]> git.sur5r.net Git - openocd/blob - src/target/cortex_m.c
4566e2e7cae22933db568ffec84e4afe4f9faf75
[openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
23  *                                                                         *
24  *                                                                         *
25  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
26  *                                                                         *
27  ***************************************************************************/
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "jtag/interface.h"
33 #include "breakpoints.h"
34 #include "cortex_m.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_disassembler.h"
38 #include "register.h"
39 #include "arm_opcodes.h"
40 #include "arm_semihosting.h"
41 #include <helper/time_support.h>
42
43 /* NOTE:  most of this should work fine for the Cortex-M1 and
44  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45  * Some differences:  M0/M1 doesn't have FBP remapping or the
46  * DWT tracing/profiling support.  (So the cycle counter will
47  * not be usable; the other stuff isn't currently used here.)
48  *
49  * Although there are some workarounds for errata seen only in r0p0
50  * silicon, such old parts are hard to find and thus not much tested
51  * any longer.
52  */
53
54 /**
55  * Returns the type of a break point required by address location
56  */
57 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
58
59 /* forward declarations */
60 static int cortex_m_store_core_reg_u32(struct target *target,
61                 uint32_t num, uint32_t value);
62 static void cortex_m_dwt_free(struct target *target);
63
64 static int cortexm_dap_read_coreregister_u32(struct target *target,
65         uint32_t *value, int regnum)
66 {
67         struct armv7m_common *armv7m = target_to_armv7m(target);
68         int retval;
69         uint32_t dcrdr;
70
71         /* because the DCB_DCRDR is used for the emulated dcc channel
72          * we have to save/restore the DCB_DCRDR when used */
73         if (target->dbg_msg_enabled) {
74                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
75                 if (retval != ERROR_OK)
76                         return retval;
77         }
78
79         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regnum);
80         if (retval != ERROR_OK)
81                 return retval;
82
83         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR, value);
84         if (retval != ERROR_OK)
85                 return retval;
86
87         if (target->dbg_msg_enabled) {
88                 /* restore DCB_DCRDR - this needs to be in a separate
89                  * transaction otherwise the emulated DCC channel breaks */
90                 if (retval == ERROR_OK)
91                         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
92         }
93
94         return retval;
95 }
96
97 static int cortexm_dap_write_coreregister_u32(struct target *target,
98         uint32_t value, int regnum)
99 {
100         struct armv7m_common *armv7m = target_to_armv7m(target);
101         int retval;
102         uint32_t dcrdr;
103
104         /* because the DCB_DCRDR is used for the emulated dcc channel
105          * we have to save/restore the DCB_DCRDR when used */
106         if (target->dbg_msg_enabled) {
107                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
108                 if (retval != ERROR_OK)
109                         return retval;
110         }
111
112         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value);
113         if (retval != ERROR_OK)
114                 return retval;
115
116         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRSR, regnum | DCRSR_WnR);
117         if (retval != ERROR_OK)
118                 return retval;
119
120         if (target->dbg_msg_enabled) {
121                 /* restore DCB_DCRDR - this needs to be in a seperate
122                  * transaction otherwise the emulated DCC channel breaks */
123                 if (retval == ERROR_OK)
124                         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
125         }
126
127         return retval;
128 }
129
130 static int cortex_m_write_debug_halt_mask(struct target *target,
131         uint32_t mask_on, uint32_t mask_off)
132 {
133         struct cortex_m_common *cortex_m = target_to_cm(target);
134         struct armv7m_common *armv7m = &cortex_m->armv7m;
135
136         /* mask off status bits */
137         cortex_m->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
138         /* create new register mask */
139         cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
140
141         return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr);
142 }
143
144 static int cortex_m_clear_halt(struct target *target)
145 {
146         struct cortex_m_common *cortex_m = target_to_cm(target);
147         struct armv7m_common *armv7m = &cortex_m->armv7m;
148         int retval;
149
150         /* clear step if any */
151         cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
152
153         /* Read Debug Fault Status Register */
154         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr);
155         if (retval != ERROR_OK)
156                 return retval;
157
158         /* Clear Debug Fault Status */
159         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr);
160         if (retval != ERROR_OK)
161                 return retval;
162         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
163
164         return ERROR_OK;
165 }
166
167 static int cortex_m_single_step_core(struct target *target)
168 {
169         struct cortex_m_common *cortex_m = target_to_cm(target);
170         struct armv7m_common *armv7m = &cortex_m->armv7m;
171         uint32_t dhcsr_save;
172         int retval;
173
174         /* backup dhcsr reg */
175         dhcsr_save = cortex_m->dcb_dhcsr;
176
177         /* Mask interrupts before clearing halt, if done already.  This avoids
178          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
179          * HALT can put the core into an unknown state.
180          */
181         if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
182                 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
183                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
184                 if (retval != ERROR_OK)
185                         return retval;
186         }
187         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
188                         DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
189         if (retval != ERROR_OK)
190                 return retval;
191         LOG_DEBUG(" ");
192
193         /* restore dhcsr reg */
194         cortex_m->dcb_dhcsr = dhcsr_save;
195         cortex_m_clear_halt(target);
196
197         return ERROR_OK;
198 }
199
200 static int cortex_m_enable_fpb(struct target *target)
201 {
202         int retval = target_write_u32(target, FP_CTRL, 3);
203         if (retval != ERROR_OK)
204                 return retval;
205
206         /* check the fpb is actually enabled */
207         uint32_t fpctrl;
208         retval = target_read_u32(target, FP_CTRL, &fpctrl);
209         if (retval != ERROR_OK)
210                 return retval;
211
212         if (fpctrl & 1)
213                 return ERROR_OK;
214
215         return ERROR_FAIL;
216 }
217
218 static int cortex_m_endreset_event(struct target *target)
219 {
220         int i;
221         int retval;
222         uint32_t dcb_demcr;
223         struct cortex_m_common *cortex_m = target_to_cm(target);
224         struct armv7m_common *armv7m = &cortex_m->armv7m;
225         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
226         struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
227         struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
228
229         /* REVISIT The four debug monitor bits are currently ignored... */
230         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr);
231         if (retval != ERROR_OK)
232                 return retval;
233         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
234
235         /* this register is used for emulated dcc channel */
236         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
237         if (retval != ERROR_OK)
238                 return retval;
239
240         /* Enable debug requests */
241         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
242         if (retval != ERROR_OK)
243                 return retval;
244         if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
245                 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DHCSR, DBGKEY | C_DEBUGEN);
246                 if (retval != ERROR_OK)
247                         return retval;
248         }
249
250         /* clear any interrupt masking */
251         cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
252
253         /* Enable features controlled by ITM and DWT blocks, and catch only
254          * the vectors we were told to pay attention to.
255          *
256          * Target firmware is responsible for all fault handling policy
257          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
258          * or manual updates to the NVIC SHCSR and CCR registers.
259          */
260         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr);
261         if (retval != ERROR_OK)
262                 return retval;
263
264         /* Paranoia: evidently some (early?) chips don't preserve all the
265          * debug state (including FBP, DWT, etc) across reset...
266          */
267
268         /* Enable FPB */
269         retval = cortex_m_enable_fpb(target);
270         if (retval != ERROR_OK) {
271                 LOG_ERROR("Failed to enable the FPB");
272                 return retval;
273         }
274
275         cortex_m->fpb_enabled = 1;
276
277         /* Restore FPB registers */
278         for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
279                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
280                 if (retval != ERROR_OK)
281                         return retval;
282         }
283
284         /* Restore DWT registers */
285         for (i = 0; i < cortex_m->dwt_num_comp; i++) {
286                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
287                                 dwt_list[i].comp);
288                 if (retval != ERROR_OK)
289                         return retval;
290                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
291                                 dwt_list[i].mask);
292                 if (retval != ERROR_OK)
293                         return retval;
294                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
295                                 dwt_list[i].function);
296                 if (retval != ERROR_OK)
297                         return retval;
298         }
299         retval = dap_run(swjdp);
300         if (retval != ERROR_OK)
301                 return retval;
302
303         register_cache_invalidate(armv7m->arm.core_cache);
304
305         /* make sure we have latest dhcsr flags */
306         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
307
308         return retval;
309 }
310
311 static int cortex_m_examine_debug_reason(struct target *target)
312 {
313         struct cortex_m_common *cortex_m = target_to_cm(target);
314
315         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
316          * only check the debug reason if we don't know it already */
317
318         if ((target->debug_reason != DBG_REASON_DBGRQ)
319                 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
320                 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
321                         target->debug_reason = DBG_REASON_BREAKPOINT;
322                         if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
323                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
324                 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
325                         target->debug_reason = DBG_REASON_WATCHPOINT;
326                 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
327                         target->debug_reason = DBG_REASON_BREAKPOINT;
328                 else    /* EXTERNAL, HALTED */
329                         target->debug_reason = DBG_REASON_UNDEFINED;
330         }
331
332         return ERROR_OK;
333 }
334
335 static int cortex_m_examine_exception_reason(struct target *target)
336 {
337         uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
338         struct armv7m_common *armv7m = target_to_armv7m(target);
339         struct adiv5_dap *swjdp = armv7m->arm.dap;
340         int retval;
341
342         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr);
343         if (retval != ERROR_OK)
344                 return retval;
345         switch (armv7m->exception_number) {
346                 case 2: /* NMI */
347                         break;
348                 case 3: /* Hard Fault */
349                         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr);
350                         if (retval != ERROR_OK)
351                                 return retval;
352                         if (except_sr & 0x40000000) {
353                                 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr);
354                                 if (retval != ERROR_OK)
355                                         return retval;
356                         }
357                         break;
358                 case 4: /* Memory Management */
359                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
360                         if (retval != ERROR_OK)
361                                 return retval;
362                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar);
363                         if (retval != ERROR_OK)
364                                 return retval;
365                         break;
366                 case 5: /* Bus Fault */
367                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
368                         if (retval != ERROR_OK)
369                                 return retval;
370                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar);
371                         if (retval != ERROR_OK)
372                                 return retval;
373                         break;
374                 case 6: /* Usage Fault */
375                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
376                         if (retval != ERROR_OK)
377                                 return retval;
378                         break;
379                 case 11:        /* SVCall */
380                         break;
381                 case 12:        /* Debug Monitor */
382                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr);
383                         if (retval != ERROR_OK)
384                                 return retval;
385                         break;
386                 case 14:        /* PendSV */
387                         break;
388                 case 15:        /* SysTick */
389                         break;
390                 default:
391                         except_sr = 0;
392                         break;
393         }
394         retval = dap_run(swjdp);
395         if (retval == ERROR_OK)
396                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
397                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
398                         armv7m_exception_string(armv7m->exception_number),
399                         shcsr, except_sr, cfsr, except_ar);
400         return retval;
401 }
402
403 static int cortex_m_debug_entry(struct target *target)
404 {
405         int i;
406         uint32_t xPSR;
407         int retval;
408         struct cortex_m_common *cortex_m = target_to_cm(target);
409         struct armv7m_common *armv7m = &cortex_m->armv7m;
410         struct arm *arm = &armv7m->arm;
411         struct reg *r;
412
413         LOG_DEBUG(" ");
414
415         cortex_m_clear_halt(target);
416         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
417         if (retval != ERROR_OK)
418                 return retval;
419
420         retval = armv7m->examine_debug_reason(target);
421         if (retval != ERROR_OK)
422                 return retval;
423
424         /* Examine target state and mode
425          * First load register accessible through core debug port */
426         int num_regs = arm->core_cache->num_regs;
427
428         for (i = 0; i < num_regs; i++) {
429                 r = &armv7m->arm.core_cache->reg_list[i];
430                 if (!r->valid)
431                         arm->read_core_reg(target, r, i, ARM_MODE_ANY);
432         }
433
434         r = arm->cpsr;
435         xPSR = buf_get_u32(r->value, 0, 32);
436
437         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
438         if (xPSR & 0xf00) {
439                 r->dirty = r->valid;
440                 cortex_m_store_core_reg_u32(target, 16, xPSR & ~0xff);
441         }
442
443         /* Are we in an exception handler */
444         if (xPSR & 0x1FF) {
445                 armv7m->exception_number = (xPSR & 0x1FF);
446
447                 arm->core_mode = ARM_MODE_HANDLER;
448                 arm->map = armv7m_msp_reg_map;
449         } else {
450                 unsigned control = buf_get_u32(arm->core_cache
451                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
452
453                 /* is this thread privileged? */
454                 arm->core_mode = control & 1
455                         ? ARM_MODE_USER_THREAD
456                         : ARM_MODE_THREAD;
457
458                 /* which stack is it using? */
459                 if (control & 2)
460                         arm->map = armv7m_psp_reg_map;
461                 else
462                         arm->map = armv7m_msp_reg_map;
463
464                 armv7m->exception_number = 0;
465         }
466
467         if (armv7m->exception_number)
468                 cortex_m_examine_exception_reason(target);
469
470         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
471                 arm_mode_name(arm->core_mode),
472                 buf_get_u32(arm->pc->value, 0, 32),
473                 target_state_name(target));
474
475         if (armv7m->post_debug_entry) {
476                 retval = armv7m->post_debug_entry(target);
477                 if (retval != ERROR_OK)
478                         return retval;
479         }
480
481         return ERROR_OK;
482 }
483
484 static int cortex_m_poll(struct target *target)
485 {
486         int detected_failure = ERROR_OK;
487         int retval = ERROR_OK;
488         enum target_state prev_target_state = target->state;
489         struct cortex_m_common *cortex_m = target_to_cm(target);
490         struct armv7m_common *armv7m = &cortex_m->armv7m;
491
492         /* Read from Debug Halting Control and Status Register */
493         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
494         if (retval != ERROR_OK) {
495                 target->state = TARGET_UNKNOWN;
496                 return retval;
497         }
498
499         /* Recover from lockup.  See ARMv7-M architecture spec,
500          * section B1.5.15 "Unrecoverable exception cases".
501          */
502         if (cortex_m->dcb_dhcsr & S_LOCKUP) {
503                 LOG_ERROR("%s -- clearing lockup after double fault",
504                         target_name(target));
505                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
506                 target->debug_reason = DBG_REASON_DBGRQ;
507
508                 /* We have to execute the rest (the "finally" equivalent, but
509                  * still throw this exception again).
510                  */
511                 detected_failure = ERROR_FAIL;
512
513                 /* refresh status bits */
514                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
515                 if (retval != ERROR_OK)
516                         return retval;
517         }
518
519         if (cortex_m->dcb_dhcsr & S_RESET_ST) {
520                 target->state = TARGET_RESET;
521                 return ERROR_OK;
522         }
523
524         if (target->state == TARGET_RESET) {
525                 /* Cannot switch context while running so endreset is
526                  * called with target->state == TARGET_RESET
527                  */
528                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
529                         cortex_m->dcb_dhcsr);
530                 retval = cortex_m_endreset_event(target);
531                 if (retval != ERROR_OK) {
532                         target->state = TARGET_UNKNOWN;
533                         return retval;
534                 }
535                 target->state = TARGET_RUNNING;
536                 prev_target_state = TARGET_RUNNING;
537         }
538
539         if (cortex_m->dcb_dhcsr & S_HALT) {
540                 target->state = TARGET_HALTED;
541
542                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
543                         retval = cortex_m_debug_entry(target);
544                         if (retval != ERROR_OK)
545                                 return retval;
546
547                         if (arm_semihosting(target, &retval) != 0)
548                                 return retval;
549
550                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
551                 }
552                 if (prev_target_state == TARGET_DEBUG_RUNNING) {
553                         LOG_DEBUG(" ");
554                         retval = cortex_m_debug_entry(target);
555                         if (retval != ERROR_OK)
556                                 return retval;
557
558                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
559                 }
560         }
561
562         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
563          * How best to model low power modes?
564          */
565
566         if (target->state == TARGET_UNKNOWN) {
567                 /* check if processor is retiring instructions */
568                 if (cortex_m->dcb_dhcsr & S_RETIRE_ST) {
569                         target->state = TARGET_RUNNING;
570                         retval = ERROR_OK;
571                 }
572         }
573
574         /* Did we detect a failure condition that we cleared? */
575         if (detected_failure != ERROR_OK)
576                 retval = detected_failure;
577         return retval;
578 }
579
580 static int cortex_m_halt(struct target *target)
581 {
582         LOG_DEBUG("target->state: %s",
583                 target_state_name(target));
584
585         if (target->state == TARGET_HALTED) {
586                 LOG_DEBUG("target was already halted");
587                 return ERROR_OK;
588         }
589
590         if (target->state == TARGET_UNKNOWN)
591                 LOG_WARNING("target was in unknown state when halt was requested");
592
593         if (target->state == TARGET_RESET) {
594                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
595                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
596                         return ERROR_TARGET_FAILURE;
597                 } else {
598                         /* we came here in a reset_halt or reset_init sequence
599                          * debug entry was already prepared in cortex_m3_assert_reset()
600                          */
601                         target->debug_reason = DBG_REASON_DBGRQ;
602
603                         return ERROR_OK;
604                 }
605         }
606
607         /* Write to Debug Halting Control and Status Register */
608         cortex_m_write_debug_halt_mask(target, C_HALT, 0);
609
610         target->debug_reason = DBG_REASON_DBGRQ;
611
612         return ERROR_OK;
613 }
614
615 static int cortex_m_soft_reset_halt(struct target *target)
616 {
617         struct cortex_m_common *cortex_m = target_to_cm(target);
618         struct armv7m_common *armv7m = &cortex_m->armv7m;
619         uint32_t dcb_dhcsr = 0;
620         int retval, timeout = 0;
621
622         /* soft_reset_halt is deprecated on cortex_m as the same functionality
623          * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'
624          * As this reset only used VC_CORERESET it would only ever reset the cortex_m
625          * core, not the peripherals */
626         LOG_WARNING("soft_reset_halt is deprecated, please use 'reset halt' instead.");
627
628         /* Enter debug state on reset; restore DEMCR in endreset_event() */
629         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
630                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
631         if (retval != ERROR_OK)
632                 return retval;
633
634         /* Request a core-only reset */
635         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
636                         AIRCR_VECTKEY | AIRCR_VECTRESET);
637         if (retval != ERROR_OK)
638                 return retval;
639         target->state = TARGET_RESET;
640
641         /* registers are now invalid */
642         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
643
644         while (timeout < 100) {
645                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &dcb_dhcsr);
646                 if (retval == ERROR_OK) {
647                         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR,
648                                         &cortex_m->nvic_dfsr);
649                         if (retval != ERROR_OK)
650                                 return retval;
651                         if ((dcb_dhcsr & S_HALT)
652                                 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
653                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
654                                         "DFSR 0x%08x",
655                                         (unsigned) dcb_dhcsr,
656                                         (unsigned) cortex_m->nvic_dfsr);
657                                 cortex_m_poll(target);
658                                 /* FIXME restore user's vector catch config */
659                                 return ERROR_OK;
660                         } else
661                                 LOG_DEBUG("waiting for system reset-halt, "
662                                         "DHCSR 0x%08x, %d ms",
663                                         (unsigned) dcb_dhcsr, timeout);
664                 }
665                 timeout++;
666                 alive_sleep(1);
667         }
668
669         return ERROR_OK;
670 }
671
672 void cortex_m_enable_breakpoints(struct target *target)
673 {
674         struct breakpoint *breakpoint = target->breakpoints;
675
676         /* set any pending breakpoints */
677         while (breakpoint) {
678                 if (!breakpoint->set)
679                         cortex_m_set_breakpoint(target, breakpoint);
680                 breakpoint = breakpoint->next;
681         }
682 }
683
684 static int cortex_m_resume(struct target *target, int current,
685         uint32_t address, int handle_breakpoints, int debug_execution)
686 {
687         struct armv7m_common *armv7m = target_to_armv7m(target);
688         struct breakpoint *breakpoint = NULL;
689         uint32_t resume_pc;
690         struct reg *r;
691
692         if (target->state != TARGET_HALTED) {
693                 LOG_WARNING("target not halted");
694                 return ERROR_TARGET_NOT_HALTED;
695         }
696
697         if (!debug_execution) {
698                 target_free_all_working_areas(target);
699                 cortex_m_enable_breakpoints(target);
700                 cortex_m_enable_watchpoints(target);
701         }
702
703         if (debug_execution) {
704                 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
705
706                 /* Disable interrupts */
707                 /* We disable interrupts in the PRIMASK register instead of
708                  * masking with C_MASKINTS.  This is probably the same issue
709                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
710                  * in parallel with disabled interrupts can cause local faults
711                  * to not be taken.
712                  *
713                  * REVISIT this clearly breaks non-debug execution, since the
714                  * PRIMASK register state isn't saved/restored...  workaround
715                  * by never resuming app code after debug execution.
716                  */
717                 buf_set_u32(r->value, 0, 1, 1);
718                 r->dirty = true;
719                 r->valid = true;
720
721                 /* Make sure we are in Thumb mode */
722                 r = armv7m->arm.cpsr;
723                 buf_set_u32(r->value, 24, 1, 1);
724                 r->dirty = true;
725                 r->valid = true;
726         }
727
728         /* current = 1: continue on current pc, otherwise continue at <address> */
729         r = armv7m->arm.pc;
730         if (!current) {
731                 buf_set_u32(r->value, 0, 32, address);
732                 r->dirty = true;
733                 r->valid = true;
734         }
735
736         /* if we halted last time due to a bkpt instruction
737          * then we have to manually step over it, otherwise
738          * the core will break again */
739
740         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
741                 && !debug_execution)
742                 armv7m_maybe_skip_bkpt_inst(target, NULL);
743
744         resume_pc = buf_get_u32(r->value, 0, 32);
745
746         armv7m_restore_context(target);
747
748         /* the front-end may request us not to handle breakpoints */
749         if (handle_breakpoints) {
750                 /* Single step past breakpoint at current address */
751                 breakpoint = breakpoint_find(target, resume_pc);
752                 if (breakpoint) {
753                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %" PRIu32 ")",
754                                 breakpoint->address,
755                                 breakpoint->unique_id);
756                         cortex_m_unset_breakpoint(target, breakpoint);
757                         cortex_m_single_step_core(target);
758                         cortex_m_set_breakpoint(target, breakpoint);
759                 }
760         }
761
762         /* Restart core */
763         cortex_m_write_debug_halt_mask(target, 0, C_HALT);
764
765         target->debug_reason = DBG_REASON_NOTHALTED;
766
767         /* registers are now invalid */
768         register_cache_invalidate(armv7m->arm.core_cache);
769
770         if (!debug_execution) {
771                 target->state = TARGET_RUNNING;
772                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
773                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
774         } else {
775                 target->state = TARGET_DEBUG_RUNNING;
776                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
777                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
778         }
779
780         return ERROR_OK;
781 }
782
783 /* int irqstepcount = 0; */
784 static int cortex_m_step(struct target *target, int current,
785         uint32_t address, int handle_breakpoints)
786 {
787         struct cortex_m_common *cortex_m = target_to_cm(target);
788         struct armv7m_common *armv7m = &cortex_m->armv7m;
789         struct breakpoint *breakpoint = NULL;
790         struct reg *pc = armv7m->arm.pc;
791         bool bkpt_inst_found = false;
792         int retval;
793         bool isr_timed_out = false;
794
795         if (target->state != TARGET_HALTED) {
796                 LOG_WARNING("target not halted");
797                 return ERROR_TARGET_NOT_HALTED;
798         }
799
800         /* current = 1: continue on current pc, otherwise continue at <address> */
801         if (!current)
802                 buf_set_u32(pc->value, 0, 32, address);
803
804         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
805
806         /* the front-end may request us not to handle breakpoints */
807         if (handle_breakpoints) {
808                 breakpoint = breakpoint_find(target, pc_value);
809                 if (breakpoint)
810                         cortex_m_unset_breakpoint(target, breakpoint);
811         }
812
813         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
814
815         target->debug_reason = DBG_REASON_SINGLESTEP;
816
817         armv7m_restore_context(target);
818
819         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
820
821         /* if no bkpt instruction is found at pc then we can perform
822          * a normal step, otherwise we have to manually step over the bkpt
823          * instruction - as such simulate a step */
824         if (bkpt_inst_found == false) {
825                 /* Automatic ISR masking mode off: Just step over the next instruction */
826                 if ((cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO))
827                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
828                 else {
829                         /* Process interrupts during stepping in a way they don't interfere
830                          * debugging.
831                          *
832                          * Principle:
833                          *
834                          * Set a temporary break point at the current pc and let the core run
835                          * with interrupts enabled. Pending interrupts get served and we run
836                          * into the breakpoint again afterwards. Then we step over the next
837                          * instruction with interrupts disabled.
838                          *
839                          * If the pending interrupts don't complete within time, we leave the
840                          * core running. This may happen if the interrupts trigger faster
841                          * than the core can process them or the handler doesn't return.
842                          *
843                          * If no more breakpoints are available we simply do a step with
844                          * interrupts enabled.
845                          *
846                          */
847
848                         /* 2012-09-29 ph
849                          *
850                          * If a break point is already set on the lower half word then a break point on
851                          * the upper half word will not break again when the core is restarted. So we
852                          * just step over the instruction with interrupts disabled.
853                          *
854                          * The documentation has no information about this, it was found by observation
855                          * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
856                          * suffer from this problem.
857                          *
858                          * To add some confusion: pc_value has bit 0 always set, while the breakpoint
859                          * address has it always cleared. The former is done to indicate thumb mode
860                          * to gdb.
861                          *
862                          */
863                         if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
864                                 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
865                                 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
866                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
867                                 /* Re-enable interrupts */
868                                 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
869                         }
870                         else {
871
872                                 /* Set a temporary break point */
873                                 if (breakpoint)
874                                         retval = cortex_m_set_breakpoint(target, breakpoint);
875                                 else
876                                         retval = breakpoint_add(target, pc_value, 2, BKPT_TYPE_BY_ADDR(pc_value));
877                                 bool tmp_bp_set = (retval == ERROR_OK);
878
879                                 /* No more breakpoints left, just do a step */
880                                 if (!tmp_bp_set)
881                                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
882                                 else {
883                                         /* Start the core */
884                                         LOG_DEBUG("Starting core to serve pending interrupts");
885                                         int64_t t_start = timeval_ms();
886                                         cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
887
888                                         /* Wait for pending handlers to complete or timeout */
889                                         do {
890                                                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap,
891                                                                 DCB_DHCSR,
892                                                                 &cortex_m->dcb_dhcsr);
893                                                 if (retval != ERROR_OK) {
894                                                         target->state = TARGET_UNKNOWN;
895                                                         return retval;
896                                                 }
897                                                 isr_timed_out = ((timeval_ms() - t_start) > 500);
898                                         } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
899
900                                         /* only remove breakpoint if we created it */
901                                         if (breakpoint)
902                                                 cortex_m_unset_breakpoint(target, breakpoint);
903                                         else {
904                                                 /* Remove the temporary breakpoint */
905                                                 breakpoint_remove(target, pc_value);
906                                         }
907
908                                         if (isr_timed_out) {
909                                                 LOG_DEBUG("Interrupt handlers didn't complete within time, "
910                                                         "leaving target running");
911                                         } else {
912                                                 /* Step over next instruction with interrupts disabled */
913                                                 cortex_m_write_debug_halt_mask(target,
914                                                         C_HALT | C_MASKINTS,
915                                                         0);
916                                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
917                                                 /* Re-enable interrupts */
918                                                 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
919                                         }
920                                 }
921                         }
922                 }
923         }
924
925         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
926         if (retval != ERROR_OK)
927                 return retval;
928
929         /* registers are now invalid */
930         register_cache_invalidate(armv7m->arm.core_cache);
931
932         if (breakpoint)
933                 cortex_m_set_breakpoint(target, breakpoint);
934
935         if (isr_timed_out) {
936                 /* Leave the core running. The user has to stop execution manually. */
937                 target->debug_reason = DBG_REASON_NOTHALTED;
938                 target->state = TARGET_RUNNING;
939                 return ERROR_OK;
940         }
941
942         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
943                 " nvic_icsr = 0x%" PRIx32,
944                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
945
946         retval = cortex_m_debug_entry(target);
947         if (retval != ERROR_OK)
948                 return retval;
949         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
950
951         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
952                 " nvic_icsr = 0x%" PRIx32,
953                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
954
955         return ERROR_OK;
956 }
957
958 static int cortex_m_assert_reset(struct target *target)
959 {
960         struct cortex_m_common *cortex_m = target_to_cm(target);
961         struct armv7m_common *armv7m = &cortex_m->armv7m;
962         enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
963
964         LOG_DEBUG("target->state: %s",
965                 target_state_name(target));
966
967         enum reset_types jtag_reset_config = jtag_get_reset_config();
968
969         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
970                 /* allow scripts to override the reset event */
971
972                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
973                 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
974                 target->state = TARGET_RESET;
975
976                 return ERROR_OK;
977         }
978
979         /* some cores support connecting while srst is asserted
980          * use that mode is it has been configured */
981
982         bool srst_asserted = false;
983
984         if ((jtag_reset_config & RESET_HAS_SRST) &&
985             (jtag_reset_config & RESET_SRST_NO_GATING)) {
986                 adapter_assert_reset();
987                 srst_asserted = true;
988         }
989
990         /* Enable debug requests */
991         int retval;
992         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
993         /* Store important errors instead of failing and proceed to reset assert */
994
995         if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN))
996                 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DHCSR, DBGKEY | C_DEBUGEN);
997
998         /* If the processor is sleeping in a WFI or WFE instruction, the
999          * C_HALT bit must be asserted to regain control */
1000         if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP))
1001                 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
1002
1003         mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
1004         /* Ignore less important errors */
1005
1006         if (!target->reset_halt) {
1007                 /* Set/Clear C_MASKINTS in a separate operation */
1008                 if (cortex_m->dcb_dhcsr & C_MASKINTS)
1009                         mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
1010                                         DBGKEY | C_DEBUGEN | C_HALT);
1011
1012                 /* clear any debug flags before resuming */
1013                 cortex_m_clear_halt(target);
1014
1015                 /* clear C_HALT in dhcsr reg */
1016                 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1017         } else {
1018                 /* Halt in debug on reset; endreset_event() restores DEMCR.
1019                  *
1020                  * REVISIT catching BUSERR presumably helps to defend against
1021                  * bad vector table entries.  Should this include MMERR or
1022                  * other flags too?
1023                  */
1024                 int retval2;
1025                 retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR,
1026                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1027                 if (retval != ERROR_OK || retval2 != ERROR_OK)
1028                         LOG_INFO("AP write error, reset will not halt");
1029         }
1030
1031         if (jtag_reset_config & RESET_HAS_SRST) {
1032                 /* default to asserting srst */
1033                 if (!srst_asserted)
1034                         adapter_assert_reset();
1035
1036                 /* srst is asserted, ignore AP access errors */
1037                 retval = ERROR_OK;
1038         } else {
1039                 /* Use a standard Cortex-M3 software reset mechanism.
1040                  * We default to using VECRESET as it is supported on all current cores.
1041                  * This has the disadvantage of not resetting the peripherals, so a
1042                  * reset-init event handler is needed to perform any peripheral resets.
1043                  */
1044                 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1045                         ? "SYSRESETREQ" : "VECTRESET");
1046
1047                 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1048                         LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1049                                 "handler to reset any peripherals or configure hardware srst support.");
1050                 }
1051
1052                 int retval3;
1053                 retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
1054                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1055                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1056                 if (retval3 != ERROR_OK)
1057                         LOG_DEBUG("Ignoring AP write error right after reset");
1058
1059                 retval3 = dap_dp_init(armv7m->debug_ap->dap);
1060                 if (retval3 != ERROR_OK)
1061                         LOG_ERROR("DP initialisation failed");
1062
1063                 else {
1064                         /* I do not know why this is necessary, but it
1065                          * fixes strange effects (step/resume cause NMI
1066                          * after reset) on LM3S6918 -- Michael Schwingen
1067                          */
1068                         uint32_t tmp;
1069                         mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp);
1070                 }
1071         }
1072
1073         target->state = TARGET_RESET;
1074         jtag_add_sleep(50000);
1075
1076         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1077
1078         /* now return stored error code if any */
1079         if (retval != ERROR_OK)
1080                 return retval;
1081
1082         if (target->reset_halt) {
1083                 retval = target_halt(target);
1084                 if (retval != ERROR_OK)
1085                         return retval;
1086         }
1087
1088         return ERROR_OK;
1089 }
1090
1091 static int cortex_m_deassert_reset(struct target *target)
1092 {
1093         struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
1094
1095         LOG_DEBUG("target->state: %s",
1096                 target_state_name(target));
1097
1098         /* deassert reset lines */
1099         adapter_deassert_reset();
1100
1101         enum reset_types jtag_reset_config = jtag_get_reset_config();
1102
1103         if ((jtag_reset_config & RESET_HAS_SRST) &&
1104             !(jtag_reset_config & RESET_SRST_NO_GATING)) {
1105                 int retval = dap_dp_init(armv7m->debug_ap->dap);
1106                 if (retval != ERROR_OK) {
1107                         LOG_ERROR("DP initialisation failed");
1108                         return retval;
1109                 }
1110         }
1111
1112         return ERROR_OK;
1113 }
1114
1115 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1116 {
1117         int retval;
1118         int fp_num = 0;
1119         struct cortex_m_common *cortex_m = target_to_cm(target);
1120         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1121
1122         if (breakpoint->set) {
1123                 LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1124                 return ERROR_OK;
1125         }
1126
1127         if (cortex_m->auto_bp_type)
1128                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1129
1130         if (breakpoint->type == BKPT_HARD) {
1131                 uint32_t fpcr_value;
1132                 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1133                         fp_num++;
1134                 if (fp_num >= cortex_m->fp_num_code) {
1135                         LOG_ERROR("Can not find free FPB Comparator!");
1136                         return ERROR_FAIL;
1137                 }
1138                 breakpoint->set = fp_num + 1;
1139                 fpcr_value = breakpoint->address | 1;
1140                 if (cortex_m->fp_rev == 0) {
1141                         uint32_t hilo;
1142                         hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1143                         fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1;
1144                 } else if (cortex_m->fp_rev > 1) {
1145                         LOG_ERROR("Unhandled Cortex-M Flash Patch Breakpoint architecture revision");
1146                         return ERROR_FAIL;
1147                 }
1148                 comparator_list[fp_num].used = 1;
1149                 comparator_list[fp_num].fpcr_value = fpcr_value;
1150                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1151                         comparator_list[fp_num].fpcr_value);
1152                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1153                         fp_num,
1154                         comparator_list[fp_num].fpcr_value);
1155                 if (!cortex_m->fpb_enabled) {
1156                         LOG_DEBUG("FPB wasn't enabled, do it now");
1157                         retval = cortex_m_enable_fpb(target);
1158                         if (retval != ERROR_OK) {
1159                                 LOG_ERROR("Failed to enable the FPB");
1160                                 return retval;
1161                         }
1162
1163                         cortex_m->fpb_enabled = 1;
1164                 }
1165         } else if (breakpoint->type == BKPT_SOFT) {
1166                 uint8_t code[4];
1167
1168                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1169                  * semihosting; don't use that.  Otherwise the BKPT
1170                  * parameter is arbitrary.
1171                  */
1172                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1173                 retval = target_read_memory(target,
1174                                 breakpoint->address & 0xFFFFFFFE,
1175                                 breakpoint->length, 1,
1176                                 breakpoint->orig_instr);
1177                 if (retval != ERROR_OK)
1178                         return retval;
1179                 retval = target_write_memory(target,
1180                                 breakpoint->address & 0xFFFFFFFE,
1181                                 breakpoint->length, 1,
1182                                 code);
1183                 if (retval != ERROR_OK)
1184                         return retval;
1185                 breakpoint->set = true;
1186         }
1187
1188         LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1189                 breakpoint->unique_id,
1190                 (int)(breakpoint->type),
1191                 breakpoint->address,
1192                 breakpoint->length,
1193                 breakpoint->set);
1194
1195         return ERROR_OK;
1196 }
1197
1198 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1199 {
1200         int retval;
1201         struct cortex_m_common *cortex_m = target_to_cm(target);
1202         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1203
1204         if (!breakpoint->set) {
1205                 LOG_WARNING("breakpoint not set");
1206                 return ERROR_OK;
1207         }
1208
1209         LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1210                 breakpoint->unique_id,
1211                 (int)(breakpoint->type),
1212                 breakpoint->address,
1213                 breakpoint->length,
1214                 breakpoint->set);
1215
1216         if (breakpoint->type == BKPT_HARD) {
1217                 int fp_num = breakpoint->set - 1;
1218                 if ((fp_num < 0) || (fp_num >= cortex_m->fp_num_code)) {
1219                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1220                         return ERROR_OK;
1221                 }
1222                 comparator_list[fp_num].used = 0;
1223                 comparator_list[fp_num].fpcr_value = 0;
1224                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1225                         comparator_list[fp_num].fpcr_value);
1226         } else {
1227                 /* restore original instruction (kept in target endianness) */
1228                 if (breakpoint->length == 4) {
1229                         retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1230                                         breakpoint->orig_instr);
1231                         if (retval != ERROR_OK)
1232                                 return retval;
1233                 } else {
1234                         retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1235                                         breakpoint->orig_instr);
1236                         if (retval != ERROR_OK)
1237                                 return retval;
1238                 }
1239         }
1240         breakpoint->set = false;
1241
1242         return ERROR_OK;
1243 }
1244
1245 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1246 {
1247         struct cortex_m_common *cortex_m = target_to_cm(target);
1248
1249         if (cortex_m->auto_bp_type)
1250                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1251
1252         if (breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1253                 if (breakpoint->type == BKPT_HARD) {
1254                         LOG_INFO("flash patch comparator requested outside code memory region");
1255                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1256                 }
1257
1258                 if (breakpoint->type == BKPT_SOFT) {
1259                         LOG_INFO("soft breakpoint requested in code (flash) memory region");
1260                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1261                 }
1262         }
1263
1264         if ((breakpoint->type == BKPT_HARD) && (cortex_m->fp_code_available < 1)) {
1265                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1266                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1267         }
1268
1269         if (breakpoint->length == 3) {
1270                 LOG_DEBUG("Using a two byte breakpoint for 32bit Thumb-2 request");
1271                 breakpoint->length = 2;
1272         }
1273
1274         if ((breakpoint->length != 2)) {
1275                 LOG_INFO("only breakpoints of two bytes length supported");
1276                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1277         }
1278
1279         if (breakpoint->type == BKPT_HARD)
1280                 cortex_m->fp_code_available--;
1281
1282         return cortex_m_set_breakpoint(target, breakpoint);
1283 }
1284
1285 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1286 {
1287         struct cortex_m_common *cortex_m = target_to_cm(target);
1288
1289         /* REVISIT why check? FBP can be updated with core running ... */
1290         if (target->state != TARGET_HALTED) {
1291                 LOG_WARNING("target not halted");
1292                 return ERROR_TARGET_NOT_HALTED;
1293         }
1294
1295         if (cortex_m->auto_bp_type)
1296                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1297
1298         if (breakpoint->set)
1299                 cortex_m_unset_breakpoint(target, breakpoint);
1300
1301         if (breakpoint->type == BKPT_HARD)
1302                 cortex_m->fp_code_available++;
1303
1304         return ERROR_OK;
1305 }
1306
1307 int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1308 {
1309         int dwt_num = 0;
1310         uint32_t mask, temp;
1311         struct cortex_m_common *cortex_m = target_to_cm(target);
1312
1313         /* watchpoint params were validated earlier */
1314         mask = 0;
1315         temp = watchpoint->length;
1316         while (temp) {
1317                 temp >>= 1;
1318                 mask++;
1319         }
1320         mask--;
1321
1322         /* REVISIT Don't fully trust these "not used" records ... users
1323          * may set up breakpoints by hand, e.g. dual-address data value
1324          * watchpoint using comparator #1; comparator #0 matching cycle
1325          * count; send data trace info through ITM and TPIU; etc
1326          */
1327         struct cortex_m_dwt_comparator *comparator;
1328
1329         for (comparator = cortex_m->dwt_comparator_list;
1330                 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1331                 comparator++, dwt_num++)
1332                 continue;
1333         if (dwt_num >= cortex_m->dwt_num_comp) {
1334                 LOG_ERROR("Can not find free DWT Comparator");
1335                 return ERROR_FAIL;
1336         }
1337         comparator->used = 1;
1338         watchpoint->set = dwt_num + 1;
1339
1340         comparator->comp = watchpoint->address;
1341         target_write_u32(target, comparator->dwt_comparator_address + 0,
1342                 comparator->comp);
1343
1344         comparator->mask = mask;
1345         target_write_u32(target, comparator->dwt_comparator_address + 4,
1346                 comparator->mask);
1347
1348         switch (watchpoint->rw) {
1349                 case WPT_READ:
1350                         comparator->function = 5;
1351                         break;
1352                 case WPT_WRITE:
1353                         comparator->function = 6;
1354                         break;
1355                 case WPT_ACCESS:
1356                         comparator->function = 7;
1357                         break;
1358         }
1359         target_write_u32(target, comparator->dwt_comparator_address + 8,
1360                 comparator->function);
1361
1362         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1363                 watchpoint->unique_id, dwt_num,
1364                 (unsigned) comparator->comp,
1365                 (unsigned) comparator->mask,
1366                 (unsigned) comparator->function);
1367         return ERROR_OK;
1368 }
1369
1370 int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1371 {
1372         struct cortex_m_common *cortex_m = target_to_cm(target);
1373         struct cortex_m_dwt_comparator *comparator;
1374         int dwt_num;
1375
1376         if (!watchpoint->set) {
1377                 LOG_WARNING("watchpoint (wpid: %d) not set",
1378                         watchpoint->unique_id);
1379                 return ERROR_OK;
1380         }
1381
1382         dwt_num = watchpoint->set - 1;
1383
1384         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1385                 watchpoint->unique_id, dwt_num,
1386                 (unsigned) watchpoint->address);
1387
1388         if ((dwt_num < 0) || (dwt_num >= cortex_m->dwt_num_comp)) {
1389                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1390                 return ERROR_OK;
1391         }
1392
1393         comparator = cortex_m->dwt_comparator_list + dwt_num;
1394         comparator->used = 0;
1395         comparator->function = 0;
1396         target_write_u32(target, comparator->dwt_comparator_address + 8,
1397                 comparator->function);
1398
1399         watchpoint->set = false;
1400
1401         return ERROR_OK;
1402 }
1403
1404 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1405 {
1406         struct cortex_m_common *cortex_m = target_to_cm(target);
1407
1408         if (cortex_m->dwt_comp_available < 1) {
1409                 LOG_DEBUG("no comparators?");
1410                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1411         }
1412
1413         /* hardware doesn't support data value masking */
1414         if (watchpoint->mask != ~(uint32_t)0) {
1415                 LOG_DEBUG("watchpoint value masks not supported");
1416                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1417         }
1418
1419         /* hardware allows address masks of up to 32K */
1420         unsigned mask;
1421
1422         for (mask = 0; mask < 16; mask++) {
1423                 if ((1u << mask) == watchpoint->length)
1424                         break;
1425         }
1426         if (mask == 16) {
1427                 LOG_DEBUG("unsupported watchpoint length");
1428                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1429         }
1430         if (watchpoint->address & ((1 << mask) - 1)) {
1431                 LOG_DEBUG("watchpoint address is unaligned");
1432                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1433         }
1434
1435         /* Caller doesn't seem to be able to describe watching for data
1436          * values of zero; that flags "no value".
1437          *
1438          * REVISIT This DWT may well be able to watch for specific data
1439          * values.  Requires comparator #1 to set DATAVMATCH and match
1440          * the data, and another comparator (DATAVADDR0) matching addr.
1441          */
1442         if (watchpoint->value) {
1443                 LOG_DEBUG("data value watchpoint not YET supported");
1444                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1445         }
1446
1447         cortex_m->dwt_comp_available--;
1448         LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1449
1450         return ERROR_OK;
1451 }
1452
1453 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1454 {
1455         struct cortex_m_common *cortex_m = target_to_cm(target);
1456
1457         /* REVISIT why check? DWT can be updated with core running ... */
1458         if (target->state != TARGET_HALTED) {
1459                 LOG_WARNING("target not halted");
1460                 return ERROR_TARGET_NOT_HALTED;
1461         }
1462
1463         if (watchpoint->set)
1464                 cortex_m_unset_watchpoint(target, watchpoint);
1465
1466         cortex_m->dwt_comp_available++;
1467         LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1468
1469         return ERROR_OK;
1470 }
1471
1472 void cortex_m_enable_watchpoints(struct target *target)
1473 {
1474         struct watchpoint *watchpoint = target->watchpoints;
1475
1476         /* set any pending watchpoints */
1477         while (watchpoint) {
1478                 if (!watchpoint->set)
1479                         cortex_m_set_watchpoint(target, watchpoint);
1480                 watchpoint = watchpoint->next;
1481         }
1482 }
1483
1484 static int cortex_m_load_core_reg_u32(struct target *target,
1485                 uint32_t num, uint32_t *value)
1486 {
1487         int retval;
1488
1489         /* NOTE:  we "know" here that the register identifiers used
1490          * in the v7m header match the Cortex-M3 Debug Core Register
1491          * Selector values for R0..R15, xPSR, MSP, and PSP.
1492          */
1493         switch (num) {
1494                 case 0 ... 18:
1495                         /* read a normal core register */
1496                         retval = cortexm_dap_read_coreregister_u32(target, value, num);
1497
1498                         if (retval != ERROR_OK) {
1499                                 LOG_ERROR("JTAG failure %i", retval);
1500                                 return ERROR_JTAG_DEVICE_ERROR;
1501                         }
1502                         LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "", (int)num, *value);
1503                         break;
1504
1505                 case ARMV7M_FPSCR:
1506                         /* Floating-point Status and Registers */
1507                         retval = target_write_u32(target, DCB_DCRSR, 0x21);
1508                         if (retval != ERROR_OK)
1509                                 return retval;
1510                         retval = target_read_u32(target, DCB_DCRDR, value);
1511                         if (retval != ERROR_OK)
1512                                 return retval;
1513                         LOG_DEBUG("load from FPSCR  value 0x%" PRIx32, *value);
1514                         break;
1515
1516                 case ARMV7M_S0 ... ARMV7M_S31:
1517                         /* Floating-point Status and Registers */
1518                         retval = target_write_u32(target, DCB_DCRSR, num - ARMV7M_S0 + 0x40);
1519                         if (retval != ERROR_OK)
1520                                 return retval;
1521                         retval = target_read_u32(target, DCB_DCRDR, value);
1522                         if (retval != ERROR_OK)
1523                                 return retval;
1524                         LOG_DEBUG("load from FPU reg S%d  value 0x%" PRIx32,
1525                                   (int)(num - ARMV7M_S0), *value);
1526                         break;
1527
1528                 case ARMV7M_PRIMASK:
1529                 case ARMV7M_BASEPRI:
1530                 case ARMV7M_FAULTMASK:
1531                 case ARMV7M_CONTROL:
1532                         /* Cortex-M3 packages these four registers as bitfields
1533                          * in one Debug Core register.  So say r0 and r2 docs;
1534                          * it was removed from r1 docs, but still works.
1535                          */
1536                         cortexm_dap_read_coreregister_u32(target, value, 20);
1537
1538                         switch (num) {
1539                                 case ARMV7M_PRIMASK:
1540                                         *value = buf_get_u32((uint8_t *)value, 0, 1);
1541                                         break;
1542
1543                                 case ARMV7M_BASEPRI:
1544                                         *value = buf_get_u32((uint8_t *)value, 8, 8);
1545                                         break;
1546
1547                                 case ARMV7M_FAULTMASK:
1548                                         *value = buf_get_u32((uint8_t *)value, 16, 1);
1549                                         break;
1550
1551                                 case ARMV7M_CONTROL:
1552                                         *value = buf_get_u32((uint8_t *)value, 24, 2);
1553                                         break;
1554                         }
1555
1556                         LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1557                         break;
1558
1559                 default:
1560                         return ERROR_COMMAND_SYNTAX_ERROR;
1561         }
1562
1563         return ERROR_OK;
1564 }
1565
1566 static int cortex_m_store_core_reg_u32(struct target *target,
1567                 uint32_t num, uint32_t value)
1568 {
1569         int retval;
1570         uint32_t reg;
1571         struct armv7m_common *armv7m = target_to_armv7m(target);
1572
1573         /* NOTE:  we "know" here that the register identifiers used
1574          * in the v7m header match the Cortex-M3 Debug Core Register
1575          * Selector values for R0..R15, xPSR, MSP, and PSP.
1576          */
1577         switch (num) {
1578                 case 0 ... 18:
1579                         retval = cortexm_dap_write_coreregister_u32(target, value, num);
1580                         if (retval != ERROR_OK) {
1581                                 struct reg *r;
1582
1583                                 LOG_ERROR("JTAG failure");
1584                                 r = armv7m->arm.core_cache->reg_list + num;
1585                                 r->dirty = r->valid;
1586                                 return ERROR_JTAG_DEVICE_ERROR;
1587                         }
1588                         LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1589                         break;
1590
1591                 case ARMV7M_FPSCR:
1592                         /* Floating-point Status and Registers */
1593                         retval = target_write_u32(target, DCB_DCRDR, value);
1594                         if (retval != ERROR_OK)
1595                                 return retval;
1596                         retval = target_write_u32(target, DCB_DCRSR, 0x21 | (1<<16));
1597                         if (retval != ERROR_OK)
1598                                 return retval;
1599                         LOG_DEBUG("write FPSCR value 0x%" PRIx32, value);
1600                         break;
1601
1602                 case ARMV7M_S0 ... ARMV7M_S31:
1603                         /* Floating-point Status and Registers */
1604                         retval = target_write_u32(target, DCB_DCRDR, value);
1605                         if (retval != ERROR_OK)
1606                                 return retval;
1607                         retval = target_write_u32(target, DCB_DCRSR, (num - ARMV7M_S0 + 0x40) | (1<<16));
1608                         if (retval != ERROR_OK)
1609                                 return retval;
1610                         LOG_DEBUG("write FPU reg S%d  value 0x%" PRIx32,
1611                                   (int)(num - ARMV7M_S0), value);
1612                         break;
1613
1614                 case ARMV7M_PRIMASK:
1615                 case ARMV7M_BASEPRI:
1616                 case ARMV7M_FAULTMASK:
1617                 case ARMV7M_CONTROL:
1618                         /* Cortex-M3 packages these four registers as bitfields
1619                          * in one Debug Core register.  So say r0 and r2 docs;
1620                          * it was removed from r1 docs, but still works.
1621                          */
1622                         cortexm_dap_read_coreregister_u32(target, &reg, 20);
1623
1624                         switch (num) {
1625                                 case ARMV7M_PRIMASK:
1626                                         buf_set_u32((uint8_t *)&reg, 0, 1, value);
1627                                         break;
1628
1629                                 case ARMV7M_BASEPRI:
1630                                         buf_set_u32((uint8_t *)&reg, 8, 8, value);
1631                                         break;
1632
1633                                 case ARMV7M_FAULTMASK:
1634                                         buf_set_u32((uint8_t *)&reg, 16, 1, value);
1635                                         break;
1636
1637                                 case ARMV7M_CONTROL:
1638                                         buf_set_u32((uint8_t *)&reg, 24, 2, value);
1639                                         break;
1640                         }
1641
1642                         cortexm_dap_write_coreregister_u32(target, reg, 20);
1643
1644                         LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1645                         break;
1646
1647                 default:
1648                         return ERROR_COMMAND_SYNTAX_ERROR;
1649         }
1650
1651         return ERROR_OK;
1652 }
1653
1654 static int cortex_m_read_memory(struct target *target, uint32_t address,
1655         uint32_t size, uint32_t count, uint8_t *buffer)
1656 {
1657         struct armv7m_common *armv7m = target_to_armv7m(target);
1658
1659         if (armv7m->arm.is_armv6m) {
1660                 /* armv6m does not handle unaligned memory access */
1661                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1662                         return ERROR_TARGET_UNALIGNED_ACCESS;
1663         }
1664
1665         return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address);
1666 }
1667
1668 static int cortex_m_write_memory(struct target *target, uint32_t address,
1669         uint32_t size, uint32_t count, const uint8_t *buffer)
1670 {
1671         struct armv7m_common *armv7m = target_to_armv7m(target);
1672
1673         if (armv7m->arm.is_armv6m) {
1674                 /* armv6m does not handle unaligned memory access */
1675                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1676                         return ERROR_TARGET_UNALIGNED_ACCESS;
1677         }
1678
1679         return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address);
1680 }
1681
1682 static int cortex_m_init_target(struct command_context *cmd_ctx,
1683         struct target *target)
1684 {
1685         armv7m_build_reg_cache(target);
1686         return ERROR_OK;
1687 }
1688
1689 void cortex_m_deinit_target(struct target *target)
1690 {
1691         struct cortex_m_common *cortex_m = target_to_cm(target);
1692
1693         free(cortex_m->fp_comparator_list);
1694
1695         cortex_m_dwt_free(target);
1696         armv7m_free_reg_cache(target);
1697
1698         free(cortex_m);
1699 }
1700
1701 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1702  * on r/w if the core is not running, and clear on resume or reset ... or
1703  * at least, in a post_restore_context() method.
1704  */
1705
1706 struct dwt_reg_state {
1707         struct target *target;
1708         uint32_t addr;
1709         uint8_t value[4];               /* scratch/cache */
1710 };
1711
1712 static int cortex_m_dwt_get_reg(struct reg *reg)
1713 {
1714         struct dwt_reg_state *state = reg->arch_info;
1715
1716         uint32_t tmp;
1717         int retval = target_read_u32(state->target, state->addr, &tmp);
1718         if (retval != ERROR_OK)
1719                 return retval;
1720
1721         buf_set_u32(state->value, 0, 32, tmp);
1722         return ERROR_OK;
1723 }
1724
1725 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
1726 {
1727         struct dwt_reg_state *state = reg->arch_info;
1728
1729         return target_write_u32(state->target, state->addr,
1730                         buf_get_u32(buf, 0, reg->size));
1731 }
1732
1733 struct dwt_reg {
1734         uint32_t addr;
1735         char *name;
1736         unsigned size;
1737 };
1738
1739 static struct dwt_reg dwt_base_regs[] = {
1740         { DWT_CTRL, "dwt_ctrl", 32, },
1741         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1742          * increments while the core is asleep.
1743          */
1744         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1745         /* plus some 8 bit counters, useful for profiling with TPIU */
1746 };
1747
1748 static struct dwt_reg dwt_comp[] = {
1749 #define DWT_COMPARATOR(i) \
1750                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1751                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1752                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1753         DWT_COMPARATOR(0),
1754         DWT_COMPARATOR(1),
1755         DWT_COMPARATOR(2),
1756         DWT_COMPARATOR(3),
1757 #undef DWT_COMPARATOR
1758 };
1759
1760 static const struct reg_arch_type dwt_reg_type = {
1761         .get = cortex_m_dwt_get_reg,
1762         .set = cortex_m_dwt_set_reg,
1763 };
1764
1765 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1766 {
1767         struct dwt_reg_state *state;
1768
1769         state = calloc(1, sizeof *state);
1770         if (!state)
1771                 return;
1772         state->addr = d->addr;
1773         state->target = t;
1774
1775         r->name = d->name;
1776         r->size = d->size;
1777         r->value = state->value;
1778         r->arch_info = state;
1779         r->type = &dwt_reg_type;
1780 }
1781
1782 void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
1783 {
1784         uint32_t dwtcr;
1785         struct reg_cache *cache;
1786         struct cortex_m_dwt_comparator *comparator;
1787         int reg, i;
1788
1789         target_read_u32(target, DWT_CTRL, &dwtcr);
1790         if (!dwtcr) {
1791                 LOG_DEBUG("no DWT");
1792                 return;
1793         }
1794
1795         cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
1796         cm->dwt_comp_available = cm->dwt_num_comp;
1797         cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
1798                         sizeof(struct cortex_m_dwt_comparator));
1799         if (!cm->dwt_comparator_list) {
1800 fail0:
1801                 cm->dwt_num_comp = 0;
1802                 LOG_ERROR("out of mem");
1803                 return;
1804         }
1805
1806         cache = calloc(1, sizeof *cache);
1807         if (!cache) {
1808 fail1:
1809                 free(cm->dwt_comparator_list);
1810                 goto fail0;
1811         }
1812         cache->name = "Cortex-M DWT registers";
1813         cache->num_regs = 2 + cm->dwt_num_comp * 3;
1814         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1815         if (!cache->reg_list) {
1816                 free(cache);
1817                 goto fail1;
1818         }
1819
1820         for (reg = 0; reg < 2; reg++)
1821                 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1822                         dwt_base_regs + reg);
1823
1824         comparator = cm->dwt_comparator_list;
1825         for (i = 0; i < cm->dwt_num_comp; i++, comparator++) {
1826                 int j;
1827
1828                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1829                 for (j = 0; j < 3; j++, reg++)
1830                         cortex_m_dwt_addreg(target, cache->reg_list + reg,
1831                                 dwt_comp + 3 * i + j);
1832
1833                 /* make sure we clear any watchpoints enabled on the target */
1834                 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1835         }
1836
1837         *register_get_last_cache_p(&target->reg_cache) = cache;
1838         cm->dwt_cache = cache;
1839
1840         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1841                 dwtcr, cm->dwt_num_comp,
1842                 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1843
1844         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1845          * implement single-address data value watchpoints ... so we
1846          * won't need to check it later, when asked to set one up.
1847          */
1848 }
1849
1850 static void cortex_m_dwt_free(struct target *target)
1851 {
1852         struct cortex_m_common *cm = target_to_cm(target);
1853         struct reg_cache *cache = cm->dwt_cache;
1854
1855         free(cm->dwt_comparator_list);
1856         cm->dwt_comparator_list = NULL;
1857         cm->dwt_num_comp = 0;
1858
1859         if (cache) {
1860                 register_unlink_cache(&target->reg_cache, cache);
1861
1862                 if (cache->reg_list) {
1863                         for (size_t i = 0; i < cache->num_regs; i++)
1864                                 free(cache->reg_list[i].arch_info);
1865                         free(cache->reg_list);
1866                 }
1867                 free(cache);
1868         }
1869         cm->dwt_cache = NULL;
1870 }
1871
1872 #define MVFR0 0xe000ef40
1873 #define MVFR1 0xe000ef44
1874
1875 #define MVFR0_DEFAULT_M4 0x10110021
1876 #define MVFR1_DEFAULT_M4 0x11000011
1877
1878 #define MVFR0_DEFAULT_M7_SP 0x10110021
1879 #define MVFR0_DEFAULT_M7_DP 0x10110221
1880 #define MVFR1_DEFAULT_M7_SP 0x11000011
1881 #define MVFR1_DEFAULT_M7_DP 0x12000011
1882
1883 int cortex_m_examine(struct target *target)
1884 {
1885         int retval;
1886         uint32_t cpuid, fpcr, mvfr0, mvfr1;
1887         int i;
1888         struct cortex_m_common *cortex_m = target_to_cm(target);
1889         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
1890         struct armv7m_common *armv7m = target_to_armv7m(target);
1891
1892         /* stlink shares the examine handler but does not support
1893          * all its calls */
1894         if (!armv7m->stlink) {
1895                 retval = dap_dp_init(swjdp);
1896                 if (retval != ERROR_OK) {
1897                         LOG_ERROR("Could not initialize the debug port");
1898                         return retval;
1899                 }
1900
1901                 /* Search for the MEM-AP */
1902                 retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7m->debug_ap);
1903                 if (retval != ERROR_OK) {
1904                         LOG_ERROR("Could not find MEM-AP to control the core");
1905                         return retval;
1906                 }
1907
1908                 /* Leave (only) generic DAP stuff for debugport_init(); */
1909                 armv7m->debug_ap->memaccess_tck = 8;
1910
1911                 retval = mem_ap_init(armv7m->debug_ap);
1912                 if (retval != ERROR_OK)
1913                         return retval;
1914         }
1915
1916         if (!target_was_examined(target)) {
1917                 target_set_examined(target);
1918
1919                 /* Read from Device Identification Registers */
1920                 retval = target_read_u32(target, CPUID, &cpuid);
1921                 if (retval != ERROR_OK)
1922                         return retval;
1923
1924                 /* Get CPU Type */
1925                 i = (cpuid >> 4) & 0xf;
1926
1927                 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
1928                                 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1929                 if (i == 7) {
1930                         uint8_t rev, patch;
1931                         rev = (cpuid >> 20) & 0xf;
1932                         patch = (cpuid >> 0) & 0xf;
1933                         if ((rev == 0) && (patch < 2))
1934                                 LOG_WARNING("Silicon bug: single stepping will enter pending exception handler!");
1935                 }
1936                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1937
1938                 if (i == 4) {
1939                         target_read_u32(target, MVFR0, &mvfr0);
1940                         target_read_u32(target, MVFR1, &mvfr1);
1941
1942                         /* test for floating point feature on Cortex-M4 */
1943                         if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
1944                                 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
1945                                 armv7m->fp_feature = FPv4_SP;
1946                         }
1947                 } else if (i == 7) {
1948                         target_read_u32(target, MVFR0, &mvfr0);
1949                         target_read_u32(target, MVFR1, &mvfr1);
1950
1951                         /* test for floating point features on Cortex-M7 */
1952                         if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) {
1953                                 LOG_DEBUG("Cortex-M%d floating point feature FPv5_SP found", i);
1954                                 armv7m->fp_feature = FPv5_SP;
1955                         } else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) {
1956                                 LOG_DEBUG("Cortex-M%d floating point feature FPv5_DP found", i);
1957                                 armv7m->fp_feature = FPv5_DP;
1958                         }
1959                 } else if (i == 0) {
1960                         /* Cortex-M0 does not support unaligned memory access */
1961                         armv7m->arm.is_armv6m = true;
1962                 }
1963
1964                 if (armv7m->fp_feature == FP_NONE &&
1965                     armv7m->arm.core_cache->num_regs > ARMV7M_NUM_CORE_REGS_NOFP) {
1966                         /* free unavailable FPU registers */
1967                         size_t idx;
1968
1969                         for (idx = ARMV7M_NUM_CORE_REGS_NOFP;
1970                              idx < armv7m->arm.core_cache->num_regs;
1971                              idx++) {
1972                                 free(armv7m->arm.core_cache->reg_list[idx].value);
1973                                 free(armv7m->arm.core_cache->reg_list[idx].feature);
1974                                 free(armv7m->arm.core_cache->reg_list[idx].reg_data_type);
1975                         }
1976                         armv7m->arm.core_cache->num_regs = ARMV7M_NUM_CORE_REGS_NOFP;
1977                 }
1978
1979                 if (!armv7m->stlink) {
1980                         if (i == 3 || i == 4)
1981                                 /* Cortex-M3/M4 have 4096 bytes autoincrement range,
1982                                  * s. ARM IHI 0031C: MEM-AP 7.2.2 */
1983                                 armv7m->debug_ap->tar_autoincr_block = (1 << 12);
1984                         else if (i == 7)
1985                                 /* Cortex-M7 has only 1024 bytes autoincrement range */
1986                                 armv7m->debug_ap->tar_autoincr_block = (1 << 10);
1987                 }
1988
1989                 /* Configure trace modules */
1990                 retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
1991                 if (retval != ERROR_OK)
1992                         return retval;
1993
1994                 if (armv7m->trace_config.config_type != DISABLED) {
1995                         armv7m_trace_tpiu_config(target);
1996                         armv7m_trace_itm_config(target);
1997                 }
1998
1999                 /* NOTE: FPB and DWT are both optional. */
2000
2001                 /* Setup FPB */
2002                 target_read_u32(target, FP_CTRL, &fpcr);
2003                 cortex_m->auto_bp_type = 1;
2004                 /* bits [14:12] and [7:4] */
2005                 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
2006                 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
2007                 cortex_m->fp_code_available = cortex_m->fp_num_code;
2008                 /* Detect flash patch revision, see RM DDI 0403E.b page C1-817.
2009                    Revision is zero base, fp_rev == 1 means Rev.2 ! */
2010                 cortex_m->fp_rev = (fpcr >> 28) & 0xf;
2011                 free(cortex_m->fp_comparator_list);
2012                 cortex_m->fp_comparator_list = calloc(
2013                                 cortex_m->fp_num_code + cortex_m->fp_num_lit,
2014                                 sizeof(struct cortex_m_fp_comparator));
2015                 cortex_m->fpb_enabled = fpcr & 1;
2016                 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
2017                         cortex_m->fp_comparator_list[i].type =
2018                                 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
2019                         cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
2020
2021                         /* make sure we clear any breakpoints enabled on the target */
2022                         target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
2023                 }
2024                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
2025                         fpcr,
2026                         cortex_m->fp_num_code,
2027                         cortex_m->fp_num_lit);
2028
2029                 /* Setup DWT */
2030                 cortex_m_dwt_free(target);
2031                 cortex_m_dwt_setup(cortex_m, target);
2032
2033                 /* These hardware breakpoints only work for code in flash! */
2034                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
2035                         target_name(target),
2036                         cortex_m->fp_num_code,
2037                         cortex_m->dwt_num_comp);
2038         }
2039
2040         return ERROR_OK;
2041 }
2042
2043 static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
2044 {
2045         struct armv7m_common *armv7m = target_to_armv7m(target);
2046         uint16_t dcrdr;
2047         uint8_t buf[2];
2048         int retval;
2049
2050         retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2051         if (retval != ERROR_OK)
2052                 return retval;
2053
2054         dcrdr = target_buffer_get_u16(target, buf);
2055         *ctrl = (uint8_t)dcrdr;
2056         *value = (uint8_t)(dcrdr >> 8);
2057
2058         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
2059
2060         /* write ack back to software dcc register
2061          * signify we have read data */
2062         if (dcrdr & (1 << 0)) {
2063                 target_buffer_set_u16(target, buf, 0);
2064                 retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2065                 if (retval != ERROR_OK)
2066                         return retval;
2067         }
2068
2069         return ERROR_OK;
2070 }
2071
2072 static int cortex_m_target_request_data(struct target *target,
2073         uint32_t size, uint8_t *buffer)
2074 {
2075         uint8_t data;
2076         uint8_t ctrl;
2077         uint32_t i;
2078
2079         for (i = 0; i < (size * 4); i++) {
2080                 int retval = cortex_m_dcc_read(target, &data, &ctrl);
2081                 if (retval != ERROR_OK)
2082                         return retval;
2083                 buffer[i] = data;
2084         }
2085
2086         return ERROR_OK;
2087 }
2088
2089 static int cortex_m_handle_target_request(void *priv)
2090 {
2091         struct target *target = priv;
2092         if (!target_was_examined(target))
2093                 return ERROR_OK;
2094
2095         if (!target->dbg_msg_enabled)
2096                 return ERROR_OK;
2097
2098         if (target->state == TARGET_RUNNING) {
2099                 uint8_t data;
2100                 uint8_t ctrl;
2101                 int retval;
2102
2103                 retval = cortex_m_dcc_read(target, &data, &ctrl);
2104                 if (retval != ERROR_OK)
2105                         return retval;
2106
2107                 /* check if we have data */
2108                 if (ctrl & (1 << 0)) {
2109                         uint32_t request;
2110
2111                         /* we assume target is quick enough */
2112                         request = data;
2113                         for (int i = 1; i <= 3; i++) {
2114                                 retval = cortex_m_dcc_read(target, &data, &ctrl);
2115                                 if (retval != ERROR_OK)
2116                                         return retval;
2117                                 request |= ((uint32_t)data << (i * 8));
2118                         }
2119                         target_request(target, request);
2120                 }
2121         }
2122
2123         return ERROR_OK;
2124 }
2125
2126 static int cortex_m_init_arch_info(struct target *target,
2127         struct cortex_m_common *cortex_m, struct jtag_tap *tap)
2128 {
2129         struct armv7m_common *armv7m = &cortex_m->armv7m;
2130
2131         armv7m_init_arch_info(target, armv7m);
2132
2133         /*  tap has no dap initialized */
2134         if (!tap->dap) {
2135                 tap->dap = dap_init();
2136
2137                 /* Leave (only) generic DAP stuff for debugport_init() */
2138                 tap->dap->tap = tap;
2139         }
2140
2141         /* default reset mode is to use srst if fitted
2142          * if not it will use CORTEX_M3_RESET_VECTRESET */
2143         cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2144
2145         armv7m->arm.dap = tap->dap;
2146
2147         /* register arch-specific functions */
2148         armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
2149
2150         armv7m->post_debug_entry = NULL;
2151
2152         armv7m->pre_restore_context = NULL;
2153
2154         armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
2155         armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
2156
2157         target_register_timer_callback(cortex_m_handle_target_request, 1, 1, target);
2158
2159         return ERROR_OK;
2160 }
2161
2162 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2163 {
2164         struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2165
2166         cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2167         cortex_m_init_arch_info(target, cortex_m, target->tap);
2168
2169         return ERROR_OK;
2170 }
2171
2172 /*--------------------------------------------------------------------------*/
2173
2174 static int cortex_m_verify_pointer(struct command_context *cmd_ctx,
2175         struct cortex_m_common *cm)
2176 {
2177         if (cm->common_magic != CORTEX_M_COMMON_MAGIC) {
2178                 command_print(cmd_ctx, "target is not a Cortex-M");
2179                 return ERROR_TARGET_INVALID;
2180         }
2181         return ERROR_OK;
2182 }
2183
2184 /*
2185  * Only stuff below this line should need to verify that its target
2186  * is a Cortex-M3.  Everything else should have indirected through the
2187  * cortexm3_target structure, which is only used with CM3 targets.
2188  */
2189
2190 static const struct {
2191         char name[10];
2192         unsigned mask;
2193 } vec_ids[] = {
2194         { "hard_err",   VC_HARDERR, },
2195         { "int_err",    VC_INTERR, },
2196         { "bus_err",    VC_BUSERR, },
2197         { "state_err",  VC_STATERR, },
2198         { "chk_err",    VC_CHKERR, },
2199         { "nocp_err",   VC_NOCPERR, },
2200         { "mm_err",     VC_MMERR, },
2201         { "reset",      VC_CORERESET, },
2202 };
2203
2204 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2205 {
2206         struct target *target = get_current_target(CMD_CTX);
2207         struct cortex_m_common *cortex_m = target_to_cm(target);
2208         struct armv7m_common *armv7m = &cortex_m->armv7m;
2209         uint32_t demcr = 0;
2210         int retval;
2211
2212         retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2213         if (retval != ERROR_OK)
2214                 return retval;
2215
2216         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2217         if (retval != ERROR_OK)
2218                 return retval;
2219
2220         if (CMD_ARGC > 0) {
2221                 unsigned catch = 0;
2222
2223                 if (CMD_ARGC == 1) {
2224                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2225                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2226                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2227                                         | VC_MMERR | VC_CORERESET;
2228                                 goto write;
2229                         } else if (strcmp(CMD_ARGV[0], "none") == 0)
2230                                 goto write;
2231                 }
2232                 while (CMD_ARGC-- > 0) {
2233                         unsigned i;
2234                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2235                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2236                                         continue;
2237                                 catch |= vec_ids[i].mask;
2238                                 break;
2239                         }
2240                         if (i == ARRAY_SIZE(vec_ids)) {
2241                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2242                                 return ERROR_COMMAND_SYNTAX_ERROR;
2243                         }
2244                 }
2245 write:
2246                 /* For now, armv7m->demcr only stores vector catch flags. */
2247                 armv7m->demcr = catch;
2248
2249                 demcr &= ~0xffff;
2250                 demcr |= catch;
2251
2252                 /* write, but don't assume it stuck (why not??) */
2253                 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr);
2254                 if (retval != ERROR_OK)
2255                         return retval;
2256                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2257                 if (retval != ERROR_OK)
2258                         return retval;
2259
2260                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2261                  * Otherwise the vector catch hardware could fire when there's
2262                  * no debugger hooked up, causing much confusion...
2263                  */
2264         }
2265
2266         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2267                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2268                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2269         }
2270
2271         return ERROR_OK;
2272 }
2273
2274 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2275 {
2276         struct target *target = get_current_target(CMD_CTX);
2277         struct cortex_m_common *cortex_m = target_to_cm(target);
2278         int retval;
2279
2280         static const Jim_Nvp nvp_maskisr_modes[] = {
2281                 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2282                 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2283                 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2284                 { .name = NULL, .value = -1 },
2285         };
2286         const Jim_Nvp *n;
2287
2288
2289         retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2290         if (retval != ERROR_OK)
2291                 return retval;
2292
2293         if (target->state != TARGET_HALTED) {
2294                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2295                 return ERROR_OK;
2296         }
2297
2298         if (CMD_ARGC > 0) {
2299                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2300                 if (n->name == NULL)
2301                         return ERROR_COMMAND_SYNTAX_ERROR;
2302                 cortex_m->isrmasking_mode = n->value;
2303
2304
2305                 if (cortex_m->isrmasking_mode == CORTEX_M_ISRMASK_ON)
2306                         cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2307                 else
2308                         cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2309         }
2310
2311         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2312         command_print(CMD_CTX, "cortex_m interrupt mask %s", n->name);
2313
2314         return ERROR_OK;
2315 }
2316
2317 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2318 {
2319         struct target *target = get_current_target(CMD_CTX);
2320         struct cortex_m_common *cortex_m = target_to_cm(target);
2321         int retval;
2322         char *reset_config;
2323
2324         retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2325         if (retval != ERROR_OK)
2326                 return retval;
2327
2328         if (CMD_ARGC > 0) {
2329                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2330                         cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2331                 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2332                         cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2333         }
2334
2335         switch (cortex_m->soft_reset_config) {
2336                 case CORTEX_M_RESET_SYSRESETREQ:
2337                         reset_config = "sysresetreq";
2338                         break;
2339
2340                 case CORTEX_M_RESET_VECTRESET:
2341                         reset_config = "vectreset";
2342                         break;
2343
2344                 default:
2345                         reset_config = "unknown";
2346                         break;
2347         }
2348
2349         command_print(CMD_CTX, "cortex_m reset_config %s", reset_config);
2350
2351         return ERROR_OK;
2352 }
2353
2354 static const struct command_registration cortex_m_exec_command_handlers[] = {
2355         {
2356                 .name = "maskisr",
2357                 .handler = handle_cortex_m_mask_interrupts_command,
2358                 .mode = COMMAND_EXEC,
2359                 .help = "mask cortex_m interrupts",
2360                 .usage = "['auto'|'on'|'off']",
2361         },
2362         {
2363                 .name = "vector_catch",
2364                 .handler = handle_cortex_m_vector_catch_command,
2365                 .mode = COMMAND_EXEC,
2366                 .help = "configure hardware vectors to trigger debug entry",
2367                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2368         },
2369         {
2370                 .name = "reset_config",
2371                 .handler = handle_cortex_m_reset_config_command,
2372                 .mode = COMMAND_ANY,
2373                 .help = "configure software reset handling",
2374                 .usage = "['srst'|'sysresetreq'|'vectreset']",
2375         },
2376         COMMAND_REGISTRATION_DONE
2377 };
2378 static const struct command_registration cortex_m_command_handlers[] = {
2379         {
2380                 .chain = armv7m_command_handlers,
2381         },
2382         {
2383                 .chain = armv7m_trace_command_handlers,
2384         },
2385         {
2386                 .name = "cortex_m",
2387                 .mode = COMMAND_EXEC,
2388                 .help = "Cortex-M command group",
2389                 .usage = "",
2390                 .chain = cortex_m_exec_command_handlers,
2391         },
2392         COMMAND_REGISTRATION_DONE
2393 };
2394
2395 struct target_type cortexm_target = {
2396         .name = "cortex_m",
2397         .deprecated_name = "cortex_m3",
2398
2399         .poll = cortex_m_poll,
2400         .arch_state = armv7m_arch_state,
2401
2402         .target_request_data = cortex_m_target_request_data,
2403
2404         .halt = cortex_m_halt,
2405         .resume = cortex_m_resume,
2406         .step = cortex_m_step,
2407
2408         .assert_reset = cortex_m_assert_reset,
2409         .deassert_reset = cortex_m_deassert_reset,
2410         .soft_reset_halt = cortex_m_soft_reset_halt,
2411
2412         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2413
2414         .read_memory = cortex_m_read_memory,
2415         .write_memory = cortex_m_write_memory,
2416         .checksum_memory = armv7m_checksum_memory,
2417         .blank_check_memory = armv7m_blank_check_memory,
2418
2419         .run_algorithm = armv7m_run_algorithm,
2420         .start_algorithm = armv7m_start_algorithm,
2421         .wait_algorithm = armv7m_wait_algorithm,
2422
2423         .add_breakpoint = cortex_m_add_breakpoint,
2424         .remove_breakpoint = cortex_m_remove_breakpoint,
2425         .add_watchpoint = cortex_m_add_watchpoint,
2426         .remove_watchpoint = cortex_m_remove_watchpoint,
2427
2428         .commands = cortex_m_command_handlers,
2429         .target_create = cortex_m_target_create,
2430         .init_target = cortex_m_init_target,
2431         .examine = cortex_m_examine,
2432         .deinit_target = cortex_m_deinit_target,
2433 };