]> git.sur5r.net Git - openocd/blob - src/target/cortex_a.c
d0eac751f6df3acbb0428126d3e3e7509586917e
[openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   Copyright (C) ST-Ericsson SA 2011                                     *
18  *   michel.jaouen@stericsson.com : smp minimum support                    *
19  *                                                                         *
20  *   Copyright (C) Broadcom 2012                                           *
21  *   ehunter@broadcom.com : Cortex-R4 support                              *
22  *                                                                         *
23  *   Copyright (C) 2013 Kamal Dasu                                         *
24  *   kdasu.kdev@gmail.com                                                  *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  *                                                                         *
39  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
40  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
41  *   Cortex-A4(tm) TRM, ARM DDI 0363E                                      *
42  *   Cortex-A15(tm)TRM, ARM DDI 0438C                                      *
43  *                                                                         *
44  ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "target_request.h"
54 #include "target_type.h"
55 #include "arm_opcodes.h"
56 #include "arm_semihosting.h"
57 #include "jtag/swd.h"
58 #include <helper/time_support.h>
59
60 static int cortex_a_poll(struct target *target);
61 static int cortex_a_debug_entry(struct target *target);
62 static int cortex_a_restore_context(struct target *target, bool bpwp);
63 static int cortex_a_set_breakpoint(struct target *target,
64         struct breakpoint *breakpoint, uint8_t matchmode);
65 static int cortex_a_set_context_breakpoint(struct target *target,
66         struct breakpoint *breakpoint, uint8_t matchmode);
67 static int cortex_a_set_hybrid_breakpoint(struct target *target,
68         struct breakpoint *breakpoint);
69 static int cortex_a_unset_breakpoint(struct target *target,
70         struct breakpoint *breakpoint);
71 static int cortex_a_dap_read_coreregister_u32(struct target *target,
72         uint32_t *value, int regnum);
73 static int cortex_a_dap_write_coreregister_u32(struct target *target,
74         uint32_t value, int regnum);
75 static int cortex_a_mmu(struct target *target, int *enabled);
76 static int cortex_a_mmu_modify(struct target *target, int enable);
77 static int cortex_a_virt2phys(struct target *target,
78         uint32_t virt, uint32_t *phys);
79 static int cortex_a_read_cpu_memory(struct target *target,
80         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
81
82
83 /*  restore cp15_control_reg at resume */
84 static int cortex_a_restore_cp15_control_reg(struct target *target)
85 {
86         int retval = ERROR_OK;
87         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
88         struct armv7a_common *armv7a = target_to_armv7a(target);
89
90         if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
91                 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
92                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
93                 retval = armv7a->arm.mcr(target, 15,
94                                 0, 0,   /* op1, op2 */
95                                 1, 0,   /* CRn, CRm */
96                                 cortex_a->cp15_control_reg);
97         }
98         return retval;
99 }
100
101 /*
102  * Set up ARM core for memory access.
103  * If !phys_access, switch to SVC mode and make sure MMU is on
104  * If phys_access, switch off mmu
105  */
106 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
107 {
108         struct armv7a_common *armv7a = target_to_armv7a(target);
109         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
110         int mmu_enabled = 0;
111
112         if (phys_access == 0) {
113                 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
114                 cortex_a_mmu(target, &mmu_enabled);
115                 if (mmu_enabled)
116                         cortex_a_mmu_modify(target, 1);
117                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
118                         /* overwrite DACR to all-manager */
119                         armv7a->arm.mcr(target, 15,
120                                         0, 0, 3, 0,
121                                         0xFFFFFFFF);
122                 }
123         } else {
124                 cortex_a_mmu(target, &mmu_enabled);
125                 if (mmu_enabled)
126                         cortex_a_mmu_modify(target, 0);
127         }
128         return ERROR_OK;
129 }
130
131 /*
132  * Restore ARM core after memory access.
133  * If !phys_access, switch to previous mode
134  * If phys_access, restore MMU setting
135  */
136 static int cortex_a_post_memaccess(struct target *target, int phys_access)
137 {
138         struct armv7a_common *armv7a = target_to_armv7a(target);
139         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
140
141         if (phys_access == 0) {
142                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
143                         /* restore */
144                         armv7a->arm.mcr(target, 15,
145                                         0, 0, 3, 0,
146                                         cortex_a->cp15_dacr_reg);
147                 }
148                 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
149         } else {
150                 int mmu_enabled = 0;
151                 cortex_a_mmu(target, &mmu_enabled);
152                 if (mmu_enabled)
153                         cortex_a_mmu_modify(target, 1);
154         }
155         return ERROR_OK;
156 }
157
158
159 /*  modify cp15_control_reg in order to enable or disable mmu for :
160  *  - virt2phys address conversion
161  *  - read or write memory in phys or virt address */
162 static int cortex_a_mmu_modify(struct target *target, int enable)
163 {
164         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
165         struct armv7a_common *armv7a = target_to_armv7a(target);
166         int retval = ERROR_OK;
167         int need_write = 0;
168
169         if (enable) {
170                 /*  if mmu enabled at target stop and mmu not enable */
171                 if (!(cortex_a->cp15_control_reg & 0x1U)) {
172                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
173                         return ERROR_FAIL;
174                 }
175                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
176                         cortex_a->cp15_control_reg_curr |= 0x1U;
177                         need_write = 1;
178                 }
179         } else {
180                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
181                         cortex_a->cp15_control_reg_curr &= ~0x1U;
182                         need_write = 1;
183                 }
184         }
185
186         if (need_write) {
187                 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
188                         enable ? "enable mmu" : "disable mmu",
189                         cortex_a->cp15_control_reg_curr);
190
191                 retval = armv7a->arm.mcr(target, 15,
192                                 0, 0,   /* op1, op2 */
193                                 1, 0,   /* CRn, CRm */
194                                 cortex_a->cp15_control_reg_curr);
195         }
196         return retval;
197 }
198
199 /*
200  * Cortex-A Basic debug access, very low level assumes state is saved
201  */
202 static int cortex_a_init_debug_access(struct target *target)
203 {
204         struct armv7a_common *armv7a = target_to_armv7a(target);
205         int retval;
206
207         /* lock memory-mapped access to debug registers to prevent
208          * software interference */
209         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
210                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
211         if (retval != ERROR_OK)
212                 return retval;
213
214         /* Disable cacheline fills and force cache write-through in debug state */
215         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
216                         armv7a->debug_base + CPUDBG_DSCCR, 0);
217         if (retval != ERROR_OK)
218                 return retval;
219
220         /* Disable TLB lookup and refill/eviction in debug state */
221         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
222                         armv7a->debug_base + CPUDBG_DSMCR, 0);
223         if (retval != ERROR_OK)
224                 return retval;
225
226         /* Enabling of instruction execution in debug mode is done in debug_entry code */
227
228         /* Resync breakpoint registers */
229
230         /* Since this is likely called from init or reset, update target state information*/
231         return cortex_a_poll(target);
232 }
233
234 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
235 {
236         /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
237          * Writes final value of DSCR into *dscr. Pass force to force always
238          * reading DSCR at least once. */
239         struct armv7a_common *armv7a = target_to_armv7a(target);
240         int64_t then = timeval_ms();
241         while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
242                 force = false;
243                 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
244                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
245                 if (retval != ERROR_OK) {
246                         LOG_ERROR("Could not read DSCR register");
247                         return retval;
248                 }
249                 if (timeval_ms() > then + 1000) {
250                         LOG_ERROR("Timeout waiting for InstrCompl=1");
251                         return ERROR_FAIL;
252                 }
253         }
254         return ERROR_OK;
255 }
256
257 /* To reduce needless round-trips, pass in a pointer to the current
258  * DSCR value.  Initialize it to zero if you just need to know the
259  * value on return from this function; or DSCR_INSTR_COMP if you
260  * happen to know that no instruction is pending.
261  */
262 static int cortex_a_exec_opcode(struct target *target,
263         uint32_t opcode, uint32_t *dscr_p)
264 {
265         uint32_t dscr;
266         int retval;
267         struct armv7a_common *armv7a = target_to_armv7a(target);
268
269         dscr = dscr_p ? *dscr_p : 0;
270
271         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
272
273         /* Wait for InstrCompl bit to be set */
274         retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
275         if (retval != ERROR_OK)
276                 return retval;
277
278         retval = mem_ap_write_u32(armv7a->debug_ap,
279                         armv7a->debug_base + CPUDBG_ITR, opcode);
280         if (retval != ERROR_OK)
281                 return retval;
282
283         int64_t then = timeval_ms();
284         do {
285                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
286                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
287                 if (retval != ERROR_OK) {
288                         LOG_ERROR("Could not read DSCR register");
289                         return retval;
290                 }
291                 if (timeval_ms() > then + 1000) {
292                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
293                         return ERROR_FAIL;
294                 }
295         } while ((dscr & DSCR_INSTR_COMP) == 0);        /* Wait for InstrCompl bit to be set */
296
297         if (dscr_p)
298                 *dscr_p = dscr;
299
300         return retval;
301 }
302
303 /**************************************************************************
304 Read core register with very few exec_opcode, fast but needs work_area.
305 This can cause problems with MMU active.
306 **************************************************************************/
307 static int cortex_a_read_regs_through_mem(struct target *target, uint32_t address,
308         uint32_t *regfile)
309 {
310         int retval = ERROR_OK;
311         struct armv7a_common *armv7a = target_to_armv7a(target);
312
313         retval = cortex_a_dap_read_coreregister_u32(target, regfile, 0);
314         if (retval != ERROR_OK)
315                 return retval;
316         retval = cortex_a_dap_write_coreregister_u32(target, address, 0);
317         if (retval != ERROR_OK)
318                 return retval;
319         retval = cortex_a_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
320         if (retval != ERROR_OK)
321                 return retval;
322
323         retval = mem_ap_read_buf(armv7a->memory_ap,
324                         (uint8_t *)(&regfile[1]), 4, 15, address);
325
326         return retval;
327 }
328
329 static int cortex_a_dap_read_coreregister_u32(struct target *target,
330         uint32_t *value, int regnum)
331 {
332         int retval = ERROR_OK;
333         uint8_t reg = regnum&0xFF;
334         uint32_t dscr = 0;
335         struct armv7a_common *armv7a = target_to_armv7a(target);
336
337         if (reg > 17)
338                 return retval;
339
340         if (reg < 15) {
341                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
342                 retval = cortex_a_exec_opcode(target,
343                                 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
344                                 &dscr);
345                 if (retval != ERROR_OK)
346                         return retval;
347         } else if (reg == 15) {
348                 /* "MOV r0, r15"; then move r0 to DCCTX */
349                 retval = cortex_a_exec_opcode(target, 0xE1A0000F, &dscr);
350                 if (retval != ERROR_OK)
351                         return retval;
352                 retval = cortex_a_exec_opcode(target,
353                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
354                                 &dscr);
355                 if (retval != ERROR_OK)
356                         return retval;
357         } else {
358                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
359                  * then move r0 to DCCTX
360                  */
361                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
362                 if (retval != ERROR_OK)
363                         return retval;
364                 retval = cortex_a_exec_opcode(target,
365                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
366                                 &dscr);
367                 if (retval != ERROR_OK)
368                         return retval;
369         }
370
371         /* Wait for DTRRXfull then read DTRRTX */
372         int64_t then = timeval_ms();
373         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
374                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
375                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
376                 if (retval != ERROR_OK)
377                         return retval;
378                 if (timeval_ms() > then + 1000) {
379                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
380                         return ERROR_FAIL;
381                 }
382         }
383
384         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
385                         armv7a->debug_base + CPUDBG_DTRTX, value);
386         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
387
388         return retval;
389 }
390
391 static int cortex_a_dap_write_coreregister_u32(struct target *target,
392         uint32_t value, int regnum)
393 {
394         int retval = ERROR_OK;
395         uint8_t Rd = regnum&0xFF;
396         uint32_t dscr;
397         struct armv7a_common *armv7a = target_to_armv7a(target);
398
399         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
400
401         /* Check that DCCRX is not full */
402         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
403                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
404         if (retval != ERROR_OK)
405                 return retval;
406         if (dscr & DSCR_DTR_RX_FULL) {
407                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
408                 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode  0xEE100E15 */
409                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
410                                 &dscr);
411                 if (retval != ERROR_OK)
412                         return retval;
413         }
414
415         if (Rd > 17)
416                 return retval;
417
418         /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
419         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
420         retval = mem_ap_write_u32(armv7a->debug_ap,
421                         armv7a->debug_base + CPUDBG_DTRRX, value);
422         if (retval != ERROR_OK)
423                 return retval;
424
425         if (Rd < 15) {
426                 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
427                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
428                                 &dscr);
429
430                 if (retval != ERROR_OK)
431                         return retval;
432         } else if (Rd == 15) {
433                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
434                  * then "mov r15, r0"
435                  */
436                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
437                                 &dscr);
438                 if (retval != ERROR_OK)
439                         return retval;
440                 retval = cortex_a_exec_opcode(target, 0xE1A0F000, &dscr);
441                 if (retval != ERROR_OK)
442                         return retval;
443         } else {
444                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
445                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
446                  */
447                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
448                                 &dscr);
449                 if (retval != ERROR_OK)
450                         return retval;
451                 retval = cortex_a_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
452                                 &dscr);
453                 if (retval != ERROR_OK)
454                         return retval;
455
456                 /* "Prefetch flush" after modifying execution status in CPSR */
457                 if (Rd == 16) {
458                         retval = cortex_a_exec_opcode(target,
459                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
460                                         &dscr);
461                         if (retval != ERROR_OK)
462                                 return retval;
463                 }
464         }
465
466         return retval;
467 }
468
469 /* Write to memory mapped registers directly with no cache or mmu handling */
470 static int cortex_a_dap_write_memap_register_u32(struct target *target,
471         uint32_t address,
472         uint32_t value)
473 {
474         int retval;
475         struct armv7a_common *armv7a = target_to_armv7a(target);
476
477         retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
478
479         return retval;
480 }
481
482 /*
483  * Cortex-A implementation of Debug Programmer's Model
484  *
485  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
486  * so there's no need to poll for it before executing an instruction.
487  *
488  * NOTE that in several of these cases the "stall" mode might be useful.
489  * It'd let us queue a few operations together... prepare/finish might
490  * be the places to enable/disable that mode.
491  */
492
493 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
494 {
495         return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
496 }
497
498 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
499 {
500         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
501         return mem_ap_write_u32(a->armv7a_common.debug_ap,
502                         a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
503 }
504
505 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
506         uint32_t *dscr_p)
507 {
508         uint32_t dscr = DSCR_INSTR_COMP;
509         int retval;
510
511         if (dscr_p)
512                 dscr = *dscr_p;
513
514         /* Wait for DTRRXfull */
515         int64_t then = timeval_ms();
516         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
517                 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
518                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
519                                 &dscr);
520                 if (retval != ERROR_OK)
521                         return retval;
522                 if (timeval_ms() > then + 1000) {
523                         LOG_ERROR("Timeout waiting for read dcc");
524                         return ERROR_FAIL;
525                 }
526         }
527
528         retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
529                         a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
530         if (retval != ERROR_OK)
531                 return retval;
532         /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
533
534         if (dscr_p)
535                 *dscr_p = dscr;
536
537         return retval;
538 }
539
540 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
541 {
542         struct cortex_a_common *a = dpm_to_a(dpm);
543         uint32_t dscr;
544         int retval;
545
546         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
547         int64_t then = timeval_ms();
548         for (;; ) {
549                 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
550                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
551                                 &dscr);
552                 if (retval != ERROR_OK)
553                         return retval;
554                 if ((dscr & DSCR_INSTR_COMP) != 0)
555                         break;
556                 if (timeval_ms() > then + 1000) {
557                         LOG_ERROR("Timeout waiting for dpm prepare");
558                         return ERROR_FAIL;
559                 }
560         }
561
562         /* this "should never happen" ... */
563         if (dscr & DSCR_DTR_RX_FULL) {
564                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
565                 /* Clear DCCRX */
566                 retval = cortex_a_exec_opcode(
567                                 a->armv7a_common.arm.target,
568                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
569                                 &dscr);
570                 if (retval != ERROR_OK)
571                         return retval;
572         }
573
574         return retval;
575 }
576
577 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
578 {
579         /* REVISIT what could be done here? */
580         return ERROR_OK;
581 }
582
583 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
584         uint32_t opcode, uint32_t data)
585 {
586         struct cortex_a_common *a = dpm_to_a(dpm);
587         int retval;
588         uint32_t dscr = DSCR_INSTR_COMP;
589
590         retval = cortex_a_write_dcc(a, data);
591         if (retval != ERROR_OK)
592                 return retval;
593
594         return cortex_a_exec_opcode(
595                         a->armv7a_common.arm.target,
596                         opcode,
597                         &dscr);
598 }
599
600 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
601         uint32_t opcode, uint32_t data)
602 {
603         struct cortex_a_common *a = dpm_to_a(dpm);
604         uint32_t dscr = DSCR_INSTR_COMP;
605         int retval;
606
607         retval = cortex_a_write_dcc(a, data);
608         if (retval != ERROR_OK)
609                 return retval;
610
611         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
612         retval = cortex_a_exec_opcode(
613                         a->armv7a_common.arm.target,
614                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
615                         &dscr);
616         if (retval != ERROR_OK)
617                 return retval;
618
619         /* then the opcode, taking data from R0 */
620         retval = cortex_a_exec_opcode(
621                         a->armv7a_common.arm.target,
622                         opcode,
623                         &dscr);
624
625         return retval;
626 }
627
628 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
629 {
630         struct target *target = dpm->arm->target;
631         uint32_t dscr = DSCR_INSTR_COMP;
632
633         /* "Prefetch flush" after modifying execution status in CPSR */
634         return cortex_a_exec_opcode(target,
635                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
636                         &dscr);
637 }
638
639 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
640         uint32_t opcode, uint32_t *data)
641 {
642         struct cortex_a_common *a = dpm_to_a(dpm);
643         int retval;
644         uint32_t dscr = DSCR_INSTR_COMP;
645
646         /* the opcode, writing data to DCC */
647         retval = cortex_a_exec_opcode(
648                         a->armv7a_common.arm.target,
649                         opcode,
650                         &dscr);
651         if (retval != ERROR_OK)
652                 return retval;
653
654         return cortex_a_read_dcc(a, data, &dscr);
655 }
656
657
658 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
659         uint32_t opcode, uint32_t *data)
660 {
661         struct cortex_a_common *a = dpm_to_a(dpm);
662         uint32_t dscr = DSCR_INSTR_COMP;
663         int retval;
664
665         /* the opcode, writing data to R0 */
666         retval = cortex_a_exec_opcode(
667                         a->armv7a_common.arm.target,
668                         opcode,
669                         &dscr);
670         if (retval != ERROR_OK)
671                 return retval;
672
673         /* write R0 to DCC */
674         retval = cortex_a_exec_opcode(
675                         a->armv7a_common.arm.target,
676                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
677                         &dscr);
678         if (retval != ERROR_OK)
679                 return retval;
680
681         return cortex_a_read_dcc(a, data, &dscr);
682 }
683
684 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
685         uint32_t addr, uint32_t control)
686 {
687         struct cortex_a_common *a = dpm_to_a(dpm);
688         uint32_t vr = a->armv7a_common.debug_base;
689         uint32_t cr = a->armv7a_common.debug_base;
690         int retval;
691
692         switch (index_t) {
693                 case 0 ... 15:  /* breakpoints */
694                         vr += CPUDBG_BVR_BASE;
695                         cr += CPUDBG_BCR_BASE;
696                         break;
697                 case 16 ... 31: /* watchpoints */
698                         vr += CPUDBG_WVR_BASE;
699                         cr += CPUDBG_WCR_BASE;
700                         index_t -= 16;
701                         break;
702                 default:
703                         return ERROR_FAIL;
704         }
705         vr += 4 * index_t;
706         cr += 4 * index_t;
707
708         LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
709                 (unsigned) vr, (unsigned) cr);
710
711         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
712                         vr, addr);
713         if (retval != ERROR_OK)
714                 return retval;
715         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
716                         cr, control);
717         return retval;
718 }
719
720 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
721 {
722         struct cortex_a_common *a = dpm_to_a(dpm);
723         uint32_t cr;
724
725         switch (index_t) {
726                 case 0 ... 15:
727                         cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
728                         break;
729                 case 16 ... 31:
730                         cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
731                         index_t -= 16;
732                         break;
733                 default:
734                         return ERROR_FAIL;
735         }
736         cr += 4 * index_t;
737
738         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
739
740         /* clear control register */
741         return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
742 }
743
744 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
745 {
746         struct arm_dpm *dpm = &a->armv7a_common.dpm;
747         int retval;
748
749         dpm->arm = &a->armv7a_common.arm;
750         dpm->didr = didr;
751
752         dpm->prepare = cortex_a_dpm_prepare;
753         dpm->finish = cortex_a_dpm_finish;
754
755         dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
756         dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
757         dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
758
759         dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
760         dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
761
762         dpm->bpwp_enable = cortex_a_bpwp_enable;
763         dpm->bpwp_disable = cortex_a_bpwp_disable;
764
765         retval = arm_dpm_setup(dpm);
766         if (retval == ERROR_OK)
767                 retval = arm_dpm_initialize(dpm);
768
769         return retval;
770 }
771 static struct target *get_cortex_a(struct target *target, int32_t coreid)
772 {
773         struct target_list *head;
774         struct target *curr;
775
776         head = target->head;
777         while (head != (struct target_list *)NULL) {
778                 curr = head->target;
779                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
780                         return curr;
781                 head = head->next;
782         }
783         return target;
784 }
785 static int cortex_a_halt(struct target *target);
786
787 static int cortex_a_halt_smp(struct target *target)
788 {
789         int retval = 0;
790         struct target_list *head;
791         struct target *curr;
792         head = target->head;
793         while (head != (struct target_list *)NULL) {
794                 curr = head->target;
795                 if ((curr != target) && (curr->state != TARGET_HALTED)
796                         && target_was_examined(curr))
797                         retval += cortex_a_halt(curr);
798                 head = head->next;
799         }
800         return retval;
801 }
802
803 static int update_halt_gdb(struct target *target)
804 {
805         int retval = 0;
806         if (target->gdb_service && target->gdb_service->core[0] == -1) {
807                 target->gdb_service->target = target;
808                 target->gdb_service->core[0] = target->coreid;
809                 retval += cortex_a_halt_smp(target);
810         }
811         return retval;
812 }
813
814 /*
815  * Cortex-A Run control
816  */
817
818 static int cortex_a_poll(struct target *target)
819 {
820         int retval = ERROR_OK;
821         uint32_t dscr;
822         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
823         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
824         enum target_state prev_target_state = target->state;
825         /*  toggle to another core is done by gdb as follow */
826         /*  maint packet J core_id */
827         /*  continue */
828         /*  the next polling trigger an halt event sent to gdb */
829         if ((target->state == TARGET_HALTED) && (target->smp) &&
830                 (target->gdb_service) &&
831                 (target->gdb_service->target == NULL)) {
832                 target->gdb_service->target =
833                         get_cortex_a(target, target->gdb_service->core[1]);
834                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
835                 return retval;
836         }
837         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
838                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
839         if (retval != ERROR_OK)
840                 return retval;
841         cortex_a->cpudbg_dscr = dscr;
842
843         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
844                 if (prev_target_state != TARGET_HALTED) {
845                         /* We have a halting debug event */
846                         LOG_DEBUG("Target halted");
847                         target->state = TARGET_HALTED;
848                         if ((prev_target_state == TARGET_RUNNING)
849                                 || (prev_target_state == TARGET_UNKNOWN)
850                                 || (prev_target_state == TARGET_RESET)) {
851                                 retval = cortex_a_debug_entry(target);
852                                 if (retval != ERROR_OK)
853                                         return retval;
854                                 if (target->smp) {
855                                         retval = update_halt_gdb(target);
856                                         if (retval != ERROR_OK)
857                                                 return retval;
858                                 }
859
860                                 if (arm_semihosting(target, &retval) != 0)
861                                         return retval;
862
863                                 target_call_event_callbacks(target,
864                                         TARGET_EVENT_HALTED);
865                         }
866                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
867                                 LOG_DEBUG(" ");
868
869                                 retval = cortex_a_debug_entry(target);
870                                 if (retval != ERROR_OK)
871                                         return retval;
872                                 if (target->smp) {
873                                         retval = update_halt_gdb(target);
874                                         if (retval != ERROR_OK)
875                                                 return retval;
876                                 }
877
878                                 target_call_event_callbacks(target,
879                                         TARGET_EVENT_DEBUG_HALTED);
880                         }
881                 }
882         } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
883                 target->state = TARGET_RUNNING;
884         else {
885                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
886                 target->state = TARGET_UNKNOWN;
887         }
888
889         return retval;
890 }
891
892 static int cortex_a_halt(struct target *target)
893 {
894         int retval = ERROR_OK;
895         uint32_t dscr;
896         struct armv7a_common *armv7a = target_to_armv7a(target);
897
898         /*
899          * Tell the core to be halted by writing DRCR with 0x1
900          * and then wait for the core to be halted.
901          */
902         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
903                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
904         if (retval != ERROR_OK)
905                 return retval;
906
907         /*
908          * enter halting debug mode
909          */
910         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
911                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
912         if (retval != ERROR_OK)
913                 return retval;
914
915         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
916                         armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
917         if (retval != ERROR_OK)
918                 return retval;
919
920         int64_t then = timeval_ms();
921         for (;; ) {
922                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
923                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
924                 if (retval != ERROR_OK)
925                         return retval;
926                 if ((dscr & DSCR_CORE_HALTED) != 0)
927                         break;
928                 if (timeval_ms() > then + 1000) {
929                         LOG_ERROR("Timeout waiting for halt");
930                         return ERROR_FAIL;
931                 }
932         }
933
934         target->debug_reason = DBG_REASON_DBGRQ;
935
936         return ERROR_OK;
937 }
938
939 static int cortex_a_internal_restore(struct target *target, int current,
940         uint32_t *address, int handle_breakpoints, int debug_execution)
941 {
942         struct armv7a_common *armv7a = target_to_armv7a(target);
943         struct arm *arm = &armv7a->arm;
944         int retval;
945         uint32_t resume_pc;
946
947         if (!debug_execution)
948                 target_free_all_working_areas(target);
949
950 #if 0
951         if (debug_execution) {
952                 /* Disable interrupts */
953                 /* We disable interrupts in the PRIMASK register instead of
954                  * masking with C_MASKINTS,
955                  * This is probably the same issue as Cortex-M3 Errata 377493:
956                  * C_MASKINTS in parallel with disabled interrupts can cause
957                  * local faults to not be taken. */
958                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
959                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
960                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
961
962                 /* Make sure we are in Thumb mode */
963                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
964                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
965                         32) | (1 << 24));
966                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
967                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
968         }
969 #endif
970
971         /* current = 1: continue on current pc, otherwise continue at <address> */
972         resume_pc = buf_get_u32(arm->pc->value, 0, 32);
973         if (!current)
974                 resume_pc = *address;
975         else
976                 *address = resume_pc;
977
978         /* Make sure that the Armv7 gdb thumb fixups does not
979          * kill the return address
980          */
981         switch (arm->core_state) {
982                 case ARM_STATE_ARM:
983                         resume_pc &= 0xFFFFFFFC;
984                         break;
985                 case ARM_STATE_THUMB:
986                 case ARM_STATE_THUMB_EE:
987                         /* When the return address is loaded into PC
988                          * bit 0 must be 1 to stay in Thumb state
989                          */
990                         resume_pc |= 0x1;
991                         break;
992                 case ARM_STATE_JAZELLE:
993                         LOG_ERROR("How do I resume into Jazelle state??");
994                         return ERROR_FAIL;
995         }
996         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
997         buf_set_u32(arm->pc->value, 0, 32, resume_pc);
998         arm->pc->dirty = 1;
999         arm->pc->valid = 1;
1000
1001         /* restore dpm_mode at system halt */
1002         dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1003         /* called it now before restoring context because it uses cpu
1004          * register r0 for restoring cp15 control register */
1005         retval = cortex_a_restore_cp15_control_reg(target);
1006         if (retval != ERROR_OK)
1007                 return retval;
1008         retval = cortex_a_restore_context(target, handle_breakpoints);
1009         if (retval != ERROR_OK)
1010                 return retval;
1011         target->debug_reason = DBG_REASON_NOTHALTED;
1012         target->state = TARGET_RUNNING;
1013
1014         /* registers are now invalid */
1015         register_cache_invalidate(arm->core_cache);
1016
1017 #if 0
1018         /* the front-end may request us not to handle breakpoints */
1019         if (handle_breakpoints) {
1020                 /* Single step past breakpoint at current address */
1021                 breakpoint = breakpoint_find(target, resume_pc);
1022                 if (breakpoint) {
1023                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1024                         cortex_m3_unset_breakpoint(target, breakpoint);
1025                         cortex_m3_single_step_core(target);
1026                         cortex_m3_set_breakpoint(target, breakpoint);
1027                 }
1028         }
1029
1030 #endif
1031         return retval;
1032 }
1033
1034 static int cortex_a_internal_restart(struct target *target)
1035 {
1036         struct armv7a_common *armv7a = target_to_armv7a(target);
1037         struct arm *arm = &armv7a->arm;
1038         int retval;
1039         uint32_t dscr;
1040         /*
1041          * * Restart core and wait for it to be started.  Clear ITRen and sticky
1042          * * exception flags: see ARMv7 ARM, C5.9.
1043          *
1044          * REVISIT: for single stepping, we probably want to
1045          * disable IRQs by default, with optional override...
1046          */
1047
1048         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1049                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1050         if (retval != ERROR_OK)
1051                 return retval;
1052
1053         if ((dscr & DSCR_INSTR_COMP) == 0)
1054                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1055
1056         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1057                         armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1058         if (retval != ERROR_OK)
1059                 return retval;
1060
1061         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1062                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1063                         DRCR_CLEAR_EXCEPTIONS);
1064         if (retval != ERROR_OK)
1065                 return retval;
1066
1067         int64_t then = timeval_ms();
1068         for (;; ) {
1069                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1070                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1071                 if (retval != ERROR_OK)
1072                         return retval;
1073                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1074                         break;
1075                 if (timeval_ms() > then + 1000) {
1076                         LOG_ERROR("Timeout waiting for resume");
1077                         return ERROR_FAIL;
1078                 }
1079         }
1080
1081         target->debug_reason = DBG_REASON_NOTHALTED;
1082         target->state = TARGET_RUNNING;
1083
1084         /* registers are now invalid */
1085         register_cache_invalidate(arm->core_cache);
1086
1087         return ERROR_OK;
1088 }
1089
1090 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
1091 {
1092         int retval = 0;
1093         struct target_list *head;
1094         struct target *curr;
1095         uint32_t address;
1096         head = target->head;
1097         while (head != (struct target_list *)NULL) {
1098                 curr = head->target;
1099                 if ((curr != target) && (curr->state != TARGET_RUNNING)
1100                         && target_was_examined(curr)) {
1101                         /*  resume current address , not in step mode */
1102                         retval += cortex_a_internal_restore(curr, 1, &address,
1103                                         handle_breakpoints, 0);
1104                         retval += cortex_a_internal_restart(curr);
1105                 }
1106                 head = head->next;
1107
1108         }
1109         return retval;
1110 }
1111
1112 static int cortex_a_resume(struct target *target, int current,
1113         uint32_t address, int handle_breakpoints, int debug_execution)
1114 {
1115         int retval = 0;
1116         /* dummy resume for smp toggle in order to reduce gdb impact  */
1117         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1118                 /*   simulate a start and halt of target */
1119                 target->gdb_service->target = NULL;
1120                 target->gdb_service->core[0] = target->gdb_service->core[1];
1121                 /*  fake resume at next poll we play the  target core[1], see poll*/
1122                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1123                 return 0;
1124         }
1125         cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1126         if (target->smp) {
1127                 target->gdb_service->core[0] = -1;
1128                 retval = cortex_a_restore_smp(target, handle_breakpoints);
1129                 if (retval != ERROR_OK)
1130                         return retval;
1131         }
1132         cortex_a_internal_restart(target);
1133
1134         if (!debug_execution) {
1135                 target->state = TARGET_RUNNING;
1136                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1137                 LOG_DEBUG("target resumed at 0x%" PRIx32, address);
1138         } else {
1139                 target->state = TARGET_DEBUG_RUNNING;
1140                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1141                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, address);
1142         }
1143
1144         return ERROR_OK;
1145 }
1146
1147 static int cortex_a_debug_entry(struct target *target)
1148 {
1149         int i;
1150         uint32_t regfile[16], cpsr, spsr, dscr;
1151         int retval = ERROR_OK;
1152         struct working_area *regfile_working_area = NULL;
1153         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1154         struct armv7a_common *armv7a = target_to_armv7a(target);
1155         struct arm *arm = &armv7a->arm;
1156         struct reg *reg;
1157
1158         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1159
1160         /* REVISIT surely we should not re-read DSCR !! */
1161         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1162                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1163         if (retval != ERROR_OK)
1164                 return retval;
1165
1166         /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1167          * imprecise data aborts get discarded by issuing a Data
1168          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1169          */
1170
1171         /* Enable the ITR execution once we are in debug mode */
1172         dscr |= DSCR_ITR_EN;
1173         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1174                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1175         if (retval != ERROR_OK)
1176                 return retval;
1177
1178         /* Examine debug reason */
1179         arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1180
1181         /* save address of instruction that triggered the watchpoint? */
1182         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1183                 uint32_t wfar;
1184
1185                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1186                                 armv7a->debug_base + CPUDBG_WFAR,
1187                                 &wfar);
1188                 if (retval != ERROR_OK)
1189                         return retval;
1190                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1191         }
1192
1193         /* REVISIT fast_reg_read is never set ... */
1194
1195         /* Examine target state and mode */
1196         if (cortex_a->fast_reg_read)
1197                 target_alloc_working_area(target, 64, &regfile_working_area);
1198
1199
1200         /* First load register acessible through core debug port*/
1201         if (!regfile_working_area)
1202                 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1203         else {
1204                 retval = cortex_a_read_regs_through_mem(target,
1205                                 regfile_working_area->address, regfile);
1206
1207                 target_free_working_area(target, regfile_working_area);
1208                 if (retval != ERROR_OK)
1209                         return retval;
1210
1211                 /* read Current PSR */
1212                 retval = cortex_a_dap_read_coreregister_u32(target, &cpsr, 16);
1213                 /*  store current cpsr */
1214                 if (retval != ERROR_OK)
1215                         return retval;
1216
1217                 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1218
1219                 arm_set_cpsr(arm, cpsr);
1220
1221                 /* update cache */
1222                 for (i = 0; i <= ARM_PC; i++) {
1223                         reg = arm_reg_current(arm, i);
1224
1225                         buf_set_u32(reg->value, 0, 32, regfile[i]);
1226                         reg->valid = 1;
1227                         reg->dirty = 0;
1228                 }
1229
1230                 /* Fixup PC Resume Address */
1231                 if (cpsr & (1 << 5)) {
1232                         /* T bit set for Thumb or ThumbEE state */
1233                         regfile[ARM_PC] -= 4;
1234                 } else {
1235                         /* ARM state */
1236                         regfile[ARM_PC] -= 8;
1237                 }
1238
1239                 reg = arm->pc;
1240                 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1241                 reg->dirty = reg->valid;
1242         }
1243
1244         /* read Saved PSR */
1245         retval = cortex_a_dap_read_coreregister_u32(target, &spsr, 17);
1246         /*  store current spsr */
1247         if (retval != ERROR_OK)
1248                 return retval;
1249
1250         reg = arm->spsr;
1251         buf_set_u32(reg->value, 0, 32, spsr);
1252         reg->valid = 1;
1253         reg->dirty = 0;
1254
1255 #if 0
1256 /* TODO, Move this */
1257         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1258         cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1259         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1260
1261         cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1262         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1263
1264         cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1265         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1266 #endif
1267
1268         /* Are we in an exception handler */
1269 /*      armv4_5->exception_number = 0; */
1270         if (armv7a->post_debug_entry) {
1271                 retval = armv7a->post_debug_entry(target);
1272                 if (retval != ERROR_OK)
1273                         return retval;
1274         }
1275
1276         return retval;
1277 }
1278
1279 static int cortex_a_post_debug_entry(struct target *target)
1280 {
1281         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1282         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1283         int retval;
1284
1285         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1286         retval = armv7a->arm.mrc(target, 15,
1287                         0, 0,   /* op1, op2 */
1288                         1, 0,   /* CRn, CRm */
1289                         &cortex_a->cp15_control_reg);
1290         if (retval != ERROR_OK)
1291                 return retval;
1292         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1293         cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1294
1295         if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1296                 armv7a_identify_cache(target);
1297
1298         if (armv7a->is_armv7r) {
1299                 armv7a->armv7a_mmu.mmu_enabled = 0;
1300         } else {
1301                 armv7a->armv7a_mmu.mmu_enabled =
1302                         (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1303         }
1304         armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1305                 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1306         armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1307                 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1308         cortex_a->curr_mode = armv7a->arm.core_mode;
1309
1310         /* switch to SVC mode to read DACR */
1311         dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1312         armv7a->arm.mrc(target, 15,
1313                         0, 0, 3, 0,
1314                         &cortex_a->cp15_dacr_reg);
1315
1316         LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1317                         cortex_a->cp15_dacr_reg);
1318
1319         dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1320         return ERROR_OK;
1321 }
1322
1323 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1324 {
1325         struct armv7a_common *armv7a = target_to_armv7a(target);
1326         uint32_t dscr;
1327
1328         /* Read DSCR */
1329         int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1330                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1331         if (ERROR_OK != retval)
1332                 return retval;
1333
1334         /* clear bitfield */
1335         dscr &= ~bit_mask;
1336         /* put new value */
1337         dscr |= value & bit_mask;
1338
1339         /* write new DSCR */
1340         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1341                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1342         return retval;
1343 }
1344
1345 static int cortex_a_step(struct target *target, int current, uint32_t address,
1346         int handle_breakpoints)
1347 {
1348         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1349         struct armv7a_common *armv7a = target_to_armv7a(target);
1350         struct arm *arm = &armv7a->arm;
1351         struct breakpoint *breakpoint = NULL;
1352         struct breakpoint stepbreakpoint;
1353         struct reg *r;
1354         int retval;
1355
1356         if (target->state != TARGET_HALTED) {
1357                 LOG_WARNING("target not halted");
1358                 return ERROR_TARGET_NOT_HALTED;
1359         }
1360
1361         /* current = 1: continue on current pc, otherwise continue at <address> */
1362         r = arm->pc;
1363         if (!current)
1364                 buf_set_u32(r->value, 0, 32, address);
1365         else
1366                 address = buf_get_u32(r->value, 0, 32);
1367
1368         /* The front-end may request us not to handle breakpoints.
1369          * But since Cortex-A uses breakpoint for single step,
1370          * we MUST handle breakpoints.
1371          */
1372         handle_breakpoints = 1;
1373         if (handle_breakpoints) {
1374                 breakpoint = breakpoint_find(target, address);
1375                 if (breakpoint)
1376                         cortex_a_unset_breakpoint(target, breakpoint);
1377         }
1378
1379         /* Setup single step breakpoint */
1380         stepbreakpoint.address = address;
1381         stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1382                 ? 2 : 4;
1383         stepbreakpoint.type = BKPT_HARD;
1384         stepbreakpoint.set = 0;
1385
1386         /* Disable interrupts during single step if requested */
1387         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1388                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1389                 if (ERROR_OK != retval)
1390                         return retval;
1391         }
1392
1393         /* Break on IVA mismatch */
1394         cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1395
1396         target->debug_reason = DBG_REASON_SINGLESTEP;
1397
1398         retval = cortex_a_resume(target, 1, address, 0, 0);
1399         if (retval != ERROR_OK)
1400                 return retval;
1401
1402         int64_t then = timeval_ms();
1403         while (target->state != TARGET_HALTED) {
1404                 retval = cortex_a_poll(target);
1405                 if (retval != ERROR_OK)
1406                         return retval;
1407                 if (timeval_ms() > then + 1000) {
1408                         LOG_ERROR("timeout waiting for target halt");
1409                         return ERROR_FAIL;
1410                 }
1411         }
1412
1413         cortex_a_unset_breakpoint(target, &stepbreakpoint);
1414
1415         /* Re-enable interrupts if they were disabled */
1416         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1417                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1418                 if (ERROR_OK != retval)
1419                         return retval;
1420         }
1421
1422
1423         target->debug_reason = DBG_REASON_BREAKPOINT;
1424
1425         if (breakpoint)
1426                 cortex_a_set_breakpoint(target, breakpoint, 0);
1427
1428         if (target->state != TARGET_HALTED)
1429                 LOG_DEBUG("target stepped");
1430
1431         return ERROR_OK;
1432 }
1433
1434 static int cortex_a_restore_context(struct target *target, bool bpwp)
1435 {
1436         struct armv7a_common *armv7a = target_to_armv7a(target);
1437
1438         LOG_DEBUG(" ");
1439
1440         if (armv7a->pre_restore_context)
1441                 armv7a->pre_restore_context(target);
1442
1443         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1444 }
1445
1446 /*
1447  * Cortex-A Breakpoint and watchpoint functions
1448  */
1449
1450 /* Setup hardware Breakpoint Register Pair */
1451 static int cortex_a_set_breakpoint(struct target *target,
1452         struct breakpoint *breakpoint, uint8_t matchmode)
1453 {
1454         int retval;
1455         int brp_i = 0;
1456         uint32_t control;
1457         uint8_t byte_addr_select = 0x0F;
1458         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1459         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1460         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1461
1462         if (breakpoint->set) {
1463                 LOG_WARNING("breakpoint already set");
1464                 return ERROR_OK;
1465         }
1466
1467         if (breakpoint->type == BKPT_HARD) {
1468                 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1469                         brp_i++;
1470                 if (brp_i >= cortex_a->brp_num) {
1471                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1472                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1473                 }
1474                 breakpoint->set = brp_i + 1;
1475                 if (breakpoint->length == 2)
1476                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1477                 control = ((matchmode & 0x7) << 20)
1478                         | (byte_addr_select << 5)
1479                         | (3 << 1) | 1;
1480                 brp_list[brp_i].used = 1;
1481                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1482                 brp_list[brp_i].control = control;
1483                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1484                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1485                                 brp_list[brp_i].value);
1486                 if (retval != ERROR_OK)
1487                         return retval;
1488                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1489                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1490                                 brp_list[brp_i].control);
1491                 if (retval != ERROR_OK)
1492                         return retval;
1493                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1494                         brp_list[brp_i].control,
1495                         brp_list[brp_i].value);
1496         } else if (breakpoint->type == BKPT_SOFT) {
1497                 uint8_t code[4];
1498                 if (breakpoint->length == 2)
1499                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1500                 else
1501                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1502                 retval = target_read_memory(target,
1503                                 breakpoint->address & 0xFFFFFFFE,
1504                                 breakpoint->length, 1,
1505                                 breakpoint->orig_instr);
1506                 if (retval != ERROR_OK)
1507                         return retval;
1508
1509                 /* make sure data cache is cleaned & invalidated down to PoC */
1510                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1511                         armv7a_cache_flush_virt(target, breakpoint->address,
1512                                                 breakpoint->length);
1513                 }
1514
1515                 retval = target_write_memory(target,
1516                                 breakpoint->address & 0xFFFFFFFE,
1517                                 breakpoint->length, 1, code);
1518                 if (retval != ERROR_OK)
1519                         return retval;
1520
1521                 /* update i-cache at breakpoint location */
1522                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1523                                         breakpoint->length);
1524                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1525                                                  breakpoint->length);
1526
1527                 breakpoint->set = 0x11; /* Any nice value but 0 */
1528         }
1529
1530         return ERROR_OK;
1531 }
1532
1533 static int cortex_a_set_context_breakpoint(struct target *target,
1534         struct breakpoint *breakpoint, uint8_t matchmode)
1535 {
1536         int retval = ERROR_FAIL;
1537         int brp_i = 0;
1538         uint32_t control;
1539         uint8_t byte_addr_select = 0x0F;
1540         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1541         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1542         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1543
1544         if (breakpoint->set) {
1545                 LOG_WARNING("breakpoint already set");
1546                 return retval;
1547         }
1548         /*check available context BRPs*/
1549         while ((brp_list[brp_i].used ||
1550                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1551                 brp_i++;
1552
1553         if (brp_i >= cortex_a->brp_num) {
1554                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1555                 return ERROR_FAIL;
1556         }
1557
1558         breakpoint->set = brp_i + 1;
1559         control = ((matchmode & 0x7) << 20)
1560                 | (byte_addr_select << 5)
1561                 | (3 << 1) | 1;
1562         brp_list[brp_i].used = 1;
1563         brp_list[brp_i].value = (breakpoint->asid);
1564         brp_list[brp_i].control = control;
1565         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1566                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1567                         brp_list[brp_i].value);
1568         if (retval != ERROR_OK)
1569                 return retval;
1570         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1571                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1572                         brp_list[brp_i].control);
1573         if (retval != ERROR_OK)
1574                 return retval;
1575         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1576                 brp_list[brp_i].control,
1577                 brp_list[brp_i].value);
1578         return ERROR_OK;
1579
1580 }
1581
1582 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1583 {
1584         int retval = ERROR_FAIL;
1585         int brp_1 = 0;  /* holds the contextID pair */
1586         int brp_2 = 0;  /* holds the IVA pair */
1587         uint32_t control_CTX, control_IVA;
1588         uint8_t CTX_byte_addr_select = 0x0F;
1589         uint8_t IVA_byte_addr_select = 0x0F;
1590         uint8_t CTX_machmode = 0x03;
1591         uint8_t IVA_machmode = 0x01;
1592         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1593         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1594         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1595
1596         if (breakpoint->set) {
1597                 LOG_WARNING("breakpoint already set");
1598                 return retval;
1599         }
1600         /*check available context BRPs*/
1601         while ((brp_list[brp_1].used ||
1602                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1603                 brp_1++;
1604
1605         printf("brp(CTX) found num: %d\n", brp_1);
1606         if (brp_1 >= cortex_a->brp_num) {
1607                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1608                 return ERROR_FAIL;
1609         }
1610
1611         while ((brp_list[brp_2].used ||
1612                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1613                 brp_2++;
1614
1615         printf("brp(IVA) found num: %d\n", brp_2);
1616         if (brp_2 >= cortex_a->brp_num) {
1617                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1618                 return ERROR_FAIL;
1619         }
1620
1621         breakpoint->set = brp_1 + 1;
1622         breakpoint->linked_BRP = brp_2;
1623         control_CTX = ((CTX_machmode & 0x7) << 20)
1624                 | (brp_2 << 16)
1625                 | (0 << 14)
1626                 | (CTX_byte_addr_select << 5)
1627                 | (3 << 1) | 1;
1628         brp_list[brp_1].used = 1;
1629         brp_list[brp_1].value = (breakpoint->asid);
1630         brp_list[brp_1].control = control_CTX;
1631         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1632                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1633                         brp_list[brp_1].value);
1634         if (retval != ERROR_OK)
1635                 return retval;
1636         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1637                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1638                         brp_list[brp_1].control);
1639         if (retval != ERROR_OK)
1640                 return retval;
1641
1642         control_IVA = ((IVA_machmode & 0x7) << 20)
1643                 | (brp_1 << 16)
1644                 | (IVA_byte_addr_select << 5)
1645                 | (3 << 1) | 1;
1646         brp_list[brp_2].used = 1;
1647         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1648         brp_list[brp_2].control = control_IVA;
1649         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1650                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1651                         brp_list[brp_2].value);
1652         if (retval != ERROR_OK)
1653                 return retval;
1654         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1655                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1656                         brp_list[brp_2].control);
1657         if (retval != ERROR_OK)
1658                 return retval;
1659
1660         return ERROR_OK;
1661 }
1662
1663 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1664 {
1665         int retval;
1666         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1667         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1668         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1669
1670         if (!breakpoint->set) {
1671                 LOG_WARNING("breakpoint not set");
1672                 return ERROR_OK;
1673         }
1674
1675         if (breakpoint->type == BKPT_HARD) {
1676                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1677                         int brp_i = breakpoint->set - 1;
1678                         int brp_j = breakpoint->linked_BRP;
1679                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1680                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1681                                 return ERROR_OK;
1682                         }
1683                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1684                                 brp_list[brp_i].control, brp_list[brp_i].value);
1685                         brp_list[brp_i].used = 0;
1686                         brp_list[brp_i].value = 0;
1687                         brp_list[brp_i].control = 0;
1688                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1689                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1690                                         brp_list[brp_i].control);
1691                         if (retval != ERROR_OK)
1692                                 return retval;
1693                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1694                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1695                                         brp_list[brp_i].value);
1696                         if (retval != ERROR_OK)
1697                                 return retval;
1698                         if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1699                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1700                                 return ERROR_OK;
1701                         }
1702                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1703                                 brp_list[brp_j].control, brp_list[brp_j].value);
1704                         brp_list[brp_j].used = 0;
1705                         brp_list[brp_j].value = 0;
1706                         brp_list[brp_j].control = 0;
1707                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1708                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1709                                         brp_list[brp_j].control);
1710                         if (retval != ERROR_OK)
1711                                 return retval;
1712                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1713                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1714                                         brp_list[brp_j].value);
1715                         if (retval != ERROR_OK)
1716                                 return retval;
1717                         breakpoint->linked_BRP = 0;
1718                         breakpoint->set = 0;
1719                         return ERROR_OK;
1720
1721                 } else {
1722                         int brp_i = breakpoint->set - 1;
1723                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1724                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1725                                 return ERROR_OK;
1726                         }
1727                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1728                                 brp_list[brp_i].control, brp_list[brp_i].value);
1729                         brp_list[brp_i].used = 0;
1730                         brp_list[brp_i].value = 0;
1731                         brp_list[brp_i].control = 0;
1732                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1733                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1734                                         brp_list[brp_i].control);
1735                         if (retval != ERROR_OK)
1736                                 return retval;
1737                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1738                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1739                                         brp_list[brp_i].value);
1740                         if (retval != ERROR_OK)
1741                                 return retval;
1742                         breakpoint->set = 0;
1743                         return ERROR_OK;
1744                 }
1745         } else {
1746
1747                 /* make sure data cache is cleaned & invalidated down to PoC */
1748                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1749                         armv7a_cache_flush_virt(target, breakpoint->address,
1750                                                 breakpoint->length);
1751                 }
1752
1753                 /* restore original instruction (kept in target endianness) */
1754                 if (breakpoint->length == 4) {
1755                         retval = target_write_memory(target,
1756                                         breakpoint->address & 0xFFFFFFFE,
1757                                         4, 1, breakpoint->orig_instr);
1758                         if (retval != ERROR_OK)
1759                                 return retval;
1760                 } else {
1761                         retval = target_write_memory(target,
1762                                         breakpoint->address & 0xFFFFFFFE,
1763                                         2, 1, breakpoint->orig_instr);
1764                         if (retval != ERROR_OK)
1765                                 return retval;
1766                 }
1767
1768                 /* update i-cache at breakpoint location */
1769                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1770                                                  breakpoint->length);
1771                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1772                                                  breakpoint->length);
1773         }
1774         breakpoint->set = 0;
1775
1776         return ERROR_OK;
1777 }
1778
1779 static int cortex_a_add_breakpoint(struct target *target,
1780         struct breakpoint *breakpoint)
1781 {
1782         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1783
1784         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1785                 LOG_INFO("no hardware breakpoint available");
1786                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1787         }
1788
1789         if (breakpoint->type == BKPT_HARD)
1790                 cortex_a->brp_num_available--;
1791
1792         return cortex_a_set_breakpoint(target, breakpoint, 0x00);       /* Exact match */
1793 }
1794
1795 static int cortex_a_add_context_breakpoint(struct target *target,
1796         struct breakpoint *breakpoint)
1797 {
1798         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1799
1800         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1801                 LOG_INFO("no hardware breakpoint available");
1802                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1803         }
1804
1805         if (breakpoint->type == BKPT_HARD)
1806                 cortex_a->brp_num_available--;
1807
1808         return cortex_a_set_context_breakpoint(target, breakpoint, 0x02);       /* asid match */
1809 }
1810
1811 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1812         struct breakpoint *breakpoint)
1813 {
1814         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1815
1816         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1817                 LOG_INFO("no hardware breakpoint available");
1818                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1819         }
1820
1821         if (breakpoint->type == BKPT_HARD)
1822                 cortex_a->brp_num_available--;
1823
1824         return cortex_a_set_hybrid_breakpoint(target, breakpoint);      /* ??? */
1825 }
1826
1827
1828 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1829 {
1830         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1831
1832 #if 0
1833 /* It is perfectly possible to remove breakpoints while the target is running */
1834         if (target->state != TARGET_HALTED) {
1835                 LOG_WARNING("target not halted");
1836                 return ERROR_TARGET_NOT_HALTED;
1837         }
1838 #endif
1839
1840         if (breakpoint->set) {
1841                 cortex_a_unset_breakpoint(target, breakpoint);
1842                 if (breakpoint->type == BKPT_HARD)
1843                         cortex_a->brp_num_available++;
1844         }
1845
1846
1847         return ERROR_OK;
1848 }
1849
1850 /*
1851  * Cortex-A Reset functions
1852  */
1853
1854 static int cortex_a_assert_reset(struct target *target)
1855 {
1856         struct armv7a_common *armv7a = target_to_armv7a(target);
1857
1858         LOG_DEBUG(" ");
1859
1860         /* FIXME when halt is requested, make it work somehow... */
1861
1862         /* This function can be called in "target not examined" state */
1863
1864         /* Issue some kind of warm reset. */
1865         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1866                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1867         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1868                 /* REVISIT handle "pulls" cases, if there's
1869                  * hardware that needs them to work.
1870                  */
1871
1872                 /*
1873                  * FIXME: fix reset when transport is SWD. This is a temporary
1874                  * work-around for release v0.10 that is not intended to stay!
1875                  */
1876                 if (transport_is_swd() ||
1877                                 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1878                         jtag_add_reset(0, 1);
1879
1880         } else {
1881                 LOG_ERROR("%s: how to reset?", target_name(target));
1882                 return ERROR_FAIL;
1883         }
1884
1885         /* registers are now invalid */
1886         if (target_was_examined(target))
1887                 register_cache_invalidate(armv7a->arm.core_cache);
1888
1889         target->state = TARGET_RESET;
1890
1891         return ERROR_OK;
1892 }
1893
1894 static int cortex_a_deassert_reset(struct target *target)
1895 {
1896         int retval;
1897
1898         LOG_DEBUG(" ");
1899
1900         /* be certain SRST is off */
1901         jtag_add_reset(0, 0);
1902
1903         if (target_was_examined(target)) {
1904                 retval = cortex_a_poll(target);
1905                 if (retval != ERROR_OK)
1906                         return retval;
1907         }
1908
1909         if (target->reset_halt) {
1910                 if (target->state != TARGET_HALTED) {
1911                         LOG_WARNING("%s: ran after reset and before halt ...",
1912                                 target_name(target));
1913                         if (target_was_examined(target)) {
1914                                 retval = target_halt(target);
1915                                 if (retval != ERROR_OK)
1916                                         return retval;
1917                         } else
1918                                 target->state = TARGET_UNKNOWN;
1919                 }
1920         }
1921
1922         return ERROR_OK;
1923 }
1924
1925 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1926 {
1927         /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1928          * New desired mode must be in mode. Current value of DSCR must be in
1929          * *dscr, which is updated with new value.
1930          *
1931          * This function elides actually sending the mode-change over the debug
1932          * interface if the mode is already set as desired.
1933          */
1934         uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1935         if (new_dscr != *dscr) {
1936                 struct armv7a_common *armv7a = target_to_armv7a(target);
1937                 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1938                                 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1939                 if (retval == ERROR_OK)
1940                         *dscr = new_dscr;
1941                 return retval;
1942         } else {
1943                 return ERROR_OK;
1944         }
1945 }
1946
1947 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1948         uint32_t value, uint32_t *dscr)
1949 {
1950         /* Waits until the specified bit(s) of DSCR take on a specified value. */
1951         struct armv7a_common *armv7a = target_to_armv7a(target);
1952         int64_t then = timeval_ms();
1953         int retval;
1954
1955         while ((*dscr & mask) != value) {
1956                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1957                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1958                 if (retval != ERROR_OK)
1959                         return retval;
1960                 if (timeval_ms() > then + 1000) {
1961                         LOG_ERROR("timeout waiting for DSCR bit change");
1962                         return ERROR_FAIL;
1963                 }
1964         }
1965         return ERROR_OK;
1966 }
1967
1968 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1969         uint32_t *data, uint32_t *dscr)
1970 {
1971         int retval;
1972         struct armv7a_common *armv7a = target_to_armv7a(target);
1973
1974         /* Move from coprocessor to R0. */
1975         retval = cortex_a_exec_opcode(target, opcode, dscr);
1976         if (retval != ERROR_OK)
1977                 return retval;
1978
1979         /* Move from R0 to DTRTX. */
1980         retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1981         if (retval != ERROR_OK)
1982                 return retval;
1983
1984         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1985          * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1986          * must also check TXfull_l). Most of the time this will be free
1987          * because TXfull_l will be set immediately and cached in dscr. */
1988         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1989                         DSCR_DTRTX_FULL_LATCHED, dscr);
1990         if (retval != ERROR_OK)
1991                 return retval;
1992
1993         /* Read the value transferred to DTRTX. */
1994         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1995                         armv7a->debug_base + CPUDBG_DTRTX, data);
1996         if (retval != ERROR_OK)
1997                 return retval;
1998
1999         return ERROR_OK;
2000 }
2001
2002 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
2003         uint32_t *dfsr, uint32_t *dscr)
2004 {
2005         int retval;
2006
2007         if (dfar) {
2008                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2009                 if (retval != ERROR_OK)
2010                         return retval;
2011         }
2012
2013         if (dfsr) {
2014                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2015                 if (retval != ERROR_OK)
2016                         return retval;
2017         }
2018
2019         return ERROR_OK;
2020 }
2021
2022 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2023         uint32_t data, uint32_t *dscr)
2024 {
2025         int retval;
2026         struct armv7a_common *armv7a = target_to_armv7a(target);
2027
2028         /* Write the value into DTRRX. */
2029         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2030                         armv7a->debug_base + CPUDBG_DTRRX, data);
2031         if (retval != ERROR_OK)
2032                 return retval;
2033
2034         /* Move from DTRRX to R0. */
2035         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2036         if (retval != ERROR_OK)
2037                 return retval;
2038
2039         /* Move from R0 to coprocessor. */
2040         retval = cortex_a_exec_opcode(target, opcode, dscr);
2041         if (retval != ERROR_OK)
2042                 return retval;
2043
2044         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2045          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2046          * check RXfull_l). Most of the time this will be free because RXfull_l
2047          * will be cleared immediately and cached in dscr. */
2048         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2049         if (retval != ERROR_OK)
2050                 return retval;
2051
2052         return ERROR_OK;
2053 }
2054
2055 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2056         uint32_t dfsr, uint32_t *dscr)
2057 {
2058         int retval;
2059
2060         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2061         if (retval != ERROR_OK)
2062                 return retval;
2063
2064         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2065         if (retval != ERROR_OK)
2066                 return retval;
2067
2068         return ERROR_OK;
2069 }
2070
2071 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2072 {
2073         uint32_t status, upper4;
2074
2075         if (dfsr & (1 << 9)) {
2076                 /* LPAE format. */
2077                 status = dfsr & 0x3f;
2078                 upper4 = status >> 2;
2079                 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2080                         return ERROR_TARGET_TRANSLATION_FAULT;
2081                 else if (status == 33)
2082                         return ERROR_TARGET_UNALIGNED_ACCESS;
2083                 else
2084                         return ERROR_TARGET_DATA_ABORT;
2085         } else {
2086                 /* Normal format. */
2087                 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2088                 if (status == 1)
2089                         return ERROR_TARGET_UNALIGNED_ACCESS;
2090                 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2091                                 status == 9 || status == 11 || status == 13 || status == 15)
2092                         return ERROR_TARGET_TRANSLATION_FAULT;
2093                 else
2094                         return ERROR_TARGET_DATA_ABORT;
2095         }
2096 }
2097
2098 static int cortex_a_write_cpu_memory_slow(struct target *target,
2099         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2100 {
2101         /* Writes count objects of size size from *buffer. Old value of DSCR must
2102          * be in *dscr; updated to new value. This is slow because it works for
2103          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2104          * the address is aligned, cortex_a_write_cpu_memory_fast should be
2105          * preferred.
2106          * Preconditions:
2107          * - Address is in R0.
2108          * - R0 is marked dirty.
2109          */
2110         struct armv7a_common *armv7a = target_to_armv7a(target);
2111         struct arm *arm = &armv7a->arm;
2112         int retval;
2113
2114         /* Mark register R1 as dirty, to use for transferring data. */
2115         arm_reg_current(arm, 1)->dirty = true;
2116
2117         /* Switch to non-blocking mode if not already in that mode. */
2118         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2119         if (retval != ERROR_OK)
2120                 return retval;
2121
2122         /* Go through the objects. */
2123         while (count) {
2124                 /* Write the value to store into DTRRX. */
2125                 uint32_t data, opcode;
2126                 if (size == 1)
2127                         data = *buffer;
2128                 else if (size == 2)
2129                         data = target_buffer_get_u16(target, buffer);
2130                 else
2131                         data = target_buffer_get_u32(target, buffer);
2132                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2133                                 armv7a->debug_base + CPUDBG_DTRRX, data);
2134                 if (retval != ERROR_OK)
2135                         return retval;
2136
2137                 /* Transfer the value from DTRRX to R1. */
2138                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2139                 if (retval != ERROR_OK)
2140                         return retval;
2141
2142                 /* Write the value transferred to R1 into memory. */
2143                 if (size == 1)
2144                         opcode = ARMV4_5_STRB_IP(1, 0);
2145                 else if (size == 2)
2146                         opcode = ARMV4_5_STRH_IP(1, 0);
2147                 else
2148                         opcode = ARMV4_5_STRW_IP(1, 0);
2149                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2150                 if (retval != ERROR_OK)
2151                         return retval;
2152
2153                 /* Check for faults and return early. */
2154                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2155                         return ERROR_OK; /* A data fault is not considered a system failure. */
2156
2157                 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2158                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2159                  * must also check RXfull_l). Most of the time this will be free
2160                  * because RXfull_l will be cleared immediately and cached in dscr. */
2161                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2162                 if (retval != ERROR_OK)
2163                         return retval;
2164
2165                 /* Advance. */
2166                 buffer += size;
2167                 --count;
2168         }
2169
2170         return ERROR_OK;
2171 }
2172
2173 static int cortex_a_write_cpu_memory_fast(struct target *target,
2174         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2175 {
2176         /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2177          * in *dscr; updated to new value. This is fast but only works for
2178          * word-sized objects at aligned addresses.
2179          * Preconditions:
2180          * - Address is in R0 and must be a multiple of 4.
2181          * - R0 is marked dirty.
2182          */
2183         struct armv7a_common *armv7a = target_to_armv7a(target);
2184         int retval;
2185
2186         /* Switch to fast mode if not already in that mode. */
2187         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2188         if (retval != ERROR_OK)
2189                 return retval;
2190
2191         /* Latch STC instruction. */
2192         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2193                         armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2194         if (retval != ERROR_OK)
2195                 return retval;
2196
2197         /* Transfer all the data and issue all the instructions. */
2198         return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2199                         4, count, armv7a->debug_base + CPUDBG_DTRRX);
2200 }
2201
2202 static int cortex_a_write_cpu_memory(struct target *target,
2203         uint32_t address, uint32_t size,
2204         uint32_t count, const uint8_t *buffer)
2205 {
2206         /* Write memory through the CPU. */
2207         int retval, final_retval;
2208         struct armv7a_common *armv7a = target_to_armv7a(target);
2209         struct arm *arm = &armv7a->arm;
2210         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2211
2212         LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2213                           address, size, count);
2214         if (target->state != TARGET_HALTED) {
2215                 LOG_WARNING("target not halted");
2216                 return ERROR_TARGET_NOT_HALTED;
2217         }
2218
2219         if (!count)
2220                 return ERROR_OK;
2221
2222         /* Clear any abort. */
2223         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2224                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2225         if (retval != ERROR_OK)
2226                 return retval;
2227
2228         /* Read DSCR. */
2229         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2230                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2231         if (retval != ERROR_OK)
2232                 return retval;
2233
2234         /* Switch to non-blocking mode if not already in that mode. */
2235         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2236         if (retval != ERROR_OK)
2237                 goto out;
2238
2239         /* Mark R0 as dirty. */
2240         arm_reg_current(arm, 0)->dirty = true;
2241
2242         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2243         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2244         if (retval != ERROR_OK)
2245                 goto out;
2246
2247         /* Get the memory address into R0. */
2248         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2249                         armv7a->debug_base + CPUDBG_DTRRX, address);
2250         if (retval != ERROR_OK)
2251                 goto out;
2252         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2253         if (retval != ERROR_OK)
2254                 goto out;
2255
2256         if (size == 4 && (address % 4) == 0) {
2257                 /* We are doing a word-aligned transfer, so use fast mode. */
2258                 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2259         } else {
2260                 /* Use slow path. */
2261                 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2262         }
2263
2264 out:
2265         final_retval = retval;
2266
2267         /* Switch to non-blocking mode if not already in that mode. */
2268         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2269         if (final_retval == ERROR_OK)
2270                 final_retval = retval;
2271
2272         /* Wait for last issued instruction to complete. */
2273         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2274         if (final_retval == ERROR_OK)
2275                 final_retval = retval;
2276
2277         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2278          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2279          * check RXfull_l). Most of the time this will be free because RXfull_l
2280          * will be cleared immediately and cached in dscr. However, don't do this
2281          * if there is fault, because then the instruction might not have completed
2282          * successfully. */
2283         if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2284                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2285                 if (retval != ERROR_OK)
2286                         return retval;
2287         }
2288
2289         /* If there were any sticky abort flags, clear them. */
2290         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2291                 fault_dscr = dscr;
2292                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2293                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2294                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2295         } else {
2296                 fault_dscr = 0;
2297         }
2298
2299         /* Handle synchronous data faults. */
2300         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2301                 if (final_retval == ERROR_OK) {
2302                         /* Final return value will reflect cause of fault. */
2303                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2304                         if (retval == ERROR_OK) {
2305                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2306                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2307                         } else
2308                                 final_retval = retval;
2309                 }
2310                 /* Fault destroyed DFAR/DFSR; restore them. */
2311                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2312                 if (retval != ERROR_OK)
2313                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2314         }
2315
2316         /* Handle asynchronous data faults. */
2317         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2318                 if (final_retval == ERROR_OK)
2319                         /* No other error has been recorded so far, so keep this one. */
2320                         final_retval = ERROR_TARGET_DATA_ABORT;
2321         }
2322
2323         /* If the DCC is nonempty, clear it. */
2324         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2325                 uint32_t dummy;
2326                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2327                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2328                 if (final_retval == ERROR_OK)
2329                         final_retval = retval;
2330         }
2331         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2332                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2333                 if (final_retval == ERROR_OK)
2334                         final_retval = retval;
2335         }
2336
2337         /* Done. */
2338         return final_retval;
2339 }
2340
2341 static int cortex_a_read_cpu_memory_slow(struct target *target,
2342         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2343 {
2344         /* Reads count objects of size size into *buffer. Old value of DSCR must be
2345          * in *dscr; updated to new value. This is slow because it works for
2346          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2347          * the address is aligned, cortex_a_read_cpu_memory_fast should be
2348          * preferred.
2349          * Preconditions:
2350          * - Address is in R0.
2351          * - R0 is marked dirty.
2352          */
2353         struct armv7a_common *armv7a = target_to_armv7a(target);
2354         struct arm *arm = &armv7a->arm;
2355         int retval;
2356
2357         /* Mark register R1 as dirty, to use for transferring data. */
2358         arm_reg_current(arm, 1)->dirty = true;
2359
2360         /* Switch to non-blocking mode if not already in that mode. */
2361         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2362         if (retval != ERROR_OK)
2363                 return retval;
2364
2365         /* Go through the objects. */
2366         while (count) {
2367                 /* Issue a load of the appropriate size to R1. */
2368                 uint32_t opcode, data;
2369                 if (size == 1)
2370                         opcode = ARMV4_5_LDRB_IP(1, 0);
2371                 else if (size == 2)
2372                         opcode = ARMV4_5_LDRH_IP(1, 0);
2373                 else
2374                         opcode = ARMV4_5_LDRW_IP(1, 0);
2375                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2376                 if (retval != ERROR_OK)
2377                         return retval;
2378
2379                 /* Issue a write of R1 to DTRTX. */
2380                 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2381                 if (retval != ERROR_OK)
2382                         return retval;
2383
2384                 /* Check for faults and return early. */
2385                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2386                         return ERROR_OK; /* A data fault is not considered a system failure. */
2387
2388                 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2389                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2390                  * must also check TXfull_l). Most of the time this will be free
2391                  * because TXfull_l will be set immediately and cached in dscr. */
2392                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2393                                 DSCR_DTRTX_FULL_LATCHED, dscr);
2394                 if (retval != ERROR_OK)
2395                         return retval;
2396
2397                 /* Read the value transferred to DTRTX into the buffer. */
2398                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2399                                 armv7a->debug_base + CPUDBG_DTRTX, &data);
2400                 if (retval != ERROR_OK)
2401                         return retval;
2402                 if (size == 1)
2403                         *buffer = (uint8_t) data;
2404                 else if (size == 2)
2405                         target_buffer_set_u16(target, buffer, (uint16_t) data);
2406                 else
2407                         target_buffer_set_u32(target, buffer, data);
2408
2409                 /* Advance. */
2410                 buffer += size;
2411                 --count;
2412         }
2413
2414         return ERROR_OK;
2415 }
2416
2417 static int cortex_a_read_cpu_memory_fast(struct target *target,
2418         uint32_t count, uint8_t *buffer, uint32_t *dscr)
2419 {
2420         /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2421          * *dscr; updated to new value. This is fast but only works for word-sized
2422          * objects at aligned addresses.
2423          * Preconditions:
2424          * - Address is in R0 and must be a multiple of 4.
2425          * - R0 is marked dirty.
2426          */
2427         struct armv7a_common *armv7a = target_to_armv7a(target);
2428         uint32_t u32;
2429         int retval;
2430
2431         /* Switch to non-blocking mode if not already in that mode. */
2432         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2433         if (retval != ERROR_OK)
2434                 return retval;
2435
2436         /* Issue the LDC instruction via a write to ITR. */
2437         retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2438         if (retval != ERROR_OK)
2439                 return retval;
2440
2441         count--;
2442
2443         if (count > 0) {
2444                 /* Switch to fast mode if not already in that mode. */
2445                 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2446                 if (retval != ERROR_OK)
2447                         return retval;
2448
2449                 /* Latch LDC instruction. */
2450                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2451                                 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2452                 if (retval != ERROR_OK)
2453                         return retval;
2454
2455                 /* Read the value transferred to DTRTX into the buffer. Due to fast
2456                  * mode rules, this blocks until the instruction finishes executing and
2457                  * then reissues the read instruction to read the next word from
2458                  * memory. The last read of DTRTX in this call reads the second-to-last
2459                  * word from memory and issues the read instruction for the last word.
2460                  */
2461                 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2462                                 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2463                 if (retval != ERROR_OK)
2464                         return retval;
2465
2466                 /* Advance. */
2467                 buffer += count * 4;
2468         }
2469
2470         /* Wait for last issued instruction to complete. */
2471         retval = cortex_a_wait_instrcmpl(target, dscr, false);
2472         if (retval != ERROR_OK)
2473                 return retval;
2474
2475         /* Switch to non-blocking mode if not already in that mode. */
2476         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2477         if (retval != ERROR_OK)
2478                 return retval;
2479
2480         /* Check for faults and return early. */
2481         if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2482                 return ERROR_OK; /* A data fault is not considered a system failure. */
2483
2484         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2485          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2486          * check TXfull_l). Most of the time this will be free because TXfull_l
2487          * will be set immediately and cached in dscr. */
2488         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2489                         DSCR_DTRTX_FULL_LATCHED, dscr);
2490         if (retval != ERROR_OK)
2491                 return retval;
2492
2493         /* Read the value transferred to DTRTX into the buffer. This is the last
2494          * word. */
2495         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2496                         armv7a->debug_base + CPUDBG_DTRTX, &u32);
2497         if (retval != ERROR_OK)
2498                 return retval;
2499         target_buffer_set_u32(target, buffer, u32);
2500
2501         return ERROR_OK;
2502 }
2503
2504 static int cortex_a_read_cpu_memory(struct target *target,
2505         uint32_t address, uint32_t size,
2506         uint32_t count, uint8_t *buffer)
2507 {
2508         /* Read memory through the CPU. */
2509         int retval, final_retval;
2510         struct armv7a_common *armv7a = target_to_armv7a(target);
2511         struct arm *arm = &armv7a->arm;
2512         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2513
2514         LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2515                           address, size, count);
2516         if (target->state != TARGET_HALTED) {
2517                 LOG_WARNING("target not halted");
2518                 return ERROR_TARGET_NOT_HALTED;
2519         }
2520
2521         if (!count)
2522                 return ERROR_OK;
2523
2524         /* Clear any abort. */
2525         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2526                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2527         if (retval != ERROR_OK)
2528                 return retval;
2529
2530         /* Read DSCR */
2531         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2532                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2533         if (retval != ERROR_OK)
2534                 return retval;
2535
2536         /* Switch to non-blocking mode if not already in that mode. */
2537         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2538         if (retval != ERROR_OK)
2539                 goto out;
2540
2541         /* Mark R0 as dirty. */
2542         arm_reg_current(arm, 0)->dirty = true;
2543
2544         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2545         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2546         if (retval != ERROR_OK)
2547                 goto out;
2548
2549         /* Get the memory address into R0. */
2550         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2551                         armv7a->debug_base + CPUDBG_DTRRX, address);
2552         if (retval != ERROR_OK)
2553                 goto out;
2554         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2555         if (retval != ERROR_OK)
2556                 goto out;
2557
2558         if (size == 4 && (address % 4) == 0) {
2559                 /* We are doing a word-aligned transfer, so use fast mode. */
2560                 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2561         } else {
2562                 /* Use slow path. */
2563                 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2564         }
2565
2566 out:
2567         final_retval = retval;
2568
2569         /* Switch to non-blocking mode if not already in that mode. */
2570         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2571         if (final_retval == ERROR_OK)
2572                 final_retval = retval;
2573
2574         /* Wait for last issued instruction to complete. */
2575         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2576         if (final_retval == ERROR_OK)
2577                 final_retval = retval;
2578
2579         /* If there were any sticky abort flags, clear them. */
2580         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2581                 fault_dscr = dscr;
2582                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2583                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2584                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2585         } else {
2586                 fault_dscr = 0;
2587         }
2588
2589         /* Handle synchronous data faults. */
2590         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2591                 if (final_retval == ERROR_OK) {
2592                         /* Final return value will reflect cause of fault. */
2593                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2594                         if (retval == ERROR_OK) {
2595                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2596                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2597                         } else
2598                                 final_retval = retval;
2599                 }
2600                 /* Fault destroyed DFAR/DFSR; restore them. */
2601                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2602                 if (retval != ERROR_OK)
2603                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2604         }
2605
2606         /* Handle asynchronous data faults. */
2607         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2608                 if (final_retval == ERROR_OK)
2609                         /* No other error has been recorded so far, so keep this one. */
2610                         final_retval = ERROR_TARGET_DATA_ABORT;
2611         }
2612
2613         /* If the DCC is nonempty, clear it. */
2614         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2615                 uint32_t dummy;
2616                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2617                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2618                 if (final_retval == ERROR_OK)
2619                         final_retval = retval;
2620         }
2621         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2622                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2623                 if (final_retval == ERROR_OK)
2624                         final_retval = retval;
2625         }
2626
2627         /* Done. */
2628         return final_retval;
2629 }
2630
2631
2632 /*
2633  * Cortex-A Memory access
2634  *
2635  * This is same Cortex-M3 but we must also use the correct
2636  * ap number for every access.
2637  */
2638
2639 static int cortex_a_read_phys_memory(struct target *target,
2640         uint32_t address, uint32_t size,
2641         uint32_t count, uint8_t *buffer)
2642 {
2643         struct armv7a_common *armv7a = target_to_armv7a(target);
2644         struct adiv5_dap *swjdp = armv7a->arm.dap;
2645         uint8_t apsel = swjdp->apsel;
2646         int retval;
2647
2648         if (!count || !buffer)
2649                 return ERROR_COMMAND_SYNTAX_ERROR;
2650
2651         LOG_DEBUG("Reading memory at real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32,
2652                 address, size, count);
2653
2654         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2655                 return mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2656
2657         /* read memory through the CPU */
2658         cortex_a_prep_memaccess(target, 1);
2659         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2660         cortex_a_post_memaccess(target, 1);
2661
2662         return retval;
2663 }
2664
2665 static int cortex_a_read_memory(struct target *target, uint32_t address,
2666         uint32_t size, uint32_t count, uint8_t *buffer)
2667 {
2668         int retval;
2669
2670         /* cortex_a handles unaligned memory access */
2671         LOG_DEBUG("Reading memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2672                 size, count);
2673
2674         cortex_a_prep_memaccess(target, 0);
2675         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2676         cortex_a_post_memaccess(target, 0);
2677
2678         return retval;
2679 }
2680
2681 static int cortex_a_read_memory_ahb(struct target *target, uint32_t address,
2682         uint32_t size, uint32_t count, uint8_t *buffer)
2683 {
2684         int mmu_enabled = 0;
2685         uint32_t virt, phys;
2686         int retval;
2687         struct armv7a_common *armv7a = target_to_armv7a(target);
2688         struct adiv5_dap *swjdp = armv7a->arm.dap;
2689         uint8_t apsel = swjdp->apsel;
2690
2691         if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2692                 return target_read_memory(target, address, size, count, buffer);
2693
2694         /* cortex_a handles unaligned memory access */
2695         LOG_DEBUG("Reading memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2696                 size, count);
2697
2698         /* determine if MMU was enabled on target stop */
2699         if (!armv7a->is_armv7r) {
2700                 retval = cortex_a_mmu(target, &mmu_enabled);
2701                 if (retval != ERROR_OK)
2702                         return retval;
2703         }
2704
2705         if (mmu_enabled) {
2706                 virt = address;
2707                 retval = cortex_a_virt2phys(target, virt, &phys);
2708                 if (retval != ERROR_OK)
2709                         return retval;
2710
2711                 LOG_DEBUG("Reading at virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
2712                           virt, phys);
2713                 address = phys;
2714         }
2715
2716         if (!count || !buffer)
2717                 return ERROR_COMMAND_SYNTAX_ERROR;
2718
2719         retval = mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2720
2721         return retval;
2722 }
2723
2724 static int cortex_a_write_phys_memory(struct target *target,
2725         uint32_t address, uint32_t size,
2726         uint32_t count, const uint8_t *buffer)
2727 {
2728         struct armv7a_common *armv7a = target_to_armv7a(target);
2729         struct adiv5_dap *swjdp = armv7a->arm.dap;
2730         uint8_t apsel = swjdp->apsel;
2731         int retval;
2732
2733         if (!count || !buffer)
2734                 return ERROR_COMMAND_SYNTAX_ERROR;
2735
2736         LOG_DEBUG("Writing memory to real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2737                 size, count);
2738
2739         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2740                 return mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2741
2742         /* write memory through the CPU */
2743         cortex_a_prep_memaccess(target, 1);
2744         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2745         cortex_a_post_memaccess(target, 1);
2746
2747         return retval;
2748 }
2749
2750 static int cortex_a_write_memory(struct target *target, uint32_t address,
2751         uint32_t size, uint32_t count, const uint8_t *buffer)
2752 {
2753         int retval;
2754
2755         /* cortex_a handles unaligned memory access */
2756         LOG_DEBUG("Writing memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2757                 size, count);
2758
2759         /* memory writes bypass the caches, must flush before writing */
2760         armv7a_cache_auto_flush_on_write(target, address, size * count);
2761
2762         cortex_a_prep_memaccess(target, 0);
2763         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2764         cortex_a_post_memaccess(target, 0);
2765         return retval;
2766 }
2767
2768 static int cortex_a_write_memory_ahb(struct target *target, uint32_t address,
2769         uint32_t size, uint32_t count, const uint8_t *buffer)
2770 {
2771         int mmu_enabled = 0;
2772         uint32_t virt, phys;
2773         int retval;
2774         struct armv7a_common *armv7a = target_to_armv7a(target);
2775         struct adiv5_dap *swjdp = armv7a->arm.dap;
2776         uint8_t apsel = swjdp->apsel;
2777
2778         if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2779                 return target_write_memory(target, address, size, count, buffer);
2780
2781         /* cortex_a handles unaligned memory access */
2782         LOG_DEBUG("Writing memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2783                 size, count);
2784
2785         /* determine if MMU was enabled on target stop */
2786         if (!armv7a->is_armv7r) {
2787                 retval = cortex_a_mmu(target, &mmu_enabled);
2788                 if (retval != ERROR_OK)
2789                         return retval;
2790         }
2791
2792         if (mmu_enabled) {
2793                 virt = address;
2794                 retval = cortex_a_virt2phys(target, virt, &phys);
2795                 if (retval != ERROR_OK)
2796                         return retval;
2797
2798                 LOG_DEBUG("Writing to virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
2799                           virt,
2800                           phys);
2801                 address = phys;
2802         }
2803
2804         if (!count || !buffer)
2805                 return ERROR_COMMAND_SYNTAX_ERROR;
2806
2807         retval = mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2808
2809         return retval;
2810 }
2811
2812 static int cortex_a_read_buffer(struct target *target, uint32_t address,
2813                                 uint32_t count, uint8_t *buffer)
2814 {
2815         uint32_t size;
2816
2817         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2818          * will have something to do with the size we leave to it. */
2819         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2820                 if (address & size) {
2821                         int retval = cortex_a_read_memory_ahb(target, address, size, 1, buffer);
2822                         if (retval != ERROR_OK)
2823                                 return retval;
2824                         address += size;
2825                         count -= size;
2826                         buffer += size;
2827                 }
2828         }
2829
2830         /* Read the data with as large access size as possible. */
2831         for (; size > 0; size /= 2) {
2832                 uint32_t aligned = count - count % size;
2833                 if (aligned > 0) {
2834                         int retval = cortex_a_read_memory_ahb(target, address, size, aligned / size, buffer);
2835                         if (retval != ERROR_OK)
2836                                 return retval;
2837                         address += aligned;
2838                         count -= aligned;
2839                         buffer += aligned;
2840                 }
2841         }
2842
2843         return ERROR_OK;
2844 }
2845
2846 static int cortex_a_write_buffer(struct target *target, uint32_t address,
2847                                  uint32_t count, const uint8_t *buffer)
2848 {
2849         uint32_t size;
2850
2851         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2852          * will have something to do with the size we leave to it. */
2853         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2854                 if (address & size) {
2855                         int retval = cortex_a_write_memory_ahb(target, address, size, 1, buffer);
2856                         if (retval != ERROR_OK)
2857                                 return retval;
2858                         address += size;
2859                         count -= size;
2860                         buffer += size;
2861                 }
2862         }
2863
2864         /* Write the data with as large access size as possible. */
2865         for (; size > 0; size /= 2) {
2866                 uint32_t aligned = count - count % size;
2867                 if (aligned > 0) {
2868                         int retval = cortex_a_write_memory_ahb(target, address, size, aligned / size, buffer);
2869                         if (retval != ERROR_OK)
2870                                 return retval;
2871                         address += aligned;
2872                         count -= aligned;
2873                         buffer += aligned;
2874                 }
2875         }
2876
2877         return ERROR_OK;
2878 }
2879
2880 static int cortex_a_handle_target_request(void *priv)
2881 {
2882         struct target *target = priv;
2883         struct armv7a_common *armv7a = target_to_armv7a(target);
2884         int retval;
2885
2886         if (!target_was_examined(target))
2887                 return ERROR_OK;
2888         if (!target->dbg_msg_enabled)
2889                 return ERROR_OK;
2890
2891         if (target->state == TARGET_RUNNING) {
2892                 uint32_t request;
2893                 uint32_t dscr;
2894                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2895                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2896
2897                 /* check if we have data */
2898                 int64_t then = timeval_ms();
2899                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2900                         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2901                                         armv7a->debug_base + CPUDBG_DTRTX, &request);
2902                         if (retval == ERROR_OK) {
2903                                 target_request(target, request);
2904                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2905                                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2906                         }
2907                         if (timeval_ms() > then + 1000) {
2908                                 LOG_ERROR("Timeout waiting for dtr tx full");
2909                                 return ERROR_FAIL;
2910                         }
2911                 }
2912         }
2913
2914         return ERROR_OK;
2915 }
2916
2917 /*
2918  * Cortex-A target information and configuration
2919  */
2920
2921 static int cortex_a_examine_first(struct target *target)
2922 {
2923         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2924         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2925         struct adiv5_dap *swjdp = armv7a->arm.dap;
2926
2927         int i;
2928         int retval = ERROR_OK;
2929         uint32_t didr, cpuid, dbg_osreg;
2930
2931         retval = dap_dp_init(swjdp);
2932         if (retval != ERROR_OK) {
2933                 LOG_ERROR("Could not initialize the debug port");
2934                 return retval;
2935         }
2936
2937         /* Search for the APB-AP - it is needed for access to debug registers */
2938         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2939         if (retval != ERROR_OK) {
2940                 LOG_ERROR("Could not find APB-AP for debug access");
2941                 return retval;
2942         }
2943
2944         retval = mem_ap_init(armv7a->debug_ap);
2945         if (retval != ERROR_OK) {
2946                 LOG_ERROR("Could not initialize the APB-AP");
2947                 return retval;
2948         }
2949
2950         armv7a->debug_ap->memaccess_tck = 80;
2951
2952         /* Search for the AHB-AB.
2953          * REVISIT: We should search for AXI-AP as well and make sure the AP's MEMTYPE says it
2954          * can access system memory. */
2955         armv7a->memory_ap_available = false;
2956         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7a->memory_ap);
2957         if (retval == ERROR_OK) {
2958                 retval = mem_ap_init(armv7a->memory_ap);
2959                 if (retval == ERROR_OK)
2960                         armv7a->memory_ap_available = true;
2961         }
2962         if (retval != ERROR_OK) {
2963                 /* AHB-AP not found or unavailable - use the CPU */
2964                 LOG_DEBUG("No AHB-AP available for memory access");
2965         }
2966
2967         if (!target->dbgbase_set) {
2968                 uint32_t dbgbase;
2969                 /* Get ROM Table base */
2970                 uint32_t apid;
2971                 int32_t coreidx = target->coreid;
2972                 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2973                           target->cmd_name);
2974                 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2975                 if (retval != ERROR_OK)
2976                         return retval;
2977                 /* Lookup 0x15 -- Processor DAP */
2978                 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2979                                 &armv7a->debug_base, &coreidx);
2980                 if (retval != ERROR_OK) {
2981                         LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2982                                   target->cmd_name);
2983                         return retval;
2984                 }
2985                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2986                           target->coreid, armv7a->debug_base);
2987         } else
2988                 armv7a->debug_base = target->dbgbase;
2989
2990         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2991                         armv7a->debug_base + CPUDBG_DIDR, &didr);
2992         if (retval != ERROR_OK) {
2993                 LOG_DEBUG("Examine %s failed", "DIDR");
2994                 return retval;
2995         }
2996
2997         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2998                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2999         if (retval != ERROR_OK) {
3000                 LOG_DEBUG("Examine %s failed", "CPUID");
3001                 return retval;
3002         }
3003
3004         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
3005         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
3006
3007         cortex_a->didr = didr;
3008         cortex_a->cpuid = cpuid;
3009
3010         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3011                                     armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
3012         if (retval != ERROR_OK)
3013                 return retval;
3014         LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR  0x%" PRIx32, target->coreid, dbg_osreg);
3015
3016         if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
3017                 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
3018                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3019                 return ERROR_TARGET_INIT_FAILED;
3020         }
3021
3022         if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
3023                 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
3024
3025         /* Read DBGOSLSR and check if OSLK is implemented */
3026         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3027                                 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3028         if (retval != ERROR_OK)
3029                 return retval;
3030         LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
3031
3032         /* check if OS Lock is implemented */
3033         if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
3034                 /* check if OS Lock is set */
3035                 if (dbg_osreg & OSLSR_OSLK) {
3036                         LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
3037
3038                         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
3039                                                         armv7a->debug_base + CPUDBG_OSLAR,
3040                                                         0);
3041                         if (retval == ERROR_OK)
3042                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3043                                                         armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3044
3045                         /* if we fail to access the register or cannot reset the OSLK bit, bail out */
3046                         if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
3047                                 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
3048                                                 target->coreid);
3049                                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3050                                 return ERROR_TARGET_INIT_FAILED;
3051                         }
3052                 }
3053         }
3054
3055         armv7a->arm.core_type = ARM_MODE_MON;
3056
3057         /* Avoid recreating the registers cache */
3058         if (!target_was_examined(target)) {
3059                 retval = cortex_a_dpm_setup(cortex_a, didr);
3060                 if (retval != ERROR_OK)
3061                         return retval;
3062         }
3063
3064         /* Setup Breakpoint Register Pairs */
3065         cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3066         cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3067         cortex_a->brp_num_available = cortex_a->brp_num;
3068         free(cortex_a->brp_list);
3069         cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3070 /*      cortex_a->brb_enabled = ????; */
3071         for (i = 0; i < cortex_a->brp_num; i++) {
3072                 cortex_a->brp_list[i].used = 0;
3073                 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3074                         cortex_a->brp_list[i].type = BRP_NORMAL;
3075                 else
3076                         cortex_a->brp_list[i].type = BRP_CONTEXT;
3077                 cortex_a->brp_list[i].value = 0;
3078                 cortex_a->brp_list[i].control = 0;
3079                 cortex_a->brp_list[i].BRPn = i;
3080         }
3081
3082         LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3083
3084         /* select debug_ap as default */
3085         swjdp->apsel = armv7a->debug_ap->ap_num;
3086
3087         target_set_examined(target);
3088         return ERROR_OK;
3089 }
3090
3091 static int cortex_a_examine(struct target *target)
3092 {
3093         int retval = ERROR_OK;
3094
3095         /* Reestablish communication after target reset */
3096         retval = cortex_a_examine_first(target);
3097
3098         /* Configure core debug access */
3099         if (retval == ERROR_OK)
3100                 retval = cortex_a_init_debug_access(target);
3101
3102         return retval;
3103 }
3104
3105 /*
3106  *      Cortex-A target creation and initialization
3107  */
3108
3109 static int cortex_a_init_target(struct command_context *cmd_ctx,
3110         struct target *target)
3111 {
3112         /* examine_first() does a bunch of this */
3113         arm_semihosting_init(target);
3114         return ERROR_OK;
3115 }
3116
3117 static int cortex_a_init_arch_info(struct target *target,
3118         struct cortex_a_common *cortex_a, struct jtag_tap *tap)
3119 {
3120         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3121
3122         /* Setup struct cortex_a_common */
3123         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3124
3125         /*  tap has no dap initialized */
3126         if (!tap->dap) {
3127                 tap->dap = dap_init();
3128
3129                 /* Leave (only) generic DAP stuff for debugport_init() */
3130                 tap->dap->tap = tap;
3131         }
3132
3133         armv7a->arm.dap = tap->dap;
3134
3135         cortex_a->fast_reg_read = 0;
3136
3137         /* register arch-specific functions */
3138         armv7a->examine_debug_reason = NULL;
3139
3140         armv7a->post_debug_entry = cortex_a_post_debug_entry;
3141
3142         armv7a->pre_restore_context = NULL;
3143
3144         armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
3145
3146
3147 /*      arm7_9->handle_target_request = cortex_a_handle_target_request; */
3148
3149         /* REVISIT v7a setup should be in a v7a-specific routine */
3150         armv7a_init_arch_info(target, armv7a);
3151         target_register_timer_callback(cortex_a_handle_target_request, 1, 1, target);
3152
3153         return ERROR_OK;
3154 }
3155
3156 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3157 {
3158         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3159
3160         cortex_a->armv7a_common.is_armv7r = false;
3161
3162         return cortex_a_init_arch_info(target, cortex_a, target->tap);
3163 }
3164
3165 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3166 {
3167         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3168
3169         cortex_a->armv7a_common.is_armv7r = true;
3170
3171         return cortex_a_init_arch_info(target, cortex_a, target->tap);
3172 }
3173
3174 static void cortex_a_deinit_target(struct target *target)
3175 {
3176         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3177         struct arm_dpm *dpm = &cortex_a->armv7a_common.dpm;
3178
3179         free(cortex_a->brp_list);
3180         free(dpm->dbp);
3181         free(dpm->dwp);
3182         free(cortex_a);
3183 }
3184
3185 static int cortex_a_mmu(struct target *target, int *enabled)
3186 {
3187         struct armv7a_common *armv7a = target_to_armv7a(target);
3188
3189         if (target->state != TARGET_HALTED) {
3190                 LOG_ERROR("%s: target not halted", __func__);
3191                 return ERROR_TARGET_INVALID;
3192         }
3193
3194         if (armv7a->is_armv7r)
3195                 *enabled = 0;
3196         else
3197                 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3198
3199         return ERROR_OK;
3200 }
3201
3202 static int cortex_a_virt2phys(struct target *target,
3203         uint32_t virt, uint32_t *phys)
3204 {
3205         int retval = ERROR_FAIL;
3206         struct armv7a_common *armv7a = target_to_armv7a(target);
3207         struct adiv5_dap *swjdp = armv7a->arm.dap;
3208         uint8_t apsel = swjdp->apsel;
3209         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num)) {
3210                 uint32_t ret;
3211                 retval = armv7a_mmu_translate_va(target,
3212                                 virt, &ret);
3213                 if (retval != ERROR_OK)
3214                         goto done;
3215                 *phys = ret;
3216         } else {/*  use this method if armv7a->memory_ap not selected
3217                  *  mmu must be enable in order to get a correct translation */
3218                 retval = cortex_a_mmu_modify(target, 1);
3219                 if (retval != ERROR_OK)
3220                         goto done;
3221                 retval = armv7a_mmu_translate_va_pa(target, virt,  phys, 1);
3222         }
3223 done:
3224         return retval;
3225 }
3226
3227 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3228 {
3229         struct target *target = get_current_target(CMD_CTX);
3230         struct armv7a_common *armv7a = target_to_armv7a(target);
3231
3232         return armv7a_handle_cache_info_command(CMD_CTX,
3233                         &armv7a->armv7a_mmu.armv7a_cache);
3234 }
3235
3236
3237 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3238 {
3239         struct target *target = get_current_target(CMD_CTX);
3240         if (!target_was_examined(target)) {
3241                 LOG_ERROR("target not examined yet");
3242                 return ERROR_FAIL;
3243         }
3244
3245         return cortex_a_init_debug_access(target);
3246 }
3247 COMMAND_HANDLER(cortex_a_handle_smp_off_command)
3248 {
3249         struct target *target = get_current_target(CMD_CTX);
3250         /* check target is an smp target */
3251         struct target_list *head;
3252         struct target *curr;
3253         head = target->head;
3254         target->smp = 0;
3255         if (head != (struct target_list *)NULL) {
3256                 while (head != (struct target_list *)NULL) {
3257                         curr = head->target;
3258                         curr->smp = 0;
3259                         head = head->next;
3260                 }
3261                 /*  fixes the target display to the debugger */
3262                 target->gdb_service->target = target;
3263         }
3264         return ERROR_OK;
3265 }
3266
3267 COMMAND_HANDLER(cortex_a_handle_smp_on_command)
3268 {
3269         struct target *target = get_current_target(CMD_CTX);
3270         struct target_list *head;
3271         struct target *curr;
3272         head = target->head;
3273         if (head != (struct target_list *)NULL) {
3274                 target->smp = 1;
3275                 while (head != (struct target_list *)NULL) {
3276                         curr = head->target;
3277                         curr->smp = 1;
3278                         head = head->next;
3279                 }
3280         }
3281         return ERROR_OK;
3282 }
3283
3284 COMMAND_HANDLER(cortex_a_handle_smp_gdb_command)
3285 {
3286         struct target *target = get_current_target(CMD_CTX);
3287         int retval = ERROR_OK;
3288         struct target_list *head;
3289         head = target->head;
3290         if (head != (struct target_list *)NULL) {
3291                 if (CMD_ARGC == 1) {
3292                         int coreid = 0;
3293                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
3294                         if (ERROR_OK != retval)
3295                                 return retval;
3296                         target->gdb_service->core[1] = coreid;
3297
3298                 }
3299                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
3300                         , target->gdb_service->core[1]);
3301         }
3302         return ERROR_OK;
3303 }
3304
3305 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3306 {
3307         struct target *target = get_current_target(CMD_CTX);
3308         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3309
3310         static const Jim_Nvp nvp_maskisr_modes[] = {
3311                 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3312                 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3313                 { .name = NULL, .value = -1 },
3314         };
3315         const Jim_Nvp *n;
3316
3317         if (CMD_ARGC > 0) {
3318                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3319                 if (n->name == NULL) {
3320                         LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3321                         return ERROR_COMMAND_SYNTAX_ERROR;
3322                 }
3323
3324                 cortex_a->isrmasking_mode = n->value;
3325         }
3326
3327         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3328         command_print(CMD_CTX, "cortex_a interrupt mask %s", n->name);
3329
3330         return ERROR_OK;
3331 }
3332
3333 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3334 {
3335         struct target *target = get_current_target(CMD_CTX);
3336         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3337
3338         static const Jim_Nvp nvp_dacrfixup_modes[] = {
3339                 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3340                 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3341                 { .name = NULL, .value = -1 },
3342         };
3343         const Jim_Nvp *n;
3344
3345         if (CMD_ARGC > 0) {
3346                 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3347                 if (n->name == NULL)
3348                         return ERROR_COMMAND_SYNTAX_ERROR;
3349                 cortex_a->dacrfixup_mode = n->value;
3350
3351         }
3352
3353         n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3354         command_print(CMD_CTX, "cortex_a domain access control fixup %s", n->name);
3355
3356         return ERROR_OK;
3357 }
3358
3359 static const struct command_registration cortex_a_exec_command_handlers[] = {
3360         {
3361                 .name = "cache_info",
3362                 .handler = cortex_a_handle_cache_info_command,
3363                 .mode = COMMAND_EXEC,
3364                 .help = "display information about target caches",
3365                 .usage = "",
3366         },
3367         {
3368                 .name = "dbginit",
3369                 .handler = cortex_a_handle_dbginit_command,
3370                 .mode = COMMAND_EXEC,
3371                 .help = "Initialize core debug",
3372                 .usage = "",
3373         },
3374         {   .name = "smp_off",
3375             .handler = cortex_a_handle_smp_off_command,
3376             .mode = COMMAND_EXEC,
3377             .help = "Stop smp handling",
3378             .usage = "",},
3379         {
3380                 .name = "smp_on",
3381                 .handler = cortex_a_handle_smp_on_command,
3382                 .mode = COMMAND_EXEC,
3383                 .help = "Restart smp handling",
3384                 .usage = "",
3385         },
3386         {
3387                 .name = "smp_gdb",
3388                 .handler = cortex_a_handle_smp_gdb_command,
3389                 .mode = COMMAND_EXEC,
3390                 .help = "display/fix current core played to gdb",
3391                 .usage = "",
3392         },
3393         {
3394                 .name = "maskisr",
3395                 .handler = handle_cortex_a_mask_interrupts_command,
3396                 .mode = COMMAND_ANY,
3397                 .help = "mask cortex_a interrupts",
3398                 .usage = "['on'|'off']",
3399         },
3400         {
3401                 .name = "dacrfixup",
3402                 .handler = handle_cortex_a_dacrfixup_command,
3403                 .mode = COMMAND_EXEC,
3404                 .help = "set domain access control (DACR) to all-manager "
3405                         "on memory access",
3406                 .usage = "['on'|'off']",
3407         },
3408
3409         COMMAND_REGISTRATION_DONE
3410 };
3411 static const struct command_registration cortex_a_command_handlers[] = {
3412         {
3413                 .chain = arm_command_handlers,
3414         },
3415         {
3416                 .chain = armv7a_command_handlers,
3417         },
3418         {
3419                 .name = "cortex_a",
3420                 .mode = COMMAND_ANY,
3421                 .help = "Cortex-A command group",
3422                 .usage = "",
3423                 .chain = cortex_a_exec_command_handlers,
3424         },
3425         COMMAND_REGISTRATION_DONE
3426 };
3427
3428 struct target_type cortexa_target = {
3429         .name = "cortex_a",
3430         .deprecated_name = "cortex_a8",
3431
3432         .poll = cortex_a_poll,
3433         .arch_state = armv7a_arch_state,
3434
3435         .halt = cortex_a_halt,
3436         .resume = cortex_a_resume,
3437         .step = cortex_a_step,
3438
3439         .assert_reset = cortex_a_assert_reset,
3440         .deassert_reset = cortex_a_deassert_reset,
3441
3442         /* REVISIT allow exporting VFP3 registers ... */
3443         .get_gdb_reg_list = arm_get_gdb_reg_list,
3444
3445         .read_memory = cortex_a_read_memory,
3446         .write_memory = cortex_a_write_memory,
3447
3448         .read_buffer = cortex_a_read_buffer,
3449         .write_buffer = cortex_a_write_buffer,
3450
3451         .checksum_memory = arm_checksum_memory,
3452         .blank_check_memory = arm_blank_check_memory,
3453
3454         .run_algorithm = armv4_5_run_algorithm,
3455
3456         .add_breakpoint = cortex_a_add_breakpoint,
3457         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3458         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3459         .remove_breakpoint = cortex_a_remove_breakpoint,
3460         .add_watchpoint = NULL,
3461         .remove_watchpoint = NULL,
3462
3463         .commands = cortex_a_command_handlers,
3464         .target_create = cortex_a_target_create,
3465         .init_target = cortex_a_init_target,
3466         .examine = cortex_a_examine,
3467         .deinit_target = cortex_a_deinit_target,
3468
3469         .read_phys_memory = cortex_a_read_phys_memory,
3470         .write_phys_memory = cortex_a_write_phys_memory,
3471         .mmu = cortex_a_mmu,
3472         .virt2phys = cortex_a_virt2phys,
3473 };
3474
3475 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3476         {
3477                 .name = "cache_info",
3478                 .handler = cortex_a_handle_cache_info_command,
3479                 .mode = COMMAND_EXEC,
3480                 .help = "display information about target caches",
3481                 .usage = "",
3482         },
3483         {
3484                 .name = "dbginit",
3485                 .handler = cortex_a_handle_dbginit_command,
3486                 .mode = COMMAND_EXEC,
3487                 .help = "Initialize core debug",
3488                 .usage = "",
3489         },
3490         {
3491                 .name = "maskisr",
3492                 .handler = handle_cortex_a_mask_interrupts_command,
3493                 .mode = COMMAND_EXEC,
3494                 .help = "mask cortex_r4 interrupts",
3495                 .usage = "['on'|'off']",
3496         },
3497
3498         COMMAND_REGISTRATION_DONE
3499 };
3500 static const struct command_registration cortex_r4_command_handlers[] = {
3501         {
3502                 .chain = arm_command_handlers,
3503         },
3504         {
3505                 .chain = armv7a_command_handlers,
3506         },
3507         {
3508                 .name = "cortex_r4",
3509                 .mode = COMMAND_ANY,
3510                 .help = "Cortex-R4 command group",
3511                 .usage = "",
3512                 .chain = cortex_r4_exec_command_handlers,
3513         },
3514         COMMAND_REGISTRATION_DONE
3515 };
3516
3517 struct target_type cortexr4_target = {
3518         .name = "cortex_r4",
3519
3520         .poll = cortex_a_poll,
3521         .arch_state = armv7a_arch_state,
3522
3523         .halt = cortex_a_halt,
3524         .resume = cortex_a_resume,
3525         .step = cortex_a_step,
3526
3527         .assert_reset = cortex_a_assert_reset,
3528         .deassert_reset = cortex_a_deassert_reset,
3529
3530         /* REVISIT allow exporting VFP3 registers ... */
3531         .get_gdb_reg_list = arm_get_gdb_reg_list,
3532
3533         .read_memory = cortex_a_read_phys_memory,
3534         .write_memory = cortex_a_write_phys_memory,
3535
3536         .checksum_memory = arm_checksum_memory,
3537         .blank_check_memory = arm_blank_check_memory,
3538
3539         .run_algorithm = armv4_5_run_algorithm,
3540
3541         .add_breakpoint = cortex_a_add_breakpoint,
3542         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3543         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3544         .remove_breakpoint = cortex_a_remove_breakpoint,
3545         .add_watchpoint = NULL,
3546         .remove_watchpoint = NULL,
3547
3548         .commands = cortex_r4_command_handlers,
3549         .target_create = cortex_r4_target_create,
3550         .init_target = cortex_a_init_target,
3551         .examine = cortex_a_examine,
3552         .deinit_target = cortex_a_deinit_target,
3553 };