]> git.sur5r.net Git - openocd/blob - src/target/cortex_a.c
1f51c4e728dc7f96108ca19273d97384c52d14d1
[openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   Copyright (C) ST-Ericsson SA 2011                                     *
18  *   michel.jaouen@stericsson.com : smp minimum support                    *
19  *                                                                         *
20  *   Copyright (C) Broadcom 2012                                           *
21  *   ehunter@broadcom.com : Cortex-R4 support                              *
22  *                                                                         *
23  *   Copyright (C) 2013 Kamal Dasu                                         *
24  *   kdasu.kdev@gmail.com                                                  *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  *                                                                         *
39  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
40  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
41  *   Cortex-A4(tm) TRM, ARM DDI 0363E                                      *
42  *   Cortex-A15(tm)TRM, ARM DDI 0438C                                      *
43  *                                                                         *
44  ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "target_request.h"
54 #include "target_type.h"
55 #include "arm_opcodes.h"
56 #include "arm_semihosting.h"
57 #include <helper/time_support.h>
58
59 static int cortex_a_poll(struct target *target);
60 static int cortex_a_debug_entry(struct target *target);
61 static int cortex_a_restore_context(struct target *target, bool bpwp);
62 static int cortex_a_set_breakpoint(struct target *target,
63         struct breakpoint *breakpoint, uint8_t matchmode);
64 static int cortex_a_set_context_breakpoint(struct target *target,
65         struct breakpoint *breakpoint, uint8_t matchmode);
66 static int cortex_a_set_hybrid_breakpoint(struct target *target,
67         struct breakpoint *breakpoint);
68 static int cortex_a_unset_breakpoint(struct target *target,
69         struct breakpoint *breakpoint);
70 static int cortex_a_dap_read_coreregister_u32(struct target *target,
71         uint32_t *value, int regnum);
72 static int cortex_a_dap_write_coreregister_u32(struct target *target,
73         uint32_t value, int regnum);
74 static int cortex_a_mmu(struct target *target, int *enabled);
75 static int cortex_a_mmu_modify(struct target *target, int enable);
76 static int cortex_a_virt2phys(struct target *target,
77         uint32_t virt, uint32_t *phys);
78 static int cortex_a_read_cpu_memory(struct target *target,
79         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
80
81
82 /*  restore cp15_control_reg at resume */
83 static int cortex_a_restore_cp15_control_reg(struct target *target)
84 {
85         int retval = ERROR_OK;
86         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
87         struct armv7a_common *armv7a = target_to_armv7a(target);
88
89         if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
90                 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
91                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
92                 retval = armv7a->arm.mcr(target, 15,
93                                 0, 0,   /* op1, op2 */
94                                 1, 0,   /* CRn, CRm */
95                                 cortex_a->cp15_control_reg);
96         }
97         return retval;
98 }
99
100 /*
101  * Set up ARM core for memory access.
102  * If !phys_access, switch to SVC mode and make sure MMU is on
103  * If phys_access, switch off mmu
104  */
105 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
106 {
107         struct armv7a_common *armv7a = target_to_armv7a(target);
108         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
109         int mmu_enabled = 0;
110
111         if (phys_access == 0) {
112                 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
113                 cortex_a_mmu(target, &mmu_enabled);
114                 if (mmu_enabled)
115                         cortex_a_mmu_modify(target, 1);
116                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
117                         /* overwrite DACR to all-manager */
118                         armv7a->arm.mcr(target, 15,
119                                         0, 0, 3, 0,
120                                         0xFFFFFFFF);
121                 }
122         } else {
123                 cortex_a_mmu(target, &mmu_enabled);
124                 if (mmu_enabled)
125                         cortex_a_mmu_modify(target, 0);
126         }
127         return ERROR_OK;
128 }
129
130 /*
131  * Restore ARM core after memory access.
132  * If !phys_access, switch to previous mode
133  * If phys_access, restore MMU setting
134  */
135 static int cortex_a_post_memaccess(struct target *target, int phys_access)
136 {
137         struct armv7a_common *armv7a = target_to_armv7a(target);
138         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
139
140         if (phys_access == 0) {
141                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
142                         /* restore */
143                         armv7a->arm.mcr(target, 15,
144                                         0, 0, 3, 0,
145                                         cortex_a->cp15_dacr_reg);
146                 }
147                 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
148         } else {
149                 int mmu_enabled = 0;
150                 cortex_a_mmu(target, &mmu_enabled);
151                 if (mmu_enabled)
152                         cortex_a_mmu_modify(target, 1);
153         }
154         return ERROR_OK;
155 }
156
157
158 /*  modify cp15_control_reg in order to enable or disable mmu for :
159  *  - virt2phys address conversion
160  *  - read or write memory in phys or virt address */
161 static int cortex_a_mmu_modify(struct target *target, int enable)
162 {
163         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
164         struct armv7a_common *armv7a = target_to_armv7a(target);
165         int retval = ERROR_OK;
166         int need_write = 0;
167
168         if (enable) {
169                 /*  if mmu enabled at target stop and mmu not enable */
170                 if (!(cortex_a->cp15_control_reg & 0x1U)) {
171                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
172                         return ERROR_FAIL;
173                 }
174                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
175                         cortex_a->cp15_control_reg_curr |= 0x1U;
176                         need_write = 1;
177                 }
178         } else {
179                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
180                         cortex_a->cp15_control_reg_curr &= ~0x1U;
181                         need_write = 1;
182                 }
183         }
184
185         if (need_write) {
186                 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
187                         enable ? "enable mmu" : "disable mmu",
188                         cortex_a->cp15_control_reg_curr);
189
190                 retval = armv7a->arm.mcr(target, 15,
191                                 0, 0,   /* op1, op2 */
192                                 1, 0,   /* CRn, CRm */
193                                 cortex_a->cp15_control_reg_curr);
194         }
195         return retval;
196 }
197
198 /*
199  * Cortex-A Basic debug access, very low level assumes state is saved
200  */
201 static int cortex_a_init_debug_access(struct target *target)
202 {
203         struct armv7a_common *armv7a = target_to_armv7a(target);
204         int retval;
205
206         /* lock memory-mapped access to debug registers to prevent
207          * software interference */
208         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
209                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
210         if (retval != ERROR_OK)
211                 return retval;
212
213         /* Disable cacheline fills and force cache write-through in debug state */
214         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
215                         armv7a->debug_base + CPUDBG_DSCCR, 0);
216         if (retval != ERROR_OK)
217                 return retval;
218
219         /* Disable TLB lookup and refill/eviction in debug state */
220         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
221                         armv7a->debug_base + CPUDBG_DSMCR, 0);
222         if (retval != ERROR_OK)
223                 return retval;
224
225         /* Enabling of instruction execution in debug mode is done in debug_entry code */
226
227         /* Resync breakpoint registers */
228
229         /* Since this is likely called from init or reset, update target state information*/
230         return cortex_a_poll(target);
231 }
232
233 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
234 {
235         /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
236          * Writes final value of DSCR into *dscr. Pass force to force always
237          * reading DSCR at least once. */
238         struct armv7a_common *armv7a = target_to_armv7a(target);
239         int64_t then = timeval_ms();
240         while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
241                 force = false;
242                 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
243                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
244                 if (retval != ERROR_OK) {
245                         LOG_ERROR("Could not read DSCR register");
246                         return retval;
247                 }
248                 if (timeval_ms() > then + 1000) {
249                         LOG_ERROR("Timeout waiting for InstrCompl=1");
250                         return ERROR_FAIL;
251                 }
252         }
253         return ERROR_OK;
254 }
255
256 /* To reduce needless round-trips, pass in a pointer to the current
257  * DSCR value.  Initialize it to zero if you just need to know the
258  * value on return from this function; or DSCR_INSTR_COMP if you
259  * happen to know that no instruction is pending.
260  */
261 static int cortex_a_exec_opcode(struct target *target,
262         uint32_t opcode, uint32_t *dscr_p)
263 {
264         uint32_t dscr;
265         int retval;
266         struct armv7a_common *armv7a = target_to_armv7a(target);
267
268         dscr = dscr_p ? *dscr_p : 0;
269
270         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
271
272         /* Wait for InstrCompl bit to be set */
273         retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
274         if (retval != ERROR_OK)
275                 return retval;
276
277         retval = mem_ap_write_u32(armv7a->debug_ap,
278                         armv7a->debug_base + CPUDBG_ITR, opcode);
279         if (retval != ERROR_OK)
280                 return retval;
281
282         int64_t then = timeval_ms();
283         do {
284                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
285                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
286                 if (retval != ERROR_OK) {
287                         LOG_ERROR("Could not read DSCR register");
288                         return retval;
289                 }
290                 if (timeval_ms() > then + 1000) {
291                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
292                         return ERROR_FAIL;
293                 }
294         } while ((dscr & DSCR_INSTR_COMP) == 0);        /* Wait for InstrCompl bit to be set */
295
296         if (dscr_p)
297                 *dscr_p = dscr;
298
299         return retval;
300 }
301
302 /**************************************************************************
303 Read core register with very few exec_opcode, fast but needs work_area.
304 This can cause problems with MMU active.
305 **************************************************************************/
306 static int cortex_a_read_regs_through_mem(struct target *target, uint32_t address,
307         uint32_t *regfile)
308 {
309         int retval = ERROR_OK;
310         struct armv7a_common *armv7a = target_to_armv7a(target);
311
312         retval = cortex_a_dap_read_coreregister_u32(target, regfile, 0);
313         if (retval != ERROR_OK)
314                 return retval;
315         retval = cortex_a_dap_write_coreregister_u32(target, address, 0);
316         if (retval != ERROR_OK)
317                 return retval;
318         retval = cortex_a_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
319         if (retval != ERROR_OK)
320                 return retval;
321
322         retval = mem_ap_read_buf(armv7a->memory_ap,
323                         (uint8_t *)(&regfile[1]), 4, 15, address);
324
325         return retval;
326 }
327
328 static int cortex_a_dap_read_coreregister_u32(struct target *target,
329         uint32_t *value, int regnum)
330 {
331         int retval = ERROR_OK;
332         uint8_t reg = regnum&0xFF;
333         uint32_t dscr = 0;
334         struct armv7a_common *armv7a = target_to_armv7a(target);
335
336         if (reg > 17)
337                 return retval;
338
339         if (reg < 15) {
340                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
341                 retval = cortex_a_exec_opcode(target,
342                                 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
343                                 &dscr);
344                 if (retval != ERROR_OK)
345                         return retval;
346         } else if (reg == 15) {
347                 /* "MOV r0, r15"; then move r0 to DCCTX */
348                 retval = cortex_a_exec_opcode(target, 0xE1A0000F, &dscr);
349                 if (retval != ERROR_OK)
350                         return retval;
351                 retval = cortex_a_exec_opcode(target,
352                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
353                                 &dscr);
354                 if (retval != ERROR_OK)
355                         return retval;
356         } else {
357                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
358                  * then move r0 to DCCTX
359                  */
360                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
361                 if (retval != ERROR_OK)
362                         return retval;
363                 retval = cortex_a_exec_opcode(target,
364                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
365                                 &dscr);
366                 if (retval != ERROR_OK)
367                         return retval;
368         }
369
370         /* Wait for DTRRXfull then read DTRRTX */
371         int64_t then = timeval_ms();
372         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
373                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
374                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
375                 if (retval != ERROR_OK)
376                         return retval;
377                 if (timeval_ms() > then + 1000) {
378                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
379                         return ERROR_FAIL;
380                 }
381         }
382
383         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
384                         armv7a->debug_base + CPUDBG_DTRTX, value);
385         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
386
387         return retval;
388 }
389
390 static int cortex_a_dap_write_coreregister_u32(struct target *target,
391         uint32_t value, int regnum)
392 {
393         int retval = ERROR_OK;
394         uint8_t Rd = regnum&0xFF;
395         uint32_t dscr;
396         struct armv7a_common *armv7a = target_to_armv7a(target);
397
398         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
399
400         /* Check that DCCRX is not full */
401         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
402                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
403         if (retval != ERROR_OK)
404                 return retval;
405         if (dscr & DSCR_DTR_RX_FULL) {
406                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
407                 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode  0xEE100E15 */
408                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
409                                 &dscr);
410                 if (retval != ERROR_OK)
411                         return retval;
412         }
413
414         if (Rd > 17)
415                 return retval;
416
417         /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
418         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
419         retval = mem_ap_write_u32(armv7a->debug_ap,
420                         armv7a->debug_base + CPUDBG_DTRRX, value);
421         if (retval != ERROR_OK)
422                 return retval;
423
424         if (Rd < 15) {
425                 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
426                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
427                                 &dscr);
428
429                 if (retval != ERROR_OK)
430                         return retval;
431         } else if (Rd == 15) {
432                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
433                  * then "mov r15, r0"
434                  */
435                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
436                                 &dscr);
437                 if (retval != ERROR_OK)
438                         return retval;
439                 retval = cortex_a_exec_opcode(target, 0xE1A0F000, &dscr);
440                 if (retval != ERROR_OK)
441                         return retval;
442         } else {
443                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
444                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
445                  */
446                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
447                                 &dscr);
448                 if (retval != ERROR_OK)
449                         return retval;
450                 retval = cortex_a_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
451                                 &dscr);
452                 if (retval != ERROR_OK)
453                         return retval;
454
455                 /* "Prefetch flush" after modifying execution status in CPSR */
456                 if (Rd == 16) {
457                         retval = cortex_a_exec_opcode(target,
458                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
459                                         &dscr);
460                         if (retval != ERROR_OK)
461                                 return retval;
462                 }
463         }
464
465         return retval;
466 }
467
468 /* Write to memory mapped registers directly with no cache or mmu handling */
469 static int cortex_a_dap_write_memap_register_u32(struct target *target,
470         uint32_t address,
471         uint32_t value)
472 {
473         int retval;
474         struct armv7a_common *armv7a = target_to_armv7a(target);
475
476         retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
477
478         return retval;
479 }
480
481 /*
482  * Cortex-A implementation of Debug Programmer's Model
483  *
484  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
485  * so there's no need to poll for it before executing an instruction.
486  *
487  * NOTE that in several of these cases the "stall" mode might be useful.
488  * It'd let us queue a few operations together... prepare/finish might
489  * be the places to enable/disable that mode.
490  */
491
492 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
493 {
494         return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
495 }
496
497 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
498 {
499         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
500         return mem_ap_write_u32(a->armv7a_common.debug_ap,
501                         a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
502 }
503
504 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
505         uint32_t *dscr_p)
506 {
507         uint32_t dscr = DSCR_INSTR_COMP;
508         int retval;
509
510         if (dscr_p)
511                 dscr = *dscr_p;
512
513         /* Wait for DTRRXfull */
514         int64_t then = timeval_ms();
515         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
516                 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
517                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
518                                 &dscr);
519                 if (retval != ERROR_OK)
520                         return retval;
521                 if (timeval_ms() > then + 1000) {
522                         LOG_ERROR("Timeout waiting for read dcc");
523                         return ERROR_FAIL;
524                 }
525         }
526
527         retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
528                         a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
529         if (retval != ERROR_OK)
530                 return retval;
531         /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
532
533         if (dscr_p)
534                 *dscr_p = dscr;
535
536         return retval;
537 }
538
539 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
540 {
541         struct cortex_a_common *a = dpm_to_a(dpm);
542         uint32_t dscr;
543         int retval;
544
545         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
546         int64_t then = timeval_ms();
547         for (;; ) {
548                 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
549                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
550                                 &dscr);
551                 if (retval != ERROR_OK)
552                         return retval;
553                 if ((dscr & DSCR_INSTR_COMP) != 0)
554                         break;
555                 if (timeval_ms() > then + 1000) {
556                         LOG_ERROR("Timeout waiting for dpm prepare");
557                         return ERROR_FAIL;
558                 }
559         }
560
561         /* this "should never happen" ... */
562         if (dscr & DSCR_DTR_RX_FULL) {
563                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
564                 /* Clear DCCRX */
565                 retval = cortex_a_exec_opcode(
566                                 a->armv7a_common.arm.target,
567                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
568                                 &dscr);
569                 if (retval != ERROR_OK)
570                         return retval;
571         }
572
573         return retval;
574 }
575
576 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
577 {
578         /* REVISIT what could be done here? */
579         return ERROR_OK;
580 }
581
582 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
583         uint32_t opcode, uint32_t data)
584 {
585         struct cortex_a_common *a = dpm_to_a(dpm);
586         int retval;
587         uint32_t dscr = DSCR_INSTR_COMP;
588
589         retval = cortex_a_write_dcc(a, data);
590         if (retval != ERROR_OK)
591                 return retval;
592
593         return cortex_a_exec_opcode(
594                         a->armv7a_common.arm.target,
595                         opcode,
596                         &dscr);
597 }
598
599 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
600         uint32_t opcode, uint32_t data)
601 {
602         struct cortex_a_common *a = dpm_to_a(dpm);
603         uint32_t dscr = DSCR_INSTR_COMP;
604         int retval;
605
606         retval = cortex_a_write_dcc(a, data);
607         if (retval != ERROR_OK)
608                 return retval;
609
610         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
611         retval = cortex_a_exec_opcode(
612                         a->armv7a_common.arm.target,
613                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
614                         &dscr);
615         if (retval != ERROR_OK)
616                 return retval;
617
618         /* then the opcode, taking data from R0 */
619         retval = cortex_a_exec_opcode(
620                         a->armv7a_common.arm.target,
621                         opcode,
622                         &dscr);
623
624         return retval;
625 }
626
627 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
628 {
629         struct target *target = dpm->arm->target;
630         uint32_t dscr = DSCR_INSTR_COMP;
631
632         /* "Prefetch flush" after modifying execution status in CPSR */
633         return cortex_a_exec_opcode(target,
634                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
635                         &dscr);
636 }
637
638 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
639         uint32_t opcode, uint32_t *data)
640 {
641         struct cortex_a_common *a = dpm_to_a(dpm);
642         int retval;
643         uint32_t dscr = DSCR_INSTR_COMP;
644
645         /* the opcode, writing data to DCC */
646         retval = cortex_a_exec_opcode(
647                         a->armv7a_common.arm.target,
648                         opcode,
649                         &dscr);
650         if (retval != ERROR_OK)
651                 return retval;
652
653         return cortex_a_read_dcc(a, data, &dscr);
654 }
655
656
657 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
658         uint32_t opcode, uint32_t *data)
659 {
660         struct cortex_a_common *a = dpm_to_a(dpm);
661         uint32_t dscr = DSCR_INSTR_COMP;
662         int retval;
663
664         /* the opcode, writing data to R0 */
665         retval = cortex_a_exec_opcode(
666                         a->armv7a_common.arm.target,
667                         opcode,
668                         &dscr);
669         if (retval != ERROR_OK)
670                 return retval;
671
672         /* write R0 to DCC */
673         retval = cortex_a_exec_opcode(
674                         a->armv7a_common.arm.target,
675                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
676                         &dscr);
677         if (retval != ERROR_OK)
678                 return retval;
679
680         return cortex_a_read_dcc(a, data, &dscr);
681 }
682
683 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
684         uint32_t addr, uint32_t control)
685 {
686         struct cortex_a_common *a = dpm_to_a(dpm);
687         uint32_t vr = a->armv7a_common.debug_base;
688         uint32_t cr = a->armv7a_common.debug_base;
689         int retval;
690
691         switch (index_t) {
692                 case 0 ... 15:  /* breakpoints */
693                         vr += CPUDBG_BVR_BASE;
694                         cr += CPUDBG_BCR_BASE;
695                         break;
696                 case 16 ... 31: /* watchpoints */
697                         vr += CPUDBG_WVR_BASE;
698                         cr += CPUDBG_WCR_BASE;
699                         index_t -= 16;
700                         break;
701                 default:
702                         return ERROR_FAIL;
703         }
704         vr += 4 * index_t;
705         cr += 4 * index_t;
706
707         LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
708                 (unsigned) vr, (unsigned) cr);
709
710         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
711                         vr, addr);
712         if (retval != ERROR_OK)
713                 return retval;
714         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
715                         cr, control);
716         return retval;
717 }
718
719 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
720 {
721         struct cortex_a_common *a = dpm_to_a(dpm);
722         uint32_t cr;
723
724         switch (index_t) {
725                 case 0 ... 15:
726                         cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
727                         break;
728                 case 16 ... 31:
729                         cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
730                         index_t -= 16;
731                         break;
732                 default:
733                         return ERROR_FAIL;
734         }
735         cr += 4 * index_t;
736
737         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
738
739         /* clear control register */
740         return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
741 }
742
743 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
744 {
745         struct arm_dpm *dpm = &a->armv7a_common.dpm;
746         int retval;
747
748         dpm->arm = &a->armv7a_common.arm;
749         dpm->didr = didr;
750
751         dpm->prepare = cortex_a_dpm_prepare;
752         dpm->finish = cortex_a_dpm_finish;
753
754         dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
755         dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
756         dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
757
758         dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
759         dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
760
761         dpm->bpwp_enable = cortex_a_bpwp_enable;
762         dpm->bpwp_disable = cortex_a_bpwp_disable;
763
764         retval = arm_dpm_setup(dpm);
765         if (retval == ERROR_OK)
766                 retval = arm_dpm_initialize(dpm);
767
768         return retval;
769 }
770 static struct target *get_cortex_a(struct target *target, int32_t coreid)
771 {
772         struct target_list *head;
773         struct target *curr;
774
775         head = target->head;
776         while (head != (struct target_list *)NULL) {
777                 curr = head->target;
778                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
779                         return curr;
780                 head = head->next;
781         }
782         return target;
783 }
784 static int cortex_a_halt(struct target *target);
785
786 static int cortex_a_halt_smp(struct target *target)
787 {
788         int retval = 0;
789         struct target_list *head;
790         struct target *curr;
791         head = target->head;
792         while (head != (struct target_list *)NULL) {
793                 curr = head->target;
794                 if ((curr != target) && (curr->state != TARGET_HALTED)
795                         && target_was_examined(curr))
796                         retval += cortex_a_halt(curr);
797                 head = head->next;
798         }
799         return retval;
800 }
801
802 static int update_halt_gdb(struct target *target)
803 {
804         int retval = 0;
805         if (target->gdb_service && target->gdb_service->core[0] == -1) {
806                 target->gdb_service->target = target;
807                 target->gdb_service->core[0] = target->coreid;
808                 retval += cortex_a_halt_smp(target);
809         }
810         return retval;
811 }
812
813 /*
814  * Cortex-A Run control
815  */
816
817 static int cortex_a_poll(struct target *target)
818 {
819         int retval = ERROR_OK;
820         uint32_t dscr;
821         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
822         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
823         enum target_state prev_target_state = target->state;
824         /*  toggle to another core is done by gdb as follow */
825         /*  maint packet J core_id */
826         /*  continue */
827         /*  the next polling trigger an halt event sent to gdb */
828         if ((target->state == TARGET_HALTED) && (target->smp) &&
829                 (target->gdb_service) &&
830                 (target->gdb_service->target == NULL)) {
831                 target->gdb_service->target =
832                         get_cortex_a(target, target->gdb_service->core[1]);
833                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
834                 return retval;
835         }
836         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
837                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
838         if (retval != ERROR_OK)
839                 return retval;
840         cortex_a->cpudbg_dscr = dscr;
841
842         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
843                 if (prev_target_state != TARGET_HALTED) {
844                         /* We have a halting debug event */
845                         LOG_DEBUG("Target halted");
846                         target->state = TARGET_HALTED;
847                         if ((prev_target_state == TARGET_RUNNING)
848                                 || (prev_target_state == TARGET_UNKNOWN)
849                                 || (prev_target_state == TARGET_RESET)) {
850                                 retval = cortex_a_debug_entry(target);
851                                 if (retval != ERROR_OK)
852                                         return retval;
853                                 if (target->smp) {
854                                         retval = update_halt_gdb(target);
855                                         if (retval != ERROR_OK)
856                                                 return retval;
857                                 }
858
859                                 if (arm_semihosting(target, &retval) != 0)
860                                         return retval;
861
862                                 target_call_event_callbacks(target,
863                                         TARGET_EVENT_HALTED);
864                         }
865                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
866                                 LOG_DEBUG(" ");
867
868                                 retval = cortex_a_debug_entry(target);
869                                 if (retval != ERROR_OK)
870                                         return retval;
871                                 if (target->smp) {
872                                         retval = update_halt_gdb(target);
873                                         if (retval != ERROR_OK)
874                                                 return retval;
875                                 }
876
877                                 target_call_event_callbacks(target,
878                                         TARGET_EVENT_DEBUG_HALTED);
879                         }
880                 }
881         } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
882                 target->state = TARGET_RUNNING;
883         else {
884                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
885                 target->state = TARGET_UNKNOWN;
886         }
887
888         return retval;
889 }
890
891 static int cortex_a_halt(struct target *target)
892 {
893         int retval = ERROR_OK;
894         uint32_t dscr;
895         struct armv7a_common *armv7a = target_to_armv7a(target);
896
897         /*
898          * Tell the core to be halted by writing DRCR with 0x1
899          * and then wait for the core to be halted.
900          */
901         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
902                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
903         if (retval != ERROR_OK)
904                 return retval;
905
906         /*
907          * enter halting debug mode
908          */
909         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
910                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
911         if (retval != ERROR_OK)
912                 return retval;
913
914         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
915                         armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
916         if (retval != ERROR_OK)
917                 return retval;
918
919         int64_t then = timeval_ms();
920         for (;; ) {
921                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
922                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
923                 if (retval != ERROR_OK)
924                         return retval;
925                 if ((dscr & DSCR_CORE_HALTED) != 0)
926                         break;
927                 if (timeval_ms() > then + 1000) {
928                         LOG_ERROR("Timeout waiting for halt");
929                         return ERROR_FAIL;
930                 }
931         }
932
933         target->debug_reason = DBG_REASON_DBGRQ;
934
935         return ERROR_OK;
936 }
937
938 static int cortex_a_internal_restore(struct target *target, int current,
939         uint32_t *address, int handle_breakpoints, int debug_execution)
940 {
941         struct armv7a_common *armv7a = target_to_armv7a(target);
942         struct arm *arm = &armv7a->arm;
943         int retval;
944         uint32_t resume_pc;
945
946         if (!debug_execution)
947                 target_free_all_working_areas(target);
948
949 #if 0
950         if (debug_execution) {
951                 /* Disable interrupts */
952                 /* We disable interrupts in the PRIMASK register instead of
953                  * masking with C_MASKINTS,
954                  * This is probably the same issue as Cortex-M3 Errata 377493:
955                  * C_MASKINTS in parallel with disabled interrupts can cause
956                  * local faults to not be taken. */
957                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
958                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
959                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
960
961                 /* Make sure we are in Thumb mode */
962                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
963                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
964                         32) | (1 << 24));
965                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
966                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
967         }
968 #endif
969
970         /* current = 1: continue on current pc, otherwise continue at <address> */
971         resume_pc = buf_get_u32(arm->pc->value, 0, 32);
972         if (!current)
973                 resume_pc = *address;
974         else
975                 *address = resume_pc;
976
977         /* Make sure that the Armv7 gdb thumb fixups does not
978          * kill the return address
979          */
980         switch (arm->core_state) {
981                 case ARM_STATE_ARM:
982                         resume_pc &= 0xFFFFFFFC;
983                         break;
984                 case ARM_STATE_THUMB:
985                 case ARM_STATE_THUMB_EE:
986                         /* When the return address is loaded into PC
987                          * bit 0 must be 1 to stay in Thumb state
988                          */
989                         resume_pc |= 0x1;
990                         break;
991                 case ARM_STATE_JAZELLE:
992                         LOG_ERROR("How do I resume into Jazelle state??");
993                         return ERROR_FAIL;
994         }
995         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
996         buf_set_u32(arm->pc->value, 0, 32, resume_pc);
997         arm->pc->dirty = 1;
998         arm->pc->valid = 1;
999
1000         /* restore dpm_mode at system halt */
1001         dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1002         /* called it now before restoring context because it uses cpu
1003          * register r0 for restoring cp15 control register */
1004         retval = cortex_a_restore_cp15_control_reg(target);
1005         if (retval != ERROR_OK)
1006                 return retval;
1007         retval = cortex_a_restore_context(target, handle_breakpoints);
1008         if (retval != ERROR_OK)
1009                 return retval;
1010         target->debug_reason = DBG_REASON_NOTHALTED;
1011         target->state = TARGET_RUNNING;
1012
1013         /* registers are now invalid */
1014         register_cache_invalidate(arm->core_cache);
1015
1016 #if 0
1017         /* the front-end may request us not to handle breakpoints */
1018         if (handle_breakpoints) {
1019                 /* Single step past breakpoint at current address */
1020                 breakpoint = breakpoint_find(target, resume_pc);
1021                 if (breakpoint) {
1022                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1023                         cortex_m3_unset_breakpoint(target, breakpoint);
1024                         cortex_m3_single_step_core(target);
1025                         cortex_m3_set_breakpoint(target, breakpoint);
1026                 }
1027         }
1028
1029 #endif
1030         return retval;
1031 }
1032
1033 static int cortex_a_internal_restart(struct target *target)
1034 {
1035         struct armv7a_common *armv7a = target_to_armv7a(target);
1036         struct arm *arm = &armv7a->arm;
1037         int retval;
1038         uint32_t dscr;
1039         /*
1040          * * Restart core and wait for it to be started.  Clear ITRen and sticky
1041          * * exception flags: see ARMv7 ARM, C5.9.
1042          *
1043          * REVISIT: for single stepping, we probably want to
1044          * disable IRQs by default, with optional override...
1045          */
1046
1047         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1048                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1049         if (retval != ERROR_OK)
1050                 return retval;
1051
1052         if ((dscr & DSCR_INSTR_COMP) == 0)
1053                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1054
1055         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1056                         armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1057         if (retval != ERROR_OK)
1058                 return retval;
1059
1060         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1061                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1062                         DRCR_CLEAR_EXCEPTIONS);
1063         if (retval != ERROR_OK)
1064                 return retval;
1065
1066         int64_t then = timeval_ms();
1067         for (;; ) {
1068                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1069                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1070                 if (retval != ERROR_OK)
1071                         return retval;
1072                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1073                         break;
1074                 if (timeval_ms() > then + 1000) {
1075                         LOG_ERROR("Timeout waiting for resume");
1076                         return ERROR_FAIL;
1077                 }
1078         }
1079
1080         target->debug_reason = DBG_REASON_NOTHALTED;
1081         target->state = TARGET_RUNNING;
1082
1083         /* registers are now invalid */
1084         register_cache_invalidate(arm->core_cache);
1085
1086         return ERROR_OK;
1087 }
1088
1089 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
1090 {
1091         int retval = 0;
1092         struct target_list *head;
1093         struct target *curr;
1094         uint32_t address;
1095         head = target->head;
1096         while (head != (struct target_list *)NULL) {
1097                 curr = head->target;
1098                 if ((curr != target) && (curr->state != TARGET_RUNNING)
1099                         && target_was_examined(curr)) {
1100                         /*  resume current address , not in step mode */
1101                         retval += cortex_a_internal_restore(curr, 1, &address,
1102                                         handle_breakpoints, 0);
1103                         retval += cortex_a_internal_restart(curr);
1104                 }
1105                 head = head->next;
1106
1107         }
1108         return retval;
1109 }
1110
1111 static int cortex_a_resume(struct target *target, int current,
1112         uint32_t address, int handle_breakpoints, int debug_execution)
1113 {
1114         int retval = 0;
1115         /* dummy resume for smp toggle in order to reduce gdb impact  */
1116         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1117                 /*   simulate a start and halt of target */
1118                 target->gdb_service->target = NULL;
1119                 target->gdb_service->core[0] = target->gdb_service->core[1];
1120                 /*  fake resume at next poll we play the  target core[1], see poll*/
1121                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1122                 return 0;
1123         }
1124         cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1125         if (target->smp) {
1126                 target->gdb_service->core[0] = -1;
1127                 retval = cortex_a_restore_smp(target, handle_breakpoints);
1128                 if (retval != ERROR_OK)
1129                         return retval;
1130         }
1131         cortex_a_internal_restart(target);
1132
1133         if (!debug_execution) {
1134                 target->state = TARGET_RUNNING;
1135                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1136                 LOG_DEBUG("target resumed at 0x%" PRIx32, address);
1137         } else {
1138                 target->state = TARGET_DEBUG_RUNNING;
1139                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1140                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, address);
1141         }
1142
1143         return ERROR_OK;
1144 }
1145
1146 static int cortex_a_debug_entry(struct target *target)
1147 {
1148         int i;
1149         uint32_t regfile[16], cpsr, spsr, dscr;
1150         int retval = ERROR_OK;
1151         struct working_area *regfile_working_area = NULL;
1152         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1153         struct armv7a_common *armv7a = target_to_armv7a(target);
1154         struct arm *arm = &armv7a->arm;
1155         struct reg *reg;
1156
1157         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1158
1159         /* REVISIT surely we should not re-read DSCR !! */
1160         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1161                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1162         if (retval != ERROR_OK)
1163                 return retval;
1164
1165         /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1166          * imprecise data aborts get discarded by issuing a Data
1167          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1168          */
1169
1170         /* Enable the ITR execution once we are in debug mode */
1171         dscr |= DSCR_ITR_EN;
1172         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1173                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1174         if (retval != ERROR_OK)
1175                 return retval;
1176
1177         /* Examine debug reason */
1178         arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1179
1180         /* save address of instruction that triggered the watchpoint? */
1181         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1182                 uint32_t wfar;
1183
1184                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1185                                 armv7a->debug_base + CPUDBG_WFAR,
1186                                 &wfar);
1187                 if (retval != ERROR_OK)
1188                         return retval;
1189                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1190         }
1191
1192         /* REVISIT fast_reg_read is never set ... */
1193
1194         /* Examine target state and mode */
1195         if (cortex_a->fast_reg_read)
1196                 target_alloc_working_area(target, 64, &regfile_working_area);
1197
1198
1199         /* First load register acessible through core debug port*/
1200         if (!regfile_working_area)
1201                 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1202         else {
1203                 retval = cortex_a_read_regs_through_mem(target,
1204                                 regfile_working_area->address, regfile);
1205
1206                 target_free_working_area(target, regfile_working_area);
1207                 if (retval != ERROR_OK)
1208                         return retval;
1209
1210                 /* read Current PSR */
1211                 retval = cortex_a_dap_read_coreregister_u32(target, &cpsr, 16);
1212                 /*  store current cpsr */
1213                 if (retval != ERROR_OK)
1214                         return retval;
1215
1216                 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1217
1218                 arm_set_cpsr(arm, cpsr);
1219
1220                 /* update cache */
1221                 for (i = 0; i <= ARM_PC; i++) {
1222                         reg = arm_reg_current(arm, i);
1223
1224                         buf_set_u32(reg->value, 0, 32, regfile[i]);
1225                         reg->valid = 1;
1226                         reg->dirty = 0;
1227                 }
1228
1229                 /* Fixup PC Resume Address */
1230                 if (cpsr & (1 << 5)) {
1231                         /* T bit set for Thumb or ThumbEE state */
1232                         regfile[ARM_PC] -= 4;
1233                 } else {
1234                         /* ARM state */
1235                         regfile[ARM_PC] -= 8;
1236                 }
1237
1238                 reg = arm->pc;
1239                 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1240                 reg->dirty = reg->valid;
1241         }
1242
1243         /* read Saved PSR */
1244         retval = cortex_a_dap_read_coreregister_u32(target, &spsr, 17);
1245         /*  store current spsr */
1246         if (retval != ERROR_OK)
1247                 return retval;
1248
1249         reg = arm->spsr;
1250         buf_set_u32(reg->value, 0, 32, spsr);
1251         reg->valid = 1;
1252         reg->dirty = 0;
1253
1254 #if 0
1255 /* TODO, Move this */
1256         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1257         cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1258         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1259
1260         cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1261         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1262
1263         cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1264         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1265 #endif
1266
1267         /* Are we in an exception handler */
1268 /*      armv4_5->exception_number = 0; */
1269         if (armv7a->post_debug_entry) {
1270                 retval = armv7a->post_debug_entry(target);
1271                 if (retval != ERROR_OK)
1272                         return retval;
1273         }
1274
1275         return retval;
1276 }
1277
1278 static int cortex_a_post_debug_entry(struct target *target)
1279 {
1280         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1281         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1282         int retval;
1283
1284         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1285         retval = armv7a->arm.mrc(target, 15,
1286                         0, 0,   /* op1, op2 */
1287                         1, 0,   /* CRn, CRm */
1288                         &cortex_a->cp15_control_reg);
1289         if (retval != ERROR_OK)
1290                 return retval;
1291         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1292         cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1293
1294         if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1295                 armv7a_identify_cache(target);
1296
1297         if (armv7a->is_armv7r) {
1298                 armv7a->armv7a_mmu.mmu_enabled = 0;
1299         } else {
1300                 armv7a->armv7a_mmu.mmu_enabled =
1301                         (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1302         }
1303         armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1304                 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1305         armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1306                 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1307         cortex_a->curr_mode = armv7a->arm.core_mode;
1308
1309         /* switch to SVC mode to read DACR */
1310         dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1311         armv7a->arm.mrc(target, 15,
1312                         0, 0, 3, 0,
1313                         &cortex_a->cp15_dacr_reg);
1314
1315         LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1316                         cortex_a->cp15_dacr_reg);
1317
1318         dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1319         return ERROR_OK;
1320 }
1321
1322 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1323 {
1324         struct armv7a_common *armv7a = target_to_armv7a(target);
1325         uint32_t dscr;
1326
1327         /* Read DSCR */
1328         int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1329                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1330         if (ERROR_OK != retval)
1331                 return retval;
1332
1333         /* clear bitfield */
1334         dscr &= ~bit_mask;
1335         /* put new value */
1336         dscr |= value & bit_mask;
1337
1338         /* write new DSCR */
1339         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1340                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1341         return retval;
1342 }
1343
1344 static int cortex_a_step(struct target *target, int current, uint32_t address,
1345         int handle_breakpoints)
1346 {
1347         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1348         struct armv7a_common *armv7a = target_to_armv7a(target);
1349         struct arm *arm = &armv7a->arm;
1350         struct breakpoint *breakpoint = NULL;
1351         struct breakpoint stepbreakpoint;
1352         struct reg *r;
1353         int retval;
1354
1355         if (target->state != TARGET_HALTED) {
1356                 LOG_WARNING("target not halted");
1357                 return ERROR_TARGET_NOT_HALTED;
1358         }
1359
1360         /* current = 1: continue on current pc, otherwise continue at <address> */
1361         r = arm->pc;
1362         if (!current)
1363                 buf_set_u32(r->value, 0, 32, address);
1364         else
1365                 address = buf_get_u32(r->value, 0, 32);
1366
1367         /* The front-end may request us not to handle breakpoints.
1368          * But since Cortex-A uses breakpoint for single step,
1369          * we MUST handle breakpoints.
1370          */
1371         handle_breakpoints = 1;
1372         if (handle_breakpoints) {
1373                 breakpoint = breakpoint_find(target, address);
1374                 if (breakpoint)
1375                         cortex_a_unset_breakpoint(target, breakpoint);
1376         }
1377
1378         /* Setup single step breakpoint */
1379         stepbreakpoint.address = address;
1380         stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1381                 ? 2 : 4;
1382         stepbreakpoint.type = BKPT_HARD;
1383         stepbreakpoint.set = 0;
1384
1385         /* Disable interrupts during single step if requested */
1386         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1387                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1388                 if (ERROR_OK != retval)
1389                         return retval;
1390         }
1391
1392         /* Break on IVA mismatch */
1393         cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1394
1395         target->debug_reason = DBG_REASON_SINGLESTEP;
1396
1397         retval = cortex_a_resume(target, 1, address, 0, 0);
1398         if (retval != ERROR_OK)
1399                 return retval;
1400
1401         int64_t then = timeval_ms();
1402         while (target->state != TARGET_HALTED) {
1403                 retval = cortex_a_poll(target);
1404                 if (retval != ERROR_OK)
1405                         return retval;
1406                 if (timeval_ms() > then + 1000) {
1407                         LOG_ERROR("timeout waiting for target halt");
1408                         return ERROR_FAIL;
1409                 }
1410         }
1411
1412         cortex_a_unset_breakpoint(target, &stepbreakpoint);
1413
1414         /* Re-enable interrupts if they were disabled */
1415         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1416                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1417                 if (ERROR_OK != retval)
1418                         return retval;
1419         }
1420
1421
1422         target->debug_reason = DBG_REASON_BREAKPOINT;
1423
1424         if (breakpoint)
1425                 cortex_a_set_breakpoint(target, breakpoint, 0);
1426
1427         if (target->state != TARGET_HALTED)
1428                 LOG_DEBUG("target stepped");
1429
1430         return ERROR_OK;
1431 }
1432
1433 static int cortex_a_restore_context(struct target *target, bool bpwp)
1434 {
1435         struct armv7a_common *armv7a = target_to_armv7a(target);
1436
1437         LOG_DEBUG(" ");
1438
1439         if (armv7a->pre_restore_context)
1440                 armv7a->pre_restore_context(target);
1441
1442         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1443 }
1444
1445 /*
1446  * Cortex-A Breakpoint and watchpoint functions
1447  */
1448
1449 /* Setup hardware Breakpoint Register Pair */
1450 static int cortex_a_set_breakpoint(struct target *target,
1451         struct breakpoint *breakpoint, uint8_t matchmode)
1452 {
1453         int retval;
1454         int brp_i = 0;
1455         uint32_t control;
1456         uint8_t byte_addr_select = 0x0F;
1457         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1458         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1459         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1460
1461         if (breakpoint->set) {
1462                 LOG_WARNING("breakpoint already set");
1463                 return ERROR_OK;
1464         }
1465
1466         if (breakpoint->type == BKPT_HARD) {
1467                 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1468                         brp_i++;
1469                 if (brp_i >= cortex_a->brp_num) {
1470                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1471                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1472                 }
1473                 breakpoint->set = brp_i + 1;
1474                 if (breakpoint->length == 2)
1475                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1476                 control = ((matchmode & 0x7) << 20)
1477                         | (byte_addr_select << 5)
1478                         | (3 << 1) | 1;
1479                 brp_list[brp_i].used = 1;
1480                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1481                 brp_list[brp_i].control = control;
1482                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1483                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1484                                 brp_list[brp_i].value);
1485                 if (retval != ERROR_OK)
1486                         return retval;
1487                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1488                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1489                                 brp_list[brp_i].control);
1490                 if (retval != ERROR_OK)
1491                         return retval;
1492                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1493                         brp_list[brp_i].control,
1494                         brp_list[brp_i].value);
1495         } else if (breakpoint->type == BKPT_SOFT) {
1496                 uint8_t code[4];
1497                 if (breakpoint->length == 2)
1498                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1499                 else
1500                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1501                 retval = target_read_memory(target,
1502                                 breakpoint->address & 0xFFFFFFFE,
1503                                 breakpoint->length, 1,
1504                                 breakpoint->orig_instr);
1505                 if (retval != ERROR_OK)
1506                         return retval;
1507
1508                 /* make sure data cache is cleaned & invalidated down to PoC */
1509                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1510                         armv7a_cache_flush_virt(target, breakpoint->address,
1511                                                 breakpoint->length);
1512                 }
1513
1514                 retval = target_write_memory(target,
1515                                 breakpoint->address & 0xFFFFFFFE,
1516                                 breakpoint->length, 1, code);
1517                 if (retval != ERROR_OK)
1518                         return retval;
1519
1520                 /* update i-cache at breakpoint location */
1521                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1522                                         breakpoint->length);
1523                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1524                                                  breakpoint->length);
1525
1526                 breakpoint->set = 0x11; /* Any nice value but 0 */
1527         }
1528
1529         return ERROR_OK;
1530 }
1531
1532 static int cortex_a_set_context_breakpoint(struct target *target,
1533         struct breakpoint *breakpoint, uint8_t matchmode)
1534 {
1535         int retval = ERROR_FAIL;
1536         int brp_i = 0;
1537         uint32_t control;
1538         uint8_t byte_addr_select = 0x0F;
1539         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1540         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1541         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1542
1543         if (breakpoint->set) {
1544                 LOG_WARNING("breakpoint already set");
1545                 return retval;
1546         }
1547         /*check available context BRPs*/
1548         while ((brp_list[brp_i].used ||
1549                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1550                 brp_i++;
1551
1552         if (brp_i >= cortex_a->brp_num) {
1553                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1554                 return ERROR_FAIL;
1555         }
1556
1557         breakpoint->set = brp_i + 1;
1558         control = ((matchmode & 0x7) << 20)
1559                 | (byte_addr_select << 5)
1560                 | (3 << 1) | 1;
1561         brp_list[brp_i].used = 1;
1562         brp_list[brp_i].value = (breakpoint->asid);
1563         brp_list[brp_i].control = control;
1564         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1565                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1566                         brp_list[brp_i].value);
1567         if (retval != ERROR_OK)
1568                 return retval;
1569         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1570                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1571                         brp_list[brp_i].control);
1572         if (retval != ERROR_OK)
1573                 return retval;
1574         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1575                 brp_list[brp_i].control,
1576                 brp_list[brp_i].value);
1577         return ERROR_OK;
1578
1579 }
1580
1581 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1582 {
1583         int retval = ERROR_FAIL;
1584         int brp_1 = 0;  /* holds the contextID pair */
1585         int brp_2 = 0;  /* holds the IVA pair */
1586         uint32_t control_CTX, control_IVA;
1587         uint8_t CTX_byte_addr_select = 0x0F;
1588         uint8_t IVA_byte_addr_select = 0x0F;
1589         uint8_t CTX_machmode = 0x03;
1590         uint8_t IVA_machmode = 0x01;
1591         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1592         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1593         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1594
1595         if (breakpoint->set) {
1596                 LOG_WARNING("breakpoint already set");
1597                 return retval;
1598         }
1599         /*check available context BRPs*/
1600         while ((brp_list[brp_1].used ||
1601                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1602                 brp_1++;
1603
1604         printf("brp(CTX) found num: %d\n", brp_1);
1605         if (brp_1 >= cortex_a->brp_num) {
1606                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1607                 return ERROR_FAIL;
1608         }
1609
1610         while ((brp_list[brp_2].used ||
1611                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1612                 brp_2++;
1613
1614         printf("brp(IVA) found num: %d\n", brp_2);
1615         if (brp_2 >= cortex_a->brp_num) {
1616                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1617                 return ERROR_FAIL;
1618         }
1619
1620         breakpoint->set = brp_1 + 1;
1621         breakpoint->linked_BRP = brp_2;
1622         control_CTX = ((CTX_machmode & 0x7) << 20)
1623                 | (brp_2 << 16)
1624                 | (0 << 14)
1625                 | (CTX_byte_addr_select << 5)
1626                 | (3 << 1) | 1;
1627         brp_list[brp_1].used = 1;
1628         brp_list[brp_1].value = (breakpoint->asid);
1629         brp_list[brp_1].control = control_CTX;
1630         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1631                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1632                         brp_list[brp_1].value);
1633         if (retval != ERROR_OK)
1634                 return retval;
1635         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1636                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1637                         brp_list[brp_1].control);
1638         if (retval != ERROR_OK)
1639                 return retval;
1640
1641         control_IVA = ((IVA_machmode & 0x7) << 20)
1642                 | (brp_1 << 16)
1643                 | (IVA_byte_addr_select << 5)
1644                 | (3 << 1) | 1;
1645         brp_list[brp_2].used = 1;
1646         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1647         brp_list[brp_2].control = control_IVA;
1648         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1649                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1650                         brp_list[brp_2].value);
1651         if (retval != ERROR_OK)
1652                 return retval;
1653         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1654                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1655                         brp_list[brp_2].control);
1656         if (retval != ERROR_OK)
1657                 return retval;
1658
1659         return ERROR_OK;
1660 }
1661
1662 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1663 {
1664         int retval;
1665         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1666         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1667         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1668
1669         if (!breakpoint->set) {
1670                 LOG_WARNING("breakpoint not set");
1671                 return ERROR_OK;
1672         }
1673
1674         if (breakpoint->type == BKPT_HARD) {
1675                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1676                         int brp_i = breakpoint->set - 1;
1677                         int brp_j = breakpoint->linked_BRP;
1678                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1679                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1680                                 return ERROR_OK;
1681                         }
1682                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1683                                 brp_list[brp_i].control, brp_list[brp_i].value);
1684                         brp_list[brp_i].used = 0;
1685                         brp_list[brp_i].value = 0;
1686                         brp_list[brp_i].control = 0;
1687                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1688                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1689                                         brp_list[brp_i].control);
1690                         if (retval != ERROR_OK)
1691                                 return retval;
1692                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1693                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1694                                         brp_list[brp_i].value);
1695                         if (retval != ERROR_OK)
1696                                 return retval;
1697                         if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1698                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1699                                 return ERROR_OK;
1700                         }
1701                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1702                                 brp_list[brp_j].control, brp_list[brp_j].value);
1703                         brp_list[brp_j].used = 0;
1704                         brp_list[brp_j].value = 0;
1705                         brp_list[brp_j].control = 0;
1706                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1707                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1708                                         brp_list[brp_j].control);
1709                         if (retval != ERROR_OK)
1710                                 return retval;
1711                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1712                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1713                                         brp_list[brp_j].value);
1714                         if (retval != ERROR_OK)
1715                                 return retval;
1716                         breakpoint->linked_BRP = 0;
1717                         breakpoint->set = 0;
1718                         return ERROR_OK;
1719
1720                 } else {
1721                         int brp_i = breakpoint->set - 1;
1722                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1723                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1724                                 return ERROR_OK;
1725                         }
1726                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1727                                 brp_list[brp_i].control, brp_list[brp_i].value);
1728                         brp_list[brp_i].used = 0;
1729                         brp_list[brp_i].value = 0;
1730                         brp_list[brp_i].control = 0;
1731                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1732                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1733                                         brp_list[brp_i].control);
1734                         if (retval != ERROR_OK)
1735                                 return retval;
1736                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1737                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1738                                         brp_list[brp_i].value);
1739                         if (retval != ERROR_OK)
1740                                 return retval;
1741                         breakpoint->set = 0;
1742                         return ERROR_OK;
1743                 }
1744         } else {
1745
1746                 /* make sure data cache is cleaned & invalidated down to PoC */
1747                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1748                         armv7a_cache_flush_virt(target, breakpoint->address,
1749                                                 breakpoint->length);
1750                 }
1751
1752                 /* restore original instruction (kept in target endianness) */
1753                 if (breakpoint->length == 4) {
1754                         retval = target_write_memory(target,
1755                                         breakpoint->address & 0xFFFFFFFE,
1756                                         4, 1, breakpoint->orig_instr);
1757                         if (retval != ERROR_OK)
1758                                 return retval;
1759                 } else {
1760                         retval = target_write_memory(target,
1761                                         breakpoint->address & 0xFFFFFFFE,
1762                                         2, 1, breakpoint->orig_instr);
1763                         if (retval != ERROR_OK)
1764                                 return retval;
1765                 }
1766
1767                 /* update i-cache at breakpoint location */
1768                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1769                                                  breakpoint->length);
1770                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1771                                                  breakpoint->length);
1772         }
1773         breakpoint->set = 0;
1774
1775         return ERROR_OK;
1776 }
1777
1778 static int cortex_a_add_breakpoint(struct target *target,
1779         struct breakpoint *breakpoint)
1780 {
1781         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1782
1783         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1784                 LOG_INFO("no hardware breakpoint available");
1785                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1786         }
1787
1788         if (breakpoint->type == BKPT_HARD)
1789                 cortex_a->brp_num_available--;
1790
1791         return cortex_a_set_breakpoint(target, breakpoint, 0x00);       /* Exact match */
1792 }
1793
1794 static int cortex_a_add_context_breakpoint(struct target *target,
1795         struct breakpoint *breakpoint)
1796 {
1797         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1798
1799         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1800                 LOG_INFO("no hardware breakpoint available");
1801                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1802         }
1803
1804         if (breakpoint->type == BKPT_HARD)
1805                 cortex_a->brp_num_available--;
1806
1807         return cortex_a_set_context_breakpoint(target, breakpoint, 0x02);       /* asid match */
1808 }
1809
1810 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1811         struct breakpoint *breakpoint)
1812 {
1813         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1814
1815         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1816                 LOG_INFO("no hardware breakpoint available");
1817                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1818         }
1819
1820         if (breakpoint->type == BKPT_HARD)
1821                 cortex_a->brp_num_available--;
1822
1823         return cortex_a_set_hybrid_breakpoint(target, breakpoint);      /* ??? */
1824 }
1825
1826
1827 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1828 {
1829         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1830
1831 #if 0
1832 /* It is perfectly possible to remove breakpoints while the target is running */
1833         if (target->state != TARGET_HALTED) {
1834                 LOG_WARNING("target not halted");
1835                 return ERROR_TARGET_NOT_HALTED;
1836         }
1837 #endif
1838
1839         if (breakpoint->set) {
1840                 cortex_a_unset_breakpoint(target, breakpoint);
1841                 if (breakpoint->type == BKPT_HARD)
1842                         cortex_a->brp_num_available++;
1843         }
1844
1845
1846         return ERROR_OK;
1847 }
1848
1849 /*
1850  * Cortex-A Reset functions
1851  */
1852
1853 static int cortex_a_assert_reset(struct target *target)
1854 {
1855         struct armv7a_common *armv7a = target_to_armv7a(target);
1856
1857         LOG_DEBUG(" ");
1858
1859         /* FIXME when halt is requested, make it work somehow... */
1860
1861         /* This function can be called in "target not examined" state */
1862
1863         /* Issue some kind of warm reset. */
1864         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1865                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1866         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1867                 /* REVISIT handle "pulls" cases, if there's
1868                  * hardware that needs them to work.
1869                  */
1870                 if (target->reset_halt)
1871                         if (jtag_get_reset_config() & RESET_SRST_NO_GATING)
1872                                 jtag_add_reset(0, 1);
1873         } else {
1874                 LOG_ERROR("%s: how to reset?", target_name(target));
1875                 return ERROR_FAIL;
1876         }
1877
1878         /* registers are now invalid */
1879         if (target_was_examined(target))
1880                 register_cache_invalidate(armv7a->arm.core_cache);
1881
1882         target->state = TARGET_RESET;
1883
1884         return ERROR_OK;
1885 }
1886
1887 static int cortex_a_deassert_reset(struct target *target)
1888 {
1889         int retval;
1890
1891         LOG_DEBUG(" ");
1892
1893         /* be certain SRST is off */
1894         jtag_add_reset(0, 0);
1895
1896         if (target_was_examined(target)) {
1897                 retval = cortex_a_poll(target);
1898                 if (retval != ERROR_OK)
1899                         return retval;
1900         }
1901
1902         if (target->reset_halt) {
1903                 if (target->state != TARGET_HALTED) {
1904                         LOG_WARNING("%s: ran after reset and before halt ...",
1905                                 target_name(target));
1906                         if (target_was_examined(target)) {
1907                                 retval = target_halt(target);
1908                                 if (retval != ERROR_OK)
1909                                         return retval;
1910                         } else
1911                                 target->state = TARGET_UNKNOWN;
1912                 }
1913         }
1914
1915         return ERROR_OK;
1916 }
1917
1918 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1919 {
1920         /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1921          * New desired mode must be in mode. Current value of DSCR must be in
1922          * *dscr, which is updated with new value.
1923          *
1924          * This function elides actually sending the mode-change over the debug
1925          * interface if the mode is already set as desired.
1926          */
1927         uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1928         if (new_dscr != *dscr) {
1929                 struct armv7a_common *armv7a = target_to_armv7a(target);
1930                 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1931                                 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1932                 if (retval == ERROR_OK)
1933                         *dscr = new_dscr;
1934                 return retval;
1935         } else {
1936                 return ERROR_OK;
1937         }
1938 }
1939
1940 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1941         uint32_t value, uint32_t *dscr)
1942 {
1943         /* Waits until the specified bit(s) of DSCR take on a specified value. */
1944         struct armv7a_common *armv7a = target_to_armv7a(target);
1945         int64_t then = timeval_ms();
1946         int retval;
1947
1948         while ((*dscr & mask) != value) {
1949                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1950                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1951                 if (retval != ERROR_OK)
1952                         return retval;
1953                 if (timeval_ms() > then + 1000) {
1954                         LOG_ERROR("timeout waiting for DSCR bit change");
1955                         return ERROR_FAIL;
1956                 }
1957         }
1958         return ERROR_OK;
1959 }
1960
1961 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1962         uint32_t *data, uint32_t *dscr)
1963 {
1964         int retval;
1965         struct armv7a_common *armv7a = target_to_armv7a(target);
1966
1967         /* Move from coprocessor to R0. */
1968         retval = cortex_a_exec_opcode(target, opcode, dscr);
1969         if (retval != ERROR_OK)
1970                 return retval;
1971
1972         /* Move from R0 to DTRTX. */
1973         retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1974         if (retval != ERROR_OK)
1975                 return retval;
1976
1977         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1978          * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1979          * must also check TXfull_l). Most of the time this will be free
1980          * because TXfull_l will be set immediately and cached in dscr. */
1981         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1982                         DSCR_DTRTX_FULL_LATCHED, dscr);
1983         if (retval != ERROR_OK)
1984                 return retval;
1985
1986         /* Read the value transferred to DTRTX. */
1987         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1988                         armv7a->debug_base + CPUDBG_DTRTX, data);
1989         if (retval != ERROR_OK)
1990                 return retval;
1991
1992         return ERROR_OK;
1993 }
1994
1995 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
1996         uint32_t *dfsr, uint32_t *dscr)
1997 {
1998         int retval;
1999
2000         if (dfar) {
2001                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2002                 if (retval != ERROR_OK)
2003                         return retval;
2004         }
2005
2006         if (dfsr) {
2007                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2008                 if (retval != ERROR_OK)
2009                         return retval;
2010         }
2011
2012         return ERROR_OK;
2013 }
2014
2015 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2016         uint32_t data, uint32_t *dscr)
2017 {
2018         int retval;
2019         struct armv7a_common *armv7a = target_to_armv7a(target);
2020
2021         /* Write the value into DTRRX. */
2022         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2023                         armv7a->debug_base + CPUDBG_DTRRX, data);
2024         if (retval != ERROR_OK)
2025                 return retval;
2026
2027         /* Move from DTRRX to R0. */
2028         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2029         if (retval != ERROR_OK)
2030                 return retval;
2031
2032         /* Move from R0 to coprocessor. */
2033         retval = cortex_a_exec_opcode(target, opcode, dscr);
2034         if (retval != ERROR_OK)
2035                 return retval;
2036
2037         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2038          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2039          * check RXfull_l). Most of the time this will be free because RXfull_l
2040          * will be cleared immediately and cached in dscr. */
2041         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2042         if (retval != ERROR_OK)
2043                 return retval;
2044
2045         return ERROR_OK;
2046 }
2047
2048 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2049         uint32_t dfsr, uint32_t *dscr)
2050 {
2051         int retval;
2052
2053         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2054         if (retval != ERROR_OK)
2055                 return retval;
2056
2057         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2058         if (retval != ERROR_OK)
2059                 return retval;
2060
2061         return ERROR_OK;
2062 }
2063
2064 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2065 {
2066         uint32_t status, upper4;
2067
2068         if (dfsr & (1 << 9)) {
2069                 /* LPAE format. */
2070                 status = dfsr & 0x3f;
2071                 upper4 = status >> 2;
2072                 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2073                         return ERROR_TARGET_TRANSLATION_FAULT;
2074                 else if (status == 33)
2075                         return ERROR_TARGET_UNALIGNED_ACCESS;
2076                 else
2077                         return ERROR_TARGET_DATA_ABORT;
2078         } else {
2079                 /* Normal format. */
2080                 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2081                 if (status == 1)
2082                         return ERROR_TARGET_UNALIGNED_ACCESS;
2083                 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2084                                 status == 9 || status == 11 || status == 13 || status == 15)
2085                         return ERROR_TARGET_TRANSLATION_FAULT;
2086                 else
2087                         return ERROR_TARGET_DATA_ABORT;
2088         }
2089 }
2090
2091 static int cortex_a_write_cpu_memory_slow(struct target *target,
2092         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2093 {
2094         /* Writes count objects of size size from *buffer. Old value of DSCR must
2095          * be in *dscr; updated to new value. This is slow because it works for
2096          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2097          * the address is aligned, cortex_a_write_cpu_memory_fast should be
2098          * preferred.
2099          * Preconditions:
2100          * - Address is in R0.
2101          * - R0 is marked dirty.
2102          */
2103         struct armv7a_common *armv7a = target_to_armv7a(target);
2104         struct arm *arm = &armv7a->arm;
2105         int retval;
2106
2107         /* Mark register R1 as dirty, to use for transferring data. */
2108         arm_reg_current(arm, 1)->dirty = true;
2109
2110         /* Switch to non-blocking mode if not already in that mode. */
2111         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2112         if (retval != ERROR_OK)
2113                 return retval;
2114
2115         /* Go through the objects. */
2116         while (count) {
2117                 /* Write the value to store into DTRRX. */
2118                 uint32_t data, opcode;
2119                 if (size == 1)
2120                         data = *buffer;
2121                 else if (size == 2)
2122                         data = target_buffer_get_u16(target, buffer);
2123                 else
2124                         data = target_buffer_get_u32(target, buffer);
2125                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2126                                 armv7a->debug_base + CPUDBG_DTRRX, data);
2127                 if (retval != ERROR_OK)
2128                         return retval;
2129
2130                 /* Transfer the value from DTRRX to R1. */
2131                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2132                 if (retval != ERROR_OK)
2133                         return retval;
2134
2135                 /* Write the value transferred to R1 into memory. */
2136                 if (size == 1)
2137                         opcode = ARMV4_5_STRB_IP(1, 0);
2138                 else if (size == 2)
2139                         opcode = ARMV4_5_STRH_IP(1, 0);
2140                 else
2141                         opcode = ARMV4_5_STRW_IP(1, 0);
2142                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2143                 if (retval != ERROR_OK)
2144                         return retval;
2145
2146                 /* Check for faults and return early. */
2147                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2148                         return ERROR_OK; /* A data fault is not considered a system failure. */
2149
2150                 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2151                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2152                  * must also check RXfull_l). Most of the time this will be free
2153                  * because RXfull_l will be cleared immediately and cached in dscr. */
2154                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2155                 if (retval != ERROR_OK)
2156                         return retval;
2157
2158                 /* Advance. */
2159                 buffer += size;
2160                 --count;
2161         }
2162
2163         return ERROR_OK;
2164 }
2165
2166 static int cortex_a_write_cpu_memory_fast(struct target *target,
2167         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2168 {
2169         /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2170          * in *dscr; updated to new value. This is fast but only works for
2171          * word-sized objects at aligned addresses.
2172          * Preconditions:
2173          * - Address is in R0 and must be a multiple of 4.
2174          * - R0 is marked dirty.
2175          */
2176         struct armv7a_common *armv7a = target_to_armv7a(target);
2177         int retval;
2178
2179         /* Switch to fast mode if not already in that mode. */
2180         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2181         if (retval != ERROR_OK)
2182                 return retval;
2183
2184         /* Latch STC instruction. */
2185         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2186                         armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2187         if (retval != ERROR_OK)
2188                 return retval;
2189
2190         /* Transfer all the data and issue all the instructions. */
2191         return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2192                         4, count, armv7a->debug_base + CPUDBG_DTRRX);
2193 }
2194
2195 static int cortex_a_write_cpu_memory(struct target *target,
2196         uint32_t address, uint32_t size,
2197         uint32_t count, const uint8_t *buffer)
2198 {
2199         /* Write memory through the CPU. */
2200         int retval, final_retval;
2201         struct armv7a_common *armv7a = target_to_armv7a(target);
2202         struct arm *arm = &armv7a->arm;
2203         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2204
2205         LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2206                           address, size, count);
2207         if (target->state != TARGET_HALTED) {
2208                 LOG_WARNING("target not halted");
2209                 return ERROR_TARGET_NOT_HALTED;
2210         }
2211
2212         if (!count)
2213                 return ERROR_OK;
2214
2215         /* Clear any abort. */
2216         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2217                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2218         if (retval != ERROR_OK)
2219                 return retval;
2220
2221         /* Read DSCR. */
2222         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2223                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2224         if (retval != ERROR_OK)
2225                 return retval;
2226
2227         /* Switch to non-blocking mode if not already in that mode. */
2228         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2229         if (retval != ERROR_OK)
2230                 goto out;
2231
2232         /* Mark R0 as dirty. */
2233         arm_reg_current(arm, 0)->dirty = true;
2234
2235         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2236         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2237         if (retval != ERROR_OK)
2238                 goto out;
2239
2240         /* Get the memory address into R0. */
2241         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2242                         armv7a->debug_base + CPUDBG_DTRRX, address);
2243         if (retval != ERROR_OK)
2244                 goto out;
2245         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2246         if (retval != ERROR_OK)
2247                 goto out;
2248
2249         if (size == 4 && (address % 4) == 0) {
2250                 /* We are doing a word-aligned transfer, so use fast mode. */
2251                 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2252         } else {
2253                 /* Use slow path. */
2254                 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2255         }
2256
2257 out:
2258         final_retval = retval;
2259
2260         /* Switch to non-blocking mode if not already in that mode. */
2261         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2262         if (final_retval == ERROR_OK)
2263                 final_retval = retval;
2264
2265         /* Wait for last issued instruction to complete. */
2266         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2267         if (final_retval == ERROR_OK)
2268                 final_retval = retval;
2269
2270         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2271          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2272          * check RXfull_l). Most of the time this will be free because RXfull_l
2273          * will be cleared immediately and cached in dscr. However, don't do this
2274          * if there is fault, because then the instruction might not have completed
2275          * successfully. */
2276         if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2277                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2278                 if (retval != ERROR_OK)
2279                         return retval;
2280         }
2281
2282         /* If there were any sticky abort flags, clear them. */
2283         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2284                 fault_dscr = dscr;
2285                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2286                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2287                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2288         } else {
2289                 fault_dscr = 0;
2290         }
2291
2292         /* Handle synchronous data faults. */
2293         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2294                 if (final_retval == ERROR_OK) {
2295                         /* Final return value will reflect cause of fault. */
2296                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2297                         if (retval == ERROR_OK) {
2298                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2299                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2300                         } else
2301                                 final_retval = retval;
2302                 }
2303                 /* Fault destroyed DFAR/DFSR; restore them. */
2304                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2305                 if (retval != ERROR_OK)
2306                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2307         }
2308
2309         /* Handle asynchronous data faults. */
2310         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2311                 if (final_retval == ERROR_OK)
2312                         /* No other error has been recorded so far, so keep this one. */
2313                         final_retval = ERROR_TARGET_DATA_ABORT;
2314         }
2315
2316         /* If the DCC is nonempty, clear it. */
2317         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2318                 uint32_t dummy;
2319                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2320                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2321                 if (final_retval == ERROR_OK)
2322                         final_retval = retval;
2323         }
2324         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2325                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2326                 if (final_retval == ERROR_OK)
2327                         final_retval = retval;
2328         }
2329
2330         /* Done. */
2331         return final_retval;
2332 }
2333
2334 static int cortex_a_read_cpu_memory_slow(struct target *target,
2335         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2336 {
2337         /* Reads count objects of size size into *buffer. Old value of DSCR must be
2338          * in *dscr; updated to new value. This is slow because it works for
2339          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2340          * the address is aligned, cortex_a_read_cpu_memory_fast should be
2341          * preferred.
2342          * Preconditions:
2343          * - Address is in R0.
2344          * - R0 is marked dirty.
2345          */
2346         struct armv7a_common *armv7a = target_to_armv7a(target);
2347         struct arm *arm = &armv7a->arm;
2348         int retval;
2349
2350         /* Mark register R1 as dirty, to use for transferring data. */
2351         arm_reg_current(arm, 1)->dirty = true;
2352
2353         /* Switch to non-blocking mode if not already in that mode. */
2354         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2355         if (retval != ERROR_OK)
2356                 return retval;
2357
2358         /* Go through the objects. */
2359         while (count) {
2360                 /* Issue a load of the appropriate size to R1. */
2361                 uint32_t opcode, data;
2362                 if (size == 1)
2363                         opcode = ARMV4_5_LDRB_IP(1, 0);
2364                 else if (size == 2)
2365                         opcode = ARMV4_5_LDRH_IP(1, 0);
2366                 else
2367                         opcode = ARMV4_5_LDRW_IP(1, 0);
2368                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2369                 if (retval != ERROR_OK)
2370                         return retval;
2371
2372                 /* Issue a write of R1 to DTRTX. */
2373                 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2374                 if (retval != ERROR_OK)
2375                         return retval;
2376
2377                 /* Check for faults and return early. */
2378                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2379                         return ERROR_OK; /* A data fault is not considered a system failure. */
2380
2381                 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2382                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2383                  * must also check TXfull_l). Most of the time this will be free
2384                  * because TXfull_l will be set immediately and cached in dscr. */
2385                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2386                                 DSCR_DTRTX_FULL_LATCHED, dscr);
2387                 if (retval != ERROR_OK)
2388                         return retval;
2389
2390                 /* Read the value transferred to DTRTX into the buffer. */
2391                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2392                                 armv7a->debug_base + CPUDBG_DTRTX, &data);
2393                 if (retval != ERROR_OK)
2394                         return retval;
2395                 if (size == 1)
2396                         *buffer = (uint8_t) data;
2397                 else if (size == 2)
2398                         target_buffer_set_u16(target, buffer, (uint16_t) data);
2399                 else
2400                         target_buffer_set_u32(target, buffer, data);
2401
2402                 /* Advance. */
2403                 buffer += size;
2404                 --count;
2405         }
2406
2407         return ERROR_OK;
2408 }
2409
2410 static int cortex_a_read_cpu_memory_fast(struct target *target,
2411         uint32_t count, uint8_t *buffer, uint32_t *dscr)
2412 {
2413         /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2414          * *dscr; updated to new value. This is fast but only works for word-sized
2415          * objects at aligned addresses.
2416          * Preconditions:
2417          * - Address is in R0 and must be a multiple of 4.
2418          * - R0 is marked dirty.
2419          */
2420         struct armv7a_common *armv7a = target_to_armv7a(target);
2421         uint32_t u32;
2422         int retval;
2423
2424         /* Switch to non-blocking mode if not already in that mode. */
2425         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2426         if (retval != ERROR_OK)
2427                 return retval;
2428
2429         /* Issue the LDC instruction via a write to ITR. */
2430         retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2431         if (retval != ERROR_OK)
2432                 return retval;
2433
2434         count--;
2435
2436         if (count > 0) {
2437                 /* Switch to fast mode if not already in that mode. */
2438                 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2439                 if (retval != ERROR_OK)
2440                         return retval;
2441
2442                 /* Latch LDC instruction. */
2443                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2444                                 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2445                 if (retval != ERROR_OK)
2446                         return retval;
2447
2448                 /* Read the value transferred to DTRTX into the buffer. Due to fast
2449                  * mode rules, this blocks until the instruction finishes executing and
2450                  * then reissues the read instruction to read the next word from
2451                  * memory. The last read of DTRTX in this call reads the second-to-last
2452                  * word from memory and issues the read instruction for the last word.
2453                  */
2454                 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2455                                 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2456                 if (retval != ERROR_OK)
2457                         return retval;
2458
2459                 /* Advance. */
2460                 buffer += count * 4;
2461         }
2462
2463         /* Wait for last issued instruction to complete. */
2464         retval = cortex_a_wait_instrcmpl(target, dscr, false);
2465         if (retval != ERROR_OK)
2466                 return retval;
2467
2468         /* Switch to non-blocking mode if not already in that mode. */
2469         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2470         if (retval != ERROR_OK)
2471                 return retval;
2472
2473         /* Check for faults and return early. */
2474         if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2475                 return ERROR_OK; /* A data fault is not considered a system failure. */
2476
2477         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2478          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2479          * check TXfull_l). Most of the time this will be free because TXfull_l
2480          * will be set immediately and cached in dscr. */
2481         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2482                         DSCR_DTRTX_FULL_LATCHED, dscr);
2483         if (retval != ERROR_OK)
2484                 return retval;
2485
2486         /* Read the value transferred to DTRTX into the buffer. This is the last
2487          * word. */
2488         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2489                         armv7a->debug_base + CPUDBG_DTRTX, &u32);
2490         if (retval != ERROR_OK)
2491                 return retval;
2492         target_buffer_set_u32(target, buffer, u32);
2493
2494         return ERROR_OK;
2495 }
2496
2497 static int cortex_a_read_cpu_memory(struct target *target,
2498         uint32_t address, uint32_t size,
2499         uint32_t count, uint8_t *buffer)
2500 {
2501         /* Read memory through the CPU. */
2502         int retval, final_retval;
2503         struct armv7a_common *armv7a = target_to_armv7a(target);
2504         struct arm *arm = &armv7a->arm;
2505         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2506
2507         LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2508                           address, size, count);
2509         if (target->state != TARGET_HALTED) {
2510                 LOG_WARNING("target not halted");
2511                 return ERROR_TARGET_NOT_HALTED;
2512         }
2513
2514         if (!count)
2515                 return ERROR_OK;
2516
2517         /* Clear any abort. */
2518         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2519                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2520         if (retval != ERROR_OK)
2521                 return retval;
2522
2523         /* Read DSCR */
2524         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2525                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2526         if (retval != ERROR_OK)
2527                 return retval;
2528
2529         /* Switch to non-blocking mode if not already in that mode. */
2530         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2531         if (retval != ERROR_OK)
2532                 goto out;
2533
2534         /* Mark R0 as dirty. */
2535         arm_reg_current(arm, 0)->dirty = true;
2536
2537         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2538         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2539         if (retval != ERROR_OK)
2540                 goto out;
2541
2542         /* Get the memory address into R0. */
2543         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2544                         armv7a->debug_base + CPUDBG_DTRRX, address);
2545         if (retval != ERROR_OK)
2546                 goto out;
2547         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2548         if (retval != ERROR_OK)
2549                 goto out;
2550
2551         if (size == 4 && (address % 4) == 0) {
2552                 /* We are doing a word-aligned transfer, so use fast mode. */
2553                 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2554         } else {
2555                 /* Use slow path. */
2556                 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2557         }
2558
2559 out:
2560         final_retval = retval;
2561
2562         /* Switch to non-blocking mode if not already in that mode. */
2563         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2564         if (final_retval == ERROR_OK)
2565                 final_retval = retval;
2566
2567         /* Wait for last issued instruction to complete. */
2568         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2569         if (final_retval == ERROR_OK)
2570                 final_retval = retval;
2571
2572         /* If there were any sticky abort flags, clear them. */
2573         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2574                 fault_dscr = dscr;
2575                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2576                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2577                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2578         } else {
2579                 fault_dscr = 0;
2580         }
2581
2582         /* Handle synchronous data faults. */
2583         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2584                 if (final_retval == ERROR_OK) {
2585                         /* Final return value will reflect cause of fault. */
2586                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2587                         if (retval == ERROR_OK) {
2588                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2589                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2590                         } else
2591                                 final_retval = retval;
2592                 }
2593                 /* Fault destroyed DFAR/DFSR; restore them. */
2594                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2595                 if (retval != ERROR_OK)
2596                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2597         }
2598
2599         /* Handle asynchronous data faults. */
2600         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2601                 if (final_retval == ERROR_OK)
2602                         /* No other error has been recorded so far, so keep this one. */
2603                         final_retval = ERROR_TARGET_DATA_ABORT;
2604         }
2605
2606         /* If the DCC is nonempty, clear it. */
2607         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2608                 uint32_t dummy;
2609                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2610                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2611                 if (final_retval == ERROR_OK)
2612                         final_retval = retval;
2613         }
2614         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2615                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2616                 if (final_retval == ERROR_OK)
2617                         final_retval = retval;
2618         }
2619
2620         /* Done. */
2621         return final_retval;
2622 }
2623
2624
2625 /*
2626  * Cortex-A Memory access
2627  *
2628  * This is same Cortex-M3 but we must also use the correct
2629  * ap number for every access.
2630  */
2631
2632 static int cortex_a_read_phys_memory(struct target *target,
2633         uint32_t address, uint32_t size,
2634         uint32_t count, uint8_t *buffer)
2635 {
2636         struct armv7a_common *armv7a = target_to_armv7a(target);
2637         struct adiv5_dap *swjdp = armv7a->arm.dap;
2638         uint8_t apsel = swjdp->apsel;
2639         int retval;
2640
2641         if (!count || !buffer)
2642                 return ERROR_COMMAND_SYNTAX_ERROR;
2643
2644         LOG_DEBUG("Reading memory at real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32,
2645                 address, size, count);
2646
2647         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2648                 return mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2649
2650         /* read memory through the CPU */
2651         cortex_a_prep_memaccess(target, 1);
2652         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2653         cortex_a_post_memaccess(target, 1);
2654
2655         return retval;
2656 }
2657
2658 static int cortex_a_read_memory(struct target *target, uint32_t address,
2659         uint32_t size, uint32_t count, uint8_t *buffer)
2660 {
2661         int retval;
2662
2663         /* cortex_a handles unaligned memory access */
2664         LOG_DEBUG("Reading memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2665                 size, count);
2666
2667         cortex_a_prep_memaccess(target, 0);
2668         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2669         cortex_a_post_memaccess(target, 0);
2670
2671         return retval;
2672 }
2673
2674 static int cortex_a_read_memory_ahb(struct target *target, uint32_t address,
2675         uint32_t size, uint32_t count, uint8_t *buffer)
2676 {
2677         int mmu_enabled = 0;
2678         uint32_t virt, phys;
2679         int retval;
2680         struct armv7a_common *armv7a = target_to_armv7a(target);
2681         struct adiv5_dap *swjdp = armv7a->arm.dap;
2682         uint8_t apsel = swjdp->apsel;
2683
2684         if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2685                 return target_read_memory(target, address, size, count, buffer);
2686
2687         /* cortex_a handles unaligned memory access */
2688         LOG_DEBUG("Reading memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2689                 size, count);
2690
2691         /* determine if MMU was enabled on target stop */
2692         if (!armv7a->is_armv7r) {
2693                 retval = cortex_a_mmu(target, &mmu_enabled);
2694                 if (retval != ERROR_OK)
2695                         return retval;
2696         }
2697
2698         if (mmu_enabled) {
2699                 virt = address;
2700                 retval = cortex_a_virt2phys(target, virt, &phys);
2701                 if (retval != ERROR_OK)
2702                         return retval;
2703
2704                 LOG_DEBUG("Reading at virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
2705                           virt, phys);
2706                 address = phys;
2707         }
2708
2709         if (!count || !buffer)
2710                 return ERROR_COMMAND_SYNTAX_ERROR;
2711
2712         retval = mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2713
2714         return retval;
2715 }
2716
2717 static int cortex_a_write_phys_memory(struct target *target,
2718         uint32_t address, uint32_t size,
2719         uint32_t count, const uint8_t *buffer)
2720 {
2721         struct armv7a_common *armv7a = target_to_armv7a(target);
2722         struct adiv5_dap *swjdp = armv7a->arm.dap;
2723         uint8_t apsel = swjdp->apsel;
2724         int retval;
2725
2726         if (!count || !buffer)
2727                 return ERROR_COMMAND_SYNTAX_ERROR;
2728
2729         LOG_DEBUG("Writing memory to real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2730                 size, count);
2731
2732         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2733                 return mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2734
2735         /* write memory through the CPU */
2736         cortex_a_prep_memaccess(target, 1);
2737         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2738         cortex_a_post_memaccess(target, 1);
2739
2740         return retval;
2741 }
2742
2743 static int cortex_a_write_memory(struct target *target, uint32_t address,
2744         uint32_t size, uint32_t count, const uint8_t *buffer)
2745 {
2746         int retval;
2747
2748         /* cortex_a handles unaligned memory access */
2749         LOG_DEBUG("Writing memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2750                 size, count);
2751
2752         /* memory writes bypass the caches, must flush before writing */
2753         armv7a_cache_auto_flush_on_write(target, address, size * count);
2754
2755         cortex_a_prep_memaccess(target, 0);
2756         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2757         cortex_a_post_memaccess(target, 0);
2758         return retval;
2759 }
2760
2761 static int cortex_a_write_memory_ahb(struct target *target, uint32_t address,
2762         uint32_t size, uint32_t count, const uint8_t *buffer)
2763 {
2764         int mmu_enabled = 0;
2765         uint32_t virt, phys;
2766         int retval;
2767         struct armv7a_common *armv7a = target_to_armv7a(target);
2768         struct adiv5_dap *swjdp = armv7a->arm.dap;
2769         uint8_t apsel = swjdp->apsel;
2770
2771         if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2772                 return target_write_memory(target, address, size, count, buffer);
2773
2774         /* cortex_a handles unaligned memory access */
2775         LOG_DEBUG("Writing memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2776                 size, count);
2777
2778         /* determine if MMU was enabled on target stop */
2779         if (!armv7a->is_armv7r) {
2780                 retval = cortex_a_mmu(target, &mmu_enabled);
2781                 if (retval != ERROR_OK)
2782                         return retval;
2783         }
2784
2785         if (mmu_enabled) {
2786                 virt = address;
2787                 retval = cortex_a_virt2phys(target, virt, &phys);
2788                 if (retval != ERROR_OK)
2789                         return retval;
2790
2791                 LOG_DEBUG("Writing to virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
2792                           virt,
2793                           phys);
2794                 address = phys;
2795         }
2796
2797         if (!count || !buffer)
2798                 return ERROR_COMMAND_SYNTAX_ERROR;
2799
2800         retval = mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2801
2802         return retval;
2803 }
2804
2805 static int cortex_a_read_buffer(struct target *target, uint32_t address,
2806                                 uint32_t count, uint8_t *buffer)
2807 {
2808         uint32_t size;
2809
2810         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2811          * will have something to do with the size we leave to it. */
2812         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2813                 if (address & size) {
2814                         int retval = cortex_a_read_memory_ahb(target, address, size, 1, buffer);
2815                         if (retval != ERROR_OK)
2816                                 return retval;
2817                         address += size;
2818                         count -= size;
2819                         buffer += size;
2820                 }
2821         }
2822
2823         /* Read the data with as large access size as possible. */
2824         for (; size > 0; size /= 2) {
2825                 uint32_t aligned = count - count % size;
2826                 if (aligned > 0) {
2827                         int retval = cortex_a_read_memory_ahb(target, address, size, aligned / size, buffer);
2828                         if (retval != ERROR_OK)
2829                                 return retval;
2830                         address += aligned;
2831                         count -= aligned;
2832                         buffer += aligned;
2833                 }
2834         }
2835
2836         return ERROR_OK;
2837 }
2838
2839 static int cortex_a_write_buffer(struct target *target, uint32_t address,
2840                                  uint32_t count, const uint8_t *buffer)
2841 {
2842         uint32_t size;
2843
2844         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2845          * will have something to do with the size we leave to it. */
2846         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2847                 if (address & size) {
2848                         int retval = cortex_a_write_memory_ahb(target, address, size, 1, buffer);
2849                         if (retval != ERROR_OK)
2850                                 return retval;
2851                         address += size;
2852                         count -= size;
2853                         buffer += size;
2854                 }
2855         }
2856
2857         /* Write the data with as large access size as possible. */
2858         for (; size > 0; size /= 2) {
2859                 uint32_t aligned = count - count % size;
2860                 if (aligned > 0) {
2861                         int retval = cortex_a_write_memory_ahb(target, address, size, aligned / size, buffer);
2862                         if (retval != ERROR_OK)
2863                                 return retval;
2864                         address += aligned;
2865                         count -= aligned;
2866                         buffer += aligned;
2867                 }
2868         }
2869
2870         return ERROR_OK;
2871 }
2872
2873 static int cortex_a_handle_target_request(void *priv)
2874 {
2875         struct target *target = priv;
2876         struct armv7a_common *armv7a = target_to_armv7a(target);
2877         int retval;
2878
2879         if (!target_was_examined(target))
2880                 return ERROR_OK;
2881         if (!target->dbg_msg_enabled)
2882                 return ERROR_OK;
2883
2884         if (target->state == TARGET_RUNNING) {
2885                 uint32_t request;
2886                 uint32_t dscr;
2887                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2888                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2889
2890                 /* check if we have data */
2891                 int64_t then = timeval_ms();
2892                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2893                         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2894                                         armv7a->debug_base + CPUDBG_DTRTX, &request);
2895                         if (retval == ERROR_OK) {
2896                                 target_request(target, request);
2897                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2898                                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2899                         }
2900                         if (timeval_ms() > then + 1000) {
2901                                 LOG_ERROR("Timeout waiting for dtr tx full");
2902                                 return ERROR_FAIL;
2903                         }
2904                 }
2905         }
2906
2907         return ERROR_OK;
2908 }
2909
2910 /*
2911  * Cortex-A target information and configuration
2912  */
2913
2914 static int cortex_a_examine_first(struct target *target)
2915 {
2916         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2917         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2918         struct adiv5_dap *swjdp = armv7a->arm.dap;
2919
2920         int i;
2921         int retval = ERROR_OK;
2922         uint32_t didr, cpuid, dbg_osreg;
2923
2924         retval = dap_dp_init(swjdp);
2925         if (retval != ERROR_OK) {
2926                 LOG_ERROR("Could not initialize the debug port");
2927                 return retval;
2928         }
2929
2930         /* Search for the APB-AP - it is needed for access to debug registers */
2931         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2932         if (retval != ERROR_OK) {
2933                 LOG_ERROR("Could not find APB-AP for debug access");
2934                 return retval;
2935         }
2936
2937         retval = mem_ap_init(armv7a->debug_ap);
2938         if (retval != ERROR_OK) {
2939                 LOG_ERROR("Could not initialize the APB-AP");
2940                 return retval;
2941         }
2942
2943         armv7a->debug_ap->memaccess_tck = 80;
2944
2945         /* Search for the AHB-AB.
2946          * REVISIT: We should search for AXI-AP as well and make sure the AP's MEMTYPE says it
2947          * can access system memory. */
2948         armv7a->memory_ap_available = false;
2949         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7a->memory_ap);
2950         if (retval == ERROR_OK) {
2951                 retval = mem_ap_init(armv7a->memory_ap);
2952                 if (retval == ERROR_OK)
2953                         armv7a->memory_ap_available = true;
2954         }
2955         if (retval != ERROR_OK) {
2956                 /* AHB-AP not found or unavailable - use the CPU */
2957                 LOG_DEBUG("No AHB-AP available for memory access");
2958         }
2959
2960         if (!target->dbgbase_set) {
2961                 uint32_t dbgbase;
2962                 /* Get ROM Table base */
2963                 uint32_t apid;
2964                 int32_t coreidx = target->coreid;
2965                 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2966                           target->cmd_name);
2967                 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2968                 if (retval != ERROR_OK)
2969                         return retval;
2970                 /* Lookup 0x15 -- Processor DAP */
2971                 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2972                                 &armv7a->debug_base, &coreidx);
2973                 if (retval != ERROR_OK) {
2974                         LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2975                                   target->cmd_name);
2976                         return retval;
2977                 }
2978                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2979                           target->coreid, armv7a->debug_base);
2980         } else
2981                 armv7a->debug_base = target->dbgbase;
2982
2983         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2984                         armv7a->debug_base + CPUDBG_DIDR, &didr);
2985         if (retval != ERROR_OK) {
2986                 LOG_DEBUG("Examine %s failed", "DIDR");
2987                 return retval;
2988         }
2989
2990         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2991                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2992         if (retval != ERROR_OK) {
2993                 LOG_DEBUG("Examine %s failed", "CPUID");
2994                 return retval;
2995         }
2996
2997         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2998         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2999
3000         cortex_a->didr = didr;
3001         cortex_a->cpuid = cpuid;
3002
3003         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3004                                     armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
3005         if (retval != ERROR_OK)
3006                 return retval;
3007         LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR  0x%" PRIx32, target->coreid, dbg_osreg);
3008
3009         if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
3010                 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
3011                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3012                 return ERROR_TARGET_INIT_FAILED;
3013         }
3014
3015         if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
3016                 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
3017
3018         /* Read DBGOSLSR and check if OSLK is implemented */
3019         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3020                                 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3021         if (retval != ERROR_OK)
3022                 return retval;
3023         LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
3024
3025         /* check if OS Lock is implemented */
3026         if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
3027                 /* check if OS Lock is set */
3028                 if (dbg_osreg & OSLSR_OSLK) {
3029                         LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
3030
3031                         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
3032                                                         armv7a->debug_base + CPUDBG_OSLAR,
3033                                                         0);
3034                         if (retval == ERROR_OK)
3035                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3036                                                         armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3037
3038                         /* if we fail to access the register or cannot reset the OSLK bit, bail out */
3039                         if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
3040                                 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
3041                                                 target->coreid);
3042                                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3043                                 return ERROR_TARGET_INIT_FAILED;
3044                         }
3045                 }
3046         }
3047
3048         armv7a->arm.core_type = ARM_MODE_MON;
3049
3050         /* Avoid recreating the registers cache */
3051         if (!target_was_examined(target)) {
3052                 retval = cortex_a_dpm_setup(cortex_a, didr);
3053                 if (retval != ERROR_OK)
3054                         return retval;
3055         }
3056
3057         /* Setup Breakpoint Register Pairs */
3058         cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3059         cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3060         cortex_a->brp_num_available = cortex_a->brp_num;
3061         free(cortex_a->brp_list);
3062         cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3063 /*      cortex_a->brb_enabled = ????; */
3064         for (i = 0; i < cortex_a->brp_num; i++) {
3065                 cortex_a->brp_list[i].used = 0;
3066                 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3067                         cortex_a->brp_list[i].type = BRP_NORMAL;
3068                 else
3069                         cortex_a->brp_list[i].type = BRP_CONTEXT;
3070                 cortex_a->brp_list[i].value = 0;
3071                 cortex_a->brp_list[i].control = 0;
3072                 cortex_a->brp_list[i].BRPn = i;
3073         }
3074
3075         LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3076
3077         /* select debug_ap as default */
3078         swjdp->apsel = armv7a->debug_ap->ap_num;
3079
3080         target_set_examined(target);
3081         return ERROR_OK;
3082 }
3083
3084 static int cortex_a_examine(struct target *target)
3085 {
3086         int retval = ERROR_OK;
3087
3088         /* Reestablish communication after target reset */
3089         retval = cortex_a_examine_first(target);
3090
3091         /* Configure core debug access */
3092         if (retval == ERROR_OK)
3093                 retval = cortex_a_init_debug_access(target);
3094
3095         return retval;
3096 }
3097
3098 /*
3099  *      Cortex-A target creation and initialization
3100  */
3101
3102 static int cortex_a_init_target(struct command_context *cmd_ctx,
3103         struct target *target)
3104 {
3105         /* examine_first() does a bunch of this */
3106         return ERROR_OK;
3107 }
3108
3109 static int cortex_a_init_arch_info(struct target *target,
3110         struct cortex_a_common *cortex_a, struct jtag_tap *tap)
3111 {
3112         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3113
3114         /* Setup struct cortex_a_common */
3115         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3116
3117         /*  tap has no dap initialized */
3118         if (!tap->dap) {
3119                 tap->dap = dap_init();
3120
3121                 /* Leave (only) generic DAP stuff for debugport_init() */
3122                 tap->dap->tap = tap;
3123         }
3124
3125         armv7a->arm.dap = tap->dap;
3126
3127         cortex_a->fast_reg_read = 0;
3128
3129         /* register arch-specific functions */
3130         armv7a->examine_debug_reason = NULL;
3131
3132         armv7a->post_debug_entry = cortex_a_post_debug_entry;
3133
3134         armv7a->pre_restore_context = NULL;
3135
3136         armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
3137
3138
3139 /*      arm7_9->handle_target_request = cortex_a_handle_target_request; */
3140
3141         /* REVISIT v7a setup should be in a v7a-specific routine */
3142         armv7a_init_arch_info(target, armv7a);
3143         target_register_timer_callback(cortex_a_handle_target_request, 1, 1, target);
3144
3145         return ERROR_OK;
3146 }
3147
3148 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3149 {
3150         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3151
3152         cortex_a->armv7a_common.is_armv7r = false;
3153
3154         return cortex_a_init_arch_info(target, cortex_a, target->tap);
3155 }
3156
3157 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3158 {
3159         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3160
3161         cortex_a->armv7a_common.is_armv7r = true;
3162
3163         return cortex_a_init_arch_info(target, cortex_a, target->tap);
3164 }
3165
3166 static void cortex_a_deinit_target(struct target *target)
3167 {
3168         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3169         struct arm_dpm *dpm = &cortex_a->armv7a_common.dpm;
3170
3171         free(cortex_a->brp_list);
3172         free(dpm->dbp);
3173         free(dpm->dwp);
3174         free(cortex_a);
3175 }
3176
3177 static int cortex_a_mmu(struct target *target, int *enabled)
3178 {
3179         struct armv7a_common *armv7a = target_to_armv7a(target);
3180
3181         if (target->state != TARGET_HALTED) {
3182                 LOG_ERROR("%s: target not halted", __func__);
3183                 return ERROR_TARGET_INVALID;
3184         }
3185
3186         if (armv7a->is_armv7r)
3187                 *enabled = 0;
3188         else
3189                 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3190
3191         return ERROR_OK;
3192 }
3193
3194 static int cortex_a_virt2phys(struct target *target,
3195         uint32_t virt, uint32_t *phys)
3196 {
3197         int retval = ERROR_FAIL;
3198         struct armv7a_common *armv7a = target_to_armv7a(target);
3199         struct adiv5_dap *swjdp = armv7a->arm.dap;
3200         uint8_t apsel = swjdp->apsel;
3201         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num)) {
3202                 uint32_t ret;
3203                 retval = armv7a_mmu_translate_va(target,
3204                                 virt, &ret);
3205                 if (retval != ERROR_OK)
3206                         goto done;
3207                 *phys = ret;
3208         } else {/*  use this method if armv7a->memory_ap not selected
3209                  *  mmu must be enable in order to get a correct translation */
3210                 retval = cortex_a_mmu_modify(target, 1);
3211                 if (retval != ERROR_OK)
3212                         goto done;
3213                 retval = armv7a_mmu_translate_va_pa(target, virt,  phys, 1);
3214         }
3215 done:
3216         return retval;
3217 }
3218
3219 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3220 {
3221         struct target *target = get_current_target(CMD_CTX);
3222         struct armv7a_common *armv7a = target_to_armv7a(target);
3223
3224         return armv7a_handle_cache_info_command(CMD_CTX,
3225                         &armv7a->armv7a_mmu.armv7a_cache);
3226 }
3227
3228
3229 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3230 {
3231         struct target *target = get_current_target(CMD_CTX);
3232         if (!target_was_examined(target)) {
3233                 LOG_ERROR("target not examined yet");
3234                 return ERROR_FAIL;
3235         }
3236
3237         return cortex_a_init_debug_access(target);
3238 }
3239 COMMAND_HANDLER(cortex_a_handle_smp_off_command)
3240 {
3241         struct target *target = get_current_target(CMD_CTX);
3242         /* check target is an smp target */
3243         struct target_list *head;
3244         struct target *curr;
3245         head = target->head;
3246         target->smp = 0;
3247         if (head != (struct target_list *)NULL) {
3248                 while (head != (struct target_list *)NULL) {
3249                         curr = head->target;
3250                         curr->smp = 0;
3251                         head = head->next;
3252                 }
3253                 /*  fixes the target display to the debugger */
3254                 target->gdb_service->target = target;
3255         }
3256         return ERROR_OK;
3257 }
3258
3259 COMMAND_HANDLER(cortex_a_handle_smp_on_command)
3260 {
3261         struct target *target = get_current_target(CMD_CTX);
3262         struct target_list *head;
3263         struct target *curr;
3264         head = target->head;
3265         if (head != (struct target_list *)NULL) {
3266                 target->smp = 1;
3267                 while (head != (struct target_list *)NULL) {
3268                         curr = head->target;
3269                         curr->smp = 1;
3270                         head = head->next;
3271                 }
3272         }
3273         return ERROR_OK;
3274 }
3275
3276 COMMAND_HANDLER(cortex_a_handle_smp_gdb_command)
3277 {
3278         struct target *target = get_current_target(CMD_CTX);
3279         int retval = ERROR_OK;
3280         struct target_list *head;
3281         head = target->head;
3282         if (head != (struct target_list *)NULL) {
3283                 if (CMD_ARGC == 1) {
3284                         int coreid = 0;
3285                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
3286                         if (ERROR_OK != retval)
3287                                 return retval;
3288                         target->gdb_service->core[1] = coreid;
3289
3290                 }
3291                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
3292                         , target->gdb_service->core[1]);
3293         }
3294         return ERROR_OK;
3295 }
3296
3297 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3298 {
3299         struct target *target = get_current_target(CMD_CTX);
3300         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3301
3302         static const Jim_Nvp nvp_maskisr_modes[] = {
3303                 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3304                 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3305                 { .name = NULL, .value = -1 },
3306         };
3307         const Jim_Nvp *n;
3308
3309         if (CMD_ARGC > 0) {
3310                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3311                 if (n->name == NULL) {
3312                         LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3313                         return ERROR_COMMAND_SYNTAX_ERROR;
3314                 }
3315
3316                 cortex_a->isrmasking_mode = n->value;
3317         }
3318
3319         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3320         command_print(CMD_CTX, "cortex_a interrupt mask %s", n->name);
3321
3322         return ERROR_OK;
3323 }
3324
3325 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3326 {
3327         struct target *target = get_current_target(CMD_CTX);
3328         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3329
3330         static const Jim_Nvp nvp_dacrfixup_modes[] = {
3331                 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3332                 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3333                 { .name = NULL, .value = -1 },
3334         };
3335         const Jim_Nvp *n;
3336
3337         if (CMD_ARGC > 0) {
3338                 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3339                 if (n->name == NULL)
3340                         return ERROR_COMMAND_SYNTAX_ERROR;
3341                 cortex_a->dacrfixup_mode = n->value;
3342
3343         }
3344
3345         n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3346         command_print(CMD_CTX, "cortex_a domain access control fixup %s", n->name);
3347
3348         return ERROR_OK;
3349 }
3350
3351 static const struct command_registration cortex_a_exec_command_handlers[] = {
3352         {
3353                 .name = "cache_info",
3354                 .handler = cortex_a_handle_cache_info_command,
3355                 .mode = COMMAND_EXEC,
3356                 .help = "display information about target caches",
3357                 .usage = "",
3358         },
3359         {
3360                 .name = "dbginit",
3361                 .handler = cortex_a_handle_dbginit_command,
3362                 .mode = COMMAND_EXEC,
3363                 .help = "Initialize core debug",
3364                 .usage = "",
3365         },
3366         {   .name = "smp_off",
3367             .handler = cortex_a_handle_smp_off_command,
3368             .mode = COMMAND_EXEC,
3369             .help = "Stop smp handling",
3370             .usage = "",},
3371         {
3372                 .name = "smp_on",
3373                 .handler = cortex_a_handle_smp_on_command,
3374                 .mode = COMMAND_EXEC,
3375                 .help = "Restart smp handling",
3376                 .usage = "",
3377         },
3378         {
3379                 .name = "smp_gdb",
3380                 .handler = cortex_a_handle_smp_gdb_command,
3381                 .mode = COMMAND_EXEC,
3382                 .help = "display/fix current core played to gdb",
3383                 .usage = "",
3384         },
3385         {
3386                 .name = "maskisr",
3387                 .handler = handle_cortex_a_mask_interrupts_command,
3388                 .mode = COMMAND_ANY,
3389                 .help = "mask cortex_a interrupts",
3390                 .usage = "['on'|'off']",
3391         },
3392         {
3393                 .name = "dacrfixup",
3394                 .handler = handle_cortex_a_dacrfixup_command,
3395                 .mode = COMMAND_EXEC,
3396                 .help = "set domain access control (DACR) to all-manager "
3397                         "on memory access",
3398                 .usage = "['on'|'off']",
3399         },
3400
3401         COMMAND_REGISTRATION_DONE
3402 };
3403 static const struct command_registration cortex_a_command_handlers[] = {
3404         {
3405                 .chain = arm_command_handlers,
3406         },
3407         {
3408                 .chain = armv7a_command_handlers,
3409         },
3410         {
3411                 .name = "cortex_a",
3412                 .mode = COMMAND_ANY,
3413                 .help = "Cortex-A command group",
3414                 .usage = "",
3415                 .chain = cortex_a_exec_command_handlers,
3416         },
3417         COMMAND_REGISTRATION_DONE
3418 };
3419
3420 struct target_type cortexa_target = {
3421         .name = "cortex_a",
3422         .deprecated_name = "cortex_a8",
3423
3424         .poll = cortex_a_poll,
3425         .arch_state = armv7a_arch_state,
3426
3427         .halt = cortex_a_halt,
3428         .resume = cortex_a_resume,
3429         .step = cortex_a_step,
3430
3431         .assert_reset = cortex_a_assert_reset,
3432         .deassert_reset = cortex_a_deassert_reset,
3433
3434         /* REVISIT allow exporting VFP3 registers ... */
3435         .get_gdb_reg_list = arm_get_gdb_reg_list,
3436
3437         .read_memory = cortex_a_read_memory,
3438         .write_memory = cortex_a_write_memory,
3439
3440         .read_buffer = cortex_a_read_buffer,
3441         .write_buffer = cortex_a_write_buffer,
3442
3443         .checksum_memory = arm_checksum_memory,
3444         .blank_check_memory = arm_blank_check_memory,
3445
3446         .run_algorithm = armv4_5_run_algorithm,
3447
3448         .add_breakpoint = cortex_a_add_breakpoint,
3449         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3450         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3451         .remove_breakpoint = cortex_a_remove_breakpoint,
3452         .add_watchpoint = NULL,
3453         .remove_watchpoint = NULL,
3454
3455         .commands = cortex_a_command_handlers,
3456         .target_create = cortex_a_target_create,
3457         .init_target = cortex_a_init_target,
3458         .examine = cortex_a_examine,
3459         .deinit_target = cortex_a_deinit_target,
3460
3461         .read_phys_memory = cortex_a_read_phys_memory,
3462         .write_phys_memory = cortex_a_write_phys_memory,
3463         .mmu = cortex_a_mmu,
3464         .virt2phys = cortex_a_virt2phys,
3465 };
3466
3467 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3468         {
3469                 .name = "cache_info",
3470                 .handler = cortex_a_handle_cache_info_command,
3471                 .mode = COMMAND_EXEC,
3472                 .help = "display information about target caches",
3473                 .usage = "",
3474         },
3475         {
3476                 .name = "dbginit",
3477                 .handler = cortex_a_handle_dbginit_command,
3478                 .mode = COMMAND_EXEC,
3479                 .help = "Initialize core debug",
3480                 .usage = "",
3481         },
3482         {
3483                 .name = "maskisr",
3484                 .handler = handle_cortex_a_mask_interrupts_command,
3485                 .mode = COMMAND_EXEC,
3486                 .help = "mask cortex_r4 interrupts",
3487                 .usage = "['on'|'off']",
3488         },
3489
3490         COMMAND_REGISTRATION_DONE
3491 };
3492 static const struct command_registration cortex_r4_command_handlers[] = {
3493         {
3494                 .chain = arm_command_handlers,
3495         },
3496         {
3497                 .chain = armv7a_command_handlers,
3498         },
3499         {
3500                 .name = "cortex_r4",
3501                 .mode = COMMAND_ANY,
3502                 .help = "Cortex-R4 command group",
3503                 .usage = "",
3504                 .chain = cortex_r4_exec_command_handlers,
3505         },
3506         COMMAND_REGISTRATION_DONE
3507 };
3508
3509 struct target_type cortexr4_target = {
3510         .name = "cortex_r4",
3511
3512         .poll = cortex_a_poll,
3513         .arch_state = armv7a_arch_state,
3514
3515         .halt = cortex_a_halt,
3516         .resume = cortex_a_resume,
3517         .step = cortex_a_step,
3518
3519         .assert_reset = cortex_a_assert_reset,
3520         .deassert_reset = cortex_a_deassert_reset,
3521
3522         /* REVISIT allow exporting VFP3 registers ... */
3523         .get_gdb_reg_list = arm_get_gdb_reg_list,
3524
3525         .read_memory = cortex_a_read_memory,
3526         .write_memory = cortex_a_write_memory,
3527
3528         .checksum_memory = arm_checksum_memory,
3529         .blank_check_memory = arm_blank_check_memory,
3530
3531         .run_algorithm = armv4_5_run_algorithm,
3532
3533         .add_breakpoint = cortex_a_add_breakpoint,
3534         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3535         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3536         .remove_breakpoint = cortex_a_remove_breakpoint,
3537         .add_watchpoint = NULL,
3538         .remove_watchpoint = NULL,
3539
3540         .commands = cortex_r4_command_handlers,
3541         .target_create = cortex_r4_target_create,
3542         .init_target = cortex_a_init_target,
3543         .examine = cortex_a_examine,
3544         .deinit_target = cortex_a_deinit_target,
3545 };