]> git.sur5r.net Git - openocd/blob - src/target/cortex_m.c
14ebba318b28d50f568aaa183c07ebd29c1f5511
[openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
23  *                                                                         *
24  *                                                                         *
25  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
26  *                                                                         *
27  ***************************************************************************/
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "jtag/interface.h"
33 #include "breakpoints.h"
34 #include "cortex_m.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_disassembler.h"
38 #include "register.h"
39 #include "arm_opcodes.h"
40 #include "arm_semihosting.h"
41 #include <helper/time_support.h>
42
43 /* NOTE:  most of this should work fine for the Cortex-M1 and
44  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45  * Some differences:  M0/M1 doesn't have FBP remapping or the
46  * DWT tracing/profiling support.  (So the cycle counter will
47  * not be usable; the other stuff isn't currently used here.)
48  *
49  * Although there are some workarounds for errata seen only in r0p0
50  * silicon, such old parts are hard to find and thus not much tested
51  * any longer.
52  */
53
54 /**
55  * Returns the type of a break point required by address location
56  */
57 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
58
59 /* forward declarations */
60 static int cortex_m_store_core_reg_u32(struct target *target,
61                 uint32_t num, uint32_t value);
62 static void cortex_m_dwt_free(struct target *target);
63
64 static int cortexm_dap_read_coreregister_u32(struct target *target,
65         uint32_t *value, int regnum)
66 {
67         struct armv7m_common *armv7m = target_to_armv7m(target);
68         int retval;
69         uint32_t dcrdr;
70
71         /* because the DCB_DCRDR is used for the emulated dcc channel
72          * we have to save/restore the DCB_DCRDR when used */
73         if (target->dbg_msg_enabled) {
74                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
75                 if (retval != ERROR_OK)
76                         return retval;
77         }
78
79         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regnum);
80         if (retval != ERROR_OK)
81                 return retval;
82
83         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR, value);
84         if (retval != ERROR_OK)
85                 return retval;
86
87         if (target->dbg_msg_enabled) {
88                 /* restore DCB_DCRDR - this needs to be in a separate
89                  * transaction otherwise the emulated DCC channel breaks */
90                 if (retval == ERROR_OK)
91                         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
92         }
93
94         return retval;
95 }
96
97 static int cortexm_dap_write_coreregister_u32(struct target *target,
98         uint32_t value, int regnum)
99 {
100         struct armv7m_common *armv7m = target_to_armv7m(target);
101         int retval;
102         uint32_t dcrdr;
103
104         /* because the DCB_DCRDR is used for the emulated dcc channel
105          * we have to save/restore the DCB_DCRDR when used */
106         if (target->dbg_msg_enabled) {
107                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
108                 if (retval != ERROR_OK)
109                         return retval;
110         }
111
112         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value);
113         if (retval != ERROR_OK)
114                 return retval;
115
116         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRSR, regnum | DCRSR_WnR);
117         if (retval != ERROR_OK)
118                 return retval;
119
120         if (target->dbg_msg_enabled) {
121                 /* restore DCB_DCRDR - this needs to be in a seperate
122                  * transaction otherwise the emulated DCC channel breaks */
123                 if (retval == ERROR_OK)
124                         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
125         }
126
127         return retval;
128 }
129
130 static int cortex_m_write_debug_halt_mask(struct target *target,
131         uint32_t mask_on, uint32_t mask_off)
132 {
133         struct cortex_m_common *cortex_m = target_to_cm(target);
134         struct armv7m_common *armv7m = &cortex_m->armv7m;
135
136         /* mask off status bits */
137         cortex_m->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
138         /* create new register mask */
139         cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
140
141         return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr);
142 }
143
144 static int cortex_m_clear_halt(struct target *target)
145 {
146         struct cortex_m_common *cortex_m = target_to_cm(target);
147         struct armv7m_common *armv7m = &cortex_m->armv7m;
148         int retval;
149
150         /* clear step if any */
151         cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
152
153         /* Read Debug Fault Status Register */
154         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr);
155         if (retval != ERROR_OK)
156                 return retval;
157
158         /* Clear Debug Fault Status */
159         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr);
160         if (retval != ERROR_OK)
161                 return retval;
162         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
163
164         return ERROR_OK;
165 }
166
167 static int cortex_m_single_step_core(struct target *target)
168 {
169         struct cortex_m_common *cortex_m = target_to_cm(target);
170         struct armv7m_common *armv7m = &cortex_m->armv7m;
171         int retval;
172
173         /* Mask interrupts before clearing halt, if done already.  This avoids
174          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
175          * HALT can put the core into an unknown state.
176          */
177         if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
178                 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
179                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
180                 if (retval != ERROR_OK)
181                         return retval;
182         }
183         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
184                         DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
185         if (retval != ERROR_OK)
186                 return retval;
187         LOG_DEBUG(" ");
188
189         /* restore dhcsr reg */
190         cortex_m_clear_halt(target);
191
192         return ERROR_OK;
193 }
194
195 static int cortex_m_enable_fpb(struct target *target)
196 {
197         int retval = target_write_u32(target, FP_CTRL, 3);
198         if (retval != ERROR_OK)
199                 return retval;
200
201         /* check the fpb is actually enabled */
202         uint32_t fpctrl;
203         retval = target_read_u32(target, FP_CTRL, &fpctrl);
204         if (retval != ERROR_OK)
205                 return retval;
206
207         if (fpctrl & 1)
208                 return ERROR_OK;
209
210         return ERROR_FAIL;
211 }
212
213 static int cortex_m_endreset_event(struct target *target)
214 {
215         int i;
216         int retval;
217         uint32_t dcb_demcr;
218         struct cortex_m_common *cortex_m = target_to_cm(target);
219         struct armv7m_common *armv7m = &cortex_m->armv7m;
220         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
221         struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
222         struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
223
224         /* REVISIT The four debug monitor bits are currently ignored... */
225         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr);
226         if (retval != ERROR_OK)
227                 return retval;
228         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
229
230         /* this register is used for emulated dcc channel */
231         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
232         if (retval != ERROR_OK)
233                 return retval;
234
235         /* Enable debug requests */
236         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
237         if (retval != ERROR_OK)
238                 return retval;
239         if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
240                 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
241                 if (retval != ERROR_OK)
242                         return retval;
243         }
244
245         /* clear any interrupt masking */
246         cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
247
248         /* Enable features controlled by ITM and DWT blocks, and catch only
249          * the vectors we were told to pay attention to.
250          *
251          * Target firmware is responsible for all fault handling policy
252          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
253          * or manual updates to the NVIC SHCSR and CCR registers.
254          */
255         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr);
256         if (retval != ERROR_OK)
257                 return retval;
258
259         /* Paranoia: evidently some (early?) chips don't preserve all the
260          * debug state (including FBP, DWT, etc) across reset...
261          */
262
263         /* Enable FPB */
264         retval = cortex_m_enable_fpb(target);
265         if (retval != ERROR_OK) {
266                 LOG_ERROR("Failed to enable the FPB");
267                 return retval;
268         }
269
270         cortex_m->fpb_enabled = 1;
271
272         /* Restore FPB registers */
273         for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
274                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
275                 if (retval != ERROR_OK)
276                         return retval;
277         }
278
279         /* Restore DWT registers */
280         for (i = 0; i < cortex_m->dwt_num_comp; i++) {
281                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
282                                 dwt_list[i].comp);
283                 if (retval != ERROR_OK)
284                         return retval;
285                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
286                                 dwt_list[i].mask);
287                 if (retval != ERROR_OK)
288                         return retval;
289                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
290                                 dwt_list[i].function);
291                 if (retval != ERROR_OK)
292                         return retval;
293         }
294         retval = dap_run(swjdp);
295         if (retval != ERROR_OK)
296                 return retval;
297
298         register_cache_invalidate(armv7m->arm.core_cache);
299
300         /* make sure we have latest dhcsr flags */
301         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
302
303         return retval;
304 }
305
306 static int cortex_m_examine_debug_reason(struct target *target)
307 {
308         struct cortex_m_common *cortex_m = target_to_cm(target);
309
310         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
311          * only check the debug reason if we don't know it already */
312
313         if ((target->debug_reason != DBG_REASON_DBGRQ)
314                 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
315                 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
316                         target->debug_reason = DBG_REASON_BREAKPOINT;
317                         if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
318                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
319                 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
320                         target->debug_reason = DBG_REASON_WATCHPOINT;
321                 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
322                         target->debug_reason = DBG_REASON_BREAKPOINT;
323                 else    /* EXTERNAL, HALTED */
324                         target->debug_reason = DBG_REASON_UNDEFINED;
325         }
326
327         return ERROR_OK;
328 }
329
330 static int cortex_m_examine_exception_reason(struct target *target)
331 {
332         uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
333         struct armv7m_common *armv7m = target_to_armv7m(target);
334         struct adiv5_dap *swjdp = armv7m->arm.dap;
335         int retval;
336
337         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr);
338         if (retval != ERROR_OK)
339                 return retval;
340         switch (armv7m->exception_number) {
341                 case 2: /* NMI */
342                         break;
343                 case 3: /* Hard Fault */
344                         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr);
345                         if (retval != ERROR_OK)
346                                 return retval;
347                         if (except_sr & 0x40000000) {
348                                 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr);
349                                 if (retval != ERROR_OK)
350                                         return retval;
351                         }
352                         break;
353                 case 4: /* Memory Management */
354                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
355                         if (retval != ERROR_OK)
356                                 return retval;
357                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar);
358                         if (retval != ERROR_OK)
359                                 return retval;
360                         break;
361                 case 5: /* Bus Fault */
362                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
363                         if (retval != ERROR_OK)
364                                 return retval;
365                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar);
366                         if (retval != ERROR_OK)
367                                 return retval;
368                         break;
369                 case 6: /* Usage Fault */
370                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
371                         if (retval != ERROR_OK)
372                                 return retval;
373                         break;
374                 case 11:        /* SVCall */
375                         break;
376                 case 12:        /* Debug Monitor */
377                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr);
378                         if (retval != ERROR_OK)
379                                 return retval;
380                         break;
381                 case 14:        /* PendSV */
382                         break;
383                 case 15:        /* SysTick */
384                         break;
385                 default:
386                         except_sr = 0;
387                         break;
388         }
389         retval = dap_run(swjdp);
390         if (retval == ERROR_OK)
391                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
392                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
393                         armv7m_exception_string(armv7m->exception_number),
394                         shcsr, except_sr, cfsr, except_ar);
395         return retval;
396 }
397
398 static int cortex_m_debug_entry(struct target *target)
399 {
400         int i;
401         uint32_t xPSR;
402         int retval;
403         struct cortex_m_common *cortex_m = target_to_cm(target);
404         struct armv7m_common *armv7m = &cortex_m->armv7m;
405         struct arm *arm = &armv7m->arm;
406         struct reg *r;
407
408         LOG_DEBUG(" ");
409
410         cortex_m_clear_halt(target);
411         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
412         if (retval != ERROR_OK)
413                 return retval;
414
415         retval = armv7m->examine_debug_reason(target);
416         if (retval != ERROR_OK)
417                 return retval;
418
419         /* Examine target state and mode
420          * First load register accessible through core debug port */
421         int num_regs = arm->core_cache->num_regs;
422
423         for (i = 0; i < num_regs; i++) {
424                 r = &armv7m->arm.core_cache->reg_list[i];
425                 if (!r->valid)
426                         arm->read_core_reg(target, r, i, ARM_MODE_ANY);
427         }
428
429         r = arm->cpsr;
430         xPSR = buf_get_u32(r->value, 0, 32);
431
432         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
433         if (xPSR & 0xf00) {
434                 r->dirty = r->valid;
435                 cortex_m_store_core_reg_u32(target, 16, xPSR & ~0xff);
436         }
437
438         /* Are we in an exception handler */
439         if (xPSR & 0x1FF) {
440                 armv7m->exception_number = (xPSR & 0x1FF);
441
442                 arm->core_mode = ARM_MODE_HANDLER;
443                 arm->map = armv7m_msp_reg_map;
444         } else {
445                 unsigned control = buf_get_u32(arm->core_cache
446                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
447
448                 /* is this thread privileged? */
449                 arm->core_mode = control & 1
450                         ? ARM_MODE_USER_THREAD
451                         : ARM_MODE_THREAD;
452
453                 /* which stack is it using? */
454                 if (control & 2)
455                         arm->map = armv7m_psp_reg_map;
456                 else
457                         arm->map = armv7m_msp_reg_map;
458
459                 armv7m->exception_number = 0;
460         }
461
462         if (armv7m->exception_number)
463                 cortex_m_examine_exception_reason(target);
464
465         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
466                 arm_mode_name(arm->core_mode),
467                 buf_get_u32(arm->pc->value, 0, 32),
468                 target_state_name(target));
469
470         if (armv7m->post_debug_entry) {
471                 retval = armv7m->post_debug_entry(target);
472                 if (retval != ERROR_OK)
473                         return retval;
474         }
475
476         return ERROR_OK;
477 }
478
479 static int cortex_m_poll(struct target *target)
480 {
481         int detected_failure = ERROR_OK;
482         int retval = ERROR_OK;
483         enum target_state prev_target_state = target->state;
484         struct cortex_m_common *cortex_m = target_to_cm(target);
485         struct armv7m_common *armv7m = &cortex_m->armv7m;
486
487         /* Read from Debug Halting Control and Status Register */
488         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
489         if (retval != ERROR_OK) {
490                 target->state = TARGET_UNKNOWN;
491                 return retval;
492         }
493
494         /* Recover from lockup.  See ARMv7-M architecture spec,
495          * section B1.5.15 "Unrecoverable exception cases".
496          */
497         if (cortex_m->dcb_dhcsr & S_LOCKUP) {
498                 LOG_ERROR("%s -- clearing lockup after double fault",
499                         target_name(target));
500                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
501                 target->debug_reason = DBG_REASON_DBGRQ;
502
503                 /* We have to execute the rest (the "finally" equivalent, but
504                  * still throw this exception again).
505                  */
506                 detected_failure = ERROR_FAIL;
507
508                 /* refresh status bits */
509                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
510                 if (retval != ERROR_OK)
511                         return retval;
512         }
513
514         if (cortex_m->dcb_dhcsr & S_RESET_ST) {
515                 target->state = TARGET_RESET;
516                 return ERROR_OK;
517         }
518
519         if (target->state == TARGET_RESET) {
520                 /* Cannot switch context while running so endreset is
521                  * called with target->state == TARGET_RESET
522                  */
523                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
524                         cortex_m->dcb_dhcsr);
525                 retval = cortex_m_endreset_event(target);
526                 if (retval != ERROR_OK) {
527                         target->state = TARGET_UNKNOWN;
528                         return retval;
529                 }
530                 target->state = TARGET_RUNNING;
531                 prev_target_state = TARGET_RUNNING;
532         }
533
534         if (cortex_m->dcb_dhcsr & S_HALT) {
535                 target->state = TARGET_HALTED;
536
537                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
538                         retval = cortex_m_debug_entry(target);
539                         if (retval != ERROR_OK)
540                                 return retval;
541
542                         if (arm_semihosting(target, &retval) != 0)
543                                 return retval;
544
545                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
546                 }
547                 if (prev_target_state == TARGET_DEBUG_RUNNING) {
548                         LOG_DEBUG(" ");
549                         retval = cortex_m_debug_entry(target);
550                         if (retval != ERROR_OK)
551                                 return retval;
552
553                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
554                 }
555         }
556
557         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
558          * How best to model low power modes?
559          */
560
561         if (target->state == TARGET_UNKNOWN) {
562                 /* check if processor is retiring instructions */
563                 if (cortex_m->dcb_dhcsr & S_RETIRE_ST) {
564                         target->state = TARGET_RUNNING;
565                         retval = ERROR_OK;
566                 }
567         }
568
569         /* Did we detect a failure condition that we cleared? */
570         if (detected_failure != ERROR_OK)
571                 retval = detected_failure;
572         return retval;
573 }
574
575 static int cortex_m_halt(struct target *target)
576 {
577         LOG_DEBUG("target->state: %s",
578                 target_state_name(target));
579
580         if (target->state == TARGET_HALTED) {
581                 LOG_DEBUG("target was already halted");
582                 return ERROR_OK;
583         }
584
585         if (target->state == TARGET_UNKNOWN)
586                 LOG_WARNING("target was in unknown state when halt was requested");
587
588         if (target->state == TARGET_RESET) {
589                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
590                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
591                         return ERROR_TARGET_FAILURE;
592                 } else {
593                         /* we came here in a reset_halt or reset_init sequence
594                          * debug entry was already prepared in cortex_m3_assert_reset()
595                          */
596                         target->debug_reason = DBG_REASON_DBGRQ;
597
598                         return ERROR_OK;
599                 }
600         }
601
602         /* Write to Debug Halting Control and Status Register */
603         cortex_m_write_debug_halt_mask(target, C_HALT, 0);
604
605         target->debug_reason = DBG_REASON_DBGRQ;
606
607         return ERROR_OK;
608 }
609
610 static int cortex_m_soft_reset_halt(struct target *target)
611 {
612         struct cortex_m_common *cortex_m = target_to_cm(target);
613         struct armv7m_common *armv7m = &cortex_m->armv7m;
614         uint32_t dcb_dhcsr = 0;
615         int retval, timeout = 0;
616
617         /* soft_reset_halt is deprecated on cortex_m as the same functionality
618          * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'
619          * As this reset only used VC_CORERESET it would only ever reset the cortex_m
620          * core, not the peripherals */
621         LOG_WARNING("soft_reset_halt is deprecated, please use 'reset halt' instead.");
622
623         /* Enter debug state on reset; restore DEMCR in endreset_event() */
624         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
625                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
626         if (retval != ERROR_OK)
627                 return retval;
628
629         /* Request a core-only reset */
630         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
631                         AIRCR_VECTKEY | AIRCR_VECTRESET);
632         if (retval != ERROR_OK)
633                 return retval;
634         target->state = TARGET_RESET;
635
636         /* registers are now invalid */
637         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
638
639         while (timeout < 100) {
640                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &dcb_dhcsr);
641                 if (retval == ERROR_OK) {
642                         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR,
643                                         &cortex_m->nvic_dfsr);
644                         if (retval != ERROR_OK)
645                                 return retval;
646                         if ((dcb_dhcsr & S_HALT)
647                                 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
648                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
649                                         "DFSR 0x%08x",
650                                         (unsigned) dcb_dhcsr,
651                                         (unsigned) cortex_m->nvic_dfsr);
652                                 cortex_m_poll(target);
653                                 /* FIXME restore user's vector catch config */
654                                 return ERROR_OK;
655                         } else
656                                 LOG_DEBUG("waiting for system reset-halt, "
657                                         "DHCSR 0x%08x, %d ms",
658                                         (unsigned) dcb_dhcsr, timeout);
659                 }
660                 timeout++;
661                 alive_sleep(1);
662         }
663
664         return ERROR_OK;
665 }
666
667 void cortex_m_enable_breakpoints(struct target *target)
668 {
669         struct breakpoint *breakpoint = target->breakpoints;
670
671         /* set any pending breakpoints */
672         while (breakpoint) {
673                 if (!breakpoint->set)
674                         cortex_m_set_breakpoint(target, breakpoint);
675                 breakpoint = breakpoint->next;
676         }
677 }
678
679 static int cortex_m_resume(struct target *target, int current,
680         target_addr_t address, int handle_breakpoints, int debug_execution)
681 {
682         struct armv7m_common *armv7m = target_to_armv7m(target);
683         struct breakpoint *breakpoint = NULL;
684         uint32_t resume_pc;
685         struct reg *r;
686
687         if (target->state != TARGET_HALTED) {
688                 LOG_WARNING("target not halted");
689                 return ERROR_TARGET_NOT_HALTED;
690         }
691
692         if (!debug_execution) {
693                 target_free_all_working_areas(target);
694                 cortex_m_enable_breakpoints(target);
695                 cortex_m_enable_watchpoints(target);
696         }
697
698         if (debug_execution) {
699                 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
700
701                 /* Disable interrupts */
702                 /* We disable interrupts in the PRIMASK register instead of
703                  * masking with C_MASKINTS.  This is probably the same issue
704                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
705                  * in parallel with disabled interrupts can cause local faults
706                  * to not be taken.
707                  *
708                  * REVISIT this clearly breaks non-debug execution, since the
709                  * PRIMASK register state isn't saved/restored...  workaround
710                  * by never resuming app code after debug execution.
711                  */
712                 buf_set_u32(r->value, 0, 1, 1);
713                 r->dirty = true;
714                 r->valid = true;
715
716                 /* Make sure we are in Thumb mode */
717                 r = armv7m->arm.cpsr;
718                 buf_set_u32(r->value, 24, 1, 1);
719                 r->dirty = true;
720                 r->valid = true;
721         }
722
723         /* current = 1: continue on current pc, otherwise continue at <address> */
724         r = armv7m->arm.pc;
725         if (!current) {
726                 buf_set_u32(r->value, 0, 32, address);
727                 r->dirty = true;
728                 r->valid = true;
729         }
730
731         /* if we halted last time due to a bkpt instruction
732          * then we have to manually step over it, otherwise
733          * the core will break again */
734
735         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
736                 && !debug_execution)
737                 armv7m_maybe_skip_bkpt_inst(target, NULL);
738
739         resume_pc = buf_get_u32(r->value, 0, 32);
740
741         armv7m_restore_context(target);
742
743         /* the front-end may request us not to handle breakpoints */
744         if (handle_breakpoints) {
745                 /* Single step past breakpoint at current address */
746                 breakpoint = breakpoint_find(target, resume_pc);
747                 if (breakpoint) {
748                         LOG_DEBUG("unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")",
749                                 breakpoint->address,
750                                 breakpoint->unique_id);
751                         cortex_m_unset_breakpoint(target, breakpoint);
752                         cortex_m_single_step_core(target);
753                         cortex_m_set_breakpoint(target, breakpoint);
754                 }
755         }
756
757         /* Restart core */
758         cortex_m_write_debug_halt_mask(target, 0, C_HALT);
759
760         target->debug_reason = DBG_REASON_NOTHALTED;
761
762         /* registers are now invalid */
763         register_cache_invalidate(armv7m->arm.core_cache);
764
765         if (!debug_execution) {
766                 target->state = TARGET_RUNNING;
767                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
768                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
769         } else {
770                 target->state = TARGET_DEBUG_RUNNING;
771                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
772                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
773         }
774
775         return ERROR_OK;
776 }
777
778 /* int irqstepcount = 0; */
779 static int cortex_m_step(struct target *target, int current,
780         target_addr_t address, int handle_breakpoints)
781 {
782         struct cortex_m_common *cortex_m = target_to_cm(target);
783         struct armv7m_common *armv7m = &cortex_m->armv7m;
784         struct breakpoint *breakpoint = NULL;
785         struct reg *pc = armv7m->arm.pc;
786         bool bkpt_inst_found = false;
787         int retval;
788         bool isr_timed_out = false;
789
790         if (target->state != TARGET_HALTED) {
791                 LOG_WARNING("target not halted");
792                 return ERROR_TARGET_NOT_HALTED;
793         }
794
795         /* current = 1: continue on current pc, otherwise continue at <address> */
796         if (!current)
797                 buf_set_u32(pc->value, 0, 32, address);
798
799         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
800
801         /* the front-end may request us not to handle breakpoints */
802         if (handle_breakpoints) {
803                 breakpoint = breakpoint_find(target, pc_value);
804                 if (breakpoint)
805                         cortex_m_unset_breakpoint(target, breakpoint);
806         }
807
808         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
809
810         target->debug_reason = DBG_REASON_SINGLESTEP;
811
812         armv7m_restore_context(target);
813
814         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
815
816         /* if no bkpt instruction is found at pc then we can perform
817          * a normal step, otherwise we have to manually step over the bkpt
818          * instruction - as such simulate a step */
819         if (bkpt_inst_found == false) {
820                 /* Automatic ISR masking mode off: Just step over the next instruction */
821                 if ((cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO))
822                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
823                 else {
824                         /* Process interrupts during stepping in a way they don't interfere
825                          * debugging.
826                          *
827                          * Principle:
828                          *
829                          * Set a temporary break point at the current pc and let the core run
830                          * with interrupts enabled. Pending interrupts get served and we run
831                          * into the breakpoint again afterwards. Then we step over the next
832                          * instruction with interrupts disabled.
833                          *
834                          * If the pending interrupts don't complete within time, we leave the
835                          * core running. This may happen if the interrupts trigger faster
836                          * than the core can process them or the handler doesn't return.
837                          *
838                          * If no more breakpoints are available we simply do a step with
839                          * interrupts enabled.
840                          *
841                          */
842
843                         /* 2012-09-29 ph
844                          *
845                          * If a break point is already set on the lower half word then a break point on
846                          * the upper half word will not break again when the core is restarted. So we
847                          * just step over the instruction with interrupts disabled.
848                          *
849                          * The documentation has no information about this, it was found by observation
850                          * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
851                          * suffer from this problem.
852                          *
853                          * To add some confusion: pc_value has bit 0 always set, while the breakpoint
854                          * address has it always cleared. The former is done to indicate thumb mode
855                          * to gdb.
856                          *
857                          */
858                         if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
859                                 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
860                                 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
861                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
862                                 /* Re-enable interrupts */
863                                 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
864                         }
865                         else {
866
867                                 /* Set a temporary break point */
868                                 if (breakpoint)
869                                         retval = cortex_m_set_breakpoint(target, breakpoint);
870                                 else
871                                         retval = breakpoint_add(target, pc_value, 2, BKPT_TYPE_BY_ADDR(pc_value));
872                                 bool tmp_bp_set = (retval == ERROR_OK);
873
874                                 /* No more breakpoints left, just do a step */
875                                 if (!tmp_bp_set)
876                                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
877                                 else {
878                                         /* Start the core */
879                                         LOG_DEBUG("Starting core to serve pending interrupts");
880                                         int64_t t_start = timeval_ms();
881                                         cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
882
883                                         /* Wait for pending handlers to complete or timeout */
884                                         do {
885                                                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap,
886                                                                 DCB_DHCSR,
887                                                                 &cortex_m->dcb_dhcsr);
888                                                 if (retval != ERROR_OK) {
889                                                         target->state = TARGET_UNKNOWN;
890                                                         return retval;
891                                                 }
892                                                 isr_timed_out = ((timeval_ms() - t_start) > 500);
893                                         } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
894
895                                         /* only remove breakpoint if we created it */
896                                         if (breakpoint)
897                                                 cortex_m_unset_breakpoint(target, breakpoint);
898                                         else {
899                                                 /* Remove the temporary breakpoint */
900                                                 breakpoint_remove(target, pc_value);
901                                         }
902
903                                         if (isr_timed_out) {
904                                                 LOG_DEBUG("Interrupt handlers didn't complete within time, "
905                                                         "leaving target running");
906                                         } else {
907                                                 /* Step over next instruction with interrupts disabled */
908                                                 cortex_m_write_debug_halt_mask(target,
909                                                         C_HALT | C_MASKINTS,
910                                                         0);
911                                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
912                                                 /* Re-enable interrupts */
913                                                 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
914                                         }
915                                 }
916                         }
917                 }
918         }
919
920         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
921         if (retval != ERROR_OK)
922                 return retval;
923
924         /* registers are now invalid */
925         register_cache_invalidate(armv7m->arm.core_cache);
926
927         if (breakpoint)
928                 cortex_m_set_breakpoint(target, breakpoint);
929
930         if (isr_timed_out) {
931                 /* Leave the core running. The user has to stop execution manually. */
932                 target->debug_reason = DBG_REASON_NOTHALTED;
933                 target->state = TARGET_RUNNING;
934                 return ERROR_OK;
935         }
936
937         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
938                 " nvic_icsr = 0x%" PRIx32,
939                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
940
941         retval = cortex_m_debug_entry(target);
942         if (retval != ERROR_OK)
943                 return retval;
944         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
945
946         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
947                 " nvic_icsr = 0x%" PRIx32,
948                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
949
950         return ERROR_OK;
951 }
952
953 static int cortex_m_assert_reset(struct target *target)
954 {
955         struct cortex_m_common *cortex_m = target_to_cm(target);
956         struct armv7m_common *armv7m = &cortex_m->armv7m;
957         enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
958
959         LOG_DEBUG("target->state: %s",
960                 target_state_name(target));
961
962         enum reset_types jtag_reset_config = jtag_get_reset_config();
963
964         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
965                 /* allow scripts to override the reset event */
966
967                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
968                 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
969                 target->state = TARGET_RESET;
970
971                 return ERROR_OK;
972         }
973
974         /* some cores support connecting while srst is asserted
975          * use that mode is it has been configured */
976
977         bool srst_asserted = false;
978
979         if (!target_was_examined(target)) {
980                 if (jtag_reset_config & RESET_HAS_SRST) {
981                         adapter_assert_reset();
982                         if (target->reset_halt)
983                                 LOG_ERROR("Target not examined, will not halt after reset!");
984                         return ERROR_OK;
985                 } else {
986                         LOG_ERROR("Target not examined, reset NOT asserted!");
987                         return ERROR_FAIL;
988                 }
989         }
990
991         if ((jtag_reset_config & RESET_HAS_SRST) &&
992             (jtag_reset_config & RESET_SRST_NO_GATING)) {
993                 adapter_assert_reset();
994                 srst_asserted = true;
995         }
996
997         /* Enable debug requests */
998         int retval;
999         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
1000         /* Store important errors instead of failing and proceed to reset assert */
1001
1002         if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN))
1003                 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
1004
1005         /* If the processor is sleeping in a WFI or WFE instruction, the
1006          * C_HALT bit must be asserted to regain control */
1007         if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP))
1008                 retval = cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1009
1010         mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
1011         /* Ignore less important errors */
1012
1013         if (!target->reset_halt) {
1014                 /* Set/Clear C_MASKINTS in a separate operation */
1015                 if (cortex_m->dcb_dhcsr & C_MASKINTS)
1016                         cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
1017
1018                 /* clear any debug flags before resuming */
1019                 cortex_m_clear_halt(target);
1020
1021                 /* clear C_HALT in dhcsr reg */
1022                 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1023         } else {
1024                 /* Halt in debug on reset; endreset_event() restores DEMCR.
1025                  *
1026                  * REVISIT catching BUSERR presumably helps to defend against
1027                  * bad vector table entries.  Should this include MMERR or
1028                  * other flags too?
1029                  */
1030                 int retval2;
1031                 retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR,
1032                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1033                 if (retval != ERROR_OK || retval2 != ERROR_OK)
1034                         LOG_INFO("AP write error, reset will not halt");
1035         }
1036
1037         if (jtag_reset_config & RESET_HAS_SRST) {
1038                 /* default to asserting srst */
1039                 if (!srst_asserted)
1040                         adapter_assert_reset();
1041
1042                 /* srst is asserted, ignore AP access errors */
1043                 retval = ERROR_OK;
1044         } else {
1045                 /* Use a standard Cortex-M3 software reset mechanism.
1046                  * We default to using VECRESET as it is supported on all current cores.
1047                  * This has the disadvantage of not resetting the peripherals, so a
1048                  * reset-init event handler is needed to perform any peripheral resets.
1049                  */
1050                 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1051                         ? "SYSRESETREQ" : "VECTRESET");
1052
1053                 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1054                         LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1055                                 "handler to reset any peripherals or configure hardware srst support.");
1056                 }
1057
1058                 int retval3;
1059                 retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
1060                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1061                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1062                 if (retval3 != ERROR_OK)
1063                         LOG_DEBUG("Ignoring AP write error right after reset");
1064
1065                 retval3 = dap_dp_init(armv7m->debug_ap->dap);
1066                 if (retval3 != ERROR_OK)
1067                         LOG_ERROR("DP initialisation failed");
1068
1069                 else {
1070                         /* I do not know why this is necessary, but it
1071                          * fixes strange effects (step/resume cause NMI
1072                          * after reset) on LM3S6918 -- Michael Schwingen
1073                          */
1074                         uint32_t tmp;
1075                         mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp);
1076                 }
1077         }
1078
1079         target->state = TARGET_RESET;
1080         jtag_add_sleep(50000);
1081
1082         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1083
1084         /* now return stored error code if any */
1085         if (retval != ERROR_OK)
1086                 return retval;
1087
1088         if (target->reset_halt) {
1089                 retval = target_halt(target);
1090                 if (retval != ERROR_OK)
1091                         return retval;
1092         }
1093
1094         return ERROR_OK;
1095 }
1096
1097 static int cortex_m_deassert_reset(struct target *target)
1098 {
1099         struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
1100
1101         LOG_DEBUG("target->state: %s",
1102                 target_state_name(target));
1103
1104         /* deassert reset lines */
1105         adapter_deassert_reset();
1106
1107         enum reset_types jtag_reset_config = jtag_get_reset_config();
1108
1109         if ((jtag_reset_config & RESET_HAS_SRST) &&
1110             !(jtag_reset_config & RESET_SRST_NO_GATING) &&
1111                 target_was_examined(target)) {
1112                 int retval = dap_dp_init(armv7m->debug_ap->dap);
1113                 if (retval != ERROR_OK) {
1114                         LOG_ERROR("DP initialisation failed");
1115                         return retval;
1116                 }
1117         }
1118
1119         return ERROR_OK;
1120 }
1121
1122 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1123 {
1124         int retval;
1125         int fp_num = 0;
1126         struct cortex_m_common *cortex_m = target_to_cm(target);
1127         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1128
1129         if (breakpoint->set) {
1130                 LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1131                 return ERROR_OK;
1132         }
1133
1134         if (cortex_m->auto_bp_type)
1135                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1136
1137         if (breakpoint->type == BKPT_HARD) {
1138                 uint32_t fpcr_value;
1139                 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1140                         fp_num++;
1141                 if (fp_num >= cortex_m->fp_num_code) {
1142                         LOG_ERROR("Can not find free FPB Comparator!");
1143                         return ERROR_FAIL;
1144                 }
1145                 breakpoint->set = fp_num + 1;
1146                 fpcr_value = breakpoint->address | 1;
1147                 if (cortex_m->fp_rev == 0) {
1148                         uint32_t hilo;
1149                         hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1150                         fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1;
1151                 } else if (cortex_m->fp_rev > 1) {
1152                         LOG_ERROR("Unhandled Cortex-M Flash Patch Breakpoint architecture revision");
1153                         return ERROR_FAIL;
1154                 }
1155                 comparator_list[fp_num].used = 1;
1156                 comparator_list[fp_num].fpcr_value = fpcr_value;
1157                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1158                         comparator_list[fp_num].fpcr_value);
1159                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1160                         fp_num,
1161                         comparator_list[fp_num].fpcr_value);
1162                 if (!cortex_m->fpb_enabled) {
1163                         LOG_DEBUG("FPB wasn't enabled, do it now");
1164                         retval = cortex_m_enable_fpb(target);
1165                         if (retval != ERROR_OK) {
1166                                 LOG_ERROR("Failed to enable the FPB");
1167                                 return retval;
1168                         }
1169
1170                         cortex_m->fpb_enabled = 1;
1171                 }
1172         } else if (breakpoint->type == BKPT_SOFT) {
1173                 uint8_t code[4];
1174
1175                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1176                  * semihosting; don't use that.  Otherwise the BKPT
1177                  * parameter is arbitrary.
1178                  */
1179                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1180                 retval = target_read_memory(target,
1181                                 breakpoint->address & 0xFFFFFFFE,
1182                                 breakpoint->length, 1,
1183                                 breakpoint->orig_instr);
1184                 if (retval != ERROR_OK)
1185                         return retval;
1186                 retval = target_write_memory(target,
1187                                 breakpoint->address & 0xFFFFFFFE,
1188                                 breakpoint->length, 1,
1189                                 code);
1190                 if (retval != ERROR_OK)
1191                         return retval;
1192                 breakpoint->set = true;
1193         }
1194
1195         LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1196                 breakpoint->unique_id,
1197                 (int)(breakpoint->type),
1198                 breakpoint->address,
1199                 breakpoint->length,
1200                 breakpoint->set);
1201
1202         return ERROR_OK;
1203 }
1204
1205 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1206 {
1207         int retval;
1208         struct cortex_m_common *cortex_m = target_to_cm(target);
1209         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1210
1211         if (!breakpoint->set) {
1212                 LOG_WARNING("breakpoint not set");
1213                 return ERROR_OK;
1214         }
1215
1216         LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1217                 breakpoint->unique_id,
1218                 (int)(breakpoint->type),
1219                 breakpoint->address,
1220                 breakpoint->length,
1221                 breakpoint->set);
1222
1223         if (breakpoint->type == BKPT_HARD) {
1224                 int fp_num = breakpoint->set - 1;
1225                 if ((fp_num < 0) || (fp_num >= cortex_m->fp_num_code)) {
1226                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1227                         return ERROR_OK;
1228                 }
1229                 comparator_list[fp_num].used = 0;
1230                 comparator_list[fp_num].fpcr_value = 0;
1231                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1232                         comparator_list[fp_num].fpcr_value);
1233         } else {
1234                 /* restore original instruction (kept in target endianness) */
1235                 if (breakpoint->length == 4) {
1236                         retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1237                                         breakpoint->orig_instr);
1238                         if (retval != ERROR_OK)
1239                                 return retval;
1240                 } else {
1241                         retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1242                                         breakpoint->orig_instr);
1243                         if (retval != ERROR_OK)
1244                                 return retval;
1245                 }
1246         }
1247         breakpoint->set = false;
1248
1249         return ERROR_OK;
1250 }
1251
1252 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1253 {
1254         struct cortex_m_common *cortex_m = target_to_cm(target);
1255
1256         if (cortex_m->auto_bp_type)
1257                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1258
1259         if (breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1260                 if (breakpoint->type == BKPT_HARD) {
1261                         LOG_INFO("flash patch comparator requested outside code memory region");
1262                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1263                 }
1264
1265                 if (breakpoint->type == BKPT_SOFT) {
1266                         LOG_INFO("soft breakpoint requested in code (flash) memory region");
1267                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1268                 }
1269         }
1270
1271         if ((breakpoint->type == BKPT_HARD) && (cortex_m->fp_code_available < 1)) {
1272                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1273                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1274         }
1275
1276         if (breakpoint->length == 3) {
1277                 LOG_DEBUG("Using a two byte breakpoint for 32bit Thumb-2 request");
1278                 breakpoint->length = 2;
1279         }
1280
1281         if ((breakpoint->length != 2)) {
1282                 LOG_INFO("only breakpoints of two bytes length supported");
1283                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1284         }
1285
1286         if (breakpoint->type == BKPT_HARD)
1287                 cortex_m->fp_code_available--;
1288
1289         return cortex_m_set_breakpoint(target, breakpoint);
1290 }
1291
1292 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1293 {
1294         struct cortex_m_common *cortex_m = target_to_cm(target);
1295
1296         /* REVISIT why check? FBP can be updated with core running ... */
1297         if (target->state != TARGET_HALTED) {
1298                 LOG_WARNING("target not halted");
1299                 return ERROR_TARGET_NOT_HALTED;
1300         }
1301
1302         if (cortex_m->auto_bp_type)
1303                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1304
1305         if (breakpoint->set)
1306                 cortex_m_unset_breakpoint(target, breakpoint);
1307
1308         if (breakpoint->type == BKPT_HARD)
1309                 cortex_m->fp_code_available++;
1310
1311         return ERROR_OK;
1312 }
1313
1314 int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1315 {
1316         int dwt_num = 0;
1317         uint32_t mask, temp;
1318         struct cortex_m_common *cortex_m = target_to_cm(target);
1319
1320         /* watchpoint params were validated earlier */
1321         mask = 0;
1322         temp = watchpoint->length;
1323         while (temp) {
1324                 temp >>= 1;
1325                 mask++;
1326         }
1327         mask--;
1328
1329         /* REVISIT Don't fully trust these "not used" records ... users
1330          * may set up breakpoints by hand, e.g. dual-address data value
1331          * watchpoint using comparator #1; comparator #0 matching cycle
1332          * count; send data trace info through ITM and TPIU; etc
1333          */
1334         struct cortex_m_dwt_comparator *comparator;
1335
1336         for (comparator = cortex_m->dwt_comparator_list;
1337                 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1338                 comparator++, dwt_num++)
1339                 continue;
1340         if (dwt_num >= cortex_m->dwt_num_comp) {
1341                 LOG_ERROR("Can not find free DWT Comparator");
1342                 return ERROR_FAIL;
1343         }
1344         comparator->used = 1;
1345         watchpoint->set = dwt_num + 1;
1346
1347         comparator->comp = watchpoint->address;
1348         target_write_u32(target, comparator->dwt_comparator_address + 0,
1349                 comparator->comp);
1350
1351         comparator->mask = mask;
1352         target_write_u32(target, comparator->dwt_comparator_address + 4,
1353                 comparator->mask);
1354
1355         switch (watchpoint->rw) {
1356                 case WPT_READ:
1357                         comparator->function = 5;
1358                         break;
1359                 case WPT_WRITE:
1360                         comparator->function = 6;
1361                         break;
1362                 case WPT_ACCESS:
1363                         comparator->function = 7;
1364                         break;
1365         }
1366         target_write_u32(target, comparator->dwt_comparator_address + 8,
1367                 comparator->function);
1368
1369         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1370                 watchpoint->unique_id, dwt_num,
1371                 (unsigned) comparator->comp,
1372                 (unsigned) comparator->mask,
1373                 (unsigned) comparator->function);
1374         return ERROR_OK;
1375 }
1376
1377 int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1378 {
1379         struct cortex_m_common *cortex_m = target_to_cm(target);
1380         struct cortex_m_dwt_comparator *comparator;
1381         int dwt_num;
1382
1383         if (!watchpoint->set) {
1384                 LOG_WARNING("watchpoint (wpid: %d) not set",
1385                         watchpoint->unique_id);
1386                 return ERROR_OK;
1387         }
1388
1389         dwt_num = watchpoint->set - 1;
1390
1391         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1392                 watchpoint->unique_id, dwt_num,
1393                 (unsigned) watchpoint->address);
1394
1395         if ((dwt_num < 0) || (dwt_num >= cortex_m->dwt_num_comp)) {
1396                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1397                 return ERROR_OK;
1398         }
1399
1400         comparator = cortex_m->dwt_comparator_list + dwt_num;
1401         comparator->used = 0;
1402         comparator->function = 0;
1403         target_write_u32(target, comparator->dwt_comparator_address + 8,
1404                 comparator->function);
1405
1406         watchpoint->set = false;
1407
1408         return ERROR_OK;
1409 }
1410
1411 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1412 {
1413         struct cortex_m_common *cortex_m = target_to_cm(target);
1414
1415         if (cortex_m->dwt_comp_available < 1) {
1416                 LOG_DEBUG("no comparators?");
1417                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1418         }
1419
1420         /* hardware doesn't support data value masking */
1421         if (watchpoint->mask != ~(uint32_t)0) {
1422                 LOG_DEBUG("watchpoint value masks not supported");
1423                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1424         }
1425
1426         /* hardware allows address masks of up to 32K */
1427         unsigned mask;
1428
1429         for (mask = 0; mask < 16; mask++) {
1430                 if ((1u << mask) == watchpoint->length)
1431                         break;
1432         }
1433         if (mask == 16) {
1434                 LOG_DEBUG("unsupported watchpoint length");
1435                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1436         }
1437         if (watchpoint->address & ((1 << mask) - 1)) {
1438                 LOG_DEBUG("watchpoint address is unaligned");
1439                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1440         }
1441
1442         /* Caller doesn't seem to be able to describe watching for data
1443          * values of zero; that flags "no value".
1444          *
1445          * REVISIT This DWT may well be able to watch for specific data
1446          * values.  Requires comparator #1 to set DATAVMATCH and match
1447          * the data, and another comparator (DATAVADDR0) matching addr.
1448          */
1449         if (watchpoint->value) {
1450                 LOG_DEBUG("data value watchpoint not YET supported");
1451                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1452         }
1453
1454         cortex_m->dwt_comp_available--;
1455         LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1456
1457         return ERROR_OK;
1458 }
1459
1460 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1461 {
1462         struct cortex_m_common *cortex_m = target_to_cm(target);
1463
1464         /* REVISIT why check? DWT can be updated with core running ... */
1465         if (target->state != TARGET_HALTED) {
1466                 LOG_WARNING("target not halted");
1467                 return ERROR_TARGET_NOT_HALTED;
1468         }
1469
1470         if (watchpoint->set)
1471                 cortex_m_unset_watchpoint(target, watchpoint);
1472
1473         cortex_m->dwt_comp_available++;
1474         LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1475
1476         return ERROR_OK;
1477 }
1478
1479 void cortex_m_enable_watchpoints(struct target *target)
1480 {
1481         struct watchpoint *watchpoint = target->watchpoints;
1482
1483         /* set any pending watchpoints */
1484         while (watchpoint) {
1485                 if (!watchpoint->set)
1486                         cortex_m_set_watchpoint(target, watchpoint);
1487                 watchpoint = watchpoint->next;
1488         }
1489 }
1490
1491 static int cortex_m_load_core_reg_u32(struct target *target,
1492                 uint32_t num, uint32_t *value)
1493 {
1494         int retval;
1495
1496         /* NOTE:  we "know" here that the register identifiers used
1497          * in the v7m header match the Cortex-M3 Debug Core Register
1498          * Selector values for R0..R15, xPSR, MSP, and PSP.
1499          */
1500         switch (num) {
1501                 case 0 ... 18:
1502                         /* read a normal core register */
1503                         retval = cortexm_dap_read_coreregister_u32(target, value, num);
1504
1505                         if (retval != ERROR_OK) {
1506                                 LOG_ERROR("JTAG failure %i", retval);
1507                                 return ERROR_JTAG_DEVICE_ERROR;
1508                         }
1509                         LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "", (int)num, *value);
1510                         break;
1511
1512                 case ARMV7M_FPSCR:
1513                         /* Floating-point Status and Registers */
1514                         retval = target_write_u32(target, DCB_DCRSR, 0x21);
1515                         if (retval != ERROR_OK)
1516                                 return retval;
1517                         retval = target_read_u32(target, DCB_DCRDR, value);
1518                         if (retval != ERROR_OK)
1519                                 return retval;
1520                         LOG_DEBUG("load from FPSCR  value 0x%" PRIx32, *value);
1521                         break;
1522
1523                 case ARMV7M_S0 ... ARMV7M_S31:
1524                         /* Floating-point Status and Registers */
1525                         retval = target_write_u32(target, DCB_DCRSR, num - ARMV7M_S0 + 0x40);
1526                         if (retval != ERROR_OK)
1527                                 return retval;
1528                         retval = target_read_u32(target, DCB_DCRDR, value);
1529                         if (retval != ERROR_OK)
1530                                 return retval;
1531                         LOG_DEBUG("load from FPU reg S%d  value 0x%" PRIx32,
1532                                   (int)(num - ARMV7M_S0), *value);
1533                         break;
1534
1535                 case ARMV7M_PRIMASK:
1536                 case ARMV7M_BASEPRI:
1537                 case ARMV7M_FAULTMASK:
1538                 case ARMV7M_CONTROL:
1539                         /* Cortex-M3 packages these four registers as bitfields
1540                          * in one Debug Core register.  So say r0 and r2 docs;
1541                          * it was removed from r1 docs, but still works.
1542                          */
1543                         cortexm_dap_read_coreregister_u32(target, value, 20);
1544
1545                         switch (num) {
1546                                 case ARMV7M_PRIMASK:
1547                                         *value = buf_get_u32((uint8_t *)value, 0, 1);
1548                                         break;
1549
1550                                 case ARMV7M_BASEPRI:
1551                                         *value = buf_get_u32((uint8_t *)value, 8, 8);
1552                                         break;
1553
1554                                 case ARMV7M_FAULTMASK:
1555                                         *value = buf_get_u32((uint8_t *)value, 16, 1);
1556                                         break;
1557
1558                                 case ARMV7M_CONTROL:
1559                                         *value = buf_get_u32((uint8_t *)value, 24, 2);
1560                                         break;
1561                         }
1562
1563                         LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1564                         break;
1565
1566                 default:
1567                         return ERROR_COMMAND_SYNTAX_ERROR;
1568         }
1569
1570         return ERROR_OK;
1571 }
1572
1573 static int cortex_m_store_core_reg_u32(struct target *target,
1574                 uint32_t num, uint32_t value)
1575 {
1576         int retval;
1577         uint32_t reg;
1578         struct armv7m_common *armv7m = target_to_armv7m(target);
1579
1580         /* NOTE:  we "know" here that the register identifiers used
1581          * in the v7m header match the Cortex-M3 Debug Core Register
1582          * Selector values for R0..R15, xPSR, MSP, and PSP.
1583          */
1584         switch (num) {
1585                 case 0 ... 18:
1586                         retval = cortexm_dap_write_coreregister_u32(target, value, num);
1587                         if (retval != ERROR_OK) {
1588                                 struct reg *r;
1589
1590                                 LOG_ERROR("JTAG failure");
1591                                 r = armv7m->arm.core_cache->reg_list + num;
1592                                 r->dirty = r->valid;
1593                                 return ERROR_JTAG_DEVICE_ERROR;
1594                         }
1595                         LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1596                         break;
1597
1598                 case ARMV7M_FPSCR:
1599                         /* Floating-point Status and Registers */
1600                         retval = target_write_u32(target, DCB_DCRDR, value);
1601                         if (retval != ERROR_OK)
1602                                 return retval;
1603                         retval = target_write_u32(target, DCB_DCRSR, 0x21 | (1<<16));
1604                         if (retval != ERROR_OK)
1605                                 return retval;
1606                         LOG_DEBUG("write FPSCR value 0x%" PRIx32, value);
1607                         break;
1608
1609                 case ARMV7M_S0 ... ARMV7M_S31:
1610                         /* Floating-point Status and Registers */
1611                         retval = target_write_u32(target, DCB_DCRDR, value);
1612                         if (retval != ERROR_OK)
1613                                 return retval;
1614                         retval = target_write_u32(target, DCB_DCRSR, (num - ARMV7M_S0 + 0x40) | (1<<16));
1615                         if (retval != ERROR_OK)
1616                                 return retval;
1617                         LOG_DEBUG("write FPU reg S%d  value 0x%" PRIx32,
1618                                   (int)(num - ARMV7M_S0), value);
1619                         break;
1620
1621                 case ARMV7M_PRIMASK:
1622                 case ARMV7M_BASEPRI:
1623                 case ARMV7M_FAULTMASK:
1624                 case ARMV7M_CONTROL:
1625                         /* Cortex-M3 packages these four registers as bitfields
1626                          * in one Debug Core register.  So say r0 and r2 docs;
1627                          * it was removed from r1 docs, but still works.
1628                          */
1629                         cortexm_dap_read_coreregister_u32(target, &reg, 20);
1630
1631                         switch (num) {
1632                                 case ARMV7M_PRIMASK:
1633                                         buf_set_u32((uint8_t *)&reg, 0, 1, value);
1634                                         break;
1635
1636                                 case ARMV7M_BASEPRI:
1637                                         buf_set_u32((uint8_t *)&reg, 8, 8, value);
1638                                         break;
1639
1640                                 case ARMV7M_FAULTMASK:
1641                                         buf_set_u32((uint8_t *)&reg, 16, 1, value);
1642                                         break;
1643
1644                                 case ARMV7M_CONTROL:
1645                                         buf_set_u32((uint8_t *)&reg, 24, 2, value);
1646                                         break;
1647                         }
1648
1649                         cortexm_dap_write_coreregister_u32(target, reg, 20);
1650
1651                         LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1652                         break;
1653
1654                 default:
1655                         return ERROR_COMMAND_SYNTAX_ERROR;
1656         }
1657
1658         return ERROR_OK;
1659 }
1660
1661 static int cortex_m_read_memory(struct target *target, target_addr_t address,
1662         uint32_t size, uint32_t count, uint8_t *buffer)
1663 {
1664         struct armv7m_common *armv7m = target_to_armv7m(target);
1665
1666         if (armv7m->arm.is_armv6m) {
1667                 /* armv6m does not handle unaligned memory access */
1668                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1669                         return ERROR_TARGET_UNALIGNED_ACCESS;
1670         }
1671
1672         return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address);
1673 }
1674
1675 static int cortex_m_write_memory(struct target *target, target_addr_t address,
1676         uint32_t size, uint32_t count, const uint8_t *buffer)
1677 {
1678         struct armv7m_common *armv7m = target_to_armv7m(target);
1679
1680         if (armv7m->arm.is_armv6m) {
1681                 /* armv6m does not handle unaligned memory access */
1682                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1683                         return ERROR_TARGET_UNALIGNED_ACCESS;
1684         }
1685
1686         return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address);
1687 }
1688
1689 static int cortex_m_init_target(struct command_context *cmd_ctx,
1690         struct target *target)
1691 {
1692         armv7m_build_reg_cache(target);
1693         arm_semihosting_init(target);
1694         return ERROR_OK;
1695 }
1696
1697 void cortex_m_deinit_target(struct target *target)
1698 {
1699         struct cortex_m_common *cortex_m = target_to_cm(target);
1700
1701         free(cortex_m->fp_comparator_list);
1702
1703         cortex_m_dwt_free(target);
1704         armv7m_free_reg_cache(target);
1705
1706         free(target->private_config);
1707         free(cortex_m);
1708 }
1709
1710 int cortex_m_profiling(struct target *target, uint32_t *samples,
1711                               uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1712 {
1713         struct timeval timeout, now;
1714         struct armv7m_common *armv7m = target_to_armv7m(target);
1715         uint32_t reg_value;
1716         bool use_pcsr = false;
1717         int retval = ERROR_OK;
1718         struct reg *reg;
1719
1720         gettimeofday(&timeout, NULL);
1721         timeval_add_time(&timeout, seconds, 0);
1722
1723         retval = target_read_u32(target, DWT_PCSR, &reg_value);
1724         if (retval != ERROR_OK) {
1725                 LOG_ERROR("Error while reading PCSR");
1726                 return retval;
1727         }
1728
1729         if (reg_value != 0) {
1730                 use_pcsr = true;
1731                 LOG_INFO("Starting Cortex-M profiling. Sampling DWT_PCSR as fast as we can...");
1732         } else {
1733                 LOG_INFO("Starting profiling. Halting and resuming the"
1734                          " target as often as we can...");
1735                 reg = register_get_by_name(target->reg_cache, "pc", 1);
1736         }
1737
1738         /* Make sure the target is running */
1739         target_poll(target);
1740         if (target->state == TARGET_HALTED)
1741                 retval = target_resume(target, 1, 0, 0, 0);
1742
1743         if (retval != ERROR_OK) {
1744                 LOG_ERROR("Error while resuming target");
1745                 return retval;
1746         }
1747
1748         uint32_t sample_count = 0;
1749
1750         for (;;) {
1751                 if (use_pcsr) {
1752                         if (armv7m && armv7m->debug_ap) {
1753                                 uint32_t read_count = max_num_samples - sample_count;
1754                                 if (read_count > 1024)
1755                                         read_count = 1024;
1756
1757                                 retval = mem_ap_read_buf_noincr(armv7m->debug_ap,
1758                                                         (void *)&samples[sample_count],
1759                                                         4, read_count, DWT_PCSR);
1760                                 sample_count += read_count;
1761                         } else {
1762                                 target_read_u32(target, DWT_PCSR, &samples[sample_count++]);
1763                         }
1764                 } else {
1765                         target_poll(target);
1766                         if (target->state == TARGET_HALTED) {
1767                                 reg_value = buf_get_u32(reg->value, 0, 32);
1768                                 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1769                                 retval = target_resume(target, 1, 0, 0, 0);
1770                                 samples[sample_count++] = reg_value;
1771                                 target_poll(target);
1772                                 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1773                         } else if (target->state == TARGET_RUNNING) {
1774                                 /* We want to quickly sample the PC. */
1775                                 retval = target_halt(target);
1776                         } else {
1777                                 LOG_INFO("Target not halted or running");
1778                                 retval = ERROR_OK;
1779                                 break;
1780                         }
1781                 }
1782
1783                 if (retval != ERROR_OK) {
1784                         LOG_ERROR("Error while reading %s", use_pcsr ? "PCSR" : "target pc");
1785                         return retval;
1786                 }
1787
1788
1789                 gettimeofday(&now, NULL);
1790                 if (sample_count >= max_num_samples || timeval_compare(&now, &timeout) > 0) {
1791                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1792                         break;
1793                 }
1794         }
1795
1796         *num_samples = sample_count;
1797         return retval;
1798 }
1799
1800
1801 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1802  * on r/w if the core is not running, and clear on resume or reset ... or
1803  * at least, in a post_restore_context() method.
1804  */
1805
1806 struct dwt_reg_state {
1807         struct target *target;
1808         uint32_t addr;
1809         uint8_t value[4];               /* scratch/cache */
1810 };
1811
1812 static int cortex_m_dwt_get_reg(struct reg *reg)
1813 {
1814         struct dwt_reg_state *state = reg->arch_info;
1815
1816         uint32_t tmp;
1817         int retval = target_read_u32(state->target, state->addr, &tmp);
1818         if (retval != ERROR_OK)
1819                 return retval;
1820
1821         buf_set_u32(state->value, 0, 32, tmp);
1822         return ERROR_OK;
1823 }
1824
1825 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
1826 {
1827         struct dwt_reg_state *state = reg->arch_info;
1828
1829         return target_write_u32(state->target, state->addr,
1830                         buf_get_u32(buf, 0, reg->size));
1831 }
1832
1833 struct dwt_reg {
1834         uint32_t addr;
1835         char *name;
1836         unsigned size;
1837 };
1838
1839 static struct dwt_reg dwt_base_regs[] = {
1840         { DWT_CTRL, "dwt_ctrl", 32, },
1841         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1842          * increments while the core is asleep.
1843          */
1844         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1845         /* plus some 8 bit counters, useful for profiling with TPIU */
1846 };
1847
1848 static struct dwt_reg dwt_comp[] = {
1849 #define DWT_COMPARATOR(i) \
1850                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1851                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1852                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1853         DWT_COMPARATOR(0),
1854         DWT_COMPARATOR(1),
1855         DWT_COMPARATOR(2),
1856         DWT_COMPARATOR(3),
1857 #undef DWT_COMPARATOR
1858 };
1859
1860 static const struct reg_arch_type dwt_reg_type = {
1861         .get = cortex_m_dwt_get_reg,
1862         .set = cortex_m_dwt_set_reg,
1863 };
1864
1865 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1866 {
1867         struct dwt_reg_state *state;
1868
1869         state = calloc(1, sizeof *state);
1870         if (!state)
1871                 return;
1872         state->addr = d->addr;
1873         state->target = t;
1874
1875         r->name = d->name;
1876         r->size = d->size;
1877         r->value = state->value;
1878         r->arch_info = state;
1879         r->type = &dwt_reg_type;
1880 }
1881
1882 void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
1883 {
1884         uint32_t dwtcr;
1885         struct reg_cache *cache;
1886         struct cortex_m_dwt_comparator *comparator;
1887         int reg, i;
1888
1889         target_read_u32(target, DWT_CTRL, &dwtcr);
1890         if (!dwtcr) {
1891                 LOG_DEBUG("no DWT");
1892                 return;
1893         }
1894
1895         cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
1896         cm->dwt_comp_available = cm->dwt_num_comp;
1897         cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
1898                         sizeof(struct cortex_m_dwt_comparator));
1899         if (!cm->dwt_comparator_list) {
1900 fail0:
1901                 cm->dwt_num_comp = 0;
1902                 LOG_ERROR("out of mem");
1903                 return;
1904         }
1905
1906         cache = calloc(1, sizeof *cache);
1907         if (!cache) {
1908 fail1:
1909                 free(cm->dwt_comparator_list);
1910                 goto fail0;
1911         }
1912         cache->name = "Cortex-M DWT registers";
1913         cache->num_regs = 2 + cm->dwt_num_comp * 3;
1914         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1915         if (!cache->reg_list) {
1916                 free(cache);
1917                 goto fail1;
1918         }
1919
1920         for (reg = 0; reg < 2; reg++)
1921                 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1922                         dwt_base_regs + reg);
1923
1924         comparator = cm->dwt_comparator_list;
1925         for (i = 0; i < cm->dwt_num_comp; i++, comparator++) {
1926                 int j;
1927
1928                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1929                 for (j = 0; j < 3; j++, reg++)
1930                         cortex_m_dwt_addreg(target, cache->reg_list + reg,
1931                                 dwt_comp + 3 * i + j);
1932
1933                 /* make sure we clear any watchpoints enabled on the target */
1934                 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1935         }
1936
1937         *register_get_last_cache_p(&target->reg_cache) = cache;
1938         cm->dwt_cache = cache;
1939
1940         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1941                 dwtcr, cm->dwt_num_comp,
1942                 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1943
1944         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1945          * implement single-address data value watchpoints ... so we
1946          * won't need to check it later, when asked to set one up.
1947          */
1948 }
1949
1950 static void cortex_m_dwt_free(struct target *target)
1951 {
1952         struct cortex_m_common *cm = target_to_cm(target);
1953         struct reg_cache *cache = cm->dwt_cache;
1954
1955         free(cm->dwt_comparator_list);
1956         cm->dwt_comparator_list = NULL;
1957         cm->dwt_num_comp = 0;
1958
1959         if (cache) {
1960                 register_unlink_cache(&target->reg_cache, cache);
1961
1962                 if (cache->reg_list) {
1963                         for (size_t i = 0; i < cache->num_regs; i++)
1964                                 free(cache->reg_list[i].arch_info);
1965                         free(cache->reg_list);
1966                 }
1967                 free(cache);
1968         }
1969         cm->dwt_cache = NULL;
1970 }
1971
1972 #define MVFR0 0xe000ef40
1973 #define MVFR1 0xe000ef44
1974
1975 #define MVFR0_DEFAULT_M4 0x10110021
1976 #define MVFR1_DEFAULT_M4 0x11000011
1977
1978 #define MVFR0_DEFAULT_M7_SP 0x10110021
1979 #define MVFR0_DEFAULT_M7_DP 0x10110221
1980 #define MVFR1_DEFAULT_M7_SP 0x11000011
1981 #define MVFR1_DEFAULT_M7_DP 0x12000011
1982
1983 int cortex_m_examine(struct target *target)
1984 {
1985         int retval;
1986         uint32_t cpuid, fpcr, mvfr0, mvfr1;
1987         int i;
1988         struct cortex_m_common *cortex_m = target_to_cm(target);
1989         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
1990         struct armv7m_common *armv7m = target_to_armv7m(target);
1991
1992         /* stlink shares the examine handler but does not support
1993          * all its calls */
1994         if (!armv7m->stlink) {
1995                 if (cortex_m->apsel < 0) {
1996                         /* Search for the MEM-AP */
1997                         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7m->debug_ap);
1998                         if (retval != ERROR_OK) {
1999                                 LOG_ERROR("Could not find MEM-AP to control the core");
2000                                 return retval;
2001                         }
2002                 } else {
2003                         armv7m->debug_ap = dap_ap(swjdp, cortex_m->apsel);
2004                 }
2005
2006                 /* Leave (only) generic DAP stuff for debugport_init(); */
2007                 armv7m->debug_ap->memaccess_tck = 8;
2008
2009                 retval = mem_ap_init(armv7m->debug_ap);
2010                 if (retval != ERROR_OK)
2011                         return retval;
2012         }
2013
2014         if (!target_was_examined(target)) {
2015                 target_set_examined(target);
2016
2017                 /* Read from Device Identification Registers */
2018                 retval = target_read_u32(target, CPUID, &cpuid);
2019                 if (retval != ERROR_OK)
2020                         return retval;
2021
2022                 /* Get CPU Type */
2023                 i = (cpuid >> 4) & 0xf;
2024
2025                 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
2026                                 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
2027                 if (i == 7) {
2028                         uint8_t rev, patch;
2029                         rev = (cpuid >> 20) & 0xf;
2030                         patch = (cpuid >> 0) & 0xf;
2031                         if ((rev == 0) && (patch < 2))
2032                                 LOG_WARNING("Silicon bug: single stepping will enter pending exception handler!");
2033                 }
2034                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
2035
2036                 if (i == 4) {
2037                         target_read_u32(target, MVFR0, &mvfr0);
2038                         target_read_u32(target, MVFR1, &mvfr1);
2039
2040                         /* test for floating point feature on Cortex-M4 */
2041                         if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
2042                                 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
2043                                 armv7m->fp_feature = FPv4_SP;
2044                         }
2045                 } else if (i == 7) {
2046                         target_read_u32(target, MVFR0, &mvfr0);
2047                         target_read_u32(target, MVFR1, &mvfr1);
2048
2049                         /* test for floating point features on Cortex-M7 */
2050                         if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) {
2051                                 LOG_DEBUG("Cortex-M%d floating point feature FPv5_SP found", i);
2052                                 armv7m->fp_feature = FPv5_SP;
2053                         } else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) {
2054                                 LOG_DEBUG("Cortex-M%d floating point feature FPv5_DP found", i);
2055                                 armv7m->fp_feature = FPv5_DP;
2056                         }
2057                 } else if (i == 0) {
2058                         /* Cortex-M0 does not support unaligned memory access */
2059                         armv7m->arm.is_armv6m = true;
2060                 }
2061
2062                 if (armv7m->fp_feature == FP_NONE &&
2063                     armv7m->arm.core_cache->num_regs > ARMV7M_NUM_CORE_REGS_NOFP) {
2064                         /* free unavailable FPU registers */
2065                         size_t idx;
2066
2067                         for (idx = ARMV7M_NUM_CORE_REGS_NOFP;
2068                              idx < armv7m->arm.core_cache->num_regs;
2069                              idx++) {
2070                                 free(armv7m->arm.core_cache->reg_list[idx].value);
2071                                 free(armv7m->arm.core_cache->reg_list[idx].feature);
2072                                 free(armv7m->arm.core_cache->reg_list[idx].reg_data_type);
2073                         }
2074                         armv7m->arm.core_cache->num_regs = ARMV7M_NUM_CORE_REGS_NOFP;
2075                 }
2076
2077                 if (!armv7m->stlink) {
2078                         if (i == 3 || i == 4)
2079                                 /* Cortex-M3/M4 have 4096 bytes autoincrement range,
2080                                  * s. ARM IHI 0031C: MEM-AP 7.2.2 */
2081                                 armv7m->debug_ap->tar_autoincr_block = (1 << 12);
2082                         else if (i == 7)
2083                                 /* Cortex-M7 has only 1024 bytes autoincrement range */
2084                                 armv7m->debug_ap->tar_autoincr_block = (1 << 10);
2085                 }
2086
2087                 /* Configure trace modules */
2088                 retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
2089                 if (retval != ERROR_OK)
2090                         return retval;
2091
2092                 if (armv7m->trace_config.config_type != DISABLED) {
2093                         armv7m_trace_tpiu_config(target);
2094                         armv7m_trace_itm_config(target);
2095                 }
2096
2097                 /* NOTE: FPB and DWT are both optional. */
2098
2099                 /* Setup FPB */
2100                 target_read_u32(target, FP_CTRL, &fpcr);
2101                 cortex_m->auto_bp_type = 1;
2102                 /* bits [14:12] and [7:4] */
2103                 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
2104                 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
2105                 cortex_m->fp_code_available = cortex_m->fp_num_code;
2106                 /* Detect flash patch revision, see RM DDI 0403E.b page C1-817.
2107                    Revision is zero base, fp_rev == 1 means Rev.2 ! */
2108                 cortex_m->fp_rev = (fpcr >> 28) & 0xf;
2109                 free(cortex_m->fp_comparator_list);
2110                 cortex_m->fp_comparator_list = calloc(
2111                                 cortex_m->fp_num_code + cortex_m->fp_num_lit,
2112                                 sizeof(struct cortex_m_fp_comparator));
2113                 cortex_m->fpb_enabled = fpcr & 1;
2114                 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
2115                         cortex_m->fp_comparator_list[i].type =
2116                                 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
2117                         cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
2118
2119                         /* make sure we clear any breakpoints enabled on the target */
2120                         target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
2121                 }
2122                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
2123                         fpcr,
2124                         cortex_m->fp_num_code,
2125                         cortex_m->fp_num_lit);
2126
2127                 /* Setup DWT */
2128                 cortex_m_dwt_free(target);
2129                 cortex_m_dwt_setup(cortex_m, target);
2130
2131                 /* These hardware breakpoints only work for code in flash! */
2132                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
2133                         target_name(target),
2134                         cortex_m->fp_num_code,
2135                         cortex_m->dwt_num_comp);
2136         }
2137
2138         return ERROR_OK;
2139 }
2140
2141 static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
2142 {
2143         struct armv7m_common *armv7m = target_to_armv7m(target);
2144         uint16_t dcrdr;
2145         uint8_t buf[2];
2146         int retval;
2147
2148         retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2149         if (retval != ERROR_OK)
2150                 return retval;
2151
2152         dcrdr = target_buffer_get_u16(target, buf);
2153         *ctrl = (uint8_t)dcrdr;
2154         *value = (uint8_t)(dcrdr >> 8);
2155
2156         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
2157
2158         /* write ack back to software dcc register
2159          * signify we have read data */
2160         if (dcrdr & (1 << 0)) {
2161                 target_buffer_set_u16(target, buf, 0);
2162                 retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2163                 if (retval != ERROR_OK)
2164                         return retval;
2165         }
2166
2167         return ERROR_OK;
2168 }
2169
2170 static int cortex_m_target_request_data(struct target *target,
2171         uint32_t size, uint8_t *buffer)
2172 {
2173         uint8_t data;
2174         uint8_t ctrl;
2175         uint32_t i;
2176
2177         for (i = 0; i < (size * 4); i++) {
2178                 int retval = cortex_m_dcc_read(target, &data, &ctrl);
2179                 if (retval != ERROR_OK)
2180                         return retval;
2181                 buffer[i] = data;
2182         }
2183
2184         return ERROR_OK;
2185 }
2186
2187 static int cortex_m_handle_target_request(void *priv)
2188 {
2189         struct target *target = priv;
2190         if (!target_was_examined(target))
2191                 return ERROR_OK;
2192
2193         if (!target->dbg_msg_enabled)
2194                 return ERROR_OK;
2195
2196         if (target->state == TARGET_RUNNING) {
2197                 uint8_t data;
2198                 uint8_t ctrl;
2199                 int retval;
2200
2201                 retval = cortex_m_dcc_read(target, &data, &ctrl);
2202                 if (retval != ERROR_OK)
2203                         return retval;
2204
2205                 /* check if we have data */
2206                 if (ctrl & (1 << 0)) {
2207                         uint32_t request;
2208
2209                         /* we assume target is quick enough */
2210                         request = data;
2211                         for (int i = 1; i <= 3; i++) {
2212                                 retval = cortex_m_dcc_read(target, &data, &ctrl);
2213                                 if (retval != ERROR_OK)
2214                                         return retval;
2215                                 request |= ((uint32_t)data << (i * 8));
2216                         }
2217                         target_request(target, request);
2218                 }
2219         }
2220
2221         return ERROR_OK;
2222 }
2223
2224 static int cortex_m_init_arch_info(struct target *target,
2225         struct cortex_m_common *cortex_m, struct adiv5_dap *dap)
2226 {
2227         struct armv7m_common *armv7m = &cortex_m->armv7m;
2228
2229         armv7m_init_arch_info(target, armv7m);
2230
2231         /* default reset mode is to use srst if fitted
2232          * if not it will use CORTEX_M3_RESET_VECTRESET */
2233         cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2234
2235         armv7m->arm.dap = dap;
2236
2237         /* register arch-specific functions */
2238         armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
2239
2240         armv7m->post_debug_entry = NULL;
2241
2242         armv7m->pre_restore_context = NULL;
2243
2244         armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
2245         armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
2246
2247         target_register_timer_callback(cortex_m_handle_target_request, 1, 1, target);
2248
2249         return ERROR_OK;
2250 }
2251
2252 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2253 {
2254         struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2255         cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2256         struct adiv5_private_config *pc;
2257
2258         pc = (struct adiv5_private_config *)target->private_config;
2259         if (adiv5_verify_config(pc) != ERROR_OK)
2260                 return ERROR_FAIL;
2261
2262         cortex_m->apsel = pc->ap_num;
2263
2264         cortex_m_init_arch_info(target, cortex_m, pc->dap);
2265
2266         return ERROR_OK;
2267 }
2268
2269 /*--------------------------------------------------------------------------*/
2270
2271 static int cortex_m_verify_pointer(struct command_context *cmd_ctx,
2272         struct cortex_m_common *cm)
2273 {
2274         if (cm->common_magic != CORTEX_M_COMMON_MAGIC) {
2275                 command_print(cmd_ctx, "target is not a Cortex-M");
2276                 return ERROR_TARGET_INVALID;
2277         }
2278         return ERROR_OK;
2279 }
2280
2281 /*
2282  * Only stuff below this line should need to verify that its target
2283  * is a Cortex-M3.  Everything else should have indirected through the
2284  * cortexm3_target structure, which is only used with CM3 targets.
2285  */
2286
2287 static const struct {
2288         char name[10];
2289         unsigned mask;
2290 } vec_ids[] = {
2291         { "hard_err",   VC_HARDERR, },
2292         { "int_err",    VC_INTERR, },
2293         { "bus_err",    VC_BUSERR, },
2294         { "state_err",  VC_STATERR, },
2295         { "chk_err",    VC_CHKERR, },
2296         { "nocp_err",   VC_NOCPERR, },
2297         { "mm_err",     VC_MMERR, },
2298         { "reset",      VC_CORERESET, },
2299 };
2300
2301 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2302 {
2303         struct target *target = get_current_target(CMD_CTX);
2304         struct cortex_m_common *cortex_m = target_to_cm(target);
2305         struct armv7m_common *armv7m = &cortex_m->armv7m;
2306         uint32_t demcr = 0;
2307         int retval;
2308
2309         retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2310         if (retval != ERROR_OK)
2311                 return retval;
2312
2313         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2314         if (retval != ERROR_OK)
2315                 return retval;
2316
2317         if (CMD_ARGC > 0) {
2318                 unsigned catch = 0;
2319
2320                 if (CMD_ARGC == 1) {
2321                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2322                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2323                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2324                                         | VC_MMERR | VC_CORERESET;
2325                                 goto write;
2326                         } else if (strcmp(CMD_ARGV[0], "none") == 0)
2327                                 goto write;
2328                 }
2329                 while (CMD_ARGC-- > 0) {
2330                         unsigned i;
2331                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2332                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2333                                         continue;
2334                                 catch |= vec_ids[i].mask;
2335                                 break;
2336                         }
2337                         if (i == ARRAY_SIZE(vec_ids)) {
2338                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2339                                 return ERROR_COMMAND_SYNTAX_ERROR;
2340                         }
2341                 }
2342 write:
2343                 /* For now, armv7m->demcr only stores vector catch flags. */
2344                 armv7m->demcr = catch;
2345
2346                 demcr &= ~0xffff;
2347                 demcr |= catch;
2348
2349                 /* write, but don't assume it stuck (why not??) */
2350                 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr);
2351                 if (retval != ERROR_OK)
2352                         return retval;
2353                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2354                 if (retval != ERROR_OK)
2355                         return retval;
2356
2357                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2358                  * Otherwise the vector catch hardware could fire when there's
2359                  * no debugger hooked up, causing much confusion...
2360                  */
2361         }
2362
2363         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2364                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2365                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2366         }
2367
2368         return ERROR_OK;
2369 }
2370
2371 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2372 {
2373         struct target *target = get_current_target(CMD_CTX);
2374         struct cortex_m_common *cortex_m = target_to_cm(target);
2375         int retval;
2376
2377         static const Jim_Nvp nvp_maskisr_modes[] = {
2378                 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2379                 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2380                 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2381                 { .name = NULL, .value = -1 },
2382         };
2383         const Jim_Nvp *n;
2384
2385
2386         retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2387         if (retval != ERROR_OK)
2388                 return retval;
2389
2390         if (target->state != TARGET_HALTED) {
2391                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2392                 return ERROR_OK;
2393         }
2394
2395         if (CMD_ARGC > 0) {
2396                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2397                 if (n->name == NULL)
2398                         return ERROR_COMMAND_SYNTAX_ERROR;
2399                 cortex_m->isrmasking_mode = n->value;
2400
2401
2402                 if (cortex_m->isrmasking_mode == CORTEX_M_ISRMASK_ON)
2403                         cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2404                 else
2405                         cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2406         }
2407
2408         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2409         command_print(CMD_CTX, "cortex_m interrupt mask %s", n->name);
2410
2411         return ERROR_OK;
2412 }
2413
2414 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2415 {
2416         struct target *target = get_current_target(CMD_CTX);
2417         struct cortex_m_common *cortex_m = target_to_cm(target);
2418         int retval;
2419         char *reset_config;
2420
2421         retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2422         if (retval != ERROR_OK)
2423                 return retval;
2424
2425         if (CMD_ARGC > 0) {
2426                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2427                         cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2428                 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2429                         cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2430         }
2431
2432         switch (cortex_m->soft_reset_config) {
2433                 case CORTEX_M_RESET_SYSRESETREQ:
2434                         reset_config = "sysresetreq";
2435                         break;
2436
2437                 case CORTEX_M_RESET_VECTRESET:
2438                         reset_config = "vectreset";
2439                         break;
2440
2441                 default:
2442                         reset_config = "unknown";
2443                         break;
2444         }
2445
2446         command_print(CMD_CTX, "cortex_m reset_config %s", reset_config);
2447
2448         return ERROR_OK;
2449 }
2450
2451 static const struct command_registration cortex_m_exec_command_handlers[] = {
2452         {
2453                 .name = "maskisr",
2454                 .handler = handle_cortex_m_mask_interrupts_command,
2455                 .mode = COMMAND_EXEC,
2456                 .help = "mask cortex_m interrupts",
2457                 .usage = "['auto'|'on'|'off']",
2458         },
2459         {
2460                 .name = "vector_catch",
2461                 .handler = handle_cortex_m_vector_catch_command,
2462                 .mode = COMMAND_EXEC,
2463                 .help = "configure hardware vectors to trigger debug entry",
2464                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2465         },
2466         {
2467                 .name = "reset_config",
2468                 .handler = handle_cortex_m_reset_config_command,
2469                 .mode = COMMAND_ANY,
2470                 .help = "configure software reset handling",
2471                 .usage = "['srst'|'sysresetreq'|'vectreset']",
2472         },
2473         COMMAND_REGISTRATION_DONE
2474 };
2475 static const struct command_registration cortex_m_command_handlers[] = {
2476         {
2477                 .chain = armv7m_command_handlers,
2478         },
2479         {
2480                 .chain = armv7m_trace_command_handlers,
2481         },
2482         {
2483                 .name = "cortex_m",
2484                 .mode = COMMAND_EXEC,
2485                 .help = "Cortex-M command group",
2486                 .usage = "",
2487                 .chain = cortex_m_exec_command_handlers,
2488         },
2489         COMMAND_REGISTRATION_DONE
2490 };
2491
2492 struct target_type cortexm_target = {
2493         .name = "cortex_m",
2494         .deprecated_name = "cortex_m3",
2495
2496         .poll = cortex_m_poll,
2497         .arch_state = armv7m_arch_state,
2498
2499         .target_request_data = cortex_m_target_request_data,
2500
2501         .halt = cortex_m_halt,
2502         .resume = cortex_m_resume,
2503         .step = cortex_m_step,
2504
2505         .assert_reset = cortex_m_assert_reset,
2506         .deassert_reset = cortex_m_deassert_reset,
2507         .soft_reset_halt = cortex_m_soft_reset_halt,
2508
2509         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2510
2511         .read_memory = cortex_m_read_memory,
2512         .write_memory = cortex_m_write_memory,
2513         .checksum_memory = armv7m_checksum_memory,
2514         .blank_check_memory = armv7m_blank_check_memory,
2515
2516         .run_algorithm = armv7m_run_algorithm,
2517         .start_algorithm = armv7m_start_algorithm,
2518         .wait_algorithm = armv7m_wait_algorithm,
2519
2520         .add_breakpoint = cortex_m_add_breakpoint,
2521         .remove_breakpoint = cortex_m_remove_breakpoint,
2522         .add_watchpoint = cortex_m_add_watchpoint,
2523         .remove_watchpoint = cortex_m_remove_watchpoint,
2524
2525         .commands = cortex_m_command_handlers,
2526         .target_create = cortex_m_target_create,
2527         .target_jim_configure = adiv5_jim_configure,
2528         .init_target = cortex_m_init_target,
2529         .examine = cortex_m_examine,
2530         .deinit_target = cortex_m_deinit_target,
2531
2532         .profiling = cortex_m_profiling,
2533 };