mode */
2007                 dscr = dscr | DSCR_MA;
2008                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
2009                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2010                 /* Step 1.f - read DBGDTRTX and discard the value */
2011                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2012                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2013         } else {
2014                 /* Write R0 with value 'address' using write procedure */
2015                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
2016                 retval += aarch64_write_dcc(armv8, address & ~0x3ULL);
2017                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2018                 retval += aarch64_exec_opcode(target,
2019                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), &dscr);
2020                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2021                 retval += aarch64_exec_opcode(target,
2022                                 T32_FMTITR(ARMV4_5_MCR(14, 0, 0, 0, 5, 0)), &dscr);
2023                 /* Step 1.e - Change DCC to memory mode */
2024                 dscr = dscr | DSCR_MA;
2025                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
2026                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2027                 /* Step 1.f - read DBGDTRTX and discard the value */
2028                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2029                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2030
2031         }
2032         if (retval != ERROR_OK)
2033                 goto error_unset_dtr_r;
2034
2035         /* Optimize the read as much as we can, either way we read in a single pass  */
2036         if ((start_byte) || (end_byte)) {
2037                 /* The algorithm only copies 32 bit words, so the buffer
2038                  * should be expanded to include the words at either end.
2039                  * The first and last words will be read into a temp buffer
2040                  * to avoid corruption
2041                  */
2042                 tmp_buff = malloc(total_u32 * 4);
2043                 if (!tmp_buff)
2044                         goto error_unset_dtr_r;
2045
2046                 /* use the tmp buffer to read the entire data */
2047                 u8buf_ptr = tmp_buff;
2048         } else
2049                 /* address and read length are aligned so read directly into the passed buffer */
2050                 u8buf_ptr = buffer;
2051
2052         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
2053          * Abort flags are sticky, so can be read at end of transactions
2054          *
2055          * This data is read in aligned to 32 bit boundary.
2056          */
2057
2058         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
2059          * increments X0 by 4. */
2060         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
2061                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
2062         if (retval != ERROR_OK)
2063                         goto error_unset_dtr_r;
2064
2065         /* Step 3.a - set DTR access mode back to Normal mode   */
2066         dscr = (dscr & ~DSCR_MA);
2067         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
2068                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2069         if (retval != ERROR_OK)
2070                 goto error_free_buff_r;
2071
2072         /* Step 3.b - read DBGDTRTX for the final value */
2073         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2074                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2075         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
2076
2077         /* Check for sticky abort flags in the DSCR */
2078         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2079                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2080         if (retval != ERROR_OK)
2081                 goto error_free_buff_r;
2082         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2083                 /* Abort occurred - clear it and exit */
2084                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2085                 mem_ap_write_atomic_u32(armv8->debug_ap,
2086                                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
2087                 goto error_free_buff_r;
2088         }
2089
2090         /* check if we need to copy aligned data by applying any shift necessary */
2091         if (tmp_buff) {
2092                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
2093                 free(tmp_buff);
2094         }
2095
2096         /* Done */
2097         return ERROR_OK;
2098
2099 error_unset_dtr_r:
2100         /* Unset DTR mode */
2101         mem_ap_read_atomic_u32(armv8->debug_ap,
2102                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2103         dscr = (dscr & ~DSCR_MA);
2104         mem_ap_write_atomic_u32(armv8->debug_ap,
2105                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2106 error_free_buff_r:
2107         LOG_ERROR("error");
2108         free(tmp_buff);
2109         return ERROR_FAIL;
2110 }
2111
2112 static int aarch64_read_phys_memory(struct target *target,
2113         target_addr_t address, uint32_t size,
2114         uint32_t count, uint8_t *buffer)
2115 {
2116         struct armv8_common *armv8 = target_to_armv8(target);
2117         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2118         struct adiv5_dap *swjdp = armv8->arm.dap;
2119         uint8_t apsel = swjdp->apsel;
2120         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
2121                 address, size, count);
2122
2123         if (count && buffer) {
2124
2125                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2126
2127                         /* read memory through AHB-AP */
2128                         retval = mem_ap_read_buf(armv8->memory_ap, buffer, size, count, address);
2129                 } else {
2130                         /* read memory through APB-AP */
2131                         retval = aarch64_mmu_modify(target, 0);
2132                         if (retval != ERROR_OK)
2133                                 return retval;
2134                         retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
2135                 }
2136         }
2137         return retval;
2138 }
2139
2140 static int aarch64_read_memory(struct target *target, target_addr_t address,
2141         uint32_t size, uint32_t count, uint8_t *buffer)
2142 {
2143         int mmu_enabled = 0;
2144         target_addr_t virt, phys;
2145         int retval;
2146         struct armv8_common *armv8 = target_to_armv8(target);
2147         struct adiv5_dap *swjdp = armv8->arm.dap;
2148         uint8_t apsel = swjdp->apsel;
2149
2150         /* aarch64 handles unaligned memory access */
2151         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2152                 size, count);
2153
2154         /* determine if MMU was enabled on target stop */
2155         retval = aarch64_mmu(target, &mmu_enabled);
2156         if (retval != ERROR_OK)
2157                 return retval;
2158
2159         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2160                 if (mmu_enabled) {
2161                         virt = address;
2162                         retval = aarch64_virt2phys(target, virt, &phys);
2163                         if (retval != ERROR_OK)
2164                                 return retval;
2165
2166                         LOG_DEBUG("Reading at virtual address. Translating v:0x%" TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR,
2167                                   virt, phys);
2168                         address = phys;
2169                 }
2170                 retval = aarch64_read_phys_memory(target, address, size, count,
2171                                                   buffer);
2172         } else {
2173                 if (mmu_enabled) {
2174                         retval = aarch64_check_address(target, address);
2175                         if (retval != ERROR_OK)
2176                                 return retval;
2177                         /* enable MMU as we could have disabled it for phys
2178                            access */
2179                         retval = aarch64_mmu_modify(target, 1);
2180                         if (retval != ERROR_OK)
2181                                 return retval;
2182                 }
2183                 retval = aarch64_read_apb_ap_memory(target, address, size,
2184                                                     count, buffer);
2185         }
2186         return retval;
2187 }
2188
2189 static int aarch64_write_phys_memory(struct target *target,
2190         target_addr_t address, uint32_t size,
2191         uint32_t count, const uint8_t *buffer)
2192 {
2193         struct armv8_common *armv8 = target_to_armv8(target);
2194         struct adiv5_dap *swjdp = armv8->arm.dap;
2195         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2196         uint8_t apsel = swjdp->apsel;
2197
2198         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
2199                 size, count);
2200
2201         if (count && buffer) {
2202
2203                 if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2204
2205                         /* write memory through AHB-AP */
2206                         retval = mem_ap_write_buf(armv8->memory_ap, buffer, size, count, address);
2207                 } else {
2208
2209                         /* write memory through APB-AP */
2210                         retval = aarch64_mmu_modify(target, 0);
2211                         if (retval != ERROR_OK)
2212                                 return retval;
2213                         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2214                 }
2215         }
2216
2217         /* REVISIT this op is generic ARMv7-A/R stuff */
2218         if (retval == ERROR_OK && target->state == TARGET_HALTED) {
2219                 struct arm_dpm *dpm = armv8->arm.dpm;
2220
2221                 retval = dpm->prepare(dpm);
2222                 if (retval != ERROR_OK)
2223                         return retval;
2224
2225                 /* The Cache handling will NOT work with MMU active, the
2226                  * wrong addresses will be invalidated!
2227                  *
2228                  * For both ICache and DCache, walk all cache lines in the
2229                  * address range. Cortex-A has fixed 64 byte line length.
2230                  *
2231                  * REVISIT per ARMv7, these may trigger watchpoints ...
2232                  */
2233
2234                 /* invalidate I-Cache */
2235                 if (armv8->armv8_mmu.armv8_cache.i_cache_enabled) {
2236                         /* ICIMVAU - Invalidate Cache single entry
2237                          * with MVA to PoU
2238                          *      MCR p15, 0, r0, c7, c5, 1
2239                          */
2240                         for (uint32_t cacheline = 0;
2241                                 cacheline < size * count;
2242                                 cacheline += 64) {
2243                                 retval = dpm->instr_write_data_r0(dpm,
2244                                                 ARMV8_MSR_GP(SYSTEM_ICIVAU, 0),
2245                                                 address + cacheline);
2246                                 if (retval != ERROR_OK)
2247                                         return retval;
2248                         }
2249                 }
2250
2251                 /* invalidate D-Cache */
2252                 if (armv8->armv8_mmu.armv8_cache.d_u_cache_enabled) {
2253                         /* DCIMVAC - Invalidate data Cache line
2254                          * with MVA to PoC
2255                          *      MCR p15, 0, r0, c7, c6, 1
2256                          */
2257                         for (uint32_t cacheline = 0;
2258                                 cacheline < size * count;
2259                                 cacheline += 64) {
2260                                 retval = dpm->instr_write_data_r0(dpm,
2261                                                 ARMV8_MSR_GP(SYSTEM_DCCVAU, 0),
2262                                                 address + cacheline);
2263                                 if (retval != ERROR_OK)
2264                                         return retval;
2265                         }
2266                 }
2267
2268                 /* (void) */ dpm->finish(dpm);
2269         }
2270
2271         return retval;
2272 }
2273
2274 static int aarch64_write_memory(struct target *target, target_addr_t address,
2275         uint32_t size, uint32_t count, const uint8_t *buffer)
2276 {
2277         int mmu_enabled = 0;
2278         target_addr_t virt, phys;
2279         int retval;
2280         struct armv8_common *armv8 = target_to_armv8(target);
2281         struct adiv5_dap *swjdp = armv8->arm.dap;
2282         uint8_t apsel = swjdp->apsel;
2283
2284         /* aarch64 handles unaligned memory access */
2285         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
2286                   "; count %" PRId32, address, size, count);
2287
2288         /* determine if MMU was enabled on target stop */
2289         retval = aarch64_mmu(target, &mmu_enabled);
2290         if (retval != ERROR_OK)
2291                 return retval;
2292
2293         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2294                 LOG_DEBUG("Writing memory to address 0x%" TARGET_PRIxADDR "; size %"
2295                           PRId32 "; count %" PRId32, address, size, count);
2296                 if (mmu_enabled) {
2297                         virt = address;
2298                         retval = aarch64_virt2phys(target, virt, &phys);
2299                         if (retval != ERROR_OK)
2300                                 return retval;
2301
2302                         LOG_DEBUG("Writing to virtual address. Translating v:0x%"
2303                                   TARGET_PRIxADDR " to r:0x%" TARGET_PRIxADDR, virt, phys);
2304                         address = phys;
2305                 }
2306                 retval = aarch64_write_phys_memory(target, address, size,
2307                                 count, buffer);
2308         } else {
2309                 if (mmu_enabled) {
2310                         retval = aarch64_check_address(target, address);
2311                         if (retval != ERROR_OK)
2312                                 return retval;
2313                         /* enable MMU as we could have disabled it for phys access */
2314                         retval = aarch64_mmu_modify(target, 1);
2315                         if (retval != ERROR_OK)
2316                                 return retval;
2317                 }
2318                 retval = aarch64_write_apb_ap_memory(target, address, size, count, buffer);
2319         }
2320         return retval;
2321 }
2322
2323 static int aarch64_handle_target_request(void *priv)
2324 {
2325         struct target *target = priv;
2326         struct armv8_common *armv8 = target_to_armv8(target);
2327         int retval;
2328
2329         if (!target_was_examined(target))
2330                 return ERROR_OK;
2331         if (!target->dbg_msg_enabled)
2332                 return ERROR_OK;
2333
2334         if (target->state == TARGET_RUNNING) {
2335                 uint32_t request;
2336                 uint32_t dscr;
2337                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2338                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2339
2340                 /* check if we have data */
2341                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2342                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2343                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
2344                         if (retval == ERROR_OK) {
2345                                 target_request(target, request);
2346                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2347                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2348                         }
2349                 }
2350         }
2351
2352         return ERROR_OK;
2353 }
2354
2355 static int aarch64_examine_first(struct target *target)
2356 {
2357         struct aarch64_common *aarch64 = target_to_aarch64(target);
2358         struct armv8_common *armv8 = &aarch64->armv8_common;
2359         struct adiv5_dap *swjdp = armv8->arm.dap;
2360         int i;
2361         int retval = ERROR_OK;
2362         uint64_t debug, ttypr;
2363         uint32_t cpuid;
2364         uint32_t tmp0, tmp1;
2365         debug = ttypr = cpuid = 0;
2366
2367         /* We do one extra read to ensure DAP is configured,
2368          * we call ahbap_debugport_init(swjdp) instead
2369          */
2370         retval = dap_dp_init(swjdp);
2371         if (retval != ERROR_OK)
2372                 return retval;
2373
2374         /* Search for the APB-AB - it is needed for access to debug registers */
2375         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2376         if (retval != ERROR_OK) {
2377                 LOG_ERROR("Could not find APB-AP for debug access");
2378                 return retval;
2379         }
2380
2381         retval = mem_ap_init(armv8->debug_ap);
2382         if (retval != ERROR_OK) {
2383                 LOG_ERROR("Could not initialize the APB-AP");
2384                 return retval;
2385         }
2386
2387         armv8->debug_ap->memaccess_tck = 80;
2388
2389         /* Search for the AHB-AB */
2390         armv8->memory_ap_available = false;
2391         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv8->memory_ap);
2392         if (retval == ERROR_OK) {
2393                 retval = mem_ap_init(armv8->memory_ap);
2394                 if (retval == ERROR_OK)
2395                         armv8->memory_ap_available = true;
2396         }
2397         if (retval != ERROR_OK) {
2398                 /* AHB-AP not found or unavailable - use the CPU */
2399                 LOG_DEBUG("No AHB-AP available for memory access");
2400         }
2401
2402
2403         if (!target->dbgbase_set) {
2404                 uint32_t dbgbase;
2405                 /* Get ROM Table base */
2406                 uint32_t apid;
2407                 int32_t coreidx = target->coreid;
2408                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
2409                 if (retval != ERROR_OK)
2410                         return retval;
2411                 /* Lookup 0x15 -- Processor DAP */
2412                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
2413                                 &armv8->debug_base, &coreidx);
2414                 if (retval != ERROR_OK)
2415                         return retval;
2416                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32
2417                                 " apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
2418         } else
2419                 armv8->debug_base = target->dbgbase;
2420
2421         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2422                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
2423         if (retval != ERROR_OK) {
2424                 LOG_DEBUG("LOCK debug access fail");
2425                 return retval;
2426         }
2427
2428         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2429                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
2430         if (retval != ERROR_OK) {
2431                 LOG_DEBUG("Examine %s failed", "oslock");
2432                 return retval;
2433         }
2434
2435         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2436                         armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
2437         if (retval != ERROR_OK) {
2438                 LOG_DEBUG("Examine %s failed", "CPUID");
2439                 return retval;
2440         }
2441
2442         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2443                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
2444         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2445                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
2446         if (retval != ERROR_OK) {
2447                 LOG_DEBUG("Examine %s failed", "Memory Model Type");
2448                 return retval;
2449         }
2450         ttypr |= tmp1;
2451         ttypr = (ttypr << 32) | tmp0;
2452
2453         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2454                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp0);
2455         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
2456                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp1);
2457         if (retval != ERROR_OK) {
2458                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2459                 return retval;
2460         }
2461         debug |= tmp1;
2462         debug = (debug << 32) | tmp0;
2463
2464         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2465         LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
2466         LOG_DEBUG("debug = 0x%08" PRIx64, debug);
2467
2468         if (target->ctibase == 0) {
2469                 /* assume a v8 rom table layout */
2470                 armv8->cti_base = target->ctibase = armv8->debug_base + 0x10000;
2471                 LOG_INFO("Target ctibase is not set, assuming 0x%0" PRIx32, target->ctibase);
2472         } else
2473                 armv8->cti_base = target->ctibase;
2474
2475         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2476                         armv8->cti_base + CTI_UNLOCK , 0xC5ACCE55);
2477         if (retval != ERROR_OK)
2478                 return retval;
2479
2480
2481         armv8->arm.core_type = ARM_MODE_MON;
2482         retval = aarch64_dpm_setup(aarch64, debug);
2483         if (retval != ERROR_OK)
2484                 return retval;
2485
2486         /* Setup Breakpoint Register Pairs */
2487         aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
2488         aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
2489         aarch64->brp_num_available = aarch64->brp_num;
2490         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2491         for (i = 0; i < aarch64->brp_num; i++) {
2492                 aarch64->brp_list[i].used = 0;
2493                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
2494                         aarch64->brp_list[i].type = BRP_NORMAL;
2495                 else
2496                         aarch64->brp_list[i].type = BRP_CONTEXT;
2497                 aarch64->brp_list[i].value = 0;
2498                 aarch64->brp_list[i].control = 0;
2499                 aarch64->brp_list[i].BRPn = i;
2500         }
2501
2502         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
2503
2504         target_set_examined(target);
2505         return ERROR_OK;
2506 }
2507
2508 static int aarch64_examine(struct target *target)
2509 {
2510         int retval = ERROR_OK;
2511
2512         /* don't re-probe hardware after each reset */
2513         if (!target_was_examined(target))
2514                 retval = aarch64_examine_first(target);
2515
2516         /* Configure core debug access */
2517         if (retval == ERROR_OK)
2518                 retval = aarch64_init_debug_access(target);
2519
2520         return retval;
2521 }
2522
2523 /*
2524  *      Cortex-A8 target creation and initialization
2525  */
2526
2527 static int aarch64_init_target(struct command_context *cmd_ctx,
2528         struct target *target)
2529 {
2530         /* examine_first() does a bunch of this */
2531         return ERROR_OK;
2532 }
2533
2534 static int aarch64_init_arch_info(struct target *target,
2535         struct aarch64_common *aarch64, struct jtag_tap *tap)
2536 {
2537         struct armv8_common *armv8 = &aarch64->armv8_common;
2538         struct adiv5_dap *dap = armv8->arm.dap;
2539
2540         armv8->arm.dap = dap;
2541
2542         /* Setup struct aarch64_common */
2543         aarch64->common_magic = AARCH64_COMMON_MAGIC;
2544         /*  tap has no dap initialized */
2545         if (!tap->dap) {
2546                 tap->dap = dap_init();
2547
2548                 /* Leave (only) generic DAP stuff for debugport_init() */
2549                 tap->dap->tap = tap;
2550         }
2551
2552         armv8->arm.dap = tap->dap;
2553
2554         aarch64->fast_reg_read = 0;
2555
2556         /* register arch-specific functions */
2557         armv8->examine_debug_reason = NULL;
2558
2559         armv8->post_debug_entry = aarch64_post_debug_entry;
2560
2561         armv8->pre_restore_context = NULL;
2562
2563         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
2564
2565         /* REVISIT v7a setup should be in a v7a-specific routine */
2566         armv8_init_arch_info(target, armv8);
2567         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
2568
2569         return ERROR_OK;
2570 }
2571
2572 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2573 {
2574         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
2575
2576         return aarch64_init_arch_info(target, aarch64, target->tap);
2577 }
2578
2579 static int aarch64_mmu(struct target *target, int *enabled)
2580 {
2581         if (target->state != TARGET_HALTED) {
2582                 LOG_ERROR("%s: target not halted", __func__);
2583                 return ERROR_TARGET_INVALID;
2584         }
2585
2586         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2587         return ERROR_OK;
2588 }
2589
2590 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2591                              target_addr_t *phys)
2592 {
2593         int retval = ERROR_FAIL;
2594         struct armv8_common *armv8 = target_to_armv8(target);
2595         struct adiv5_dap *swjdp = armv8->arm.dap;
2596         uint8_t apsel = swjdp->apsel;
2597         if (armv8->memory_ap_available && (apsel == armv8->memory_ap->ap_num)) {
2598                 uint32_t ret;
2599                 retval = armv8_mmu_translate_va(target,
2600                                 virt, &ret);
2601                 if (retval != ERROR_OK)
2602                         goto done;
2603                 *phys = ret;
2604         } else {
2605                 LOG_ERROR("AAR64 processor not support translate va to pa");
2606         }
2607 done:
2608         return retval;
2609 }
2610
2611 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2612 {
2613         struct target *target = get_current_target(CMD_CTX);
2614         struct armv8_common *armv8 = target_to_armv8(target);
2615
2616         return armv8_handle_cache_info_command(CMD_CTX,
2617                         &armv8->armv8_mmu.armv8_cache);
2618 }
2619
2620
2621 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2622 {
2623         struct target *target = get_current_target(CMD_CTX);
2624         if (!target_was_examined(target)) {
2625                 LOG_ERROR("target not examined yet");
2626                 return ERROR_FAIL;
2627         }
2628
2629         return aarch64_init_debug_access(target);
2630 }
2631 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2632 {
2633         struct target *target = get_current_target(CMD_CTX);
2634         /* check target is an smp target */
2635         struct target_list *head;
2636         struct target *curr;
2637         head = target->head;
2638         target->smp = 0;
2639         if (head != (struct target_list *)NULL) {
2640                 while (head != (struct target_list *)NULL) {
2641                         curr = head->target;
2642                         curr->smp = 0;
2643                         head = head->next;
2644                 }
2645                 /*  fixes the target display to the debugger */
2646                 target->gdb_service->target = target;
2647         }
2648         return ERROR_OK;
2649 }
2650
2651 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2652 {
2653         struct target *target = get_current_target(CMD_CTX);
2654         struct target_list *head;
2655         struct target *curr;
2656         head = target->head;
2657         if (head != (struct target_list *)NULL) {
2658                 target->smp = 1;
2659                 while (head != (struct target_list *)NULL) {
2660                         curr = head->target;
2661                         curr->smp = 1;
2662                         head = head->next;
2663                 }
2664         }
2665         return ERROR_OK;
2666 }
2667
2668 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2669 {
2670         struct target *target = get_current_target(CMD_CTX);
2671         int retval = ERROR_OK;
2672         struct target_list *head;
2673         head = target->head;
2674         if (head != (struct target_list *)NULL) {
2675                 if (CMD_ARGC == 1) {
2676                         int coreid = 0;
2677                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2678                         if (ERROR_OK != retval)
2679                                 return retval;
2680                         target->gdb_service->core[1] = coreid;
2681
2682                 }
2683                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2684                         , target->gdb_service->core[1]);
2685         }
2686         return ERROR_OK;
2687 }
2688
2689 static const struct command_registration aarch64_exec_command_handlers[] = {
2690         {
2691                 .name = "cache_info",
2692                 .handler = aarch64_handle_cache_info_command,
2693                 .mode = COMMAND_EXEC,
2694                 .help = "display information about target caches",
2695                 .usage = "",
2696         },
2697         {
2698                 .name = "dbginit",
2699                 .handler = aarch64_handle_dbginit_command,
2700                 .mode = COMMAND_EXEC,
2701                 .help = "Initialize core debug",
2702                 .usage = "",
2703         },
2704         {       .name = "smp_off",
2705                 .handler = aarch64_handle_smp_off_command,
2706                 .mode = COMMAND_EXEC,
2707                 .help = "Stop smp handling",
2708                 .usage = "",
2709         },
2710         {
2711                 .name = "smp_on",
2712                 .handler = aarch64_handle_smp_on_command,
2713                 .mode = COMMAND_EXEC,
2714                 .help = "Restart smp handling",
2715                 .usage = "",
2716         },
2717         {
2718                 .name = "smp_gdb",
2719                 .handler = aarch64_handle_smp_gdb_command,
2720                 .mode = COMMAND_EXEC,
2721                 .help = "display/fix current core played to gdb",
2722                 .usage = "",
2723         },
2724
2725
2726         COMMAND_REGISTRATION_DONE
2727 };
2728 static const struct command_registration aarch64_command_handlers[] = {
2729         {
2730                 .chain = arm_command_handlers,
2731         },
2732         {
2733                 .chain = armv8_command_handlers,
2734         },
2735         {
2736                 .name = "cortex_a",
2737                 .mode = COMMAND_ANY,
2738                 .help = "Cortex-A command group",
2739                 .usage = "",
2740                 .chain = aarch64_exec_command_handlers,
2741         },
2742         COMMAND_REGISTRATION_DONE
2743 };
2744
2745 struct target_type aarch64_target = {
2746         .name = "aarch64",
2747
2748         .poll = aarch64_poll,
2749         .arch_state = armv8_arch_state,
2750
2751         .halt = aarch64_halt,
2752         .resume = aarch64_resume,
2753         .step = aarch64_step,
2754
2755         .assert_reset = aarch64_assert_reset,
2756         .deassert_reset = aarch64_deassert_reset,
2757
2758         /* REVISIT allow exporting VFP3 registers ... */
2759         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2760
2761         .read_memory = aarch64_read_memory,
2762         .write_memory = aarch64_write_memory,
2763
2764         .checksum_memory = arm_checksum_memory,
2765         .blank_check_memory = arm_blank_check_memory,
2766
2767         .run_algorithm = armv4_5_run_algorithm,
2768
2769         .add_breakpoint = aarch64_add_breakpoint,
2770         .add_context_breakpoint = aarch64_add_context_breakpoint,
2771         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2772         .remove_breakpoint = aarch64_remove_breakpoint,
2773         .add_watchpoint = NULL,
2774         .remove_watchpoint = NULL,
2775
2776         .commands = aarch64_command_handlers,
2777         .target_create = aarch64_target_create,
2778         .init_target = aarch64_init_target,
2779         .examine = aarch64_examine,
2780
2781         .read_phys_memory = aarch64_read_phys_memory,
2782         .write_phys_memory = aarch64_write_phys_memory,
2783         .mmu = aarch64_mmu,
2784         .virt2phys = aarch64_virt2phys,
2785 };