]> git.sur5r.net Git - openocd/blob - src/target/mips32_pracc.c
2ccbfc7fc4891484e41beae4892554799591b085
[openocd] / src / target / mips32_pracc.c
1 /***************************************************************************
2  *   Copyright (C) 2008 by Spencer Oliver                                  *
3  *   spen@spen-soft.co.uk                                                  *
4  *                                                                         *
5  *   Copyright (C) 2008 by David T.L. Wong                                 *
6  *                                                                         *
7  *   Copyright (C) 2009 by David N. Claffey <dnclaffey@gmail.com>          *
8  *                                                                         *
9  *   Copyright (C) 2011 by Drasko DRASKOVIC                                *
10  *   drasko.draskovic@gmail.com                                            *
11  *                                                                         *
12  *   This program is free software; you can redistribute it and/or modify  *
13  *   it under the terms of the GNU General Public License as published by  *
14  *   the Free Software Foundation; either version 2 of the License, or     *
15  *   (at your option) any later version.                                   *
16  *                                                                         *
17  *   This program is distributed in the hope that it will be useful,       *
18  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
19  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
20  *   GNU General Public License for more details.                          *
21  *                                                                         *
22  *   You should have received a copy of the GNU General Public License     *
23  *   along with this program; if not, write to the                         *
24  *   Free Software Foundation, Inc.,                                       *
25  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
26  ***************************************************************************/
27
28 /*
29  * This version has optimized assembly routines for 32 bit operations:
30  * - read word
31  * - write word
32  * - write array of words
33  *
34  * One thing to be aware of is that the MIPS32 cpu will execute the
35  * instruction after a branch instruction (one delay slot).
36  *
37  * For example:
38  *  LW $2, ($5 +10)
39  *  B foo
40  *  LW $1, ($2 +100)
41  *
42  * The LW $1, ($2 +100) instruction is also executed. If this is
43  * not wanted a NOP can be inserted:
44  *
45  *  LW $2, ($5 +10)
46  *  B foo
47  *  NOP
48  *  LW $1, ($2 +100)
49  *
50  * or the code can be changed to:
51  *
52  *  B foo
53  *  LW $2, ($5 +10)
54  *  LW $1, ($2 +100)
55  *
56  * The original code contained NOPs. I have removed these and moved
57  * the branches.
58  *
59  * I also moved the PRACC_STACK to 0xFF204000. This allows
60  * the use of 16 bits offsets to get pointers to the input
61  * and output area relative to the stack. Note that the stack
62  * isn't really a stack (the stack pointer is not 'moving')
63  * but a FIFO simulated in software.
64  *
65  * These changes result in a 35% speed increase when programming an
66  * external flash.
67  *
68  * More improvement could be gained if the registers do no need
69  * to be preserved but in that case the routines should be aware
70  * OpenOCD is used as a flash programmer or as a debug tool.
71  *
72  * Nico Coesel
73  */
74
75 #ifdef HAVE_CONFIG_H
76 #include "config.h"
77 #endif
78
79 #include <helper/time_support.h>
80
81 #include "mips32.h"
82 #include "mips32_pracc.h"
83
84 struct mips32_pracc_context {
85         uint32_t *local_iparam;
86         int num_iparam;
87         uint32_t *local_oparam;
88         int num_oparam;
89         const uint32_t *code;
90         int code_len;
91         uint32_t stack[32];
92         int stack_offset;
93         struct mips_ejtag *ejtag_info;
94 };
95
96 static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
97                 uint32_t start_addr, uint32_t end_addr);
98 static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
99                 uint32_t start_addr, uint32_t end_addr);
100
101 static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info, uint32_t *ctrl)
102 {
103         uint32_t ejtag_ctrl;
104         long long then = timeval_ms();
105         int timeout;
106         int retval;
107
108         /* wait for the PrAcc to become "1" */
109         mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
110
111         while (1) {
112                 ejtag_ctrl = ejtag_info->ejtag_ctrl;
113                 retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl);
114                 if (retval != ERROR_OK)
115                         return retval;
116
117                 if (ejtag_ctrl & EJTAG_CTRL_PRACC)
118                         break;
119
120                 timeout = timeval_ms() - then;
121                 if (timeout > 1000) {
122                         LOG_DEBUG("DEBUGMODULE: No memory access in progress!");
123                         return ERROR_JTAG_DEVICE_ERROR;
124                 }
125         }
126
127         *ctrl = ejtag_ctrl;
128         return ERROR_OK;
129 }
130
131 static int mips32_pracc_exec_read(struct mips32_pracc_context *ctx, uint32_t address)
132 {
133         struct mips_ejtag *ejtag_info = ctx->ejtag_info;
134         int offset;
135         uint32_t ejtag_ctrl, data;
136
137         if ((address >= MIPS32_PRACC_PARAM_IN)
138                 && (address < MIPS32_PRACC_PARAM_IN + ctx->num_iparam * 4)) {
139                 offset = (address - MIPS32_PRACC_PARAM_IN) / 4;
140                 data = ctx->local_iparam[offset];
141         } else if ((address >= MIPS32_PRACC_PARAM_OUT)
142                 && (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
143                 offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
144                 data = ctx->local_oparam[offset];
145         } else if ((address >= MIPS32_PRACC_TEXT)
146                 && (address < MIPS32_PRACC_TEXT + ctx->code_len * 4)) {
147                 offset = (address - MIPS32_PRACC_TEXT) / 4;
148                 data = ctx->code[offset];
149         } else if (address == MIPS32_PRACC_STACK) {
150                 if (ctx->stack_offset <= 0) {
151                         LOG_ERROR("Error: Pracc stack out of bounds");
152                         return ERROR_JTAG_DEVICE_ERROR;
153                 }
154                 /* save to our debug stack */
155                 data = ctx->stack[--ctx->stack_offset];
156         } else {
157                 /* TODO: send JMP 0xFF200000 instruction. Hopefully processor jump back
158                  * to start of debug vector */
159
160                 LOG_ERROR("Error reading unexpected address 0x%8.8" PRIx32 "", address);
161                 return ERROR_JTAG_DEVICE_ERROR;
162         }
163
164         /* Send the data out */
165         mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
166         mips_ejtag_drscan_32_out(ctx->ejtag_info, data);
167
168         /* Clear the access pending bit (let the processor eat!) */
169         ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
170         mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
171         mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);
172
173         return jtag_execute_queue();
174 }
175
176 static int mips32_pracc_exec_write(struct mips32_pracc_context *ctx, uint32_t address)
177 {
178         uint32_t ejtag_ctrl, data;
179         int offset;
180         struct mips_ejtag *ejtag_info = ctx->ejtag_info;
181         int retval;
182
183         mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
184         retval = mips_ejtag_drscan_32(ctx->ejtag_info, &data);
185         if (retval != ERROR_OK)
186                 return retval;
187
188         /* Clear access pending bit */
189         ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
190         mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
191         mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);
192
193         retval = jtag_execute_queue();
194         if (retval != ERROR_OK)
195                 return retval;
196
197         if ((address >= MIPS32_PRACC_PARAM_OUT)
198                 && (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
199                 offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
200                 ctx->local_oparam[offset] = data;
201         } else if (address == MIPS32_PRACC_STACK) {
202                 if (ctx->stack_offset >= 32) {
203                         LOG_ERROR("Error: Pracc stack out of bounds");
204                         return ERROR_JTAG_DEVICE_ERROR;
205                 }
206                 /* save data onto our stack */
207                 ctx->stack[ctx->stack_offset++] = data;
208         } else {
209                 LOG_ERROR("Error writing unexpected address 0x%8.8" PRIx32 "", address);
210                 return ERROR_JTAG_DEVICE_ERROR;
211         }
212
213         return ERROR_OK;
214 }
215
216 int mips32_pracc_exec(struct mips_ejtag *ejtag_info, int code_len, const uint32_t *code,
217                 int num_param_in, uint32_t *param_in, int num_param_out, uint32_t *param_out, int cycle)
218 {
219         uint32_t ejtag_ctrl;
220         uint32_t address;
221         struct mips32_pracc_context ctx;
222         int retval;
223         int pass = 0;
224
225         ctx.local_iparam = param_in;
226         ctx.local_oparam = param_out;
227         ctx.num_iparam = num_param_in;
228         ctx.num_oparam = num_param_out;
229         ctx.code = code;
230         ctx.code_len = code_len;
231         ctx.ejtag_info = ejtag_info;
232         ctx.stack_offset = 0;
233
234         while (1) {
235                 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
236                 if (retval != ERROR_OK)
237                         return retval;
238
239                 address = 0;
240                 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
241                 retval = mips_ejtag_drscan_32(ejtag_info, &address);
242                 if (retval != ERROR_OK)
243                         return retval;
244
245                 /* Check for read or write */
246                 if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
247                         retval = mips32_pracc_exec_write(&ctx, address);
248                         if (retval != ERROR_OK)
249                                 return retval;
250                 } else {
251                         /* Check to see if its reading at the debug vector. The first pass through
252                          * the module is always read at the vector, so the first one we allow.  When
253                          * the second read from the vector occurs we are done and just exit. */
254                         if ((address == MIPS32_PRACC_TEXT) && (pass++))
255                                 break;
256
257                         retval = mips32_pracc_exec_read(&ctx, address);
258                         if (retval != ERROR_OK)
259                                 return retval;
260                 }
261
262                 if (cycle == 0)
263                         break;
264         }
265
266         /* stack sanity check */
267         if (ctx.stack_offset != 0)
268                 LOG_DEBUG("Pracc Stack not zero");
269
270         return ERROR_OK;
271 }
272
273 static int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf)
274 {
275         uint32_t code[] = {
276                                                                                                                 /* start: */
277                 MIPS32_MTC0(15, 31, 0),                                         /* move $15 to COP0 DeSave */
278                 MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR),                          /* $15 = MIPS32_PRACC_BASE_ADDR */
279
280                 MIPS32_LUI(8, UPPER16((addr + 0x8000))),                        /* load  $8 with modified upper address */
281                 MIPS32_LW(8, LOWER16(addr), 8),                                 /* lw $8, LOWER16(addr)($8) */
282                 MIPS32_SW(8, PRACC_OUT_OFFSET, 15),                             /* sw $8,PRACC_OUT_OFFSET($15) */
283
284                 MIPS32_LUI(8, UPPER16(ejtag_info->reg8)),                               /* restore upper 16 bits of reg 8 */
285                 MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8)),                            /* restore lower 16 bits of reg 8 */
286                 MIPS32_B(NEG16(8)),                                                     /* b start */
287                 MIPS32_MFC0(15, 31, 0),                                         /* move COP0 DeSave to $15 */
288         };
289
290         return mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 0, NULL, 1, buf, 1);
291 }
292
293 int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
294 {
295         if (count == 1 && size == 4)
296                 return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf);
297
298         int retval = ERROR_FAIL;
299
300         uint32_t *code = NULL;
301         uint32_t *data = NULL;
302
303         code = malloc((256 * 2 + 10) * sizeof(uint32_t));
304         if (code == NULL) {
305                 LOG_ERROR("Out of memory");
306                 goto exit;
307         }
308
309         if (size != 4) {
310                 data = malloc(256 * sizeof(uint32_t));
311                 if (data == NULL) {
312                         LOG_ERROR("Out of memory");
313                         goto exit;
314                 }
315         }
316
317         uint32_t *buf32 = buf;
318         uint16_t *buf16 = buf;
319         uint8_t *buf8 = buf;
320
321         int i;
322         uint32_t upper_base_addr, last_upper_base_addr;
323         int this_round_count;
324         int code_len;
325
326         while (count) {
327                 this_round_count = (count > 256) ? 256 : count;
328                 last_upper_base_addr = UPPER16((addr + 0x8000));
329                 uint32_t *code_p = code;
330
331                 *code_p++ = MIPS32_MTC0(15, 31, 0);                                     /* save $15 in DeSave */
332                 *code_p++ = MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR);                      /* $15 = MIPS32_PRACC_BASE_ADDR */
333                 *code_p++ = MIPS32_LUI(9, last_upper_base_addr);                        /* load the upper memory address in $9*/
334                 code_len = 3;
335
336                 for (i = 0; i != this_round_count; i++) {               /* Main code loop */
337                         upper_base_addr = UPPER16((addr + 0x8000));
338                         if (last_upper_base_addr != upper_base_addr) {
339                                 *code_p++ = MIPS32_LUI(9, upper_base_addr);             /* if needed, change upper address in $9*/
340                                 code_len++;
341                                 last_upper_base_addr = upper_base_addr;
342                         }
343
344                         if (size == 4)
345                                 *code_p++ = MIPS32_LW(8, LOWER16(addr), 9);             /* load from memory to $8 */
346                         else if (size == 2)
347                                 *code_p++ = MIPS32_LHU(8, LOWER16(addr), 9);
348                         else
349                                 *code_p++ = MIPS32_LBU(8, LOWER16(addr), 9);
350
351                         *code_p++ = MIPS32_SW(8, PRACC_OUT_OFFSET + i * 4, 15);         /* store $8 at param out */
352
353                         code_len += 2;
354                         addr += size;
355                 }
356
357                 *code_p++ = MIPS32_LUI(8, UPPER16(ejtag_info->reg8));                   /* restore upper 16 bits of reg 8 */
358                 *code_p++ = MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8));                /* restore lower 16 bits of reg 8 */
359                 *code_p++ = MIPS32_LUI(9, UPPER16(ejtag_info->reg8));                   /* restore upper 16 bits of reg 9 */
360                 *code_p++ = MIPS32_ORI(9, 9, LOWER16(ejtag_info->reg8));                /* restore lower 16 bits of reg 9 */
361
362                 code_len += 6;
363                 *code_p++ = MIPS32_B(NEG16(code_len - 1));                                      /* jump to start */
364                 *code_p = MIPS32_MFC0(15, 31, 0);                                       /* restore $15 from DeSave */
365
366                 if (size == 4) {
367                         retval = mips32_pracc_exec(ejtag_info, code_len, code, 0, NULL, this_round_count, buf32, 1);
368                         if (retval != ERROR_OK)
369                                 goto exit;
370                         buf32 += this_round_count;
371                 } else {
372                         retval = mips32_pracc_exec(ejtag_info, code_len, code, 0, NULL, this_round_count, data, 1);
373                         if (retval != ERROR_OK)
374                                 goto exit;
375                         uint32_t *data_p = data;
376                         for (i = 0; i != this_round_count; i++) {
377                                 if (size == 2)
378                                         *buf16++ = *data_p++;
379                                 else
380                                         *buf8++ = *data_p++;
381                         }
382                 }
383                 count -= this_round_count;
384         }
385
386 exit:
387         if (code)
388                 free(code);
389         if (data)
390                 free(data);
391         return retval;
392 }
393
394 int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel)
395 {
396         /**
397          * Do not make this code static, but regenerate it every time,
398          * as 2th element has to be changed to add parameters
399          */
400         uint32_t code[] = {
401                                                                                                                 /* start: */
402                 MIPS32_MTC0(15, 31, 0),                                                 /* move $15 to COP0 DeSave */
403                 MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR),                                  /* $15 = MIPS32_PRACC_BASE_ADDR */
404
405                 /* 2 */ MIPS32_MFC0(8, 0, 0),                                           /* move COP0 [cp0_reg select] to $8 */
406                 MIPS32_SW(8, PRACC_OUT_OFFSET, 15),                                     /* sw $8,PRACC_OUT_OFFSET($15) */
407
408                 MIPS32_LUI(8, UPPER16(ejtag_info->reg8)),                               /* restore upper 16 bits of reg 8 */
409                 MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8)),                            /* restore lower 16 bits of reg 8 */
410                 MIPS32_B(NEG16(7)),                                                     /* b start */
411                 MIPS32_MFC0(15, 31, 0),                                                 /* move COP0 DeSave to $15 */
412         };
413
414         /**
415          * Note that our input parametes cp0_reg and cp0_sel
416          * are numbers (not gprs) which make part of mfc0 instruction opcode.
417          *
418          * These are not fix, but can be different for each mips32_cp0_read() function call,
419          * and that is why we must insert them directly into opcode,
420          * i.e. we can not pass it on EJTAG microprogram stack (via param_in),
421          * and put them into the gprs later from MIPS32_PRACC_STACK
422          * because mfc0 do not use gpr as a parameter for the cp0_reg and select part,
423          * but plain (immediate) number.
424          *
425          * MIPS32_MTC0 is implemented via MIPS32_R_INST macro.
426          * In order to insert our parameters, we must change rd and funct fields.
427          */
428         code[2] |= (cp0_reg << 11) | cp0_sel;  /* change rd and funct of MIPS32_R_INST macro */
429
430         return mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 0, NULL, 1, val, 1);
431 }
432
433 int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel)
434 {
435         uint32_t code[] = {
436                                                                                                                         /* start: */
437                 MIPS32_MTC0(15, 31, 0),                                                 /* move $15 to COP0 DeSave */
438                 MIPS32_LUI(15, UPPER16(val)),                                           /* Load val to $15 */
439                 MIPS32_ORI(15, 15, LOWER16(val)),
440
441                 /* 3 */ MIPS32_MTC0(15, 0, 0),                                          /* move $15 to COP0 [cp0_reg select] */
442
443                 MIPS32_B(NEG16(5)),                                                     /* b start */
444                 MIPS32_MFC0(15, 31, 0),                                                 /* move COP0 DeSave to $15 */
445         };
446
447         /**
448          * Note that MIPS32_MTC0 macro is implemented via MIPS32_R_INST macro.
449          * In order to insert our parameters, we must change rd and funct fields.
450          */
451         code[3] |= (cp0_reg << 11) | cp0_sel;  /* change rd and funct fields of MIPS32_R_INST macro */
452
453         return mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 0, NULL, 0, NULL, 1);
454 }
455
456 /**
457  * \b mips32_pracc_sync_cache
458  *
459  * Synchronize Caches to Make Instruction Writes Effective
460  * (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
461  *  Document Number: MD00086, Revision 2.00, June 9, 2003)
462  *
463  * When the instruction stream is written, the SYNCI instruction should be used
464  * in conjunction with other instructions to make the newly-written instructions effective.
465  *
466  * Explanation :
467  * A program that loads another program into memory is actually writing the D- side cache.
468  * The instructions it has loaded can't be executed until they reach the I-cache.
469  *
470  * After the instructions have been written, the loader should arrange
471  * to write back any containing D-cache line and invalidate any locations
472  * already in the I-cache.
473  *
474  * You can do that with cache instructions, but those instructions are only available in kernel mode,
475  * and a loader writing instructions for the use of its own process need not be privileged software.
476  *
477  * In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
478  * which does the whole job for a cache-line-sized chunk of the memory you just loaded:
479  * That is, it arranges a D-cache write-back and an I-cache invalidate.
480  *
481  * To employ synci at user level, you need to know the size of a cache line,
482  * and that can be obtained with a rdhwr SYNCI_Step
483  * from one of the standard “hardware registers”.
484  */
485 static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
486                 uint32_t start_addr, uint32_t end_addr)
487 {
488         static const uint32_t code[] = {
489                                                                                                                         /* start: */
490                 MIPS32_MTC0(15, 31, 0),                                                         /* move $15 to COP0 DeSave */
491                 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)),            /* $15 = MIPS32_PRACC_STACK */
492                 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
493                 MIPS32_SW(8, 0, 15),                                                            /* sw $8,($15) */
494                 MIPS32_SW(9, 0, 15),                                                            /* sw $9,($15) */
495                 MIPS32_SW(10, 0, 15),                                                           /* sw $10,($15) */
496                 MIPS32_SW(11, 0, 15),                                                           /* sw $11,($15) */
497
498                 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)),          /* $8 = MIPS32_PRACC_PARAM_IN */
499                 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
500                 MIPS32_LW(9, 0, 8),                                                                     /* Load write start_addr to $9 */
501                 MIPS32_LW(10, 4, 8),                                                            /* Load write end_addr to $10 */
502
503                 MIPS32_RDHWR(11, MIPS32_SYNCI_STEP),                            /* $11 = MIPS32_SYNCI_STEP */
504                 MIPS32_BEQ(11, 0, 6),                                                           /* beq $11, $0, end */
505                 MIPS32_NOP,
506                                                                                                                         /* synci_loop : */
507                 MIPS32_SYNCI(0, 9),                                                                     /* synci 0($9) */
508                 MIPS32_SLTU(8, 10, 9),                                                          /* sltu $8, $10, $9  # $8 = $10 < $9 ? 1 : 0 */
509                 MIPS32_BNE(8, 0, NEG16(3)),                                                     /* bne $8, $0, synci_loop */
510                 MIPS32_ADDU(9, 9, 11),                                                          /* $9 += MIPS32_SYNCI_STEP */
511                 MIPS32_SYNC,
512                                                                                                                         /* end: */
513                 MIPS32_LW(11, 0, 15),                                                           /* lw $11,($15) */
514                 MIPS32_LW(10, 0, 15),                                                           /* lw $10,($15) */
515                 MIPS32_LW(9, 0, 15),                                                            /* lw $9,($15) */
516                 MIPS32_LW(8, 0, 15),                                                            /* lw $8,($15) */
517                 MIPS32_B(NEG16(24)),                                                            /* b start */
518                 MIPS32_MFC0(15, 31, 0),                                                         /* move COP0 DeSave to $15 */
519         };
520
521         /* TODO remove array */
522         uint32_t *param_in = malloc(2 * sizeof(uint32_t));
523         int retval;
524         param_in[0] = start_addr;
525         param_in[1] = end_addr;
526
527         retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 2, param_in, 0, NULL, 1);
528
529         free(param_in);
530
531         return retval;
532 }
533
534 /**
535  * \b mips32_pracc_clean_invalidate_cache
536  *
537  * Writeback D$ and Invalidate I$
538  * so that the instructions written can be visible to CPU
539  */
540 static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
541                                                                                                         uint32_t start_addr, uint32_t end_addr)
542 {
543         static const uint32_t code[] = {
544                                                                                                                         /* start: */
545                 MIPS32_MTC0(15, 31, 0),                                                         /* move $15 to COP0 DeSave */
546                 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)),            /* $15 = MIPS32_PRACC_STACK */
547                 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
548                 MIPS32_SW(8, 0, 15),                                                            /* sw $8,($15) */
549                 MIPS32_SW(9, 0, 15),                                                            /* sw $9,($15) */
550                 MIPS32_SW(10, 0, 15),                                                           /* sw $10,($15) */
551                 MIPS32_SW(11, 0, 15),                                                           /* sw $11,($15) */
552
553                 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)),          /* $8 = MIPS32_PRACC_PARAM_IN */
554                 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
555                 MIPS32_LW(9, 0, 8),                                                                     /* Load write start_addr to $9 */
556                 MIPS32_LW(10, 4, 8),                                                            /* Load write end_addr to $10 */
557                 MIPS32_LW(11, 8, 8),                                                            /* Load write clsiz to $11 */
558
559                                                                                                                         /* cache_loop: */
560                 MIPS32_SLTU(8, 10, 9),                                                          /* sltu $8, $10, $9  :  $8 <- $10 < $9 ? */
561                 MIPS32_BGTZ(8, 6),                                                                      /* bgtz $8, end */
562                 MIPS32_NOP,
563
564                 MIPS32_CACHE(MIPS32_CACHE_D_HIT_WRITEBACK, 0, 9),               /* cache Hit_Writeback_D, 0($9) */
565                 MIPS32_CACHE(MIPS32_CACHE_I_HIT_INVALIDATE, 0, 9),      /* cache Hit_Invalidate_I, 0($9) */
566
567                 MIPS32_ADDU(9, 9, 11),                                                          /* $9 += $11 */
568
569                 MIPS32_B(NEG16(7)),                                                                     /* b cache_loop */
570                 MIPS32_NOP,
571                                                                                                                         /* end: */
572                 MIPS32_LW(11, 0, 15),                                                           /* lw $11,($15) */
573                 MIPS32_LW(10, 0, 15),                                                           /* lw $10,($15) */
574                 MIPS32_LW(9, 0, 15),                                                            /* lw $9,($15) */
575                 MIPS32_LW(8, 0, 15),                                                            /* lw $8,($15) */
576                 MIPS32_B(NEG16(25)),                                                            /* b start */
577                 MIPS32_MFC0(15, 31, 0),                                                         /* move COP0 DeSave to $15 */
578         };
579
580         /**
581          * Find cache line size in bytes
582          */
583         uint32_t conf;
584         uint32_t dl, clsiz;
585
586         mips32_cp0_read(ejtag_info, &conf, 16, 1);
587         dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT;
588
589         /* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... */
590         clsiz = 0x2 << dl;
591
592         /* TODO remove array */
593         uint32_t *param_in = malloc(3 * sizeof(uint32_t));
594         int retval;
595         param_in[0] = start_addr;
596         param_in[1] = end_addr;
597         param_in[2] = clsiz;
598
599         retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 3, param_in, 0, NULL, 1);
600
601         free(param_in);
602
603         return retval;
604 }
605
606 static int mips32_pracc_write_mem_generic(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
607 {
608         uint32_t *code;
609         code = malloc((128 * 3 + 9) * sizeof(uint32_t));        /* alloc memory for the worst case */
610         if (code == NULL) {
611                 LOG_ERROR("Out of memory");
612                 return ERROR_FAIL;
613         }
614
615         uint32_t *buf32 = buf;
616         uint16_t *buf16 = buf;
617         uint8_t *buf8 = buf;
618
619         int i;
620         int retval = ERROR_FAIL;
621         uint32_t *code_p;
622         uint32_t upper_base_addr, last_upper_base_addr;
623         int this_round_count;
624         int code_len;
625
626         while (count) {
627                 this_round_count = (count > 128) ? 128 : count;
628                 last_upper_base_addr = UPPER16((addr + 0x8000));
629                 code_p = code;
630
631                 *code_p++ = MIPS32_MTC0(15, 31, 0);                                     /* save $15 in DeSave */
632                 *code_p++ = MIPS32_LUI(15, last_upper_base_addr);                       /* load $15 with memory base address */
633                 code_len = 2;
634
635                 for (i = 0; i != this_round_count; i++) {
636                         upper_base_addr = UPPER16((addr + 0x8000));
637                         if (last_upper_base_addr != upper_base_addr) {
638                                 *code_p++ = MIPS32_LUI(15, upper_base_addr);            /* if needed, change upper address in $15*/
639                                 code_len++;
640                                 last_upper_base_addr = upper_base_addr;
641                         }
642
643                         if (size == 4) {        /* for word write check if one half word is 0 and load it accordingly */
644                                 if (LOWER16(*buf32) == 0) {
645                                         *code_p++ = MIPS32_LUI(8, UPPER16(*buf32));             /* load only upper value */
646                                         code_len++;
647                                 } else if (UPPER16(*buf32) == 0) {
648                                         *code_p++ = MIPS32_ORI(8, 0, LOWER16(*buf32));          /* load only lower value */
649                                         code_len++;
650                                 } else {
651                                         *code_p++ = MIPS32_LUI(8, UPPER16(*buf32));             /* load upper and lower */
652                                         *code_p++ = MIPS32_ORI(8, 8, LOWER16(*buf32));
653                                         code_len += 2;
654                                 }
655                                 *code_p++ = MIPS32_SW(8, LOWER16(addr), 15);                    /* store word to memory */
656                                 code_len++;
657                                 buf32++;
658
659                         } else if (size == 2) {
660                                 *code_p++ = MIPS32_ORI(8, 0, *buf16);                           /* load lower value */
661                                 *code_p++ = MIPS32_SH(8, LOWER16(addr), 15);            /* store half word to memory */
662                                 code_len += 2;
663                                 buf16++;
664
665                         } else {
666                                 *code_p++ = MIPS32_ORI(8, 0, *buf8);                            /* load lower value */
667                                 *code_p++ = MIPS32_SB(8, LOWER16(addr), 15);                    /* store byte to memory */
668                                 code_len += 2;
669                                 buf8++;
670                         }
671
672                         addr += size;
673                 }
674
675                 *code_p++ = MIPS32_LUI(8, UPPER16(ejtag_info->reg8)),                   /* restore upper 16 bits of reg 8 */
676                 *code_p++ = MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8)),                /* restore lower 16 bits of reg 8 */
677
678                 code_len += 4;
679                 *code_p++ = MIPS32_B(NEG16(code_len - 1));                                      /* jump to start */
680                 *code_p = MIPS32_MFC0(15, 31, 0);                                       /* restore $15 from DeSave */
681
682                 retval = mips32_pracc_exec(ejtag_info, code_len, code, 0, NULL, 0, NULL, 1);
683                 if (retval != ERROR_OK)
684                         goto exit;
685
686                 count -= this_round_count;
687         }
688
689 exit:
690         free(code);
691         return retval;
692 }
693
694 int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
695 {
696         int retval = mips32_pracc_write_mem_generic(ejtag_info, addr, size, count, buf);
697         if (retval != ERROR_OK)
698                 return retval;
699
700         /**
701          * If we are in the cachable regoion and cache is activated,
702          * we must clean D$ + invalidate I$ after we did the write,
703          * so that changes do not continue to live only in D$, but to be
704          * replicated in I$ also (maybe we wrote the istructions)
705          */
706         uint32_t conf = 0;
707         int cached = 0;
708
709         if ((KSEGX(addr) == KSEG1) || ((addr >= 0xff200000) && (addr <= 0xff3fffff)))
710                 return retval; /*Nothing to do*/
711
712         mips32_cp0_read(ejtag_info, &conf, 16, 0);
713
714         switch (KSEGX(addr)) {
715                 case KUSEG:
716                         cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT;
717                         break;
718                 case KSEG0:
719                         cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT;
720                         break;
721                 case KSEG2:
722                 case KSEG3:
723                         cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT;
724                         break;
725                 default:
726                         /* what ? */
727                         break;
728         }
729
730         /**
731          * Check cachablitiy bits coherency algorithm -
732          * is the region cacheable or uncached.
733          * If cacheable we have to synchronize the cache
734          */
735         if (cached == 0x3) {
736                 uint32_t start_addr, end_addr;
737                 uint32_t rel;
738
739                 start_addr = addr;
740                 end_addr = addr + count * size;
741
742                 /** select cache synchronisation mechanism based on Architecture Release */
743                 rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
744                 switch (rel) {
745                         case MIPS32_ARCH_REL1:
746                                 /* MIPS32/64 Release 1 - we must use cache instruction */
747                                 mips32_pracc_clean_invalidate_cache(ejtag_info, start_addr, end_addr);
748                                 break;
749                         case MIPS32_ARCH_REL2:
750                                 /* MIPS32/64 Release 2 - we can use synci instruction */
751                                 mips32_pracc_sync_cache(ejtag_info, start_addr, end_addr);
752                                 break;
753                         default:
754                                 /* what ? */
755                                 break;
756                 }
757         }
758
759         return retval;
760 }
761
762 int mips32_pracc_write_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
763 {
764         static const uint32_t cp0_write_code[] = {
765                 MIPS32_MTC0(1, 12, 0),                                                  /* move $1 to status */
766                 MIPS32_MTLO(1),                                                                 /* move $1 to lo */
767                 MIPS32_MTHI(1),                                                                 /* move $1 to hi */
768                 MIPS32_MTC0(1, 8, 0),                                                   /* move $1 to badvaddr */
769                 MIPS32_MTC0(1, 13, 0),                                                  /* move $1 to cause*/
770                 MIPS32_MTC0(1, 24, 0),                                                  /* move $1 to depc (pc) */
771         };
772
773         uint32_t *code;
774         code = malloc((37 * 2 + 6 + 1) * sizeof(uint32_t));     /* alloc memory for the worst case */
775         if (code == NULL) {
776                 LOG_ERROR("Out of memory");
777                 return ERROR_FAIL;
778         }
779
780         uint32_t *code_p = code;
781         int code_len = 0;
782         /* load registers 2 to 31 with lui an ori instructions, check if same instructions can be saved */
783         for (int i = 2; i < 32; i++) {
784                 if (LOWER16((regs[i])) == 0) {
785                         *code_p++ = MIPS32_LUI(i, UPPER16((regs[i])));          /* if lower half word is 0, lui instruction only */
786                         code_len++;
787                 } else if (UPPER16((regs[i])) == 0) {
788                         *code_p++ = MIPS32_ORI(i, 0, LOWER16((regs[i])));       /* if upper half word is 0, ori with $0 only*/
789                         code_len++;
790                 } else {
791                         *code_p++ = MIPS32_LUI(i, UPPER16((regs[i])));          /* default, load with lui and ori instructions */
792                         *code_p++ = MIPS32_ORI(i, i, LOWER16((regs[i])));
793                         code_len += 2;
794                 }
795         }
796
797         for (int i = 0; i != 6; i++) {
798                 *code_p++ = MIPS32_LUI(1, UPPER16((regs[i + 32])));             /* load CPO value in $1, with lui and ori */
799                 *code_p++ = MIPS32_ORI(1, 1, LOWER16((regs[i + 32])));
800                 *code_p++ = cp0_write_code[i];                                  /* write value from $1 to CPO register */
801                 code_len += 3;
802         }
803
804         *code_p++ = MIPS32_LUI(1, UPPER16((regs[1])));                          /* load upper half word in $1 */
805         code_len += 3;
806         *code_p++ = MIPS32_B(NEG16(code_len - 1)),                                                      /* b start */
807         *code_p = MIPS32_ORI(1, 1, LOWER16((regs[1])));                         /* load lower half word in $1 */
808
809         int retval = mips32_pracc_exec(ejtag_info, code_len, code, 0, NULL, 0, NULL, 1);
810         free(code);
811
812         ejtag_info->reg8 = regs[8];
813         ejtag_info->reg9 = regs[9];
814         return retval;
815 }
816
817 int mips32_pracc_read_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
818 {
819         static int cp0_read_code[] = {
820                 MIPS32_MFC0(2, 12, 0),                                                  /* move status to $2 */
821                 MIPS32_MFLO(2),                                                                 /* move lo to $2 */
822                 MIPS32_MFHI(2),                                                                 /* move hi to $2 */
823                 MIPS32_MFC0(2, 8, 0),                                                   /* move badvaddr to $2 */
824                 MIPS32_MFC0(2, 13, 0),                                                  /* move cause to $2 */
825                 MIPS32_MFC0(2, 24, 0),                                                  /* move depc (pc) to $2 */
826         };
827
828         uint32_t *code;
829         code = malloc(49 * sizeof(uint32_t));
830         if (code == NULL) {
831                 LOG_ERROR("Out of memory");
832                 return ERROR_FAIL;
833         }
834
835         uint32_t *code_p = code;
836
837         *code_p++ = MIPS32_MTC0(1, 31, 0),                                              /* move $1 to COP0 DeSave */
838         *code_p++ = MIPS32_LUI(1, PRACC_UPPER_BASE_ADDR);                               /* $1 = MIP32_PRACC_BASE_ADDR */
839
840         for (int i = 2; i != 32; i++)
841                 *code_p++ = MIPS32_SW(i, PRACC_OUT_OFFSET + (i * 4), 1);                /* store GPR's 2 to 31 */
842
843         for (int i = 0; i != 6; i++) {
844                 *code_p++ = cp0_read_code[i];                                           /* load COP0 needed registers to $2 */
845                 *code_p++ = MIPS32_SW(2, PRACC_OUT_OFFSET + (i + 32) * 4, 1);   /* store COP0 registers from $2 to param out */
846         }
847
848         *code_p++ = MIPS32_MFC0(2, 31, 0),                                              /* move DeSave to $2, reg1 value */
849         *code_p++ = MIPS32_SW(2, PRACC_OUT_OFFSET + 4, 1);                              /* store reg1 value from $2 to param out */
850
851         *code_p++ = MIPS32_LW(2, PRACC_OUT_OFFSET + 8, 1);                              /* restore $2 from param out (singularity) */
852         *code_p++ = MIPS32_B(NEG16(48));                                                /* b start */
853         *code_p = MIPS32_MFC0(1, 31, 0);                                                /* move COP0 DeSave to $1 */
854
855         int retval = mips32_pracc_exec(ejtag_info, 49, code, 0, NULL, MIPS32NUMCOREREGS, regs, 1);
856         free(code);
857
858         ejtag_info->reg8 = regs[8];
859         ejtag_info->reg9 = regs[9];
860         return retval;
861 }
862
863 /* fastdata upload/download requires an initialized working area
864  * to load the download code; it should not be called otherwise
865  * fetch order from the fastdata area
866  * 1. start addr
867  * 2. end addr
868  * 3. data ...
869  */
870 int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source,
871                 int write_t, uint32_t addr, int count, uint32_t *buf)
872 {
873         uint32_t handler_code[] = {
874                 /* caution when editing, table is modified below */
875                 /* r15 points to the start of this code */
876                 MIPS32_SW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
877                 MIPS32_SW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
878                 MIPS32_SW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
879                 MIPS32_SW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
880                 /* start of fastdata area in t0 */
881                 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)),
882                 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)),
883                 MIPS32_LW(9, 0, 8),                                                             /* start addr in t1 */
884                 MIPS32_LW(10, 0, 8),                                                    /* end addr to t2 */
885                                                                                                                 /* loop: */
886                 /* 8 */ MIPS32_LW(11, 0, 0),                                    /* lw t3,[t8 | r9] */
887                 /* 9 */ MIPS32_SW(11, 0, 0),                                    /* sw t3,[r9 | r8] */
888                 MIPS32_BNE(10, 9, NEG16(3)),                                    /* bne $t2,t1,loop */
889                 MIPS32_ADDI(9, 9, 4),                                                   /* addi t1,t1,4 */
890
891                 MIPS32_LW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
892                 MIPS32_LW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
893                 MIPS32_LW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
894                 MIPS32_LW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
895
896                 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_TEXT)),
897                 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_TEXT)),
898                 MIPS32_JR(15),                                                          /* jr start */
899                 MIPS32_MFC0(15, 31, 0),                                         /* move COP0 DeSave to $15 */
900         };
901
902         uint32_t jmp_code[] = {
903                 MIPS32_MTC0(15, 31, 0),                 /* move $15 to COP0 DeSave */
904                 /* 1 */ MIPS32_LUI(15, 0),              /* addr of working area added below */
905                 /* 2 */ MIPS32_ORI(15, 15, 0),  /* addr of working area added below */
906                 MIPS32_JR(15),                                  /* jump to ram program */
907                 MIPS32_NOP,
908         };
909
910         int retval, i;
911         uint32_t val, ejtag_ctrl, address;
912
913         if (source->size < MIPS32_FASTDATA_HANDLER_SIZE)
914                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
915
916         if (write_t) {
917                 handler_code[8] = MIPS32_LW(11, 0, 8);  /* load data from probe at fastdata area */
918                 handler_code[9] = MIPS32_SW(11, 0, 9);  /* store data to RAM @ r9 */
919         } else {
920                 handler_code[8] = MIPS32_LW(11, 0, 9);  /* load data from RAM @ r9 */
921                 handler_code[9] = MIPS32_SW(11, 0, 8);  /* store data to probe at fastdata area */
922         }
923
924         /* write program into RAM */
925         if (write_t != ejtag_info->fast_access_save) {
926                 mips32_pracc_write_mem_generic(ejtag_info, source->address, 4, ARRAY_SIZE(handler_code), handler_code);
927                 /* save previous operation to speed to any consecutive read/writes */
928                 ejtag_info->fast_access_save = write_t;
929         }
930
931         LOG_DEBUG("%s using 0x%.8" PRIx32 " for write handler", __func__, source->address);
932
933         jmp_code[1] |= UPPER16(source->address);
934         jmp_code[2] |= LOWER16(source->address);
935
936         for (i = 0; i < (int) ARRAY_SIZE(jmp_code); i++) {
937                 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
938                 if (retval != ERROR_OK)
939                         return retval;
940
941                 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
942                 mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]);
943
944                 /* Clear the access pending bit (let the processor eat!) */
945                 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
946                 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
947                 mips_ejtag_drscan_32_out(ejtag_info, ejtag_ctrl);
948         }
949
950         /* wait PrAcc pending bit for FASTDATA write */
951         retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
952         if (retval != ERROR_OK)
953                 return retval;
954
955         /* next fetch to dmseg should be in FASTDATA_AREA, check */
956         address = 0;
957         mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
958         retval = mips_ejtag_drscan_32(ejtag_info, &address);
959         if (retval != ERROR_OK)
960                 return retval;
961
962         if (address != MIPS32_PRACC_FASTDATA_AREA)
963                 return ERROR_FAIL;
964
965         /* Send the load start address */
966         val = addr;
967         mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
968         mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
969
970         retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
971         if (retval != ERROR_OK)
972                 return retval;
973
974         /* Send the load end address */
975         val = addr + (count - 1) * 4;
976         mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
977         mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
978
979         for (i = 0; i < count; i++) {
980                 retval = mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++);
981                 if (retval != ERROR_OK)
982                         return retval;
983         }
984
985         retval = jtag_execute_queue();
986         if (retval != ERROR_OK) {
987                 LOG_ERROR("fastdata load failed");
988                 return retval;
989         }
990
991         retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
992         if (retval != ERROR_OK)
993                 return retval;
994
995         address = 0;
996         mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
997         retval = mips_ejtag_drscan_32(ejtag_info, &address);
998         if (retval != ERROR_OK)
999                 return retval;
1000
1001         if (address != MIPS32_PRACC_TEXT)
1002                 LOG_ERROR("mini program did not return to start");
1003
1004         return retval;
1005 }