]> git.sur5r.net Git - openocd/blob - src/target/cortex_a.c
9ae04322b91e97713ae4daeee13eb068a49779bc
[openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   Copyright (C) ST-Ericsson SA 2011                                     *
18  *   michel.jaouen@stericsson.com : smp minimum support                    *
19  *                                                                         *
20  *   Copyright (C) Broadcom 2012                                           *
21  *   ehunter@broadcom.com : Cortex R4 support                              *
22  *                                                                         *
23  *   Copyright (C) 2013 Kamal Dasu                                         *
24  *   kdasu.kdev@gmail.com                                                  *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
40  *                                                                         *
41  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
42  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
43  *   Cortex-A4(tm) TRM, ARM DDI 0363E                                      *
44  *   Cortex-A15(tm)TRM, ARM DDI 0438C                                      *
45  *                                                                         *
46  ***************************************************************************/
47
48 #ifdef HAVE_CONFIG_H
49 #include "config.h"
50 #endif
51
52 #include "breakpoints.h"
53 #include "cortex_a.h"
54 #include "register.h"
55 #include "target_request.h"
56 #include "target_type.h"
57 #include "arm_opcodes.h"
58 #include <helper/time_support.h>
59
60 static int cortex_a_poll(struct target *target);
61 static int cortex_a_debug_entry(struct target *target);
62 static int cortex_a_restore_context(struct target *target, bool bpwp);
63 static int cortex_a_set_breakpoint(struct target *target,
64         struct breakpoint *breakpoint, uint8_t matchmode);
65 static int cortex_a_set_context_breakpoint(struct target *target,
66         struct breakpoint *breakpoint, uint8_t matchmode);
67 static int cortex_a_set_hybrid_breakpoint(struct target *target,
68         struct breakpoint *breakpoint);
69 static int cortex_a_unset_breakpoint(struct target *target,
70         struct breakpoint *breakpoint);
71 static int cortex_a_dap_read_coreregister_u32(struct target *target,
72         uint32_t *value, int regnum);
73 static int cortex_a_dap_write_coreregister_u32(struct target *target,
74         uint32_t value, int regnum);
75 static int cortex_a_mmu(struct target *target, int *enabled);
76 static int cortex_a_virt2phys(struct target *target,
77         uint32_t virt, uint32_t *phys);
78 static int cortex_a_read_apb_ab_memory(struct target *target,
79         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
80
81
82 /*  restore cp15_control_reg at resume */
83 static int cortex_a_restore_cp15_control_reg(struct target *target)
84 {
85         int retval = ERROR_OK;
86         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
87         struct armv7a_common *armv7a = target_to_armv7a(target);
88
89         if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
90                 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
91                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
92                 retval = armv7a->arm.mcr(target, 15,
93                                 0, 0,   /* op1, op2 */
94                                 1, 0,   /* CRn, CRm */
95                                 cortex_a->cp15_control_reg);
96         }
97         return retval;
98 }
99
100 /*  check address before cortex_a_apb read write access with mmu on
101  *  remove apb predictible data abort */
102 static int cortex_a_check_address(struct target *target, uint32_t address)
103 {
104         struct armv7a_common *armv7a = target_to_armv7a(target);
105         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
106         uint32_t os_border = armv7a->armv7a_mmu.os_border;
107         if ((address < os_border) &&
108                 (armv7a->arm.core_mode == ARM_MODE_SVC)) {
109                 LOG_ERROR("%" PRIx32 " access in userspace and target in supervisor", address);
110                 return ERROR_FAIL;
111         }
112         if ((address >= os_border) &&
113                 (cortex_a->curr_mode != ARM_MODE_SVC)) {
114                 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
115                 cortex_a->curr_mode = ARM_MODE_SVC;
116                 LOG_INFO("%" PRIx32 " access in kernel space and target not in supervisor",
117                         address);
118                 return ERROR_OK;
119         }
120         if ((address < os_border) &&
121                 (cortex_a->curr_mode == ARM_MODE_SVC)) {
122                 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
123                 cortex_a->curr_mode = ARM_MODE_ANY;
124         }
125         return ERROR_OK;
126 }
127 /*  modify cp15_control_reg in order to enable or disable mmu for :
128  *  - virt2phys address conversion
129  *  - read or write memory in phys or virt address */
130 static int cortex_a_mmu_modify(struct target *target, int enable)
131 {
132         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
133         struct armv7a_common *armv7a = target_to_armv7a(target);
134         int retval = ERROR_OK;
135         if (enable) {
136                 /*  if mmu enabled at target stop and mmu not enable */
137                 if (!(cortex_a->cp15_control_reg & 0x1U)) {
138                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
139                         return ERROR_FAIL;
140                 }
141                 if (!(cortex_a->cp15_control_reg_curr & 0x1U)) {
142                         cortex_a->cp15_control_reg_curr |= 0x1U;
143                         retval = armv7a->arm.mcr(target, 15,
144                                         0, 0,   /* op1, op2 */
145                                         1, 0,   /* CRn, CRm */
146                                         cortex_a->cp15_control_reg_curr);
147                 }
148         } else {
149                 if (cortex_a->cp15_control_reg_curr & 0x4U) {
150                         /*  data cache is active */
151                         cortex_a->cp15_control_reg_curr &= ~0x4U;
152                         /* flush data cache armv7 function to be called */
153                         if (armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache)
154                                 armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache(target);
155                 }
156                 if ((cortex_a->cp15_control_reg_curr & 0x1U)) {
157                         cortex_a->cp15_control_reg_curr &= ~0x1U;
158                         retval = armv7a->arm.mcr(target, 15,
159                                         0, 0,   /* op1, op2 */
160                                         1, 0,   /* CRn, CRm */
161                                         cortex_a->cp15_control_reg_curr);
162                 }
163         }
164         return retval;
165 }
166
167 /*
168  * Cortex-A Basic debug access, very low level assumes state is saved
169  */
170 static int cortex_a8_init_debug_access(struct target *target)
171 {
172         struct armv7a_common *armv7a = target_to_armv7a(target);
173         struct adiv5_dap *swjdp = armv7a->arm.dap;
174         int retval;
175
176         LOG_DEBUG(" ");
177
178         /* Unlocking the debug registers for modification
179          * The debugport might be uninitialised so try twice */
180         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
181                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
182         if (retval != ERROR_OK) {
183                 /* try again */
184                 retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
185                                 armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
186                 if (retval == ERROR_OK)
187                         LOG_USER(
188                                 "Locking debug access failed on first, but succeeded on second try.");
189         }
190
191         return retval;
192 }
193
194 /*
195  * Cortex-A Basic debug access, very low level assumes state is saved
196  */
197 static int cortex_a_init_debug_access(struct target *target)
198 {
199         struct armv7a_common *armv7a = target_to_armv7a(target);
200         struct adiv5_dap *swjdp = armv7a->arm.dap;
201         int retval;
202         uint32_t dbg_osreg;
203         uint32_t cortex_part_num;
204         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
205
206         LOG_DEBUG(" ");
207         cortex_part_num = (cortex_a->cpuid & CORTEX_A_MIDR_PARTNUM_MASK) >>
208                 CORTEX_A_MIDR_PARTNUM_SHIFT;
209
210         switch (cortex_part_num) {
211         case CORTEX_A7_PARTNUM:
212         case CORTEX_A15_PARTNUM:
213                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
214                                                     armv7a->debug_base + CPUDBG_OSLSR,
215                                                     &dbg_osreg);
216                 if (retval != ERROR_OK)
217                         return retval;
218
219                 LOG_DEBUG("DBGOSLSR  0x%" PRIx32, dbg_osreg);
220
221                 if (dbg_osreg & CPUDBG_OSLAR_LK_MASK)
222                         /* Unlocking the DEBUG OS registers for modification */
223                         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
224                                                              armv7a->debug_base + CPUDBG_OSLAR,
225                                                              0);
226                 break;
227
228         case CORTEX_A5_PARTNUM:
229         case CORTEX_A8_PARTNUM:
230         case CORTEX_A9_PARTNUM:
231         default:
232                 retval = cortex_a8_init_debug_access(target);
233         }
234
235         if (retval != ERROR_OK)
236                 return retval;
237         /* Clear Sticky Power Down status Bit in PRSR to enable access to
238            the registers in the Core Power Domain */
239         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
240                         armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
241         LOG_DEBUG("target->coreid %d DBGPRSR  0x%x ", target->coreid, dbg_osreg);
242
243         if (retval != ERROR_OK)
244                 return retval;
245
246         /* Enabling of instruction execution in debug mode is done in debug_entry code */
247
248         /* Resync breakpoint registers */
249
250         /* Since this is likely called from init or reset, update target state information*/
251         return cortex_a_poll(target);
252 }
253
254 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
255 {
256         /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
257          * Writes final value of DSCR into *dscr. Pass force to force always
258          * reading DSCR at least once. */
259         struct armv7a_common *armv7a = target_to_armv7a(target);
260         struct adiv5_dap *swjdp = armv7a->arm.dap;
261         long long then = timeval_ms();
262         while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
263                 force = false;
264                 int retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
265                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
266                 if (retval != ERROR_OK) {
267                         LOG_ERROR("Could not read DSCR register");
268                         return retval;
269                 }
270                 if (timeval_ms() > then + 1000) {
271                         LOG_ERROR("Timeout waiting for InstrCompl=1");
272                         return ERROR_FAIL;
273                 }
274         }
275         return ERROR_OK;
276 }
277
278 /* To reduce needless round-trips, pass in a pointer to the current
279  * DSCR value.  Initialize it to zero if you just need to know the
280  * value on return from this function; or DSCR_INSTR_COMP if you
281  * happen to know that no instruction is pending.
282  */
283 static int cortex_a_exec_opcode(struct target *target,
284         uint32_t opcode, uint32_t *dscr_p)
285 {
286         uint32_t dscr;
287         int retval;
288         struct armv7a_common *armv7a = target_to_armv7a(target);
289         struct adiv5_dap *swjdp = armv7a->arm.dap;
290
291         dscr = dscr_p ? *dscr_p : 0;
292
293         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
294
295         /* Wait for InstrCompl bit to be set */
296         retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
297         if (retval != ERROR_OK)
298                 return retval;
299
300         retval = mem_ap_sel_write_u32(swjdp, armv7a->debug_ap,
301                         armv7a->debug_base + CPUDBG_ITR, opcode);
302         if (retval != ERROR_OK)
303                 return retval;
304
305         long long then = timeval_ms();
306         do {
307                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
308                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
309                 if (retval != ERROR_OK) {
310                         LOG_ERROR("Could not read DSCR register");
311                         return retval;
312                 }
313                 if (timeval_ms() > then + 1000) {
314                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
315                         return ERROR_FAIL;
316                 }
317         } while ((dscr & DSCR_INSTR_COMP) == 0);        /* Wait for InstrCompl bit to be set */
318
319         if (dscr_p)
320                 *dscr_p = dscr;
321
322         return retval;
323 }
324
325 /**************************************************************************
326 Read core register with very few exec_opcode, fast but needs work_area.
327 This can cause problems with MMU active.
328 **************************************************************************/
329 static int cortex_a_read_regs_through_mem(struct target *target, uint32_t address,
330         uint32_t *regfile)
331 {
332         int retval = ERROR_OK;
333         struct armv7a_common *armv7a = target_to_armv7a(target);
334         struct adiv5_dap *swjdp = armv7a->arm.dap;
335
336         retval = cortex_a_dap_read_coreregister_u32(target, regfile, 0);
337         if (retval != ERROR_OK)
338                 return retval;
339         retval = cortex_a_dap_write_coreregister_u32(target, address, 0);
340         if (retval != ERROR_OK)
341                 return retval;
342         retval = cortex_a_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
343         if (retval != ERROR_OK)
344                 return retval;
345
346         retval = mem_ap_sel_read_buf(swjdp, armv7a->memory_ap,
347                         (uint8_t *)(&regfile[1]), 4, 15, address);
348
349         return retval;
350 }
351
352 static int cortex_a_dap_read_coreregister_u32(struct target *target,
353         uint32_t *value, int regnum)
354 {
355         int retval = ERROR_OK;
356         uint8_t reg = regnum&0xFF;
357         uint32_t dscr = 0;
358         struct armv7a_common *armv7a = target_to_armv7a(target);
359         struct adiv5_dap *swjdp = armv7a->arm.dap;
360
361         if (reg > 17)
362                 return retval;
363
364         if (reg < 15) {
365                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
366                 retval = cortex_a_exec_opcode(target,
367                                 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
368                                 &dscr);
369                 if (retval != ERROR_OK)
370                         return retval;
371         } else if (reg == 15) {
372                 /* "MOV r0, r15"; then move r0 to DCCTX */
373                 retval = cortex_a_exec_opcode(target, 0xE1A0000F, &dscr);
374                 if (retval != ERROR_OK)
375                         return retval;
376                 retval = cortex_a_exec_opcode(target,
377                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
378                                 &dscr);
379                 if (retval != ERROR_OK)
380                         return retval;
381         } else {
382                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
383                  * then move r0 to DCCTX
384                  */
385                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
386                 if (retval != ERROR_OK)
387                         return retval;
388                 retval = cortex_a_exec_opcode(target,
389                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
390                                 &dscr);
391                 if (retval != ERROR_OK)
392                         return retval;
393         }
394
395         /* Wait for DTRRXfull then read DTRRTX */
396         long long then = timeval_ms();
397         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
398                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
399                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
400                 if (retval != ERROR_OK)
401                         return retval;
402                 if (timeval_ms() > then + 1000) {
403                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
404                         return ERROR_FAIL;
405                 }
406         }
407
408         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
409                         armv7a->debug_base + CPUDBG_DTRTX, value);
410         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
411
412         return retval;
413 }
414
415 static int cortex_a_dap_write_coreregister_u32(struct target *target,
416         uint32_t value, int regnum)
417 {
418         int retval = ERROR_OK;
419         uint8_t Rd = regnum&0xFF;
420         uint32_t dscr;
421         struct armv7a_common *armv7a = target_to_armv7a(target);
422         struct adiv5_dap *swjdp = armv7a->arm.dap;
423
424         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
425
426         /* Check that DCCRX is not full */
427         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
428                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
429         if (retval != ERROR_OK)
430                 return retval;
431         if (dscr & DSCR_DTR_RX_FULL) {
432                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
433                 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode  0xEE100E15 */
434                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
435                                 &dscr);
436                 if (retval != ERROR_OK)
437                         return retval;
438         }
439
440         if (Rd > 17)
441                 return retval;
442
443         /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
444         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
445         retval = mem_ap_sel_write_u32(swjdp, armv7a->debug_ap,
446                         armv7a->debug_base + CPUDBG_DTRRX, value);
447         if (retval != ERROR_OK)
448                 return retval;
449
450         if (Rd < 15) {
451                 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
452                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
453                                 &dscr);
454
455                 if (retval != ERROR_OK)
456                         return retval;
457         } else if (Rd == 15) {
458                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
459                  * then "mov r15, r0"
460                  */
461                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
462                                 &dscr);
463                 if (retval != ERROR_OK)
464                         return retval;
465                 retval = cortex_a_exec_opcode(target, 0xE1A0F000, &dscr);
466                 if (retval != ERROR_OK)
467                         return retval;
468         } else {
469                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
470                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
471                  */
472                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
473                                 &dscr);
474                 if (retval != ERROR_OK)
475                         return retval;
476                 retval = cortex_a_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
477                                 &dscr);
478                 if (retval != ERROR_OK)
479                         return retval;
480
481                 /* "Prefetch flush" after modifying execution status in CPSR */
482                 if (Rd == 16) {
483                         retval = cortex_a_exec_opcode(target,
484                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
485                                         &dscr);
486                         if (retval != ERROR_OK)
487                                 return retval;
488                 }
489         }
490
491         return retval;
492 }
493
494 /* Write to memory mapped registers directly with no cache or mmu handling */
495 static int cortex_a_dap_write_memap_register_u32(struct target *target,
496         uint32_t address,
497         uint32_t value)
498 {
499         int retval;
500         struct armv7a_common *armv7a = target_to_armv7a(target);
501         struct adiv5_dap *swjdp = armv7a->arm.dap;
502
503         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap, address, value);
504
505         return retval;
506 }
507
508 /*
509  * Cortex-A implementation of Debug Programmer's Model
510  *
511  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
512  * so there's no need to poll for it before executing an instruction.
513  *
514  * NOTE that in several of these cases the "stall" mode might be useful.
515  * It'd let us queue a few operations together... prepare/finish might
516  * be the places to enable/disable that mode.
517  */
518
519 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
520 {
521         return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
522 }
523
524 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
525 {
526         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
527         return mem_ap_sel_write_u32(a->armv7a_common.arm.dap,
528                 a->armv7a_common.debug_ap, a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
529 }
530
531 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
532         uint32_t *dscr_p)
533 {
534         struct adiv5_dap *swjdp = a->armv7a_common.arm.dap;
535         uint32_t dscr = DSCR_INSTR_COMP;
536         int retval;
537
538         if (dscr_p)
539                 dscr = *dscr_p;
540
541         /* Wait for DTRRXfull */
542         long long then = timeval_ms();
543         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
544                 retval = mem_ap_sel_read_atomic_u32(swjdp, a->armv7a_common.debug_ap,
545                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
546                                 &dscr);
547                 if (retval != ERROR_OK)
548                         return retval;
549                 if (timeval_ms() > then + 1000) {
550                         LOG_ERROR("Timeout waiting for read dcc");
551                         return ERROR_FAIL;
552                 }
553         }
554
555         retval = mem_ap_sel_read_atomic_u32(swjdp, a->armv7a_common.debug_ap,
556                         a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
557         if (retval != ERROR_OK)
558                 return retval;
559         /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
560
561         if (dscr_p)
562                 *dscr_p = dscr;
563
564         return retval;
565 }
566
567 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
568 {
569         struct cortex_a_common *a = dpm_to_a(dpm);
570         struct adiv5_dap *swjdp = a->armv7a_common.arm.dap;
571         uint32_t dscr;
572         int retval;
573
574         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
575         long long then = timeval_ms();
576         for (;; ) {
577                 retval = mem_ap_sel_read_atomic_u32(swjdp, a->armv7a_common.debug_ap,
578                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
579                                 &dscr);
580                 if (retval != ERROR_OK)
581                         return retval;
582                 if ((dscr & DSCR_INSTR_COMP) != 0)
583                         break;
584                 if (timeval_ms() > then + 1000) {
585                         LOG_ERROR("Timeout waiting for dpm prepare");
586                         return ERROR_FAIL;
587                 }
588         }
589
590         /* this "should never happen" ... */
591         if (dscr & DSCR_DTR_RX_FULL) {
592                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
593                 /* Clear DCCRX */
594                 retval = cortex_a_exec_opcode(
595                                 a->armv7a_common.arm.target,
596                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
597                                 &dscr);
598                 if (retval != ERROR_OK)
599                         return retval;
600         }
601
602         return retval;
603 }
604
605 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
606 {
607         /* REVISIT what could be done here? */
608         return ERROR_OK;
609 }
610
611 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
612         uint32_t opcode, uint32_t data)
613 {
614         struct cortex_a_common *a = dpm_to_a(dpm);
615         int retval;
616         uint32_t dscr = DSCR_INSTR_COMP;
617
618         retval = cortex_a_write_dcc(a, data);
619         if (retval != ERROR_OK)
620                 return retval;
621
622         return cortex_a_exec_opcode(
623                         a->armv7a_common.arm.target,
624                         opcode,
625                         &dscr);
626 }
627
628 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
629         uint32_t opcode, uint32_t data)
630 {
631         struct cortex_a_common *a = dpm_to_a(dpm);
632         uint32_t dscr = DSCR_INSTR_COMP;
633         int retval;
634
635         retval = cortex_a_write_dcc(a, data);
636         if (retval != ERROR_OK)
637                 return retval;
638
639         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
640         retval = cortex_a_exec_opcode(
641                         a->armv7a_common.arm.target,
642                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
643                         &dscr);
644         if (retval != ERROR_OK)
645                 return retval;
646
647         /* then the opcode, taking data from R0 */
648         retval = cortex_a_exec_opcode(
649                         a->armv7a_common.arm.target,
650                         opcode,
651                         &dscr);
652
653         return retval;
654 }
655
656 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
657 {
658         struct target *target = dpm->arm->target;
659         uint32_t dscr = DSCR_INSTR_COMP;
660
661         /* "Prefetch flush" after modifying execution status in CPSR */
662         return cortex_a_exec_opcode(target,
663                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
664                         &dscr);
665 }
666
667 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
668         uint32_t opcode, uint32_t *data)
669 {
670         struct cortex_a_common *a = dpm_to_a(dpm);
671         int retval;
672         uint32_t dscr = DSCR_INSTR_COMP;
673
674         /* the opcode, writing data to DCC */
675         retval = cortex_a_exec_opcode(
676                         a->armv7a_common.arm.target,
677                         opcode,
678                         &dscr);
679         if (retval != ERROR_OK)
680                 return retval;
681
682         return cortex_a_read_dcc(a, data, &dscr);
683 }
684
685
686 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
687         uint32_t opcode, uint32_t *data)
688 {
689         struct cortex_a_common *a = dpm_to_a(dpm);
690         uint32_t dscr = DSCR_INSTR_COMP;
691         int retval;
692
693         /* the opcode, writing data to R0 */
694         retval = cortex_a_exec_opcode(
695                         a->armv7a_common.arm.target,
696                         opcode,
697                         &dscr);
698         if (retval != ERROR_OK)
699                 return retval;
700
701         /* write R0 to DCC */
702         retval = cortex_a_exec_opcode(
703                         a->armv7a_common.arm.target,
704                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
705                         &dscr);
706         if (retval != ERROR_OK)
707                 return retval;
708
709         return cortex_a_read_dcc(a, data, &dscr);
710 }
711
712 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
713         uint32_t addr, uint32_t control)
714 {
715         struct cortex_a_common *a = dpm_to_a(dpm);
716         uint32_t vr = a->armv7a_common.debug_base;
717         uint32_t cr = a->armv7a_common.debug_base;
718         int retval;
719
720         switch (index_t) {
721                 case 0 ... 15:  /* breakpoints */
722                         vr += CPUDBG_BVR_BASE;
723                         cr += CPUDBG_BCR_BASE;
724                         break;
725                 case 16 ... 31: /* watchpoints */
726                         vr += CPUDBG_WVR_BASE;
727                         cr += CPUDBG_WCR_BASE;
728                         index_t -= 16;
729                         break;
730                 default:
731                         return ERROR_FAIL;
732         }
733         vr += 4 * index_t;
734         cr += 4 * index_t;
735
736         LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
737                 (unsigned) vr, (unsigned) cr);
738
739         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
740                         vr, addr);
741         if (retval != ERROR_OK)
742                 return retval;
743         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
744                         cr, control);
745         return retval;
746 }
747
748 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
749 {
750         struct cortex_a_common *a = dpm_to_a(dpm);
751         uint32_t cr;
752
753         switch (index_t) {
754                 case 0 ... 15:
755                         cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
756                         break;
757                 case 16 ... 31:
758                         cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
759                         index_t -= 16;
760                         break;
761                 default:
762                         return ERROR_FAIL;
763         }
764         cr += 4 * index_t;
765
766         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
767
768         /* clear control register */
769         return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
770 }
771
772 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
773 {
774         struct arm_dpm *dpm = &a->armv7a_common.dpm;
775         int retval;
776
777         dpm->arm = &a->armv7a_common.arm;
778         dpm->didr = didr;
779
780         dpm->prepare = cortex_a_dpm_prepare;
781         dpm->finish = cortex_a_dpm_finish;
782
783         dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
784         dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
785         dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
786
787         dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
788         dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
789
790         dpm->bpwp_enable = cortex_a_bpwp_enable;
791         dpm->bpwp_disable = cortex_a_bpwp_disable;
792
793         retval = arm_dpm_setup(dpm);
794         if (retval == ERROR_OK)
795                 retval = arm_dpm_initialize(dpm);
796
797         return retval;
798 }
799 static struct target *get_cortex_a(struct target *target, int32_t coreid)
800 {
801         struct target_list *head;
802         struct target *curr;
803
804         head = target->head;
805         while (head != (struct target_list *)NULL) {
806                 curr = head->target;
807                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
808                         return curr;
809                 head = head->next;
810         }
811         return target;
812 }
813 static int cortex_a_halt(struct target *target);
814
815 static int cortex_a_halt_smp(struct target *target)
816 {
817         int retval = 0;
818         struct target_list *head;
819         struct target *curr;
820         head = target->head;
821         while (head != (struct target_list *)NULL) {
822                 curr = head->target;
823                 if ((curr != target) && (curr->state != TARGET_HALTED))
824                         retval += cortex_a_halt(curr);
825                 head = head->next;
826         }
827         return retval;
828 }
829
830 static int update_halt_gdb(struct target *target)
831 {
832         int retval = 0;
833         if (target->gdb_service && target->gdb_service->core[0] == -1) {
834                 target->gdb_service->target = target;
835                 target->gdb_service->core[0] = target->coreid;
836                 retval += cortex_a_halt_smp(target);
837         }
838         return retval;
839 }
840
841 /*
842  * Cortex-A Run control
843  */
844
845 static int cortex_a_poll(struct target *target)
846 {
847         int retval = ERROR_OK;
848         uint32_t dscr;
849         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
850         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
851         struct adiv5_dap *swjdp = armv7a->arm.dap;
852         enum target_state prev_target_state = target->state;
853         /*  toggle to another core is done by gdb as follow */
854         /*  maint packet J core_id */
855         /*  continue */
856         /*  the next polling trigger an halt event sent to gdb */
857         if ((target->state == TARGET_HALTED) && (target->smp) &&
858                 (target->gdb_service) &&
859                 (target->gdb_service->target == NULL)) {
860                 target->gdb_service->target =
861                         get_cortex_a(target, target->gdb_service->core[1]);
862                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
863                 return retval;
864         }
865         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
866                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
867         if (retval != ERROR_OK)
868                 return retval;
869         cortex_a->cpudbg_dscr = dscr;
870
871         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
872                 if (prev_target_state != TARGET_HALTED) {
873                         /* We have a halting debug event */
874                         LOG_DEBUG("Target halted");
875                         target->state = TARGET_HALTED;
876                         if ((prev_target_state == TARGET_RUNNING)
877                                 || (prev_target_state == TARGET_UNKNOWN)
878                                 || (prev_target_state == TARGET_RESET)) {
879                                 retval = cortex_a_debug_entry(target);
880                                 if (retval != ERROR_OK)
881                                         return retval;
882                                 if (target->smp) {
883                                         retval = update_halt_gdb(target);
884                                         if (retval != ERROR_OK)
885                                                 return retval;
886                                 }
887                                 target_call_event_callbacks(target,
888                                         TARGET_EVENT_HALTED);
889                         }
890                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
891                                 LOG_DEBUG(" ");
892
893                                 retval = cortex_a_debug_entry(target);
894                                 if (retval != ERROR_OK)
895                                         return retval;
896                                 if (target->smp) {
897                                         retval = update_halt_gdb(target);
898                                         if (retval != ERROR_OK)
899                                                 return retval;
900                                 }
901
902                                 target_call_event_callbacks(target,
903                                         TARGET_EVENT_DEBUG_HALTED);
904                         }
905                 }
906         } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
907                 target->state = TARGET_RUNNING;
908         else {
909                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
910                 target->state = TARGET_UNKNOWN;
911         }
912
913         return retval;
914 }
915
916 static int cortex_a_halt(struct target *target)
917 {
918         int retval = ERROR_OK;
919         uint32_t dscr;
920         struct armv7a_common *armv7a = target_to_armv7a(target);
921         struct adiv5_dap *swjdp = armv7a->arm.dap;
922
923         /*
924          * Tell the core to be halted by writing DRCR with 0x1
925          * and then wait for the core to be halted.
926          */
927         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
928                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
929         if (retval != ERROR_OK)
930                 return retval;
931
932         /*
933          * enter halting debug mode
934          */
935         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
936                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
937         if (retval != ERROR_OK)
938                 return retval;
939
940         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
941                         armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
942         if (retval != ERROR_OK)
943                 return retval;
944
945         long long then = timeval_ms();
946         for (;; ) {
947                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
948                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
949                 if (retval != ERROR_OK)
950                         return retval;
951                 if ((dscr & DSCR_CORE_HALTED) != 0)
952                         break;
953                 if (timeval_ms() > then + 1000) {
954                         LOG_ERROR("Timeout waiting for halt");
955                         return ERROR_FAIL;
956                 }
957         }
958
959         target->debug_reason = DBG_REASON_DBGRQ;
960
961         return ERROR_OK;
962 }
963
964 static int cortex_a_internal_restore(struct target *target, int current,
965         uint32_t *address, int handle_breakpoints, int debug_execution)
966 {
967         struct armv7a_common *armv7a = target_to_armv7a(target);
968         struct arm *arm = &armv7a->arm;
969         int retval;
970         uint32_t resume_pc;
971
972         if (!debug_execution)
973                 target_free_all_working_areas(target);
974
975 #if 0
976         if (debug_execution) {
977                 /* Disable interrupts */
978                 /* We disable interrupts in the PRIMASK register instead of
979                  * masking with C_MASKINTS,
980                  * This is probably the same issue as Cortex-M3 Errata 377493:
981                  * C_MASKINTS in parallel with disabled interrupts can cause
982                  * local faults to not be taken. */
983                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
984                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
985                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
986
987                 /* Make sure we are in Thumb mode */
988                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
989                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
990                         32) | (1 << 24));
991                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
992                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
993         }
994 #endif
995
996         /* current = 1: continue on current pc, otherwise continue at <address> */
997         resume_pc = buf_get_u32(arm->pc->value, 0, 32);
998         if (!current)
999                 resume_pc = *address;
1000         else
1001                 *address = resume_pc;
1002
1003         /* Make sure that the Armv7 gdb thumb fixups does not
1004          * kill the return address
1005          */
1006         switch (arm->core_state) {
1007                 case ARM_STATE_ARM:
1008                         resume_pc &= 0xFFFFFFFC;
1009                         break;
1010                 case ARM_STATE_THUMB:
1011                 case ARM_STATE_THUMB_EE:
1012                         /* When the return address is loaded into PC
1013                          * bit 0 must be 1 to stay in Thumb state
1014                          */
1015                         resume_pc |= 0x1;
1016                         break;
1017                 case ARM_STATE_JAZELLE:
1018                         LOG_ERROR("How do I resume into Jazelle state??");
1019                         return ERROR_FAIL;
1020         }
1021         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
1022         buf_set_u32(arm->pc->value, 0, 32, resume_pc);
1023         arm->pc->dirty = 1;
1024         arm->pc->valid = 1;
1025         /* restore dpm_mode at system halt */
1026         dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1027         /* called it now before restoring context because it uses cpu
1028          * register r0 for restoring cp15 control register */
1029         retval = cortex_a_restore_cp15_control_reg(target);
1030         if (retval != ERROR_OK)
1031                 return retval;
1032         retval = cortex_a_restore_context(target, handle_breakpoints);
1033         if (retval != ERROR_OK)
1034                 return retval;
1035         target->debug_reason = DBG_REASON_NOTHALTED;
1036         target->state = TARGET_RUNNING;
1037
1038         /* registers are now invalid */
1039         register_cache_invalidate(arm->core_cache);
1040
1041 #if 0
1042         /* the front-end may request us not to handle breakpoints */
1043         if (handle_breakpoints) {
1044                 /* Single step past breakpoint at current address */
1045                 breakpoint = breakpoint_find(target, resume_pc);
1046                 if (breakpoint) {
1047                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1048                         cortex_m3_unset_breakpoint(target, breakpoint);
1049                         cortex_m3_single_step_core(target);
1050                         cortex_m3_set_breakpoint(target, breakpoint);
1051                 }
1052         }
1053
1054 #endif
1055         return retval;
1056 }
1057
1058 static int cortex_a_internal_restart(struct target *target)
1059 {
1060         struct armv7a_common *armv7a = target_to_armv7a(target);
1061         struct arm *arm = &armv7a->arm;
1062         struct adiv5_dap *swjdp = arm->dap;
1063         int retval;
1064         uint32_t dscr;
1065         /*
1066          * * Restart core and wait for it to be started.  Clear ITRen and sticky
1067          * * exception flags: see ARMv7 ARM, C5.9.
1068          *
1069          * REVISIT: for single stepping, we probably want to
1070          * disable IRQs by default, with optional override...
1071          */
1072
1073         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1074                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1075         if (retval != ERROR_OK)
1076                 return retval;
1077
1078         if ((dscr & DSCR_INSTR_COMP) == 0)
1079                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1080
1081         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1082                         armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1083         if (retval != ERROR_OK)
1084                 return retval;
1085
1086         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1087                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1088                         DRCR_CLEAR_EXCEPTIONS);
1089         if (retval != ERROR_OK)
1090                 return retval;
1091
1092         long long then = timeval_ms();
1093         for (;; ) {
1094                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1095                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1096                 if (retval != ERROR_OK)
1097                         return retval;
1098                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1099                         break;
1100                 if (timeval_ms() > then + 1000) {
1101                         LOG_ERROR("Timeout waiting for resume");
1102                         return ERROR_FAIL;
1103                 }
1104         }
1105
1106         target->debug_reason = DBG_REASON_NOTHALTED;
1107         target->state = TARGET_RUNNING;
1108
1109         /* registers are now invalid */
1110         register_cache_invalidate(arm->core_cache);
1111
1112         return ERROR_OK;
1113 }
1114
1115 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
1116 {
1117         int retval = 0;
1118         struct target_list *head;
1119         struct target *curr;
1120         uint32_t address;
1121         head = target->head;
1122         while (head != (struct target_list *)NULL) {
1123                 curr = head->target;
1124                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1125                         /*  resume current address , not in step mode */
1126                         retval += cortex_a_internal_restore(curr, 1, &address,
1127                                         handle_breakpoints, 0);
1128                         retval += cortex_a_internal_restart(curr);
1129                 }
1130                 head = head->next;
1131
1132         }
1133         return retval;
1134 }
1135
1136 static int cortex_a_resume(struct target *target, int current,
1137         uint32_t address, int handle_breakpoints, int debug_execution)
1138 {
1139         int retval = 0;
1140         /* dummy resume for smp toggle in order to reduce gdb impact  */
1141         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1142                 /*   simulate a start and halt of target */
1143                 target->gdb_service->target = NULL;
1144                 target->gdb_service->core[0] = target->gdb_service->core[1];
1145                 /*  fake resume at next poll we play the  target core[1], see poll*/
1146                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1147                 return 0;
1148         }
1149         cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1150         if (target->smp) {
1151                 target->gdb_service->core[0] = -1;
1152                 retval = cortex_a_restore_smp(target, handle_breakpoints);
1153                 if (retval != ERROR_OK)
1154                         return retval;
1155         }
1156         cortex_a_internal_restart(target);
1157
1158         if (!debug_execution) {
1159                 target->state = TARGET_RUNNING;
1160                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1161                 LOG_DEBUG("target resumed at 0x%" PRIx32, address);
1162         } else {
1163                 target->state = TARGET_DEBUG_RUNNING;
1164                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1165                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, address);
1166         }
1167
1168         return ERROR_OK;
1169 }
1170
1171 static int cortex_a_debug_entry(struct target *target)
1172 {
1173         int i;
1174         uint32_t regfile[16], cpsr, dscr;
1175         int retval = ERROR_OK;
1176         struct working_area *regfile_working_area = NULL;
1177         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1178         struct armv7a_common *armv7a = target_to_armv7a(target);
1179         struct arm *arm = &armv7a->arm;
1180         struct adiv5_dap *swjdp = armv7a->arm.dap;
1181         struct reg *reg;
1182
1183         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1184
1185         /* REVISIT surely we should not re-read DSCR !! */
1186         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1187                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1188         if (retval != ERROR_OK)
1189                 return retval;
1190
1191         /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1192          * imprecise data aborts get discarded by issuing a Data
1193          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1194          */
1195
1196         /* Enable the ITR execution once we are in debug mode */
1197         dscr |= DSCR_ITR_EN;
1198         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1199                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1200         if (retval != ERROR_OK)
1201                 return retval;
1202
1203         /* Examine debug reason */
1204         arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1205
1206         /* save address of instruction that triggered the watchpoint? */
1207         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1208                 uint32_t wfar;
1209
1210                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1211                                 armv7a->debug_base + CPUDBG_WFAR,
1212                                 &wfar);
1213                 if (retval != ERROR_OK)
1214                         return retval;
1215                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1216         }
1217
1218         /* REVISIT fast_reg_read is never set ... */
1219
1220         /* Examine target state and mode */
1221         if (cortex_a->fast_reg_read)
1222                 target_alloc_working_area(target, 64, &regfile_working_area);
1223
1224         /* First load register acessible through core debug port*/
1225         if (!regfile_working_area)
1226                 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1227         else {
1228                 retval = cortex_a_read_regs_through_mem(target,
1229                                 regfile_working_area->address, regfile);
1230
1231                 target_free_working_area(target, regfile_working_area);
1232                 if (retval != ERROR_OK)
1233                         return retval;
1234
1235                 /* read Current PSR */
1236                 retval = cortex_a_dap_read_coreregister_u32(target, &cpsr, 16);
1237                 /*  store current cpsr */
1238                 if (retval != ERROR_OK)
1239                         return retval;
1240
1241                 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1242
1243                 arm_set_cpsr(arm, cpsr);
1244
1245                 /* update cache */
1246                 for (i = 0; i <= ARM_PC; i++) {
1247                         reg = arm_reg_current(arm, i);
1248
1249                         buf_set_u32(reg->value, 0, 32, regfile[i]);
1250                         reg->valid = 1;
1251                         reg->dirty = 0;
1252                 }
1253
1254                 /* Fixup PC Resume Address */
1255                 if (cpsr & (1 << 5)) {
1256                         /* T bit set for Thumb or ThumbEE state */
1257                         regfile[ARM_PC] -= 4;
1258                 } else {
1259                         /* ARM state */
1260                         regfile[ARM_PC] -= 8;
1261                 }
1262
1263                 reg = arm->pc;
1264                 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1265                 reg->dirty = reg->valid;
1266         }
1267
1268 #if 0
1269 /* TODO, Move this */
1270         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1271         cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1272         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1273
1274         cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1275         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1276
1277         cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1278         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1279 #endif
1280
1281         /* Are we in an exception handler */
1282 /*      armv4_5->exception_number = 0; */
1283         if (armv7a->post_debug_entry) {
1284                 retval = armv7a->post_debug_entry(target);
1285                 if (retval != ERROR_OK)
1286                         return retval;
1287         }
1288
1289         return retval;
1290 }
1291
1292 static int cortex_a_post_debug_entry(struct target *target)
1293 {
1294         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1295         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1296         int retval;
1297
1298         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1299         retval = armv7a->arm.mrc(target, 15,
1300                         0, 0,   /* op1, op2 */
1301                         1, 0,   /* CRn, CRm */
1302                         &cortex_a->cp15_control_reg);
1303         if (retval != ERROR_OK)
1304                 return retval;
1305         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1306         cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1307
1308         if (armv7a->armv7a_mmu.armv7a_cache.ctype == -1)
1309                 armv7a_identify_cache(target);
1310
1311         if (armv7a->is_armv7r) {
1312                 armv7a->armv7a_mmu.mmu_enabled = 0;
1313         } else {
1314                 armv7a->armv7a_mmu.mmu_enabled =
1315                         (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1316         }
1317         armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1318                 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1319         armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1320                 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1321         cortex_a->curr_mode = armv7a->arm.core_mode;
1322
1323         return ERROR_OK;
1324 }
1325
1326 static int cortex_a_step(struct target *target, int current, uint32_t address,
1327         int handle_breakpoints)
1328 {
1329         struct armv7a_common *armv7a = target_to_armv7a(target);
1330         struct arm *arm = &armv7a->arm;
1331         struct breakpoint *breakpoint = NULL;
1332         struct breakpoint stepbreakpoint;
1333         struct reg *r;
1334         int retval;
1335
1336         if (target->state != TARGET_HALTED) {
1337                 LOG_WARNING("target not halted");
1338                 return ERROR_TARGET_NOT_HALTED;
1339         }
1340
1341         /* current = 1: continue on current pc, otherwise continue at <address> */
1342         r = arm->pc;
1343         if (!current)
1344                 buf_set_u32(r->value, 0, 32, address);
1345         else
1346                 address = buf_get_u32(r->value, 0, 32);
1347
1348         /* The front-end may request us not to handle breakpoints.
1349          * But since Cortex-A uses breakpoint for single step,
1350          * we MUST handle breakpoints.
1351          */
1352         handle_breakpoints = 1;
1353         if (handle_breakpoints) {
1354                 breakpoint = breakpoint_find(target, address);
1355                 if (breakpoint)
1356                         cortex_a_unset_breakpoint(target, breakpoint);
1357         }
1358
1359         /* Setup single step breakpoint */
1360         stepbreakpoint.address = address;
1361         stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1362                 ? 2 : 4;
1363         stepbreakpoint.type = BKPT_HARD;
1364         stepbreakpoint.set = 0;
1365
1366         /* Break on IVA mismatch */
1367         cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1368
1369         target->debug_reason = DBG_REASON_SINGLESTEP;
1370
1371         retval = cortex_a_resume(target, 1, address, 0, 0);
1372         if (retval != ERROR_OK)
1373                 return retval;
1374
1375         long long then = timeval_ms();
1376         while (target->state != TARGET_HALTED) {
1377                 retval = cortex_a_poll(target);
1378                 if (retval != ERROR_OK)
1379                         return retval;
1380                 if (timeval_ms() > then + 1000) {
1381                         LOG_ERROR("timeout waiting for target halt");
1382                         return ERROR_FAIL;
1383                 }
1384         }
1385
1386         cortex_a_unset_breakpoint(target, &stepbreakpoint);
1387
1388         target->debug_reason = DBG_REASON_BREAKPOINT;
1389
1390         if (breakpoint)
1391                 cortex_a_set_breakpoint(target, breakpoint, 0);
1392
1393         if (target->state != TARGET_HALTED)
1394                 LOG_DEBUG("target stepped");
1395
1396         return ERROR_OK;
1397 }
1398
1399 static int cortex_a_restore_context(struct target *target, bool bpwp)
1400 {
1401         struct armv7a_common *armv7a = target_to_armv7a(target);
1402
1403         LOG_DEBUG(" ");
1404
1405         if (armv7a->pre_restore_context)
1406                 armv7a->pre_restore_context(target);
1407
1408         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1409 }
1410
1411 /*
1412  * Cortex-A Breakpoint and watchpoint functions
1413  */
1414
1415 /* Setup hardware Breakpoint Register Pair */
1416 static int cortex_a_set_breakpoint(struct target *target,
1417         struct breakpoint *breakpoint, uint8_t matchmode)
1418 {
1419         int retval;
1420         int brp_i = 0;
1421         uint32_t control;
1422         uint8_t byte_addr_select = 0x0F;
1423         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1424         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1425         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1426
1427         if (breakpoint->set) {
1428                 LOG_WARNING("breakpoint already set");
1429                 return ERROR_OK;
1430         }
1431
1432         if (breakpoint->type == BKPT_HARD) {
1433                 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1434                         brp_i++;
1435                 if (brp_i >= cortex_a->brp_num) {
1436                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1437                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1438                 }
1439                 breakpoint->set = brp_i + 1;
1440                 if (breakpoint->length == 2)
1441                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1442                 control = ((matchmode & 0x7) << 20)
1443                         | (byte_addr_select << 5)
1444                         | (3 << 1) | 1;
1445                 brp_list[brp_i].used = 1;
1446                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1447                 brp_list[brp_i].control = control;
1448                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1449                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1450                                 brp_list[brp_i].value);
1451                 if (retval != ERROR_OK)
1452                         return retval;
1453                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1454                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1455                                 brp_list[brp_i].control);
1456                 if (retval != ERROR_OK)
1457                         return retval;
1458                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1459                         brp_list[brp_i].control,
1460                         brp_list[brp_i].value);
1461         } else if (breakpoint->type == BKPT_SOFT) {
1462                 uint8_t code[4];
1463                 if (breakpoint->length == 2)
1464                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1465                 else
1466                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1467                 retval = target_read_memory(target,
1468                                 breakpoint->address & 0xFFFFFFFE,
1469                                 breakpoint->length, 1,
1470                                 breakpoint->orig_instr);
1471                 if (retval != ERROR_OK)
1472                         return retval;
1473                 retval = target_write_memory(target,
1474                                 breakpoint->address & 0xFFFFFFFE,
1475                                 breakpoint->length, 1, code);
1476                 if (retval != ERROR_OK)
1477                         return retval;
1478                 breakpoint->set = 0x11; /* Any nice value but 0 */
1479         }
1480
1481         return ERROR_OK;
1482 }
1483
1484 static int cortex_a_set_context_breakpoint(struct target *target,
1485         struct breakpoint *breakpoint, uint8_t matchmode)
1486 {
1487         int retval = ERROR_FAIL;
1488         int brp_i = 0;
1489         uint32_t control;
1490         uint8_t byte_addr_select = 0x0F;
1491         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1492         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1493         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1494
1495         if (breakpoint->set) {
1496                 LOG_WARNING("breakpoint already set");
1497                 return retval;
1498         }
1499         /*check available context BRPs*/
1500         while ((brp_list[brp_i].used ||
1501                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1502                 brp_i++;
1503
1504         if (brp_i >= cortex_a->brp_num) {
1505                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1506                 return ERROR_FAIL;
1507         }
1508
1509         breakpoint->set = brp_i + 1;
1510         control = ((matchmode & 0x7) << 20)
1511                 | (byte_addr_select << 5)
1512                 | (3 << 1) | 1;
1513         brp_list[brp_i].used = 1;
1514         brp_list[brp_i].value = (breakpoint->asid);
1515         brp_list[brp_i].control = control;
1516         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1517                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1518                         brp_list[brp_i].value);
1519         if (retval != ERROR_OK)
1520                 return retval;
1521         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1522                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1523                         brp_list[brp_i].control);
1524         if (retval != ERROR_OK)
1525                 return retval;
1526         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1527                 brp_list[brp_i].control,
1528                 brp_list[brp_i].value);
1529         return ERROR_OK;
1530
1531 }
1532
1533 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1534 {
1535         int retval = ERROR_FAIL;
1536         int brp_1 = 0;  /* holds the contextID pair */
1537         int brp_2 = 0;  /* holds the IVA pair */
1538         uint32_t control_CTX, control_IVA;
1539         uint8_t CTX_byte_addr_select = 0x0F;
1540         uint8_t IVA_byte_addr_select = 0x0F;
1541         uint8_t CTX_machmode = 0x03;
1542         uint8_t IVA_machmode = 0x01;
1543         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1544         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1545         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1546
1547         if (breakpoint->set) {
1548                 LOG_WARNING("breakpoint already set");
1549                 return retval;
1550         }
1551         /*check available context BRPs*/
1552         while ((brp_list[brp_1].used ||
1553                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1554                 brp_1++;
1555
1556         printf("brp(CTX) found num: %d\n", brp_1);
1557         if (brp_1 >= cortex_a->brp_num) {
1558                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1559                 return ERROR_FAIL;
1560         }
1561
1562         while ((brp_list[brp_2].used ||
1563                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1564                 brp_2++;
1565
1566         printf("brp(IVA) found num: %d\n", brp_2);
1567         if (brp_2 >= cortex_a->brp_num) {
1568                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1569                 return ERROR_FAIL;
1570         }
1571
1572         breakpoint->set = brp_1 + 1;
1573         breakpoint->linked_BRP = brp_2;
1574         control_CTX = ((CTX_machmode & 0x7) << 20)
1575                 | (brp_2 << 16)
1576                 | (0 << 14)
1577                 | (CTX_byte_addr_select << 5)
1578                 | (3 << 1) | 1;
1579         brp_list[brp_1].used = 1;
1580         brp_list[brp_1].value = (breakpoint->asid);
1581         brp_list[brp_1].control = control_CTX;
1582         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1583                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1584                         brp_list[brp_1].value);
1585         if (retval != ERROR_OK)
1586                 return retval;
1587         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1588                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1589                         brp_list[brp_1].control);
1590         if (retval != ERROR_OK)
1591                 return retval;
1592
1593         control_IVA = ((IVA_machmode & 0x7) << 20)
1594                 | (brp_1 << 16)
1595                 | (IVA_byte_addr_select << 5)
1596                 | (3 << 1) | 1;
1597         brp_list[brp_2].used = 1;
1598         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1599         brp_list[brp_2].control = control_IVA;
1600         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1601                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1602                         brp_list[brp_2].value);
1603         if (retval != ERROR_OK)
1604                 return retval;
1605         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1606                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1607                         brp_list[brp_2].control);
1608         if (retval != ERROR_OK)
1609                 return retval;
1610
1611         return ERROR_OK;
1612 }
1613
1614 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1615 {
1616         int retval;
1617         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1618         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1619         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1620
1621         if (!breakpoint->set) {
1622                 LOG_WARNING("breakpoint not set");
1623                 return ERROR_OK;
1624         }
1625
1626         if (breakpoint->type == BKPT_HARD) {
1627                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1628                         int brp_i = breakpoint->set - 1;
1629                         int brp_j = breakpoint->linked_BRP;
1630                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1631                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1632                                 return ERROR_OK;
1633                         }
1634                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1635                                 brp_list[brp_i].control, brp_list[brp_i].value);
1636                         brp_list[brp_i].used = 0;
1637                         brp_list[brp_i].value = 0;
1638                         brp_list[brp_i].control = 0;
1639                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1640                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1641                                         brp_list[brp_i].control);
1642                         if (retval != ERROR_OK)
1643                                 return retval;
1644                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1645                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1646                                         brp_list[brp_i].value);
1647                         if (retval != ERROR_OK)
1648                                 return retval;
1649                         if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1650                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1651                                 return ERROR_OK;
1652                         }
1653                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1654                                 brp_list[brp_j].control, brp_list[brp_j].value);
1655                         brp_list[brp_j].used = 0;
1656                         brp_list[brp_j].value = 0;
1657                         brp_list[brp_j].control = 0;
1658                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1659                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1660                                         brp_list[brp_j].control);
1661                         if (retval != ERROR_OK)
1662                                 return retval;
1663                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1664                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1665                                         brp_list[brp_j].value);
1666                         if (retval != ERROR_OK)
1667                                 return retval;
1668                         breakpoint->linked_BRP = 0;
1669                         breakpoint->set = 0;
1670                         return ERROR_OK;
1671
1672                 } else {
1673                         int brp_i = breakpoint->set - 1;
1674                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1675                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1676                                 return ERROR_OK;
1677                         }
1678                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1679                                 brp_list[brp_i].control, brp_list[brp_i].value);
1680                         brp_list[brp_i].used = 0;
1681                         brp_list[brp_i].value = 0;
1682                         brp_list[brp_i].control = 0;
1683                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1684                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1685                                         brp_list[brp_i].control);
1686                         if (retval != ERROR_OK)
1687                                 return retval;
1688                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1689                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1690                                         brp_list[brp_i].value);
1691                         if (retval != ERROR_OK)
1692                                 return retval;
1693                         breakpoint->set = 0;
1694                         return ERROR_OK;
1695                 }
1696         } else {
1697                 /* restore original instruction (kept in target endianness) */
1698                 if (breakpoint->length == 4) {
1699                         retval = target_write_memory(target,
1700                                         breakpoint->address & 0xFFFFFFFE,
1701                                         4, 1, breakpoint->orig_instr);
1702                         if (retval != ERROR_OK)
1703                                 return retval;
1704                 } else {
1705                         retval = target_write_memory(target,
1706                                         breakpoint->address & 0xFFFFFFFE,
1707                                         2, 1, breakpoint->orig_instr);
1708                         if (retval != ERROR_OK)
1709                                 return retval;
1710                 }
1711         }
1712         breakpoint->set = 0;
1713
1714         return ERROR_OK;
1715 }
1716
1717 static int cortex_a_add_breakpoint(struct target *target,
1718         struct breakpoint *breakpoint)
1719 {
1720         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1721
1722         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1723                 LOG_INFO("no hardware breakpoint available");
1724                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1725         }
1726
1727         if (breakpoint->type == BKPT_HARD)
1728                 cortex_a->brp_num_available--;
1729
1730         return cortex_a_set_breakpoint(target, breakpoint, 0x00);       /* Exact match */
1731 }
1732
1733 static int cortex_a_add_context_breakpoint(struct target *target,
1734         struct breakpoint *breakpoint)
1735 {
1736         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1737
1738         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1739                 LOG_INFO("no hardware breakpoint available");
1740                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1741         }
1742
1743         if (breakpoint->type == BKPT_HARD)
1744                 cortex_a->brp_num_available--;
1745
1746         return cortex_a_set_context_breakpoint(target, breakpoint, 0x02);       /* asid match */
1747 }
1748
1749 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1750         struct breakpoint *breakpoint)
1751 {
1752         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1753
1754         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1755                 LOG_INFO("no hardware breakpoint available");
1756                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1757         }
1758
1759         if (breakpoint->type == BKPT_HARD)
1760                 cortex_a->brp_num_available--;
1761
1762         return cortex_a_set_hybrid_breakpoint(target, breakpoint);      /* ??? */
1763 }
1764
1765
1766 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1767 {
1768         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1769
1770 #if 0
1771 /* It is perfectly possible to remove breakpoints while the target is running */
1772         if (target->state != TARGET_HALTED) {
1773                 LOG_WARNING("target not halted");
1774                 return ERROR_TARGET_NOT_HALTED;
1775         }
1776 #endif
1777
1778         if (breakpoint->set) {
1779                 cortex_a_unset_breakpoint(target, breakpoint);
1780                 if (breakpoint->type == BKPT_HARD)
1781                         cortex_a->brp_num_available++;
1782         }
1783
1784
1785         return ERROR_OK;
1786 }
1787
1788 /*
1789  * Cortex-A Reset functions
1790  */
1791
1792 static int cortex_a_assert_reset(struct target *target)
1793 {
1794         struct armv7a_common *armv7a = target_to_armv7a(target);
1795
1796         LOG_DEBUG(" ");
1797
1798         /* FIXME when halt is requested, make it work somehow... */
1799
1800         /* Issue some kind of warm reset. */
1801         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1802                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1803         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1804                 /* REVISIT handle "pulls" cases, if there's
1805                  * hardware that needs them to work.
1806                  */
1807                 jtag_add_reset(0, 1);
1808         } else {
1809                 LOG_ERROR("%s: how to reset?", target_name(target));
1810                 return ERROR_FAIL;
1811         }
1812
1813         /* registers are now invalid */
1814         register_cache_invalidate(armv7a->arm.core_cache);
1815
1816         target->state = TARGET_RESET;
1817
1818         return ERROR_OK;
1819 }
1820
1821 static int cortex_a_deassert_reset(struct target *target)
1822 {
1823         int retval;
1824
1825         LOG_DEBUG(" ");
1826
1827         /* be certain SRST is off */
1828         jtag_add_reset(0, 0);
1829
1830         retval = cortex_a_poll(target);
1831         if (retval != ERROR_OK)
1832                 return retval;
1833
1834         if (target->reset_halt) {
1835                 if (target->state != TARGET_HALTED) {
1836                         LOG_WARNING("%s: ran after reset and before halt ...",
1837                                 target_name(target));
1838                         retval = target_halt(target);
1839                         if (retval != ERROR_OK)
1840                                 return retval;
1841                 }
1842         }
1843
1844         return ERROR_OK;
1845 }
1846
1847 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1848 {
1849         /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1850          * New desired mode must be in mode. Current value of DSCR must be in
1851          * *dscr, which is updated with new value.
1852          *
1853          * This function elides actually sending the mode-change over the debug
1854          * interface if the mode is already set as desired.
1855          */
1856         uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1857         if (new_dscr != *dscr) {
1858                 struct armv7a_common *armv7a = target_to_armv7a(target);
1859                 int retval = mem_ap_sel_write_atomic_u32(armv7a->arm.dap,
1860                                 armv7a->debug_ap, armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1861                 if (retval == ERROR_OK)
1862                         *dscr = new_dscr;
1863                 return retval;
1864         } else {
1865                 return ERROR_OK;
1866         }
1867 }
1868
1869 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1870         uint32_t value, uint32_t *dscr)
1871 {
1872         /* Waits until the specified bit(s) of DSCR take on a specified value. */
1873         struct armv7a_common *armv7a = target_to_armv7a(target);
1874         struct adiv5_dap *swjdp = armv7a->arm.dap;
1875         long long then = timeval_ms();
1876         int retval;
1877
1878         while ((*dscr & mask) != value) {
1879                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1880                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1881                 if (retval != ERROR_OK)
1882                         return retval;
1883                 if (timeval_ms() > then + 1000) {
1884                         LOG_ERROR("timeout waiting for DSCR bit change");
1885                         return ERROR_FAIL;
1886                 }
1887         }
1888         return ERROR_OK;
1889 }
1890
1891 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1892         uint32_t *data, uint32_t *dscr)
1893 {
1894         int retval;
1895         struct armv7a_common *armv7a = target_to_armv7a(target);
1896         struct adiv5_dap *swjdp = armv7a->arm.dap;
1897
1898         /* Move from coprocessor to R0. */
1899         retval = cortex_a_exec_opcode(target, opcode, dscr);
1900         if (retval != ERROR_OK)
1901                 return retval;
1902
1903         /* Move from R0 to DTRTX. */
1904         retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1905         if (retval != ERROR_OK)
1906                 return retval;
1907
1908         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1909          * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1910          * must also check TXfull_l). Most of the time this will be free
1911          * because TXfull_l will be set immediately and cached in dscr. */
1912         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1913                         DSCR_DTRTX_FULL_LATCHED, dscr);
1914         if (retval != ERROR_OK)
1915                 return retval;
1916
1917         /* Read the value transferred to DTRTX. */
1918         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1919                         armv7a->debug_base + CPUDBG_DTRTX, data);
1920         if (retval != ERROR_OK)
1921                 return retval;
1922
1923         return ERROR_OK;
1924 }
1925
1926 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
1927         uint32_t *dfsr, uint32_t *dscr)
1928 {
1929         int retval;
1930
1931         if (dfar) {
1932                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
1933                 if (retval != ERROR_OK)
1934                         return retval;
1935         }
1936
1937         if (dfsr) {
1938                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
1939                 if (retval != ERROR_OK)
1940                         return retval;
1941         }
1942
1943         return ERROR_OK;
1944 }
1945
1946 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
1947         uint32_t data, uint32_t *dscr)
1948 {
1949         int retval;
1950         struct armv7a_common *armv7a = target_to_armv7a(target);
1951         struct adiv5_dap *swjdp = armv7a->arm.dap;
1952
1953         /* Write the value into DTRRX. */
1954         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1955                         armv7a->debug_base + CPUDBG_DTRRX, data);
1956         if (retval != ERROR_OK)
1957                 return retval;
1958
1959         /* Move from DTRRX to R0. */
1960         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
1961         if (retval != ERROR_OK)
1962                 return retval;
1963
1964         /* Move from R0 to coprocessor. */
1965         retval = cortex_a_exec_opcode(target, opcode, dscr);
1966         if (retval != ERROR_OK)
1967                 return retval;
1968
1969         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
1970          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
1971          * check RXfull_l). Most of the time this will be free because RXfull_l
1972          * will be cleared immediately and cached in dscr. */
1973         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
1974         if (retval != ERROR_OK)
1975                 return retval;
1976
1977         return ERROR_OK;
1978 }
1979
1980 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
1981         uint32_t dfsr, uint32_t *dscr)
1982 {
1983         int retval;
1984
1985         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
1986         if (retval != ERROR_OK)
1987                 return retval;
1988
1989         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
1990         if (retval != ERROR_OK)
1991                 return retval;
1992
1993         return ERROR_OK;
1994 }
1995
1996 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
1997 {
1998         uint32_t status, upper4;
1999
2000         if (dfsr & (1 << 9)) {
2001                 /* LPAE format. */
2002                 status = dfsr & 0x3f;
2003                 upper4 = status >> 2;
2004                 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2005                         return ERROR_TARGET_TRANSLATION_FAULT;
2006                 else if (status == 33)
2007                         return ERROR_TARGET_UNALIGNED_ACCESS;
2008                 else
2009                         return ERROR_TARGET_DATA_ABORT;
2010         } else {
2011                 /* Normal format. */
2012                 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2013                 if (status == 1)
2014                         return ERROR_TARGET_UNALIGNED_ACCESS;
2015                 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2016                                 status == 9 || status == 11 || status == 13 || status == 15)
2017                         return ERROR_TARGET_TRANSLATION_FAULT;
2018                 else
2019                         return ERROR_TARGET_DATA_ABORT;
2020         }
2021 }
2022
2023 static int cortex_a_write_apb_ab_memory_slow(struct target *target,
2024         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2025 {
2026         /* Writes count objects of size size from *buffer. Old value of DSCR must
2027          * be in *dscr; updated to new value. This is slow because it works for
2028          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2029          * the address is aligned, cortex_a_write_apb_ab_memory_fast should be
2030          * preferred.
2031          * Preconditions:
2032          * - Address is in R0.
2033          * - R0 is marked dirty.
2034          */
2035         struct armv7a_common *armv7a = target_to_armv7a(target);
2036         struct adiv5_dap *swjdp = armv7a->arm.dap;
2037         struct arm *arm = &armv7a->arm;
2038         int retval;
2039
2040         /* Mark register R1 as dirty, to use for transferring data. */
2041         arm_reg_current(arm, 1)->dirty = true;
2042
2043         /* Switch to non-blocking mode if not already in that mode. */
2044         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2045         if (retval != ERROR_OK)
2046                 return retval;
2047
2048         /* Go through the objects. */
2049         while (count) {
2050                 /* Write the value to store into DTRRX. */
2051                 uint32_t data, opcode;
2052                 if (size == 1)
2053                         data = *buffer;
2054                 else if (size == 2)
2055                         data = target_buffer_get_u16(target, buffer);
2056                 else
2057                         data = target_buffer_get_u32(target, buffer);
2058                 retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2059                                 armv7a->debug_base + CPUDBG_DTRRX, data);
2060                 if (retval != ERROR_OK)
2061                         return retval;
2062
2063                 /* Transfer the value from DTRRX to R1. */
2064                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2065                 if (retval != ERROR_OK)
2066                         return retval;
2067
2068                 /* Write the value transferred to R1 into memory. */
2069                 if (size == 1)
2070                         opcode = ARMV4_5_STRB_IP(1, 0);
2071                 else if (size == 2)
2072                         opcode = ARMV4_5_STRH_IP(1, 0);
2073                 else
2074                         opcode = ARMV4_5_STRW_IP(1, 0);
2075                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2076                 if (retval != ERROR_OK)
2077                         return retval;
2078
2079                 /* Check for faults and return early. */
2080                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2081                         return ERROR_OK; /* A data fault is not considered a system failure. */
2082
2083                 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2084                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2085                  * must also check RXfull_l). Most of the time this will be free
2086                  * because RXfull_l will be cleared immediately and cached in dscr. */
2087                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2088                 if (retval != ERROR_OK)
2089                         return retval;
2090
2091                 /* Advance. */
2092                 buffer += size;
2093                 --count;
2094         }
2095
2096         return ERROR_OK;
2097 }
2098
2099 static int cortex_a_write_apb_ab_memory_fast(struct target *target,
2100         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2101 {
2102         /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2103          * in *dscr; updated to new value. This is fast but only works for
2104          * word-sized objects at aligned addresses.
2105          * Preconditions:
2106          * - Address is in R0 and must be a multiple of 4.
2107          * - R0 is marked dirty.
2108          */
2109         struct armv7a_common *armv7a = target_to_armv7a(target);
2110         struct adiv5_dap *swjdp = armv7a->arm.dap;
2111         int retval;
2112
2113         /* Switch to fast mode if not already in that mode. */
2114         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2115         if (retval != ERROR_OK)
2116                 return retval;
2117
2118         /* Latch STC instruction. */
2119         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2120                         armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2121         if (retval != ERROR_OK)
2122                 return retval;
2123
2124         /* Transfer all the data and issue all the instructions. */
2125         return mem_ap_sel_write_buf_noincr(swjdp, armv7a->debug_ap, buffer,
2126                         4, count, armv7a->debug_base + CPUDBG_DTRRX);
2127 }
2128
2129 static int cortex_a_write_apb_ab_memory(struct target *target,
2130         uint32_t address, uint32_t size,
2131         uint32_t count, const uint8_t *buffer)
2132 {
2133         /* Write memory through APB-AP. */
2134         int retval, final_retval;
2135         struct armv7a_common *armv7a = target_to_armv7a(target);
2136         struct adiv5_dap *swjdp = armv7a->arm.dap;
2137         struct arm *arm = &armv7a->arm;
2138         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2139
2140         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2141                           address, size, count);
2142         if (target->state != TARGET_HALTED) {
2143                 LOG_WARNING("target not halted");
2144                 return ERROR_TARGET_NOT_HALTED;
2145         }
2146
2147         if (!count)
2148                 return ERROR_OK;
2149
2150         /* Clear any abort. */
2151         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2152                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2153         if (retval != ERROR_OK)
2154                 return retval;
2155
2156         /* Read DSCR. */
2157         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2158                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2159         if (retval != ERROR_OK)
2160                 return retval;
2161
2162         /* Switch to non-blocking mode if not already in that mode. */
2163         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2164         if (retval != ERROR_OK)
2165                 goto out;
2166
2167         /* Mark R0 as dirty. */
2168         arm_reg_current(arm, 0)->dirty = true;
2169
2170         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2171         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2172         if (retval != ERROR_OK)
2173                 goto out;
2174
2175         /* Get the memory address into R0. */
2176         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2177                         armv7a->debug_base + CPUDBG_DTRRX, address);
2178         if (retval != ERROR_OK)
2179                 goto out;
2180         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2181         if (retval != ERROR_OK)
2182                 goto out;
2183
2184         if (size == 4 && (address % 4) == 0) {
2185                 /* We are doing a word-aligned transfer, so use fast mode. */
2186                 retval = cortex_a_write_apb_ab_memory_fast(target, count, buffer, &dscr);
2187         } else {
2188                 /* Use slow path. */
2189                 retval = cortex_a_write_apb_ab_memory_slow(target, size, count, buffer, &dscr);
2190         }
2191
2192 out:
2193         final_retval = retval;
2194
2195         /* Switch to non-blocking mode if not already in that mode. */
2196         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2197         if (final_retval == ERROR_OK)
2198                 final_retval = retval;
2199
2200         /* Wait for last issued instruction to complete. */
2201         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2202         if (final_retval == ERROR_OK)
2203                 final_retval = retval;
2204
2205         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2206          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2207          * check RXfull_l). Most of the time this will be free because RXfull_l
2208          * will be cleared immediately and cached in dscr. However, don’t do this
2209          * if there is fault, because then the instruction might not have completed
2210          * successfully. */
2211         if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2212                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2213                 if (retval != ERROR_OK)
2214                         return retval;
2215         }
2216
2217         /* If there were any sticky abort flags, clear them. */
2218         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2219                 fault_dscr = dscr;
2220                 mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2221                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2222                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2223         } else {
2224                 fault_dscr = 0;
2225         }
2226
2227         /* Handle synchronous data faults. */
2228         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2229                 if (final_retval == ERROR_OK) {
2230                         /* Final return value will reflect cause of fault. */
2231                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2232                         if (retval == ERROR_OK) {
2233                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2234                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2235                         } else
2236                                 final_retval = retval;
2237                 }
2238                 /* Fault destroyed DFAR/DFSR; restore them. */
2239                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2240                 if (retval != ERROR_OK)
2241                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2242         }
2243
2244         /* Handle asynchronous data faults. */
2245         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2246                 if (final_retval == ERROR_OK)
2247                         /* No other error has been recorded so far, so keep this one. */
2248                         final_retval = ERROR_TARGET_DATA_ABORT;
2249         }
2250
2251         /* If the DCC is nonempty, clear it. */
2252         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2253                 uint32_t dummy;
2254                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2255                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2256                 if (final_retval == ERROR_OK)
2257                         final_retval = retval;
2258         }
2259         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2260                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2261                 if (final_retval == ERROR_OK)
2262                         final_retval = retval;
2263         }
2264
2265         /* Done. */
2266         return final_retval;
2267 }
2268
2269 static int cortex_a_read_apb_ab_memory_slow(struct target *target,
2270         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2271 {
2272         /* Reads count objects of size size into *buffer. Old value of DSCR must be
2273          * in *dscr; updated to new value. This is slow because it works for
2274          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2275          * the address is aligned, cortex_a_read_apb_ab_memory_fast should be
2276          * preferred.
2277          * Preconditions:
2278          * - Address is in R0.
2279          * - R0 is marked dirty.
2280          */
2281         struct armv7a_common *armv7a = target_to_armv7a(target);
2282         struct adiv5_dap *swjdp = armv7a->arm.dap;
2283         struct arm *arm = &armv7a->arm;
2284         int retval;
2285
2286         /* Mark register R1 as dirty, to use for transferring data. */
2287         arm_reg_current(arm, 1)->dirty = true;
2288
2289         /* Switch to non-blocking mode if not already in that mode. */
2290         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2291         if (retval != ERROR_OK)
2292                 return retval;
2293
2294         /* Go through the objects. */
2295         while (count) {
2296                 /* Issue a load of the appropriate size to R1. */
2297                 uint32_t opcode, data;
2298                 if (size == 1)
2299                         opcode = ARMV4_5_LDRB_IP(1, 0);
2300                 else if (size == 2)
2301                         opcode = ARMV4_5_LDRH_IP(1, 0);
2302                 else
2303                         opcode = ARMV4_5_LDRW_IP(1, 0);
2304                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2305                 if (retval != ERROR_OK)
2306                         return retval;
2307
2308                 /* Issue a write of R1 to DTRTX. */
2309                 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2310                 if (retval != ERROR_OK)
2311                         return retval;
2312
2313                 /* Check for faults and return early. */
2314                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2315                         return ERROR_OK; /* A data fault is not considered a system failure. */
2316
2317                 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2318                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2319                  * must also check TXfull_l). Most of the time this will be free
2320                  * because TXfull_l will be set immediately and cached in dscr. */
2321                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2322                                 DSCR_DTRTX_FULL_LATCHED, dscr);
2323                 if (retval != ERROR_OK)
2324                         return retval;
2325
2326                 /* Read the value transferred to DTRTX into the buffer. */
2327                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2328                                 armv7a->debug_base + CPUDBG_DTRTX, &data);
2329                 if (retval != ERROR_OK)
2330                         return retval;
2331                 if (size == 1)
2332                         *buffer = (uint8_t) data;
2333                 else if (size == 2)
2334                         target_buffer_set_u16(target, buffer, (uint16_t) data);
2335                 else
2336                         target_buffer_set_u32(target, buffer, data);
2337
2338                 /* Advance. */
2339                 buffer += size;
2340                 --count;
2341         }
2342
2343         return ERROR_OK;
2344 }
2345
2346 static int cortex_a_read_apb_ab_memory_fast(struct target *target,
2347         uint32_t count, uint8_t *buffer, uint32_t *dscr)
2348 {
2349         /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2350          * *dscr; updated to new value. This is fast but only works for word-sized
2351          * objects at aligned addresses.
2352          * Preconditions:
2353          * - Address is in R0 and must be a multiple of 4.
2354          * - R0 is marked dirty.
2355          */
2356         struct armv7a_common *armv7a = target_to_armv7a(target);
2357         struct adiv5_dap *swjdp = armv7a->arm.dap;
2358         uint32_t new_dscr, u32;
2359         int retval;
2360
2361         /* Switch to non-blocking mode if not already in that mode. */
2362         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2363         if (retval != ERROR_OK)
2364                 return retval;
2365
2366         if (count > 1) {
2367                 /* Consecutively issue the LDC instruction via a write to ITR and
2368                  * change to fast mode, in a single bulk copy since DSCR == ITR + 4.
2369                  * The instruction is issued into the core before the mode switch. */
2370                 uint8_t command[8];
2371                 target_buffer_set_u32(target, command, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2372                 new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_FAST_MODE;
2373                 target_buffer_set_u32(target, command + 4, new_dscr);
2374                 retval = mem_ap_sel_write_buf(swjdp, armv7a->debug_ap, command, 4, 2,
2375                                 armv7a->debug_base + CPUDBG_ITR);
2376                 if (retval != ERROR_OK)
2377                         return retval;
2378                 *dscr = new_dscr;
2379
2380                 /* Read the value transferred to DTRTX into the buffer. Due to fast
2381                  * mode rules, this blocks until the instruction finishes executing and
2382                  * then reissues the read instruction to read the next word from
2383                  * memory. The last read of DTRTX in this call reads the second-to-last
2384                  * word from memory and issues the read instruction for the last word.
2385                  */
2386                 retval = mem_ap_sel_read_buf_noincr(swjdp, armv7a->debug_ap, buffer,
2387                                 4, count - 1, armv7a->debug_base + CPUDBG_DTRTX);
2388                 if (retval != ERROR_OK)
2389                         return retval;
2390
2391                 /* Advance. */
2392                 buffer += (count - 1) * 4;
2393         } else {
2394                 /* Issue the LDC instruction via a write to ITR. */
2395                 retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2396                 if (retval != ERROR_OK)
2397                         return retval;
2398         }
2399
2400         /* Switch to non-blocking mode if not already in that mode. */
2401         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2402         if (retval != ERROR_OK)
2403                 return retval;
2404
2405         /* Wait for last issued instruction to complete. */
2406         retval = cortex_a_wait_instrcmpl(target, dscr, false);
2407         if (retval != ERROR_OK)
2408                 return retval;
2409
2410         /* Check for faults and return early. */
2411         if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2412                 return ERROR_OK; /* A data fault is not considered a system failure. */
2413
2414         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2415          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2416          * check TXfull_l). Most of the time this will be free because TXfull_l
2417          * will be set immediately and cached in dscr. */
2418         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2419                         DSCR_DTRTX_FULL_LATCHED, dscr);
2420         if (retval != ERROR_OK)
2421                 return retval;
2422
2423         /* Read the value transferred to DTRTX into the buffer. This is the last
2424          * word. */
2425         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2426                         armv7a->debug_base + CPUDBG_DTRTX, &u32);
2427         if (retval != ERROR_OK)
2428                 return retval;
2429         target_buffer_set_u32(target, buffer, u32);
2430
2431         return ERROR_OK;
2432 }
2433
2434 static int cortex_a_read_apb_ab_memory(struct target *target,
2435         uint32_t address, uint32_t size,
2436         uint32_t count, uint8_t *buffer)
2437 {
2438         /* Read memory through APB-AP. */
2439         int retval, final_retval;
2440         struct armv7a_common *armv7a = target_to_armv7a(target);
2441         struct adiv5_dap *swjdp = armv7a->arm.dap;
2442         struct arm *arm = &armv7a->arm;
2443         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2444
2445         LOG_DEBUG("Reading APB-AP memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2446                           address, size, count);
2447         if (target->state != TARGET_HALTED) {
2448                 LOG_WARNING("target not halted");
2449                 return ERROR_TARGET_NOT_HALTED;
2450         }
2451
2452         if (!count)
2453                 return ERROR_OK;
2454
2455         /* Clear any abort. */
2456         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2457                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2458         if (retval != ERROR_OK)
2459                 return retval;
2460
2461         /* Read DSCR */
2462         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2463                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2464         if (retval != ERROR_OK)
2465                 return retval;
2466
2467         /* Switch to non-blocking mode if not already in that mode. */
2468         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2469         if (retval != ERROR_OK)
2470                 goto out;
2471
2472         /* Mark R0 as dirty. */
2473         arm_reg_current(arm, 0)->dirty = true;
2474
2475         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2476         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2477         if (retval != ERROR_OK)
2478                 goto out;
2479
2480         /* Get the memory address into R0. */
2481         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2482                         armv7a->debug_base + CPUDBG_DTRRX, address);
2483         if (retval != ERROR_OK)
2484                 goto out;
2485         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2486         if (retval != ERROR_OK)
2487                 goto out;
2488
2489         if (size == 4 && (address % 4) == 0) {
2490                 /* We are doing a word-aligned transfer, so use fast mode. */
2491                 retval = cortex_a_read_apb_ab_memory_fast(target, count, buffer, &dscr);
2492         } else {
2493                 /* Use slow path. */
2494                 retval = cortex_a_read_apb_ab_memory_slow(target, size, count, buffer, &dscr);
2495         }
2496
2497 out:
2498         final_retval = retval;
2499
2500         /* Switch to non-blocking mode if not already in that mode. */
2501         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2502         if (final_retval == ERROR_OK)
2503                 final_retval = retval;
2504
2505         /* Wait for last issued instruction to complete. */
2506         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2507         if (final_retval == ERROR_OK)
2508                 final_retval = retval;
2509
2510         /* If there were any sticky abort flags, clear them. */
2511         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2512                 fault_dscr = dscr;
2513                 mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2514                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2515                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2516         } else {
2517                 fault_dscr = 0;
2518         }
2519
2520         /* Handle synchronous data faults. */
2521         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2522                 if (final_retval == ERROR_OK) {
2523                         /* Final return value will reflect cause of fault. */
2524                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2525                         if (retval == ERROR_OK) {
2526                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2527                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2528                         } else
2529                                 final_retval = retval;
2530                 }
2531                 /* Fault destroyed DFAR/DFSR; restore them. */
2532                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2533                 if (retval != ERROR_OK)
2534                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2535         }
2536
2537         /* Handle asynchronous data faults. */
2538         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2539                 if (final_retval == ERROR_OK)
2540                         /* No other error has been recorded so far, so keep this one. */
2541                         final_retval = ERROR_TARGET_DATA_ABORT;
2542         }
2543
2544         /* If the DCC is nonempty, clear it. */
2545         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2546                 uint32_t dummy;
2547                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2548                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2549                 if (final_retval == ERROR_OK)
2550                         final_retval = retval;
2551         }
2552         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2553                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2554                 if (final_retval == ERROR_OK)
2555                         final_retval = retval;
2556         }
2557
2558         /* Done. */
2559         return final_retval;
2560 }
2561
2562
2563 /*
2564  * Cortex-A Memory access
2565  *
2566  * This is same Cortex M3 but we must also use the correct
2567  * ap number for every access.
2568  */
2569
2570 static int cortex_a_read_phys_memory(struct target *target,
2571         uint32_t address, uint32_t size,
2572         uint32_t count, uint8_t *buffer)
2573 {
2574         struct armv7a_common *armv7a = target_to_armv7a(target);
2575         struct adiv5_dap *swjdp = armv7a->arm.dap;
2576         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2577         uint8_t apsel = swjdp->apsel;
2578         LOG_DEBUG("Reading memory at real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32,
2579                 address, size, count);
2580
2581         if (count && buffer) {
2582
2583                 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
2584
2585                         /* read memory through AHB-AP */
2586                         retval = mem_ap_sel_read_buf(swjdp, armv7a->memory_ap, buffer, size, count, address);
2587                 } else {
2588
2589                         /* read memory through APB-AP */
2590                         if (!armv7a->is_armv7r) {
2591                                 /*  disable mmu */
2592                                 retval = cortex_a_mmu_modify(target, 0);
2593                                 if (retval != ERROR_OK)
2594                                         return retval;
2595                         }
2596                         retval = cortex_a_read_apb_ab_memory(target, address, size, count, buffer);
2597                 }
2598         }
2599         return retval;
2600 }
2601
2602 static int cortex_a_read_memory(struct target *target, uint32_t address,
2603         uint32_t size, uint32_t count, uint8_t *buffer)
2604 {
2605         int mmu_enabled = 0;
2606         uint32_t virt, phys;
2607         int retval;
2608         struct armv7a_common *armv7a = target_to_armv7a(target);
2609         struct adiv5_dap *swjdp = armv7a->arm.dap;
2610         uint8_t apsel = swjdp->apsel;
2611
2612         /* cortex_a handles unaligned memory access */
2613         LOG_DEBUG("Reading memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2614                 size, count);
2615
2616         /* determine if MMU was enabled on target stop */
2617         if (!armv7a->is_armv7r) {
2618                 retval = cortex_a_mmu(target, &mmu_enabled);
2619                 if (retval != ERROR_OK)
2620                         return retval;
2621         }
2622
2623         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
2624                 if (mmu_enabled) {
2625                         virt = address;
2626                         retval = cortex_a_virt2phys(target, virt, &phys);
2627                         if (retval != ERROR_OK)
2628                                 return retval;
2629
2630                         LOG_DEBUG("Reading at virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
2631                                   virt, phys);
2632                         address = phys;
2633                 }
2634                 retval = cortex_a_read_phys_memory(target, address, size,
2635                             count, buffer);
2636         } else {
2637                 if (mmu_enabled) {
2638                         retval = cortex_a_check_address(target, address);
2639                         if (retval != ERROR_OK)
2640                                 return retval;
2641                         /* enable MMU as we could have disabled it for phys access */
2642                         retval = cortex_a_mmu_modify(target, 1);
2643                         if (retval != ERROR_OK)
2644                                 return retval;
2645                 }
2646                 retval = cortex_a_read_apb_ab_memory(target, address, size, count, buffer);
2647         }
2648         return retval;
2649 }
2650
2651 static int cortex_a_write_phys_memory(struct target *target,
2652         uint32_t address, uint32_t size,
2653         uint32_t count, const uint8_t *buffer)
2654 {
2655         struct armv7a_common *armv7a = target_to_armv7a(target);
2656         struct adiv5_dap *swjdp = armv7a->arm.dap;
2657         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2658         uint8_t apsel = swjdp->apsel;
2659
2660         LOG_DEBUG("Writing memory to real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2661                 size, count);
2662
2663         if (count && buffer) {
2664
2665                 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
2666
2667                         /* write memory through AHB-AP */
2668                         retval = mem_ap_sel_write_buf(swjdp, armv7a->memory_ap, buffer, size, count, address);
2669                 } else {
2670
2671                         /* write memory through APB-AP */
2672                         if (!armv7a->is_armv7r) {
2673                                 retval = cortex_a_mmu_modify(target, 0);
2674                                 if (retval != ERROR_OK)
2675                                         return retval;
2676                         }
2677                         return cortex_a_write_apb_ab_memory(target, address, size, count, buffer);
2678                 }
2679         }
2680
2681
2682         /* REVISIT this op is generic ARMv7-A/R stuff */
2683         if (retval == ERROR_OK && target->state == TARGET_HALTED) {
2684                 struct arm_dpm *dpm = armv7a->arm.dpm;
2685
2686                 retval = dpm->prepare(dpm);
2687                 if (retval != ERROR_OK)
2688                         return retval;
2689
2690                 /* The Cache handling will NOT work with MMU active, the
2691                  * wrong addresses will be invalidated!
2692                  *
2693                  * For both ICache and DCache, walk all cache lines in the
2694                  * address range. Cortex-A has fixed 64 byte line length.
2695                  *
2696                  * REVISIT per ARMv7, these may trigger watchpoints ...
2697                  */
2698
2699                 /* invalidate I-Cache */
2700                 if (armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled) {
2701                         /* ICIMVAU - Invalidate Cache single entry
2702                          * with MVA to PoU
2703                          *      MCR p15, 0, r0, c7, c5, 1
2704                          */
2705                         for (uint32_t cacheline = 0;
2706                                 cacheline < size * count;
2707                                 cacheline += 64) {
2708                                 retval = dpm->instr_write_data_r0(dpm,
2709                                                 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
2710                                                 address + cacheline);
2711                                 if (retval != ERROR_OK)
2712                                         return retval;
2713                         }
2714                 }
2715
2716                 /* invalidate D-Cache */
2717                 if (armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled) {
2718                         /* DCIMVAC - Invalidate data Cache line
2719                          * with MVA to PoC
2720                          *      MCR p15, 0, r0, c7, c6, 1
2721                          */
2722                         for (uint32_t cacheline = 0;
2723                                 cacheline < size * count;
2724                                 cacheline += 64) {
2725                                 retval = dpm->instr_write_data_r0(dpm,
2726                                                 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
2727                                                 address + cacheline);
2728                                 if (retval != ERROR_OK)
2729                                         return retval;
2730                         }
2731                 }
2732
2733                 /* (void) */ dpm->finish(dpm);
2734         }
2735
2736         return retval;
2737 }
2738
2739 static int cortex_a_write_memory(struct target *target, uint32_t address,
2740         uint32_t size, uint32_t count, const uint8_t *buffer)
2741 {
2742         int mmu_enabled = 0;
2743         uint32_t virt, phys;
2744         int retval;
2745         struct armv7a_common *armv7a = target_to_armv7a(target);
2746         struct adiv5_dap *swjdp = armv7a->arm.dap;
2747         uint8_t apsel = swjdp->apsel;
2748
2749         /* cortex_a handles unaligned memory access */
2750         LOG_DEBUG("Writing memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2751                 size, count);
2752
2753         /* determine if MMU was enabled on target stop */
2754         if (!armv7a->is_armv7r) {
2755                 retval = cortex_a_mmu(target, &mmu_enabled);
2756                 if (retval != ERROR_OK)
2757                         return retval;
2758         }
2759
2760         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
2761                 LOG_DEBUG("Writing memory to address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address, size,
2762                         count);
2763                 if (mmu_enabled) {
2764                         virt = address;
2765                         retval = cortex_a_virt2phys(target, virt, &phys);
2766                         if (retval != ERROR_OK)
2767                                 return retval;
2768
2769                         LOG_DEBUG("Writing to virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
2770                                   virt,
2771                                   phys);
2772                         address = phys;
2773                 }
2774                 retval = cortex_a_write_phys_memory(target, address, size,
2775                                 count, buffer);
2776         } else {
2777                 if (mmu_enabled) {
2778                         retval = cortex_a_check_address(target, address);
2779                         if (retval != ERROR_OK)
2780                                 return retval;
2781                         /* enable MMU as we could have disabled it for phys access */
2782                         retval = cortex_a_mmu_modify(target, 1);
2783                         if (retval != ERROR_OK)
2784                                 return retval;
2785                 }
2786                 retval = cortex_a_write_apb_ab_memory(target, address, size, count, buffer);
2787         }
2788         return retval;
2789 }
2790
2791 static int cortex_a_handle_target_request(void *priv)
2792 {
2793         struct target *target = priv;
2794         struct armv7a_common *armv7a = target_to_armv7a(target);
2795         struct adiv5_dap *swjdp = armv7a->arm.dap;
2796         int retval;
2797
2798         if (!target_was_examined(target))
2799                 return ERROR_OK;
2800         if (!target->dbg_msg_enabled)
2801                 return ERROR_OK;
2802
2803         if (target->state == TARGET_RUNNING) {
2804                 uint32_t request;
2805                 uint32_t dscr;
2806                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2807                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2808
2809                 /* check if we have data */
2810                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2811                         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2812                                         armv7a->debug_base + CPUDBG_DTRTX, &request);
2813                         if (retval == ERROR_OK) {
2814                                 target_request(target, request);
2815                                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2816                                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2817                         }
2818                 }
2819         }
2820
2821         return ERROR_OK;
2822 }
2823
2824 /*
2825  * Cortex-A target information and configuration
2826  */
2827
2828 static int cortex_a_examine_first(struct target *target)
2829 {
2830         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2831         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2832         struct adiv5_dap *swjdp = armv7a->arm.dap;
2833         int i;
2834         int retval = ERROR_OK;
2835         uint32_t didr, ctypr, ttypr, cpuid, dbg_osreg;
2836
2837         /* We do one extra read to ensure DAP is configured,
2838          * we call ahbap_debugport_init(swjdp) instead
2839          */
2840         retval = ahbap_debugport_init(swjdp);
2841         if (retval != ERROR_OK)
2842                 return retval;
2843
2844         /* Search for the APB-AB - it is needed for access to debug registers */
2845         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2846         if (retval != ERROR_OK) {
2847                 LOG_ERROR("Could not find APB-AP for debug access");
2848                 return retval;
2849         }
2850         /* Search for the AHB-AB */
2851         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7a->memory_ap);
2852         if (retval != ERROR_OK) {
2853                 /* AHB-AP not found - use APB-AP */
2854                 LOG_DEBUG("Could not find AHB-AP - using APB-AP for memory access");
2855                 armv7a->memory_ap_available = false;
2856         } else {
2857                 armv7a->memory_ap_available = true;
2858         }
2859
2860
2861         if (!target->dbgbase_set) {
2862                 uint32_t dbgbase;
2863                 /* Get ROM Table base */
2864                 uint32_t apid;
2865                 int32_t coreidx = target->coreid;
2866                 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2867                           target->cmd_name);
2868                 retval = dap_get_debugbase(swjdp, 1, &dbgbase, &apid);
2869                 if (retval != ERROR_OK)
2870                         return retval;
2871                 /* Lookup 0x15 -- Processor DAP */
2872                 retval = dap_lookup_cs_component(swjdp, 1, dbgbase, 0x15,
2873                                 &armv7a->debug_base, &coreidx);
2874                 if (retval != ERROR_OK)
2875                         return retval;
2876                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2877                           coreidx, armv7a->debug_base);
2878         } else
2879                 armv7a->debug_base = target->dbgbase;
2880
2881         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2882                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2883         if (retval != ERROR_OK)
2884                 return retval;
2885
2886         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2887                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2888         if (retval != ERROR_OK) {
2889                 LOG_DEBUG("Examine %s failed", "CPUID");
2890                 return retval;
2891         }
2892
2893         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2894                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr);
2895         if (retval != ERROR_OK) {
2896                 LOG_DEBUG("Examine %s failed", "CTYPR");
2897                 return retval;
2898         }
2899
2900         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2901                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr);
2902         if (retval != ERROR_OK) {
2903                 LOG_DEBUG("Examine %s failed", "TTYPR");
2904                 return retval;
2905         }
2906
2907         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2908                         armv7a->debug_base + CPUDBG_DIDR, &didr);
2909         if (retval != ERROR_OK) {
2910                 LOG_DEBUG("Examine %s failed", "DIDR");
2911                 return retval;
2912         }
2913
2914         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2915         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
2916         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
2917         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2918
2919         cortex_a->cpuid = cpuid;
2920         cortex_a->ctypr = ctypr;
2921         cortex_a->ttypr = ttypr;
2922         cortex_a->didr = didr;
2923
2924         /* Unlocking the debug registers */
2925         if ((cpuid & CORTEX_A_MIDR_PARTNUM_MASK) >> CORTEX_A_MIDR_PARTNUM_SHIFT ==
2926                 CORTEX_A15_PARTNUM) {
2927
2928                 retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2929                                                      armv7a->debug_base + CPUDBG_OSLAR,
2930                                                      0);
2931
2932                 if (retval != ERROR_OK)
2933                         return retval;
2934
2935         }
2936         /* Unlocking the debug registers */
2937         if ((cpuid & CORTEX_A_MIDR_PARTNUM_MASK) >> CORTEX_A_MIDR_PARTNUM_SHIFT ==
2938                 CORTEX_A7_PARTNUM) {
2939
2940                 retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2941                                                      armv7a->debug_base + CPUDBG_OSLAR,
2942                                                      0);
2943
2944                 if (retval != ERROR_OK)
2945                         return retval;
2946
2947         }
2948         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2949                                             armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
2950
2951         if (retval != ERROR_OK)
2952                 return retval;
2953
2954         LOG_DEBUG("target->coreid %d DBGPRSR  0x%" PRIx32, target->coreid, dbg_osreg);
2955
2956         armv7a->arm.core_type = ARM_MODE_MON;
2957         retval = cortex_a_dpm_setup(cortex_a, didr);
2958         if (retval != ERROR_OK)
2959                 return retval;
2960
2961         /* Setup Breakpoint Register Pairs */
2962         cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
2963         cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
2964         cortex_a->brp_num_available = cortex_a->brp_num;
2965         cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
2966 /*      cortex_a->brb_enabled = ????; */
2967         for (i = 0; i < cortex_a->brp_num; i++) {
2968                 cortex_a->brp_list[i].used = 0;
2969                 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
2970                         cortex_a->brp_list[i].type = BRP_NORMAL;
2971                 else
2972                         cortex_a->brp_list[i].type = BRP_CONTEXT;
2973                 cortex_a->brp_list[i].value = 0;
2974                 cortex_a->brp_list[i].control = 0;
2975                 cortex_a->brp_list[i].BRPn = i;
2976         }
2977
2978         LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
2979
2980         target_set_examined(target);
2981         return ERROR_OK;
2982 }
2983
2984 static int cortex_a_examine(struct target *target)
2985 {
2986         int retval = ERROR_OK;
2987
2988         /* don't re-probe hardware after each reset */
2989         if (!target_was_examined(target))
2990                 retval = cortex_a_examine_first(target);
2991
2992         /* Configure core debug access */
2993         if (retval == ERROR_OK)
2994                 retval = cortex_a_init_debug_access(target);
2995
2996         return retval;
2997 }
2998
2999 /*
3000  *      Cortex-A target creation and initialization
3001  */
3002
3003 static int cortex_a_init_target(struct command_context *cmd_ctx,
3004         struct target *target)
3005 {
3006         /* examine_first() does a bunch of this */
3007         return ERROR_OK;
3008 }
3009
3010 static int cortex_a_init_arch_info(struct target *target,
3011         struct cortex_a_common *cortex_a, struct jtag_tap *tap)
3012 {
3013         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3014         struct adiv5_dap *dap = &armv7a->dap;
3015
3016         armv7a->arm.dap = dap;
3017
3018         /* Setup struct cortex_a_common */
3019         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3020         /*  tap has no dap initialized */
3021         if (!tap->dap) {
3022                 armv7a->arm.dap = dap;
3023                 /* Setup struct cortex_a_common */
3024
3025                 /* prepare JTAG information for the new target */
3026                 cortex_a->jtag_info.tap = tap;
3027                 cortex_a->jtag_info.scann_size = 4;
3028
3029                 /* Leave (only) generic DAP stuff for debugport_init() */
3030                 dap->jtag_info = &cortex_a->jtag_info;
3031
3032                 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
3033                 dap->tar_autoincr_block = (1 << 10);
3034                 dap->memaccess_tck = 80;
3035                 tap->dap = dap;
3036         } else
3037                 armv7a->arm.dap = tap->dap;
3038
3039         cortex_a->fast_reg_read = 0;
3040
3041         /* register arch-specific functions */
3042         armv7a->examine_debug_reason = NULL;
3043
3044         armv7a->post_debug_entry = cortex_a_post_debug_entry;
3045
3046         armv7a->pre_restore_context = NULL;
3047
3048         armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
3049
3050
3051 /*      arm7_9->handle_target_request = cortex_a_handle_target_request; */
3052
3053         /* REVISIT v7a setup should be in a v7a-specific routine */
3054         armv7a_init_arch_info(target, armv7a);
3055         target_register_timer_callback(cortex_a_handle_target_request, 1, 1, target);
3056
3057         return ERROR_OK;
3058 }
3059
3060 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3061 {
3062         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3063
3064         cortex_a->armv7a_common.is_armv7r = false;
3065
3066         return cortex_a_init_arch_info(target, cortex_a, target->tap);
3067 }
3068
3069 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3070 {
3071         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3072
3073         cortex_a->armv7a_common.is_armv7r = true;
3074
3075         return cortex_a_init_arch_info(target, cortex_a, target->tap);
3076 }
3077
3078
3079 static int cortex_a_mmu(struct target *target, int *enabled)
3080 {
3081         if (target->state != TARGET_HALTED) {
3082                 LOG_ERROR("%s: target not halted", __func__);
3083                 return ERROR_TARGET_INVALID;
3084         }
3085
3086         *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3087         return ERROR_OK;
3088 }
3089
3090 static int cortex_a_virt2phys(struct target *target,
3091         uint32_t virt, uint32_t *phys)
3092 {
3093         int retval = ERROR_FAIL;
3094         struct armv7a_common *armv7a = target_to_armv7a(target);
3095         struct adiv5_dap *swjdp = armv7a->arm.dap;
3096         uint8_t apsel = swjdp->apsel;
3097         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
3098                 uint32_t ret;
3099                 retval = armv7a_mmu_translate_va(target,
3100                                 virt, &ret);
3101                 if (retval != ERROR_OK)
3102                         goto done;
3103                 *phys = ret;
3104         } else {/*  use this method if armv7a->memory_ap not selected
3105                  *  mmu must be enable in order to get a correct translation */
3106                 retval = cortex_a_mmu_modify(target, 1);
3107                 if (retval != ERROR_OK)
3108                         goto done;
3109                 retval = armv7a_mmu_translate_va_pa(target, virt,  phys, 1);
3110         }
3111 done:
3112         return retval;
3113 }
3114
3115 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3116 {
3117         struct target *target = get_current_target(CMD_CTX);
3118         struct armv7a_common *armv7a = target_to_armv7a(target);
3119
3120         return armv7a_handle_cache_info_command(CMD_CTX,
3121                         &armv7a->armv7a_mmu.armv7a_cache);
3122 }
3123
3124
3125 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3126 {
3127         struct target *target = get_current_target(CMD_CTX);
3128         if (!target_was_examined(target)) {
3129                 LOG_ERROR("target not examined yet");
3130                 return ERROR_FAIL;
3131         }
3132
3133         return cortex_a_init_debug_access(target);
3134 }
3135 COMMAND_HANDLER(cortex_a_handle_smp_off_command)
3136 {
3137         struct target *target = get_current_target(CMD_CTX);
3138         /* check target is an smp target */
3139         struct target_list *head;
3140         struct target *curr;
3141         head = target->head;
3142         target->smp = 0;
3143         if (head != (struct target_list *)NULL) {
3144                 while (head != (struct target_list *)NULL) {
3145                         curr = head->target;
3146                         curr->smp = 0;
3147                         head = head->next;
3148                 }
3149                 /*  fixes the target display to the debugger */
3150                 target->gdb_service->target = target;
3151         }
3152         return ERROR_OK;
3153 }
3154
3155 COMMAND_HANDLER(cortex_a_handle_smp_on_command)
3156 {
3157         struct target *target = get_current_target(CMD_CTX);
3158         struct target_list *head;
3159         struct target *curr;
3160         head = target->head;
3161         if (head != (struct target_list *)NULL) {
3162                 target->smp = 1;
3163                 while (head != (struct target_list *)NULL) {
3164                         curr = head->target;
3165                         curr->smp = 1;
3166                         head = head->next;
3167                 }
3168         }
3169         return ERROR_OK;
3170 }
3171
3172 COMMAND_HANDLER(cortex_a_handle_smp_gdb_command)
3173 {
3174         struct target *target = get_current_target(CMD_CTX);
3175         int retval = ERROR_OK;
3176         struct target_list *head;
3177         head = target->head;
3178         if (head != (struct target_list *)NULL) {
3179                 if (CMD_ARGC == 1) {
3180                         int coreid = 0;
3181                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
3182                         if (ERROR_OK != retval)
3183                                 return retval;
3184                         target->gdb_service->core[1] = coreid;
3185
3186                 }
3187                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
3188                         , target->gdb_service->core[1]);
3189         }
3190         return ERROR_OK;
3191 }
3192
3193 static const struct command_registration cortex_a_exec_command_handlers[] = {
3194         {
3195                 .name = "cache_info",
3196                 .handler = cortex_a_handle_cache_info_command,
3197                 .mode = COMMAND_EXEC,
3198                 .help = "display information about target caches",
3199                 .usage = "",
3200         },
3201         {
3202                 .name = "dbginit",
3203                 .handler = cortex_a_handle_dbginit_command,
3204                 .mode = COMMAND_EXEC,
3205                 .help = "Initialize core debug",
3206                 .usage = "",
3207         },
3208         {   .name = "smp_off",
3209             .handler = cortex_a_handle_smp_off_command,
3210             .mode = COMMAND_EXEC,
3211             .help = "Stop smp handling",
3212             .usage = "",},
3213         {
3214                 .name = "smp_on",
3215                 .handler = cortex_a_handle_smp_on_command,
3216                 .mode = COMMAND_EXEC,
3217                 .help = "Restart smp handling",
3218                 .usage = "",
3219         },
3220         {
3221                 .name = "smp_gdb",
3222                 .handler = cortex_a_handle_smp_gdb_command,
3223                 .mode = COMMAND_EXEC,
3224                 .help = "display/fix current core played to gdb",
3225                 .usage = "",
3226         },
3227
3228
3229         COMMAND_REGISTRATION_DONE
3230 };
3231 static const struct command_registration cortex_a_command_handlers[] = {
3232         {
3233                 .chain = arm_command_handlers,
3234         },
3235         {
3236                 .chain = armv7a_command_handlers,
3237         },
3238         {
3239                 .name = "cortex_a",
3240                 .mode = COMMAND_ANY,
3241                 .help = "Cortex-A command group",
3242                 .usage = "",
3243                 .chain = cortex_a_exec_command_handlers,
3244         },
3245         COMMAND_REGISTRATION_DONE
3246 };
3247
3248 struct target_type cortexa_target = {
3249         .name = "cortex_a",
3250         .deprecated_name = "cortex_a8",
3251
3252         .poll = cortex_a_poll,
3253         .arch_state = armv7a_arch_state,
3254
3255         .halt = cortex_a_halt,
3256         .resume = cortex_a_resume,
3257         .step = cortex_a_step,
3258
3259         .assert_reset = cortex_a_assert_reset,
3260         .deassert_reset = cortex_a_deassert_reset,
3261
3262         /* REVISIT allow exporting VFP3 registers ... */
3263         .get_gdb_reg_list = arm_get_gdb_reg_list,
3264
3265         .read_memory = cortex_a_read_memory,
3266         .write_memory = cortex_a_write_memory,
3267
3268         .checksum_memory = arm_checksum_memory,
3269         .blank_check_memory = arm_blank_check_memory,
3270
3271         .run_algorithm = armv4_5_run_algorithm,
3272
3273         .add_breakpoint = cortex_a_add_breakpoint,
3274         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3275         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3276         .remove_breakpoint = cortex_a_remove_breakpoint,
3277         .add_watchpoint = NULL,
3278         .remove_watchpoint = NULL,
3279
3280         .commands = cortex_a_command_handlers,
3281         .target_create = cortex_a_target_create,
3282         .init_target = cortex_a_init_target,
3283         .examine = cortex_a_examine,
3284
3285         .read_phys_memory = cortex_a_read_phys_memory,
3286         .write_phys_memory = cortex_a_write_phys_memory,
3287         .mmu = cortex_a_mmu,
3288         .virt2phys = cortex_a_virt2phys,
3289 };
3290
3291 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3292         {
3293                 .name = "cache_info",
3294                 .handler = cortex_a_handle_cache_info_command,
3295                 .mode = COMMAND_EXEC,
3296                 .help = "display information about target caches",
3297                 .usage = "",
3298         },
3299         {
3300                 .name = "dbginit",
3301                 .handler = cortex_a_handle_dbginit_command,
3302                 .mode = COMMAND_EXEC,
3303                 .help = "Initialize core debug",
3304                 .usage = "",
3305         },
3306
3307         COMMAND_REGISTRATION_DONE
3308 };
3309 static const struct command_registration cortex_r4_command_handlers[] = {
3310         {
3311                 .chain = arm_command_handlers,
3312         },
3313         {
3314                 .chain = armv7a_command_handlers,
3315         },
3316         {
3317                 .name = "cortex_r4",
3318                 .mode = COMMAND_ANY,
3319                 .help = "Cortex-R4 command group",
3320                 .usage = "",
3321                 .chain = cortex_r4_exec_command_handlers,
3322         },
3323         COMMAND_REGISTRATION_DONE
3324 };
3325
3326 struct target_type cortexr4_target = {
3327         .name = "cortex_r4",
3328
3329         .poll = cortex_a_poll,
3330         .arch_state = armv7a_arch_state,
3331
3332         .halt = cortex_a_halt,
3333         .resume = cortex_a_resume,
3334         .step = cortex_a_step,
3335
3336         .assert_reset = cortex_a_assert_reset,
3337         .deassert_reset = cortex_a_deassert_reset,
3338
3339         /* REVISIT allow exporting VFP3 registers ... */
3340         .get_gdb_reg_list = arm_get_gdb_reg_list,
3341
3342         .read_memory = cortex_a_read_memory,
3343         .write_memory = cortex_a_write_memory,
3344
3345         .checksum_memory = arm_checksum_memory,
3346         .blank_check_memory = arm_blank_check_memory,
3347
3348         .run_algorithm = armv4_5_run_algorithm,
3349
3350         .add_breakpoint = cortex_a_add_breakpoint,
3351         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3352         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3353         .remove_breakpoint = cortex_a_remove_breakpoint,
3354         .add_watchpoint = NULL,
3355         .remove_watchpoint = NULL,
3356
3357         .commands = cortex_r4_command_handlers,
3358         .target_create = cortex_r4_target_create,
3359         .init_target = cortex_a_init_target,
3360         .examine = cortex_a_examine,
3361 };