]> git.sur5r.net Git - openocd/blob - src/target/target.c
253928d7c3ce0c9a2c1e0ea0f258ce6c981b19ff
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63                 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65                 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type avr_target;
98 extern struct target_type dsp563xx_target;
99 extern struct target_type dsp5680xx_target;
100 extern struct target_type testee_target;
101 extern struct target_type avr32_ap7k_target;
102 extern struct target_type hla_target;
103 extern struct target_type nds32_v2_target;
104 extern struct target_type nds32_v3_target;
105 extern struct target_type nds32_v3m_target;
106 extern struct target_type or1k_target;
107 extern struct target_type quark_x10xx_target;
108 extern struct target_type quark_d20xx_target;
109 extern struct target_type stm8_target;
110 extern struct target_type riscv_target;
111
112 static struct target_type *target_types[] = {
113         &arm7tdmi_target,
114         &arm9tdmi_target,
115         &arm920t_target,
116         &arm720t_target,
117         &arm966e_target,
118         &arm946e_target,
119         &arm926ejs_target,
120         &fa526_target,
121         &feroceon_target,
122         &dragonite_target,
123         &xscale_target,
124         &cortexm_target,
125         &cortexa_target,
126         &cortexr4_target,
127         &arm11_target,
128         &ls1_sap_target,
129         &mips_m4k_target,
130         &avr_target,
131         &dsp563xx_target,
132         &dsp5680xx_target,
133         &testee_target,
134         &avr32_ap7k_target,
135         &hla_target,
136         &nds32_v2_target,
137         &nds32_v3_target,
138         &nds32_v3m_target,
139         &or1k_target,
140         &quark_x10xx_target,
141         &quark_d20xx_target,
142         &stm8_target,
143         &riscv_target,
144 #if BUILD_TARGET64
145         &aarch64_target,
146 #endif
147         NULL,
148 };
149
150 struct target *all_targets;
151 static struct target_event_callback *target_event_callbacks;
152 static struct target_timer_callback *target_timer_callbacks;
153 LIST_HEAD(target_reset_callback_list);
154 LIST_HEAD(target_trace_callback_list);
155 static const int polling_interval = 100;
156
157 static const Jim_Nvp nvp_assert[] = {
158         { .name = "assert", NVP_ASSERT },
159         { .name = "deassert", NVP_DEASSERT },
160         { .name = "T", NVP_ASSERT },
161         { .name = "F", NVP_DEASSERT },
162         { .name = "t", NVP_ASSERT },
163         { .name = "f", NVP_DEASSERT },
164         { .name = NULL, .value = -1 }
165 };
166
167 static const Jim_Nvp nvp_error_target[] = {
168         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
169         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
170         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
171         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
172         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
173         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
174         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
175         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
176         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
177         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
178         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
179         { .value = -1, .name = NULL }
180 };
181
182 static const char *target_strerror_safe(int err)
183 {
184         const Jim_Nvp *n;
185
186         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
187         if (n->name == NULL)
188                 return "unknown";
189         else
190                 return n->name;
191 }
192
193 static const Jim_Nvp nvp_target_event[] = {
194
195         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
196         { .value = TARGET_EVENT_HALTED, .name = "halted" },
197         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
198         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
199         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
200
201         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
202         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
203
204         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
205         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
206         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
207         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
208         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
209         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
210         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
211         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
212
213         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
214         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
215
216         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
217         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
218
219         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
220         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
221
222         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
223         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
224
225         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
226         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
227
228         { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
229
230         { .name = NULL, .value = -1 }
231 };
232
233 static const Jim_Nvp nvp_target_state[] = {
234         { .name = "unknown", .value = TARGET_UNKNOWN },
235         { .name = "running", .value = TARGET_RUNNING },
236         { .name = "halted",  .value = TARGET_HALTED },
237         { .name = "reset",   .value = TARGET_RESET },
238         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
239         { .name = NULL, .value = -1 },
240 };
241
242 static const Jim_Nvp nvp_target_debug_reason[] = {
243         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
244         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
245         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
246         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
247         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
248         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
249         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
250         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
251         { .name = NULL, .value = -1 },
252 };
253
254 static const Jim_Nvp nvp_target_endian[] = {
255         { .name = "big",    .value = TARGET_BIG_ENDIAN },
256         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
257         { .name = "be",     .value = TARGET_BIG_ENDIAN },
258         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
259         { .name = NULL,     .value = -1 },
260 };
261
262 static const Jim_Nvp nvp_reset_modes[] = {
263         { .name = "unknown", .value = RESET_UNKNOWN },
264         { .name = "run"    , .value = RESET_RUN },
265         { .name = "halt"   , .value = RESET_HALT },
266         { .name = "init"   , .value = RESET_INIT },
267         { .name = NULL     , .value = -1 },
268 };
269
270 const char *debug_reason_name(struct target *t)
271 {
272         const char *cp;
273
274         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
275                         t->debug_reason)->name;
276         if (!cp) {
277                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
278                 cp = "(*BUG*unknown*BUG*)";
279         }
280         return cp;
281 }
282
283 const char *target_state_name(struct target *t)
284 {
285         const char *cp;
286         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
287         if (!cp) {
288                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
289                 cp = "(*BUG*unknown*BUG*)";
290         }
291
292         if (!target_was_examined(t) && t->defer_examine)
293                 cp = "examine deferred";
294
295         return cp;
296 }
297
298 const char *target_event_name(enum target_event event)
299 {
300         const char *cp;
301         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
302         if (!cp) {
303                 LOG_ERROR("Invalid target event: %d", (int)(event));
304                 cp = "(*BUG*unknown*BUG*)";
305         }
306         return cp;
307 }
308
309 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
310 {
311         const char *cp;
312         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
313         if (!cp) {
314                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
315                 cp = "(*BUG*unknown*BUG*)";
316         }
317         return cp;
318 }
319
320 /* determine the number of the new target */
321 static int new_target_number(void)
322 {
323         struct target *t;
324         int x;
325
326         /* number is 0 based */
327         x = -1;
328         t = all_targets;
329         while (t) {
330                 if (x < t->target_number)
331                         x = t->target_number;
332                 t = t->next;
333         }
334         return x + 1;
335 }
336
337 /* read a uint64_t from a buffer in target memory endianness */
338 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
339 {
340         if (target->endianness == TARGET_LITTLE_ENDIAN)
341                 return le_to_h_u64(buffer);
342         else
343                 return be_to_h_u64(buffer);
344 }
345
346 /* read a uint32_t from a buffer in target memory endianness */
347 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
348 {
349         if (target->endianness == TARGET_LITTLE_ENDIAN)
350                 return le_to_h_u32(buffer);
351         else
352                 return be_to_h_u32(buffer);
353 }
354
355 /* read a uint24_t from a buffer in target memory endianness */
356 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
357 {
358         if (target->endianness == TARGET_LITTLE_ENDIAN)
359                 return le_to_h_u24(buffer);
360         else
361                 return be_to_h_u24(buffer);
362 }
363
364 /* read a uint16_t from a buffer in target memory endianness */
365 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
366 {
367         if (target->endianness == TARGET_LITTLE_ENDIAN)
368                 return le_to_h_u16(buffer);
369         else
370                 return be_to_h_u16(buffer);
371 }
372
373 /* read a uint8_t from a buffer in target memory endianness */
374 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
375 {
376         return *buffer & 0x0ff;
377 }
378
379 /* write a uint64_t to a buffer in target memory endianness */
380 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
381 {
382         if (target->endianness == TARGET_LITTLE_ENDIAN)
383                 h_u64_to_le(buffer, value);
384         else
385                 h_u64_to_be(buffer, value);
386 }
387
388 /* write a uint32_t to a buffer in target memory endianness */
389 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
390 {
391         if (target->endianness == TARGET_LITTLE_ENDIAN)
392                 h_u32_to_le(buffer, value);
393         else
394                 h_u32_to_be(buffer, value);
395 }
396
397 /* write a uint24_t to a buffer in target memory endianness */
398 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
399 {
400         if (target->endianness == TARGET_LITTLE_ENDIAN)
401                 h_u24_to_le(buffer, value);
402         else
403                 h_u24_to_be(buffer, value);
404 }
405
406 /* write a uint16_t to a buffer in target memory endianness */
407 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
408 {
409         if (target->endianness == TARGET_LITTLE_ENDIAN)
410                 h_u16_to_le(buffer, value);
411         else
412                 h_u16_to_be(buffer, value);
413 }
414
415 /* write a uint8_t to a buffer in target memory endianness */
416 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
417 {
418         *buffer = value;
419 }
420
421 /* write a uint64_t array to a buffer in target memory endianness */
422 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
423 {
424         uint32_t i;
425         for (i = 0; i < count; i++)
426                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
427 }
428
429 /* write a uint32_t array to a buffer in target memory endianness */
430 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
431 {
432         uint32_t i;
433         for (i = 0; i < count; i++)
434                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
435 }
436
437 /* write a uint16_t array to a buffer in target memory endianness */
438 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
439 {
440         uint32_t i;
441         for (i = 0; i < count; i++)
442                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
443 }
444
445 /* write a uint64_t array to a buffer in target memory endianness */
446 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
447 {
448         uint32_t i;
449         for (i = 0; i < count; i++)
450                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
451 }
452
453 /* write a uint32_t array to a buffer in target memory endianness */
454 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
455 {
456         uint32_t i;
457         for (i = 0; i < count; i++)
458                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
459 }
460
461 /* write a uint16_t array to a buffer in target memory endianness */
462 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
463 {
464         uint32_t i;
465         for (i = 0; i < count; i++)
466                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
467 }
468
469 /* return a pointer to a configured target; id is name or number */
470 struct target *get_target(const char *id)
471 {
472         struct target *target;
473
474         /* try as tcltarget name */
475         for (target = all_targets; target; target = target->next) {
476                 if (target_name(target) == NULL)
477                         continue;
478                 if (strcmp(id, target_name(target)) == 0)
479                         return target;
480         }
481
482         /* It's OK to remove this fallback sometime after August 2010 or so */
483
484         /* no match, try as number */
485         unsigned num;
486         if (parse_uint(id, &num) != ERROR_OK)
487                 return NULL;
488
489         for (target = all_targets; target; target = target->next) {
490                 if (target->target_number == (int)num) {
491                         LOG_WARNING("use '%s' as target identifier, not '%u'",
492                                         target_name(target), num);
493                         return target;
494                 }
495         }
496
497         return NULL;
498 }
499
500 /* returns a pointer to the n-th configured target */
501 struct target *get_target_by_num(int num)
502 {
503         struct target *target = all_targets;
504
505         while (target) {
506                 if (target->target_number == num)
507                         return target;
508                 target = target->next;
509         }
510
511         return NULL;
512 }
513
514 struct target *get_current_target(struct command_context *cmd_ctx)
515 {
516         struct target *target = cmd_ctx->current_target_override
517                 ? cmd_ctx->current_target_override
518                 : cmd_ctx->current_target;
519
520         if (target == NULL) {
521                 LOG_ERROR("BUG: current_target out of bounds");
522                 exit(-1);
523         }
524
525         return target;
526 }
527
528 int target_poll(struct target *target)
529 {
530         int retval;
531
532         /* We can't poll until after examine */
533         if (!target_was_examined(target)) {
534                 /* Fail silently lest we pollute the log */
535                 return ERROR_FAIL;
536         }
537
538         retval = target->type->poll(target);
539         if (retval != ERROR_OK)
540                 return retval;
541
542         if (target->halt_issued) {
543                 if (target->state == TARGET_HALTED)
544                         target->halt_issued = false;
545                 else {
546                         int64_t t = timeval_ms() - target->halt_issued_time;
547                         if (t > DEFAULT_HALT_TIMEOUT) {
548                                 target->halt_issued = false;
549                                 LOG_INFO("Halt timed out, wake up GDB.");
550                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
551                         }
552                 }
553         }
554
555         return ERROR_OK;
556 }
557
558 int target_halt(struct target *target)
559 {
560         int retval;
561         /* We can't poll until after examine */
562         if (!target_was_examined(target)) {
563                 LOG_ERROR("Target not examined yet");
564                 return ERROR_FAIL;
565         }
566
567         retval = target->type->halt(target);
568         if (retval != ERROR_OK)
569                 return retval;
570
571         target->halt_issued = true;
572         target->halt_issued_time = timeval_ms();
573
574         return ERROR_OK;
575 }
576
577 /**
578  * Make the target (re)start executing using its saved execution
579  * context (possibly with some modifications).
580  *
581  * @param target Which target should start executing.
582  * @param current True to use the target's saved program counter instead
583  *      of the address parameter
584  * @param address Optionally used as the program counter.
585  * @param handle_breakpoints True iff breakpoints at the resumption PC
586  *      should be skipped.  (For example, maybe execution was stopped by
587  *      such a breakpoint, in which case it would be counterprodutive to
588  *      let it re-trigger.
589  * @param debug_execution False if all working areas allocated by OpenOCD
590  *      should be released and/or restored to their original contents.
591  *      (This would for example be true to run some downloaded "helper"
592  *      algorithm code, which resides in one such working buffer and uses
593  *      another for data storage.)
594  *
595  * @todo Resolve the ambiguity about what the "debug_execution" flag
596  * signifies.  For example, Target implementations don't agree on how
597  * it relates to invalidation of the register cache, or to whether
598  * breakpoints and watchpoints should be enabled.  (It would seem wrong
599  * to enable breakpoints when running downloaded "helper" algorithms
600  * (debug_execution true), since the breakpoints would be set to match
601  * target firmware being debugged, not the helper algorithm.... and
602  * enabling them could cause such helpers to malfunction (for example,
603  * by overwriting data with a breakpoint instruction.  On the other
604  * hand the infrastructure for running such helpers might use this
605  * procedure but rely on hardware breakpoint to detect termination.)
606  */
607 int target_resume(struct target *target, int current, target_addr_t address,
608                 int handle_breakpoints, int debug_execution)
609 {
610         int retval;
611
612         /* We can't poll until after examine */
613         if (!target_was_examined(target)) {
614                 LOG_ERROR("Target not examined yet");
615                 return ERROR_FAIL;
616         }
617
618         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
619
620         /* note that resume *must* be asynchronous. The CPU can halt before
621          * we poll. The CPU can even halt at the current PC as a result of
622          * a software breakpoint being inserted by (a bug?) the application.
623          */
624         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
625         if (retval != ERROR_OK)
626                 return retval;
627
628         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
629
630         return retval;
631 }
632
633 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
634 {
635         char buf[100];
636         int retval;
637         Jim_Nvp *n;
638         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
639         if (n->name == NULL) {
640                 LOG_ERROR("invalid reset mode");
641                 return ERROR_FAIL;
642         }
643
644         struct target *target;
645         for (target = all_targets; target; target = target->next)
646                 target_call_reset_callbacks(target, reset_mode);
647
648         /* disable polling during reset to make reset event scripts
649          * more predictable, i.e. dr/irscan & pathmove in events will
650          * not have JTAG operations injected into the middle of a sequence.
651          */
652         bool save_poll = jtag_poll_get_enabled();
653
654         jtag_poll_set_enabled(false);
655
656         sprintf(buf, "ocd_process_reset %s", n->name);
657         retval = Jim_Eval(cmd_ctx->interp, buf);
658
659         jtag_poll_set_enabled(save_poll);
660
661         if (retval != JIM_OK) {
662                 Jim_MakeErrorMessage(cmd_ctx->interp);
663                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
664                 return ERROR_FAIL;
665         }
666
667         /* We want any events to be processed before the prompt */
668         retval = target_call_timer_callbacks_now();
669
670         for (target = all_targets; target; target = target->next) {
671                 target->type->check_reset(target);
672                 target->running_alg = false;
673         }
674
675         return retval;
676 }
677
678 static int identity_virt2phys(struct target *target,
679                 target_addr_t virtual, target_addr_t *physical)
680 {
681         *physical = virtual;
682         return ERROR_OK;
683 }
684
685 static int no_mmu(struct target *target, int *enabled)
686 {
687         *enabled = 0;
688         return ERROR_OK;
689 }
690
691 static int default_examine(struct target *target)
692 {
693         target_set_examined(target);
694         return ERROR_OK;
695 }
696
697 /* no check by default */
698 static int default_check_reset(struct target *target)
699 {
700         return ERROR_OK;
701 }
702
703 int target_examine_one(struct target *target)
704 {
705         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
706
707         int retval = target->type->examine(target);
708         if (retval != ERROR_OK)
709                 return retval;
710
711         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
712
713         return ERROR_OK;
714 }
715
716 static int jtag_enable_callback(enum jtag_event event, void *priv)
717 {
718         struct target *target = priv;
719
720         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
721                 return ERROR_OK;
722
723         jtag_unregister_event_callback(jtag_enable_callback, target);
724
725         return target_examine_one(target);
726 }
727
728 /* Targets that correctly implement init + examine, i.e.
729  * no communication with target during init:
730  *
731  * XScale
732  */
733 int target_examine(void)
734 {
735         int retval = ERROR_OK;
736         struct target *target;
737
738         for (target = all_targets; target; target = target->next) {
739                 /* defer examination, but don't skip it */
740                 if (!target->tap->enabled) {
741                         jtag_register_event_callback(jtag_enable_callback,
742                                         target);
743                         continue;
744                 }
745
746                 if (target->defer_examine)
747                         continue;
748
749                 retval = target_examine_one(target);
750                 if (retval != ERROR_OK)
751                         return retval;
752         }
753         return retval;
754 }
755
756 const char *target_type_name(struct target *target)
757 {
758         return target->type->name;
759 }
760
761 static int target_soft_reset_halt(struct target *target)
762 {
763         if (!target_was_examined(target)) {
764                 LOG_ERROR("Target not examined yet");
765                 return ERROR_FAIL;
766         }
767         if (!target->type->soft_reset_halt) {
768                 LOG_ERROR("Target %s does not support soft_reset_halt",
769                                 target_name(target));
770                 return ERROR_FAIL;
771         }
772         return target->type->soft_reset_halt(target);
773 }
774
775 /**
776  * Downloads a target-specific native code algorithm to the target,
777  * and executes it.  * Note that some targets may need to set up, enable,
778  * and tear down a breakpoint (hard or * soft) to detect algorithm
779  * termination, while others may support  lower overhead schemes where
780  * soft breakpoints embedded in the algorithm automatically terminate the
781  * algorithm.
782  *
783  * @param target used to run the algorithm
784  * @param arch_info target-specific description of the algorithm.
785  */
786 int target_run_algorithm(struct target *target,
787                 int num_mem_params, struct mem_param *mem_params,
788                 int num_reg_params, struct reg_param *reg_param,
789                 uint32_t entry_point, uint32_t exit_point,
790                 int timeout_ms, void *arch_info)
791 {
792         int retval = ERROR_FAIL;
793
794         if (!target_was_examined(target)) {
795                 LOG_ERROR("Target not examined yet");
796                 goto done;
797         }
798         if (!target->type->run_algorithm) {
799                 LOG_ERROR("Target type '%s' does not support %s",
800                                 target_type_name(target), __func__);
801                 goto done;
802         }
803
804         target->running_alg = true;
805         retval = target->type->run_algorithm(target,
806                         num_mem_params, mem_params,
807                         num_reg_params, reg_param,
808                         entry_point, exit_point, timeout_ms, arch_info);
809         target->running_alg = false;
810
811 done:
812         return retval;
813 }
814
815 /**
816  * Executes a target-specific native code algorithm and leaves it running.
817  *
818  * @param target used to run the algorithm
819  * @param arch_info target-specific description of the algorithm.
820  */
821 int target_start_algorithm(struct target *target,
822                 int num_mem_params, struct mem_param *mem_params,
823                 int num_reg_params, struct reg_param *reg_params,
824                 uint32_t entry_point, uint32_t exit_point,
825                 void *arch_info)
826 {
827         int retval = ERROR_FAIL;
828
829         if (!target_was_examined(target)) {
830                 LOG_ERROR("Target not examined yet");
831                 goto done;
832         }
833         if (!target->type->start_algorithm) {
834                 LOG_ERROR("Target type '%s' does not support %s",
835                                 target_type_name(target), __func__);
836                 goto done;
837         }
838         if (target->running_alg) {
839                 LOG_ERROR("Target is already running an algorithm");
840                 goto done;
841         }
842
843         target->running_alg = true;
844         retval = target->type->start_algorithm(target,
845                         num_mem_params, mem_params,
846                         num_reg_params, reg_params,
847                         entry_point, exit_point, arch_info);
848
849 done:
850         return retval;
851 }
852
853 /**
854  * Waits for an algorithm started with target_start_algorithm() to complete.
855  *
856  * @param target used to run the algorithm
857  * @param arch_info target-specific description of the algorithm.
858  */
859 int target_wait_algorithm(struct target *target,
860                 int num_mem_params, struct mem_param *mem_params,
861                 int num_reg_params, struct reg_param *reg_params,
862                 uint32_t exit_point, int timeout_ms,
863                 void *arch_info)
864 {
865         int retval = ERROR_FAIL;
866
867         if (!target->type->wait_algorithm) {
868                 LOG_ERROR("Target type '%s' does not support %s",
869                                 target_type_name(target), __func__);
870                 goto done;
871         }
872         if (!target->running_alg) {
873                 LOG_ERROR("Target is not running an algorithm");
874                 goto done;
875         }
876
877         retval = target->type->wait_algorithm(target,
878                         num_mem_params, mem_params,
879                         num_reg_params, reg_params,
880                         exit_point, timeout_ms, arch_info);
881         if (retval != ERROR_TARGET_TIMEOUT)
882                 target->running_alg = false;
883
884 done:
885         return retval;
886 }
887
888 /**
889  * Streams data to a circular buffer on target intended for consumption by code
890  * running asynchronously on target.
891  *
892  * This is intended for applications where target-specific native code runs
893  * on the target, receives data from the circular buffer, does something with
894  * it (most likely writing it to a flash memory), and advances the circular
895  * buffer pointer.
896  *
897  * This assumes that the helper algorithm has already been loaded to the target,
898  * but has not been started yet. Given memory and register parameters are passed
899  * to the algorithm.
900  *
901  * The buffer is defined by (buffer_start, buffer_size) arguments and has the
902  * following format:
903  *
904  *     [buffer_start + 0, buffer_start + 4):
905  *         Write Pointer address (aka head). Written and updated by this
906  *         routine when new data is written to the circular buffer.
907  *     [buffer_start + 4, buffer_start + 8):
908  *         Read Pointer address (aka tail). Updated by code running on the
909  *         target after it consumes data.
910  *     [buffer_start + 8, buffer_start + buffer_size):
911  *         Circular buffer contents.
912  *
913  * See contrib/loaders/flash/stm32f1x.S for an example.
914  *
915  * @param target used to run the algorithm
916  * @param buffer address on the host where data to be sent is located
917  * @param count number of blocks to send
918  * @param block_size size in bytes of each block
919  * @param num_mem_params count of memory-based params to pass to algorithm
920  * @param mem_params memory-based params to pass to algorithm
921  * @param num_reg_params count of register-based params to pass to algorithm
922  * @param reg_params memory-based params to pass to algorithm
923  * @param buffer_start address on the target of the circular buffer structure
924  * @param buffer_size size of the circular buffer structure
925  * @param entry_point address on the target to execute to start the algorithm
926  * @param exit_point address at which to set a breakpoint to catch the
927  *     end of the algorithm; can be 0 if target triggers a breakpoint itself
928  */
929
930 int target_run_flash_async_algorithm(struct target *target,
931                 const uint8_t *buffer, uint32_t count, int block_size,
932                 int num_mem_params, struct mem_param *mem_params,
933                 int num_reg_params, struct reg_param *reg_params,
934                 uint32_t buffer_start, uint32_t buffer_size,
935                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
936 {
937         int retval;
938         int timeout = 0;
939
940         const uint8_t *buffer_orig = buffer;
941
942         /* Set up working area. First word is write pointer, second word is read pointer,
943          * rest is fifo data area. */
944         uint32_t wp_addr = buffer_start;
945         uint32_t rp_addr = buffer_start + 4;
946         uint32_t fifo_start_addr = buffer_start + 8;
947         uint32_t fifo_end_addr = buffer_start + buffer_size;
948
949         uint32_t wp = fifo_start_addr;
950         uint32_t rp = fifo_start_addr;
951
952         /* validate block_size is 2^n */
953         assert(!block_size || !(block_size & (block_size - 1)));
954
955         retval = target_write_u32(target, wp_addr, wp);
956         if (retval != ERROR_OK)
957                 return retval;
958         retval = target_write_u32(target, rp_addr, rp);
959         if (retval != ERROR_OK)
960                 return retval;
961
962         /* Start up algorithm on target and let it idle while writing the first chunk */
963         retval = target_start_algorithm(target, num_mem_params, mem_params,
964                         num_reg_params, reg_params,
965                         entry_point,
966                         exit_point,
967                         arch_info);
968
969         if (retval != ERROR_OK) {
970                 LOG_ERROR("error starting target flash write algorithm");
971                 return retval;
972         }
973
974         while (count > 0) {
975
976                 retval = target_read_u32(target, rp_addr, &rp);
977                 if (retval != ERROR_OK) {
978                         LOG_ERROR("failed to get read pointer");
979                         break;
980                 }
981
982                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
983                         (size_t) (buffer - buffer_orig), count, wp, rp);
984
985                 if (rp == 0) {
986                         LOG_ERROR("flash write algorithm aborted by target");
987                         retval = ERROR_FLASH_OPERATION_FAILED;
988                         break;
989                 }
990
991                 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
992                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
993                         break;
994                 }
995
996                 /* Count the number of bytes available in the fifo without
997                  * crossing the wrap around. Make sure to not fill it completely,
998                  * because that would make wp == rp and that's the empty condition. */
999                 uint32_t thisrun_bytes;
1000                 if (rp > wp)
1001                         thisrun_bytes = rp - wp - block_size;
1002                 else if (rp > fifo_start_addr)
1003                         thisrun_bytes = fifo_end_addr - wp;
1004                 else
1005                         thisrun_bytes = fifo_end_addr - wp - block_size;
1006
1007                 if (thisrun_bytes == 0) {
1008                         /* Throttle polling a bit if transfer is (much) faster than flash
1009                          * programming. The exact delay shouldn't matter as long as it's
1010                          * less than buffer size / flash speed. This is very unlikely to
1011                          * run when using high latency connections such as USB. */
1012                         alive_sleep(10);
1013
1014                         /* to stop an infinite loop on some targets check and increment a timeout
1015                          * this issue was observed on a stellaris using the new ICDI interface */
1016                         if (timeout++ >= 500) {
1017                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1018                                 return ERROR_FLASH_OPERATION_FAILED;
1019                         }
1020                         continue;
1021                 }
1022
1023                 /* reset our timeout */
1024                 timeout = 0;
1025
1026                 /* Limit to the amount of data we actually want to write */
1027                 if (thisrun_bytes > count * block_size)
1028                         thisrun_bytes = count * block_size;
1029
1030                 /* Write data to fifo */
1031                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1032                 if (retval != ERROR_OK)
1033                         break;
1034
1035                 /* Update counters and wrap write pointer */
1036                 buffer += thisrun_bytes;
1037                 count -= thisrun_bytes / block_size;
1038                 wp += thisrun_bytes;
1039                 if (wp >= fifo_end_addr)
1040                         wp = fifo_start_addr;
1041
1042                 /* Store updated write pointer to target */
1043                 retval = target_write_u32(target, wp_addr, wp);
1044                 if (retval != ERROR_OK)
1045                         break;
1046         }
1047
1048         if (retval != ERROR_OK) {
1049                 /* abort flash write algorithm on target */
1050                 target_write_u32(target, wp_addr, 0);
1051         }
1052
1053         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1054                         num_reg_params, reg_params,
1055                         exit_point,
1056                         10000,
1057                         arch_info);
1058
1059         if (retval2 != ERROR_OK) {
1060                 LOG_ERROR("error waiting for target flash write algorithm");
1061                 retval = retval2;
1062         }
1063
1064         if (retval == ERROR_OK) {
1065                 /* check if algorithm set rp = 0 after fifo writer loop finished */
1066                 retval = target_read_u32(target, rp_addr, &rp);
1067                 if (retval == ERROR_OK && rp == 0) {
1068                         LOG_ERROR("flash write algorithm aborted by target");
1069                         retval = ERROR_FLASH_OPERATION_FAILED;
1070                 }
1071         }
1072
1073         return retval;
1074 }
1075
1076 int target_read_memory(struct target *target,
1077                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1078 {
1079         if (!target_was_examined(target)) {
1080                 LOG_ERROR("Target not examined yet");
1081                 return ERROR_FAIL;
1082         }
1083         if (!target->type->read_memory) {
1084                 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1085                 return ERROR_FAIL;
1086         }
1087         return target->type->read_memory(target, address, size, count, buffer);
1088 }
1089
1090 int target_read_phys_memory(struct target *target,
1091                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1092 {
1093         if (!target_was_examined(target)) {
1094                 LOG_ERROR("Target not examined yet");
1095                 return ERROR_FAIL;
1096         }
1097         if (!target->type->read_phys_memory) {
1098                 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1099                 return ERROR_FAIL;
1100         }
1101         return target->type->read_phys_memory(target, address, size, count, buffer);
1102 }
1103
1104 int target_write_memory(struct target *target,
1105                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1106 {
1107         if (!target_was_examined(target)) {
1108                 LOG_ERROR("Target not examined yet");
1109                 return ERROR_FAIL;
1110         }
1111         if (!target->type->write_memory) {
1112                 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1113                 return ERROR_FAIL;
1114         }
1115         return target->type->write_memory(target, address, size, count, buffer);
1116 }
1117
1118 int target_write_phys_memory(struct target *target,
1119                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1120 {
1121         if (!target_was_examined(target)) {
1122                 LOG_ERROR("Target not examined yet");
1123                 return ERROR_FAIL;
1124         }
1125         if (!target->type->write_phys_memory) {
1126                 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1127                 return ERROR_FAIL;
1128         }
1129         return target->type->write_phys_memory(target, address, size, count, buffer);
1130 }
1131
1132 int target_add_breakpoint(struct target *target,
1133                 struct breakpoint *breakpoint)
1134 {
1135         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1136                 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1137                 return ERROR_TARGET_NOT_HALTED;
1138         }
1139         return target->type->add_breakpoint(target, breakpoint);
1140 }
1141
1142 int target_add_context_breakpoint(struct target *target,
1143                 struct breakpoint *breakpoint)
1144 {
1145         if (target->state != TARGET_HALTED) {
1146                 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1147                 return ERROR_TARGET_NOT_HALTED;
1148         }
1149         return target->type->add_context_breakpoint(target, breakpoint);
1150 }
1151
1152 int target_add_hybrid_breakpoint(struct target *target,
1153                 struct breakpoint *breakpoint)
1154 {
1155         if (target->state != TARGET_HALTED) {
1156                 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1157                 return ERROR_TARGET_NOT_HALTED;
1158         }
1159         return target->type->add_hybrid_breakpoint(target, breakpoint);
1160 }
1161
1162 int target_remove_breakpoint(struct target *target,
1163                 struct breakpoint *breakpoint)
1164 {
1165         return target->type->remove_breakpoint(target, breakpoint);
1166 }
1167
1168 int target_add_watchpoint(struct target *target,
1169                 struct watchpoint *watchpoint)
1170 {
1171         if (target->state != TARGET_HALTED) {
1172                 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1173                 return ERROR_TARGET_NOT_HALTED;
1174         }
1175         return target->type->add_watchpoint(target, watchpoint);
1176 }
1177 int target_remove_watchpoint(struct target *target,
1178                 struct watchpoint *watchpoint)
1179 {
1180         return target->type->remove_watchpoint(target, watchpoint);
1181 }
1182 int target_hit_watchpoint(struct target *target,
1183                 struct watchpoint **hit_watchpoint)
1184 {
1185         if (target->state != TARGET_HALTED) {
1186                 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1187                 return ERROR_TARGET_NOT_HALTED;
1188         }
1189
1190         if (target->type->hit_watchpoint == NULL) {
1191                 /* For backward compatible, if hit_watchpoint is not implemented,
1192                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1193                  * information. */
1194                 return ERROR_FAIL;
1195         }
1196
1197         return target->type->hit_watchpoint(target, hit_watchpoint);
1198 }
1199
1200 int target_get_gdb_reg_list(struct target *target,
1201                 struct reg **reg_list[], int *reg_list_size,
1202                 enum target_register_class reg_class)
1203 {
1204         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1205 }
1206 int target_step(struct target *target,
1207                 int current, target_addr_t address, int handle_breakpoints)
1208 {
1209         return target->type->step(target, current, address, handle_breakpoints);
1210 }
1211
1212 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1213 {
1214         if (target->state != TARGET_HALTED) {
1215                 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1216                 return ERROR_TARGET_NOT_HALTED;
1217         }
1218         return target->type->get_gdb_fileio_info(target, fileio_info);
1219 }
1220
1221 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1222 {
1223         if (target->state != TARGET_HALTED) {
1224                 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1225                 return ERROR_TARGET_NOT_HALTED;
1226         }
1227         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1228 }
1229
1230 int target_profiling(struct target *target, uint32_t *samples,
1231                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1232 {
1233         if (target->state != TARGET_HALTED) {
1234                 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1235                 return ERROR_TARGET_NOT_HALTED;
1236         }
1237         return target->type->profiling(target, samples, max_num_samples,
1238                         num_samples, seconds);
1239 }
1240
1241 /**
1242  * Reset the @c examined flag for the given target.
1243  * Pure paranoia -- targets are zeroed on allocation.
1244  */
1245 static void target_reset_examined(struct target *target)
1246 {
1247         target->examined = false;
1248 }
1249
1250 static int handle_target(void *priv);
1251
1252 static int target_init_one(struct command_context *cmd_ctx,
1253                 struct target *target)
1254 {
1255         target_reset_examined(target);
1256
1257         struct target_type *type = target->type;
1258         if (type->examine == NULL)
1259                 type->examine = default_examine;
1260
1261         if (type->check_reset == NULL)
1262                 type->check_reset = default_check_reset;
1263
1264         assert(type->init_target != NULL);
1265
1266         int retval = type->init_target(cmd_ctx, target);
1267         if (ERROR_OK != retval) {
1268                 LOG_ERROR("target '%s' init failed", target_name(target));
1269                 return retval;
1270         }
1271
1272         /* Sanity-check MMU support ... stub in what we must, to help
1273          * implement it in stages, but warn if we need to do so.
1274          */
1275         if (type->mmu) {
1276                 if (type->virt2phys == NULL) {
1277                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1278                         type->virt2phys = identity_virt2phys;
1279                 }
1280         } else {
1281                 /* Make sure no-MMU targets all behave the same:  make no
1282                  * distinction between physical and virtual addresses, and
1283                  * ensure that virt2phys() is always an identity mapping.
1284                  */
1285                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1286                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1287
1288                 type->mmu = no_mmu;
1289                 type->write_phys_memory = type->write_memory;
1290                 type->read_phys_memory = type->read_memory;
1291                 type->virt2phys = identity_virt2phys;
1292         }
1293
1294         if (target->type->read_buffer == NULL)
1295                 target->type->read_buffer = target_read_buffer_default;
1296
1297         if (target->type->write_buffer == NULL)
1298                 target->type->write_buffer = target_write_buffer_default;
1299
1300         if (target->type->get_gdb_fileio_info == NULL)
1301                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1302
1303         if (target->type->gdb_fileio_end == NULL)
1304                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1305
1306         if (target->type->profiling == NULL)
1307                 target->type->profiling = target_profiling_default;
1308
1309         return ERROR_OK;
1310 }
1311
1312 static int target_init(struct command_context *cmd_ctx)
1313 {
1314         struct target *target;
1315         int retval;
1316
1317         for (target = all_targets; target; target = target->next) {
1318                 retval = target_init_one(cmd_ctx, target);
1319                 if (ERROR_OK != retval)
1320                         return retval;
1321         }
1322
1323         if (!all_targets)
1324                 return ERROR_OK;
1325
1326         retval = target_register_user_commands(cmd_ctx);
1327         if (ERROR_OK != retval)
1328                 return retval;
1329
1330         retval = target_register_timer_callback(&handle_target,
1331                         polling_interval, 1, cmd_ctx->interp);
1332         if (ERROR_OK != retval)
1333                 return retval;
1334
1335         return ERROR_OK;
1336 }
1337
1338 COMMAND_HANDLER(handle_target_init_command)
1339 {
1340         int retval;
1341
1342         if (CMD_ARGC != 0)
1343                 return ERROR_COMMAND_SYNTAX_ERROR;
1344
1345         static bool target_initialized;
1346         if (target_initialized) {
1347                 LOG_INFO("'target init' has already been called");
1348                 return ERROR_OK;
1349         }
1350         target_initialized = true;
1351
1352         retval = command_run_line(CMD_CTX, "init_targets");
1353         if (ERROR_OK != retval)
1354                 return retval;
1355
1356         retval = command_run_line(CMD_CTX, "init_target_events");
1357         if (ERROR_OK != retval)
1358                 return retval;
1359
1360         retval = command_run_line(CMD_CTX, "init_board");
1361         if (ERROR_OK != retval)
1362                 return retval;
1363
1364         LOG_DEBUG("Initializing targets...");
1365         return target_init(CMD_CTX);
1366 }
1367
1368 int target_register_event_callback(int (*callback)(struct target *target,
1369                 enum target_event event, void *priv), void *priv)
1370 {
1371         struct target_event_callback **callbacks_p = &target_event_callbacks;
1372
1373         if (callback == NULL)
1374                 return ERROR_COMMAND_SYNTAX_ERROR;
1375
1376         if (*callbacks_p) {
1377                 while ((*callbacks_p)->next)
1378                         callbacks_p = &((*callbacks_p)->next);
1379                 callbacks_p = &((*callbacks_p)->next);
1380         }
1381
1382         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1383         (*callbacks_p)->callback = callback;
1384         (*callbacks_p)->priv = priv;
1385         (*callbacks_p)->next = NULL;
1386
1387         return ERROR_OK;
1388 }
1389
1390 int target_register_reset_callback(int (*callback)(struct target *target,
1391                 enum target_reset_mode reset_mode, void *priv), void *priv)
1392 {
1393         struct target_reset_callback *entry;
1394
1395         if (callback == NULL)
1396                 return ERROR_COMMAND_SYNTAX_ERROR;
1397
1398         entry = malloc(sizeof(struct target_reset_callback));
1399         if (entry == NULL) {
1400                 LOG_ERROR("error allocating buffer for reset callback entry");
1401                 return ERROR_COMMAND_SYNTAX_ERROR;
1402         }
1403
1404         entry->callback = callback;
1405         entry->priv = priv;
1406         list_add(&entry->list, &target_reset_callback_list);
1407
1408
1409         return ERROR_OK;
1410 }
1411
1412 int target_register_trace_callback(int (*callback)(struct target *target,
1413                 size_t len, uint8_t *data, void *priv), void *priv)
1414 {
1415         struct target_trace_callback *entry;
1416
1417         if (callback == NULL)
1418                 return ERROR_COMMAND_SYNTAX_ERROR;
1419
1420         entry = malloc(sizeof(struct target_trace_callback));
1421         if (entry == NULL) {
1422                 LOG_ERROR("error allocating buffer for trace callback entry");
1423                 return ERROR_COMMAND_SYNTAX_ERROR;
1424         }
1425
1426         entry->callback = callback;
1427         entry->priv = priv;
1428         list_add(&entry->list, &target_trace_callback_list);
1429
1430
1431         return ERROR_OK;
1432 }
1433
1434 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1435 {
1436         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1437
1438         if (callback == NULL)
1439                 return ERROR_COMMAND_SYNTAX_ERROR;
1440
1441         if (*callbacks_p) {
1442                 while ((*callbacks_p)->next)
1443                         callbacks_p = &((*callbacks_p)->next);
1444                 callbacks_p = &((*callbacks_p)->next);
1445         }
1446
1447         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1448         (*callbacks_p)->callback = callback;
1449         (*callbacks_p)->periodic = periodic;
1450         (*callbacks_p)->time_ms = time_ms;
1451         (*callbacks_p)->removed = false;
1452
1453         gettimeofday(&(*callbacks_p)->when, NULL);
1454         timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1455
1456         (*callbacks_p)->priv = priv;
1457         (*callbacks_p)->next = NULL;
1458
1459         return ERROR_OK;
1460 }
1461
1462 int target_unregister_event_callback(int (*callback)(struct target *target,
1463                 enum target_event event, void *priv), void *priv)
1464 {
1465         struct target_event_callback **p = &target_event_callbacks;
1466         struct target_event_callback *c = target_event_callbacks;
1467
1468         if (callback == NULL)
1469                 return ERROR_COMMAND_SYNTAX_ERROR;
1470
1471         while (c) {
1472                 struct target_event_callback *next = c->next;
1473                 if ((c->callback == callback) && (c->priv == priv)) {
1474                         *p = next;
1475                         free(c);
1476                         return ERROR_OK;
1477                 } else
1478                         p = &(c->next);
1479                 c = next;
1480         }
1481
1482         return ERROR_OK;
1483 }
1484
1485 int target_unregister_reset_callback(int (*callback)(struct target *target,
1486                 enum target_reset_mode reset_mode, void *priv), void *priv)
1487 {
1488         struct target_reset_callback *entry;
1489
1490         if (callback == NULL)
1491                 return ERROR_COMMAND_SYNTAX_ERROR;
1492
1493         list_for_each_entry(entry, &target_reset_callback_list, list) {
1494                 if (entry->callback == callback && entry->priv == priv) {
1495                         list_del(&entry->list);
1496                         free(entry);
1497                         break;
1498                 }
1499         }
1500
1501         return ERROR_OK;
1502 }
1503
1504 int target_unregister_trace_callback(int (*callback)(struct target *target,
1505                 size_t len, uint8_t *data, void *priv), void *priv)
1506 {
1507         struct target_trace_callback *entry;
1508
1509         if (callback == NULL)
1510                 return ERROR_COMMAND_SYNTAX_ERROR;
1511
1512         list_for_each_entry(entry, &target_trace_callback_list, list) {
1513                 if (entry->callback == callback && entry->priv == priv) {
1514                         list_del(&entry->list);
1515                         free(entry);
1516                         break;
1517                 }
1518         }
1519
1520         return ERROR_OK;
1521 }
1522
1523 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1524 {
1525         if (callback == NULL)
1526                 return ERROR_COMMAND_SYNTAX_ERROR;
1527
1528         for (struct target_timer_callback *c = target_timer_callbacks;
1529              c; c = c->next) {
1530                 if ((c->callback == callback) && (c->priv == priv)) {
1531                         c->removed = true;
1532                         return ERROR_OK;
1533                 }
1534         }
1535
1536         return ERROR_FAIL;
1537 }
1538
1539 int target_call_event_callbacks(struct target *target, enum target_event event)
1540 {
1541         struct target_event_callback *callback = target_event_callbacks;
1542         struct target_event_callback *next_callback;
1543
1544         if (event == TARGET_EVENT_HALTED) {
1545                 /* execute early halted first */
1546                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1547         }
1548
1549         LOG_DEBUG("target event %i (%s)", event,
1550                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1551
1552         target_handle_event(target, event);
1553
1554         while (callback) {
1555                 next_callback = callback->next;
1556                 callback->callback(target, event, callback->priv);
1557                 callback = next_callback;
1558         }
1559
1560         return ERROR_OK;
1561 }
1562
1563 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1564 {
1565         struct target_reset_callback *callback;
1566
1567         LOG_DEBUG("target reset %i (%s)", reset_mode,
1568                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1569
1570         list_for_each_entry(callback, &target_reset_callback_list, list)
1571                 callback->callback(target, reset_mode, callback->priv);
1572
1573         return ERROR_OK;
1574 }
1575
1576 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1577 {
1578         struct target_trace_callback *callback;
1579
1580         list_for_each_entry(callback, &target_trace_callback_list, list)
1581                 callback->callback(target, len, data, callback->priv);
1582
1583         return ERROR_OK;
1584 }
1585
1586 static int target_timer_callback_periodic_restart(
1587                 struct target_timer_callback *cb, struct timeval *now)
1588 {
1589         cb->when = *now;
1590         timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1591         return ERROR_OK;
1592 }
1593
1594 static int target_call_timer_callback(struct target_timer_callback *cb,
1595                 struct timeval *now)
1596 {
1597         cb->callback(cb->priv);
1598
1599         if (cb->periodic)
1600                 return target_timer_callback_periodic_restart(cb, now);
1601
1602         return target_unregister_timer_callback(cb->callback, cb->priv);
1603 }
1604
1605 static int target_call_timer_callbacks_check_time(int checktime)
1606 {
1607         static bool callback_processing;
1608
1609         /* Do not allow nesting */
1610         if (callback_processing)
1611                 return ERROR_OK;
1612
1613         callback_processing = true;
1614
1615         keep_alive();
1616
1617         struct timeval now;
1618         gettimeofday(&now, NULL);
1619
1620         /* Store an address of the place containing a pointer to the
1621          * next item; initially, that's a standalone "root of the
1622          * list" variable. */
1623         struct target_timer_callback **callback = &target_timer_callbacks;
1624         while (*callback) {
1625                 if ((*callback)->removed) {
1626                         struct target_timer_callback *p = *callback;
1627                         *callback = (*callback)->next;
1628                         free(p);
1629                         continue;
1630                 }
1631
1632                 bool call_it = (*callback)->callback &&
1633                         ((!checktime && (*callback)->periodic) ||
1634                          timeval_compare(&now, &(*callback)->when) >= 0);
1635
1636                 if (call_it)
1637                         target_call_timer_callback(*callback, &now);
1638
1639                 callback = &(*callback)->next;
1640         }
1641
1642         callback_processing = false;
1643         return ERROR_OK;
1644 }
1645
1646 int target_call_timer_callbacks(void)
1647 {
1648         return target_call_timer_callbacks_check_time(1);
1649 }
1650
1651 /* invoke periodic callbacks immediately */
1652 int target_call_timer_callbacks_now(void)
1653 {
1654         return target_call_timer_callbacks_check_time(0);
1655 }
1656
1657 /* Prints the working area layout for debug purposes */
1658 static void print_wa_layout(struct target *target)
1659 {
1660         struct working_area *c = target->working_areas;
1661
1662         while (c) {
1663                 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1664                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1665                         c->address, c->address + c->size - 1, c->size);
1666                 c = c->next;
1667         }
1668 }
1669
1670 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1671 static void target_split_working_area(struct working_area *area, uint32_t size)
1672 {
1673         assert(area->free); /* Shouldn't split an allocated area */
1674         assert(size <= area->size); /* Caller should guarantee this */
1675
1676         /* Split only if not already the right size */
1677         if (size < area->size) {
1678                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1679
1680                 if (new_wa == NULL)
1681                         return;
1682
1683                 new_wa->next = area->next;
1684                 new_wa->size = area->size - size;
1685                 new_wa->address = area->address + size;
1686                 new_wa->backup = NULL;
1687                 new_wa->user = NULL;
1688                 new_wa->free = true;
1689
1690                 area->next = new_wa;
1691                 area->size = size;
1692
1693                 /* If backup memory was allocated to this area, it has the wrong size
1694                  * now so free it and it will be reallocated if/when needed */
1695                 if (area->backup) {
1696                         free(area->backup);
1697                         area->backup = NULL;
1698                 }
1699         }
1700 }
1701
1702 /* Merge all adjacent free areas into one */
1703 static void target_merge_working_areas(struct target *target)
1704 {
1705         struct working_area *c = target->working_areas;
1706
1707         while (c && c->next) {
1708                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1709
1710                 /* Find two adjacent free areas */
1711                 if (c->free && c->next->free) {
1712                         /* Merge the last into the first */
1713                         c->size += c->next->size;
1714
1715                         /* Remove the last */
1716                         struct working_area *to_be_freed = c->next;
1717                         c->next = c->next->next;
1718                         if (to_be_freed->backup)
1719                                 free(to_be_freed->backup);
1720                         free(to_be_freed);
1721
1722                         /* If backup memory was allocated to the remaining area, it's has
1723                          * the wrong size now */
1724                         if (c->backup) {
1725                                 free(c->backup);
1726                                 c->backup = NULL;
1727                         }
1728                 } else {
1729                         c = c->next;
1730                 }
1731         }
1732 }
1733
1734 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1735 {
1736         /* Reevaluate working area address based on MMU state*/
1737         if (target->working_areas == NULL) {
1738                 int retval;
1739                 int enabled;
1740
1741                 retval = target->type->mmu(target, &enabled);
1742                 if (retval != ERROR_OK)
1743                         return retval;
1744
1745                 if (!enabled) {
1746                         if (target->working_area_phys_spec) {
1747                                 LOG_DEBUG("MMU disabled, using physical "
1748                                         "address for working memory " TARGET_ADDR_FMT,
1749                                         target->working_area_phys);
1750                                 target->working_area = target->working_area_phys;
1751                         } else {
1752                                 LOG_ERROR("No working memory available. "
1753                                         "Specify -work-area-phys to target.");
1754                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1755                         }
1756                 } else {
1757                         if (target->working_area_virt_spec) {
1758                                 LOG_DEBUG("MMU enabled, using virtual "
1759                                         "address for working memory " TARGET_ADDR_FMT,
1760                                         target->working_area_virt);
1761                                 target->working_area = target->working_area_virt;
1762                         } else {
1763                                 LOG_ERROR("No working memory available. "
1764                                         "Specify -work-area-virt to target.");
1765                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1766                         }
1767                 }
1768
1769                 /* Set up initial working area on first call */
1770                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1771                 if (new_wa) {
1772                         new_wa->next = NULL;
1773                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1774                         new_wa->address = target->working_area;
1775                         new_wa->backup = NULL;
1776                         new_wa->user = NULL;
1777                         new_wa->free = true;
1778                 }
1779
1780                 target->working_areas = new_wa;
1781         }
1782
1783         /* only allocate multiples of 4 byte */
1784         if (size % 4)
1785                 size = (size + 3) & (~3UL);
1786
1787         struct working_area *c = target->working_areas;
1788
1789         /* Find the first large enough working area */
1790         while (c) {
1791                 if (c->free && c->size >= size)
1792                         break;
1793                 c = c->next;
1794         }
1795
1796         if (c == NULL)
1797                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1798
1799         /* Split the working area into the requested size */
1800         target_split_working_area(c, size);
1801
1802         LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1803                           size, c->address);
1804
1805         if (target->backup_working_area) {
1806                 if (c->backup == NULL) {
1807                         c->backup = malloc(c->size);
1808                         if (c->backup == NULL)
1809                                 return ERROR_FAIL;
1810                 }
1811
1812                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1813                 if (retval != ERROR_OK)
1814                         return retval;
1815         }
1816
1817         /* mark as used, and return the new (reused) area */
1818         c->free = false;
1819         *area = c;
1820
1821         /* user pointer */
1822         c->user = area;
1823
1824         print_wa_layout(target);
1825
1826         return ERROR_OK;
1827 }
1828
1829 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1830 {
1831         int retval;
1832
1833         retval = target_alloc_working_area_try(target, size, area);
1834         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1835                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1836         return retval;
1837
1838 }
1839
1840 static int target_restore_working_area(struct target *target, struct working_area *area)
1841 {
1842         int retval = ERROR_OK;
1843
1844         if (target->backup_working_area && area->backup != NULL) {
1845                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1846                 if (retval != ERROR_OK)
1847                         LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1848                                         area->size, area->address);
1849         }
1850
1851         return retval;
1852 }
1853
1854 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1855 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1856 {
1857         int retval = ERROR_OK;
1858
1859         if (area->free)
1860                 return retval;
1861
1862         if (restore) {
1863                 retval = target_restore_working_area(target, area);
1864                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1865                 if (retval != ERROR_OK)
1866                         return retval;
1867         }
1868
1869         area->free = true;
1870
1871         LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1872                         area->size, area->address);
1873
1874         /* mark user pointer invalid */
1875         /* TODO: Is this really safe? It points to some previous caller's memory.
1876          * How could we know that the area pointer is still in that place and not
1877          * some other vital data? What's the purpose of this, anyway? */
1878         *area->user = NULL;
1879         area->user = NULL;
1880
1881         target_merge_working_areas(target);
1882
1883         print_wa_layout(target);
1884
1885         return retval;
1886 }
1887
1888 int target_free_working_area(struct target *target, struct working_area *area)
1889 {
1890         return target_free_working_area_restore(target, area, 1);
1891 }
1892
1893 static void target_destroy(struct target *target)
1894 {
1895         if (target->type->deinit_target)
1896                 target->type->deinit_target(target);
1897
1898         if (target->semihosting)
1899                 free(target->semihosting);
1900
1901         jtag_unregister_event_callback(jtag_enable_callback, target);
1902
1903         struct target_event_action *teap = target->event_action;
1904         while (teap) {
1905                 struct target_event_action *next = teap->next;
1906                 Jim_DecrRefCount(teap->interp, teap->body);
1907                 free(teap);
1908                 teap = next;
1909         }
1910
1911         target_free_all_working_areas(target);
1912         /* Now we have none or only one working area marked as free */
1913         if (target->working_areas) {
1914                 free(target->working_areas->backup);
1915                 free(target->working_areas);
1916         }
1917
1918         /* release the targets SMP list */
1919         if (target->smp) {
1920                 struct target_list *head = target->head;
1921                 while (head != NULL) {
1922                         struct target_list *pos = head->next;
1923                         head->target->smp = 0;
1924                         free(head);
1925                         head = pos;
1926                 }
1927                 target->smp = 0;
1928         }
1929
1930         free(target->gdb_port_override);
1931         free(target->type);
1932         free(target->trace_info);
1933         free(target->fileio_info);
1934         free(target->cmd_name);
1935         free(target);
1936 }
1937
1938 void target_quit(void)
1939 {
1940         struct target_event_callback *pe = target_event_callbacks;
1941         while (pe) {
1942                 struct target_event_callback *t = pe->next;
1943                 free(pe);
1944                 pe = t;
1945         }
1946         target_event_callbacks = NULL;
1947
1948         struct target_timer_callback *pt = target_timer_callbacks;
1949         while (pt) {
1950                 struct target_timer_callback *t = pt->next;
1951                 free(pt);
1952                 pt = t;
1953         }
1954         target_timer_callbacks = NULL;
1955
1956         for (struct target *target = all_targets; target;) {
1957                 struct target *tmp;
1958
1959                 tmp = target->next;
1960                 target_destroy(target);
1961                 target = tmp;
1962         }
1963
1964         all_targets = NULL;
1965 }
1966
1967 /* free resources and restore memory, if restoring memory fails,
1968  * free up resources anyway
1969  */
1970 static void target_free_all_working_areas_restore(struct target *target, int restore)
1971 {
1972         struct working_area *c = target->working_areas;
1973
1974         LOG_DEBUG("freeing all working areas");
1975
1976         /* Loop through all areas, restoring the allocated ones and marking them as free */
1977         while (c) {
1978                 if (!c->free) {
1979                         if (restore)
1980                                 target_restore_working_area(target, c);
1981                         c->free = true;
1982                         *c->user = NULL; /* Same as above */
1983                         c->user = NULL;
1984                 }
1985                 c = c->next;
1986         }
1987
1988         /* Run a merge pass to combine all areas into one */
1989         target_merge_working_areas(target);
1990
1991         print_wa_layout(target);
1992 }
1993
1994 void target_free_all_working_areas(struct target *target)
1995 {
1996         target_free_all_working_areas_restore(target, 1);
1997 }
1998
1999 /* Find the largest number of bytes that can be allocated */
2000 uint32_t target_get_working_area_avail(struct target *target)
2001 {
2002         struct working_area *c = target->working_areas;
2003         uint32_t max_size = 0;
2004
2005         if (c == NULL)
2006                 return target->working_area_size;
2007
2008         while (c) {
2009                 if (c->free && max_size < c->size)
2010                         max_size = c->size;
2011
2012                 c = c->next;
2013         }
2014
2015         return max_size;
2016 }
2017
2018 int target_arch_state(struct target *target)
2019 {
2020         int retval;
2021         if (target == NULL) {
2022                 LOG_WARNING("No target has been configured");
2023                 return ERROR_OK;
2024         }
2025
2026         if (target->state != TARGET_HALTED)
2027                 return ERROR_OK;
2028
2029         retval = target->type->arch_state(target);
2030         return retval;
2031 }
2032
2033 static int target_get_gdb_fileio_info_default(struct target *target,
2034                 struct gdb_fileio_info *fileio_info)
2035 {
2036         /* If target does not support semi-hosting function, target
2037            has no need to provide .get_gdb_fileio_info callback.
2038            It just return ERROR_FAIL and gdb_server will return "Txx"
2039            as target halted every time.  */
2040         return ERROR_FAIL;
2041 }
2042
2043 static int target_gdb_fileio_end_default(struct target *target,
2044                 int retcode, int fileio_errno, bool ctrl_c)
2045 {
2046         return ERROR_OK;
2047 }
2048
2049 static int target_profiling_default(struct target *target, uint32_t *samples,
2050                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2051 {
2052         struct timeval timeout, now;
2053
2054         gettimeofday(&timeout, NULL);
2055         timeval_add_time(&timeout, seconds, 0);
2056
2057         LOG_INFO("Starting profiling. Halting and resuming the"
2058                         " target as often as we can...");
2059
2060         uint32_t sample_count = 0;
2061         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2062         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2063
2064         int retval = ERROR_OK;
2065         for (;;) {
2066                 target_poll(target);
2067                 if (target->state == TARGET_HALTED) {
2068                         uint32_t t = buf_get_u32(reg->value, 0, 32);
2069                         samples[sample_count++] = t;
2070                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
2071                         retval = target_resume(target, 1, 0, 0, 0);
2072                         target_poll(target);
2073                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2074                 } else if (target->state == TARGET_RUNNING) {
2075                         /* We want to quickly sample the PC. */
2076                         retval = target_halt(target);
2077                 } else {
2078                         LOG_INFO("Target not halted or running");
2079                         retval = ERROR_OK;
2080                         break;
2081                 }
2082
2083                 if (retval != ERROR_OK)
2084                         break;
2085
2086                 gettimeofday(&now, NULL);
2087                 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2088                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2089                         break;
2090                 }
2091         }
2092
2093         *num_samples = sample_count;
2094         return retval;
2095 }
2096
2097 /* Single aligned words are guaranteed to use 16 or 32 bit access
2098  * mode respectively, otherwise data is handled as quickly as
2099  * possible
2100  */
2101 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2102 {
2103         LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2104                           size, address);
2105
2106         if (!target_was_examined(target)) {
2107                 LOG_ERROR("Target not examined yet");
2108                 return ERROR_FAIL;
2109         }
2110
2111         if (size == 0)
2112                 return ERROR_OK;
2113
2114         if ((address + size - 1) < address) {
2115                 /* GDB can request this when e.g. PC is 0xfffffffc */
2116                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2117                                   address,
2118                                   size);
2119                 return ERROR_FAIL;
2120         }
2121
2122         return target->type->write_buffer(target, address, size, buffer);
2123 }
2124
2125 static int target_write_buffer_default(struct target *target,
2126         target_addr_t address, uint32_t count, const uint8_t *buffer)
2127 {
2128         uint32_t size;
2129
2130         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2131          * will have something to do with the size we leave to it. */
2132         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2133                 if (address & size) {
2134                         int retval = target_write_memory(target, address, size, 1, buffer);
2135                         if (retval != ERROR_OK)
2136                                 return retval;
2137                         address += size;
2138                         count -= size;
2139                         buffer += size;
2140                 }
2141         }
2142
2143         /* Write the data with as large access size as possible. */
2144         for (; size > 0; size /= 2) {
2145                 uint32_t aligned = count - count % size;
2146                 if (aligned > 0) {
2147                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2148                         if (retval != ERROR_OK)
2149                                 return retval;
2150                         address += aligned;
2151                         count -= aligned;
2152                         buffer += aligned;
2153                 }
2154         }
2155
2156         return ERROR_OK;
2157 }
2158
2159 /* Single aligned words are guaranteed to use 16 or 32 bit access
2160  * mode respectively, otherwise data is handled as quickly as
2161  * possible
2162  */
2163 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2164 {
2165         LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2166                           size, address);
2167
2168         if (!target_was_examined(target)) {
2169                 LOG_ERROR("Target not examined yet");
2170                 return ERROR_FAIL;
2171         }
2172
2173         if (size == 0)
2174                 return ERROR_OK;
2175
2176         if ((address + size - 1) < address) {
2177                 /* GDB can request this when e.g. PC is 0xfffffffc */
2178                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2179                                   address,
2180                                   size);
2181                 return ERROR_FAIL;
2182         }
2183
2184         return target->type->read_buffer(target, address, size, buffer);
2185 }
2186
2187 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2188 {
2189         uint32_t size;
2190
2191         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2192          * will have something to do with the size we leave to it. */
2193         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2194                 if (address & size) {
2195                         int retval = target_read_memory(target, address, size, 1, buffer);
2196                         if (retval != ERROR_OK)
2197                                 return retval;
2198                         address += size;
2199                         count -= size;
2200                         buffer += size;
2201                 }
2202         }
2203
2204         /* Read the data with as large access size as possible. */
2205         for (; size > 0; size /= 2) {
2206                 uint32_t aligned = count - count % size;
2207                 if (aligned > 0) {
2208                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2209                         if (retval != ERROR_OK)
2210                                 return retval;
2211                         address += aligned;
2212                         count -= aligned;
2213                         buffer += aligned;
2214                 }
2215         }
2216
2217         return ERROR_OK;
2218 }
2219
2220 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2221 {
2222         uint8_t *buffer;
2223         int retval;
2224         uint32_t i;
2225         uint32_t checksum = 0;
2226         if (!target_was_examined(target)) {
2227                 LOG_ERROR("Target not examined yet");
2228                 return ERROR_FAIL;
2229         }
2230
2231         retval = target->type->checksum_memory(target, address, size, &checksum);
2232         if (retval != ERROR_OK) {
2233                 buffer = malloc(size);
2234                 if (buffer == NULL) {
2235                         LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2236                         return ERROR_COMMAND_SYNTAX_ERROR;
2237                 }
2238                 retval = target_read_buffer(target, address, size, buffer);
2239                 if (retval != ERROR_OK) {
2240                         free(buffer);
2241                         return retval;
2242                 }
2243
2244                 /* convert to target endianness */
2245                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2246                         uint32_t target_data;
2247                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2248                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2249                 }
2250
2251                 retval = image_calculate_checksum(buffer, size, &checksum);
2252                 free(buffer);
2253         }
2254
2255         *crc = checksum;
2256
2257         return retval;
2258 }
2259
2260 int target_blank_check_memory(struct target *target,
2261         struct target_memory_check_block *blocks, int num_blocks,
2262         uint8_t erased_value)
2263 {
2264         if (!target_was_examined(target)) {
2265                 LOG_ERROR("Target not examined yet");
2266                 return ERROR_FAIL;
2267         }
2268
2269         if (target->type->blank_check_memory == NULL)
2270                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2271
2272         return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2273 }
2274
2275 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2276 {
2277         uint8_t value_buf[8];
2278         if (!target_was_examined(target)) {
2279                 LOG_ERROR("Target not examined yet");
2280                 return ERROR_FAIL;
2281         }
2282
2283         int retval = target_read_memory(target, address, 8, 1, value_buf);
2284
2285         if (retval == ERROR_OK) {
2286                 *value = target_buffer_get_u64(target, value_buf);
2287                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2288                                   address,
2289                                   *value);
2290         } else {
2291                 *value = 0x0;
2292                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2293                                   address);
2294         }
2295
2296         return retval;
2297 }
2298
2299 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2300 {
2301         uint8_t value_buf[4];
2302         if (!target_was_examined(target)) {
2303                 LOG_ERROR("Target not examined yet");
2304                 return ERROR_FAIL;
2305         }
2306
2307         int retval = target_read_memory(target, address, 4, 1, value_buf);
2308
2309         if (retval == ERROR_OK) {
2310                 *value = target_buffer_get_u32(target, value_buf);
2311                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2312                                   address,
2313                                   *value);
2314         } else {
2315                 *value = 0x0;
2316                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2317                                   address);
2318         }
2319
2320         return retval;
2321 }
2322
2323 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2324 {
2325         uint8_t value_buf[2];
2326         if (!target_was_examined(target)) {
2327                 LOG_ERROR("Target not examined yet");
2328                 return ERROR_FAIL;
2329         }
2330
2331         int retval = target_read_memory(target, address, 2, 1, value_buf);
2332
2333         if (retval == ERROR_OK) {
2334                 *value = target_buffer_get_u16(target, value_buf);
2335                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2336                                   address,
2337                                   *value);
2338         } else {
2339                 *value = 0x0;
2340                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2341                                   address);
2342         }
2343
2344         return retval;
2345 }
2346
2347 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2348 {
2349         if (!target_was_examined(target)) {
2350                 LOG_ERROR("Target not examined yet");
2351                 return ERROR_FAIL;
2352         }
2353
2354         int retval = target_read_memory(target, address, 1, 1, value);
2355
2356         if (retval == ERROR_OK) {
2357                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2358                                   address,
2359                                   *value);
2360         } else {
2361                 *value = 0x0;
2362                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2363                                   address);
2364         }
2365
2366         return retval;
2367 }
2368
2369 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2370 {
2371         int retval;
2372         uint8_t value_buf[8];
2373         if (!target_was_examined(target)) {
2374                 LOG_ERROR("Target not examined yet");
2375                 return ERROR_FAIL;
2376         }
2377
2378         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2379                           address,
2380                           value);
2381
2382         target_buffer_set_u64(target, value_buf, value);
2383         retval = target_write_memory(target, address, 8, 1, value_buf);
2384         if (retval != ERROR_OK)
2385                 LOG_DEBUG("failed: %i", retval);
2386
2387         return retval;
2388 }
2389
2390 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2391 {
2392         int retval;
2393         uint8_t value_buf[4];
2394         if (!target_was_examined(target)) {
2395                 LOG_ERROR("Target not examined yet");
2396                 return ERROR_FAIL;
2397         }
2398
2399         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2400                           address,
2401                           value);
2402
2403         target_buffer_set_u32(target, value_buf, value);
2404         retval = target_write_memory(target, address, 4, 1, value_buf);
2405         if (retval != ERROR_OK)
2406                 LOG_DEBUG("failed: %i", retval);
2407
2408         return retval;
2409 }
2410
2411 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2412 {
2413         int retval;
2414         uint8_t value_buf[2];
2415         if (!target_was_examined(target)) {
2416                 LOG_ERROR("Target not examined yet");
2417                 return ERROR_FAIL;
2418         }
2419
2420         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2421                           address,
2422                           value);
2423
2424         target_buffer_set_u16(target, value_buf, value);
2425         retval = target_write_memory(target, address, 2, 1, value_buf);
2426         if (retval != ERROR_OK)
2427                 LOG_DEBUG("failed: %i", retval);
2428
2429         return retval;
2430 }
2431
2432 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2433 {
2434         int retval;
2435         if (!target_was_examined(target)) {
2436                 LOG_ERROR("Target not examined yet");
2437                 return ERROR_FAIL;
2438         }
2439
2440         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2441                           address, value);
2442
2443         retval = target_write_memory(target, address, 1, 1, &value);
2444         if (retval != ERROR_OK)
2445                 LOG_DEBUG("failed: %i", retval);
2446
2447         return retval;
2448 }
2449
2450 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2451 {
2452         int retval;
2453         uint8_t value_buf[8];
2454         if (!target_was_examined(target)) {
2455                 LOG_ERROR("Target not examined yet");
2456                 return ERROR_FAIL;
2457         }
2458
2459         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2460                           address,
2461                           value);
2462
2463         target_buffer_set_u64(target, value_buf, value);
2464         retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2465         if (retval != ERROR_OK)
2466                 LOG_DEBUG("failed: %i", retval);
2467
2468         return retval;
2469 }
2470
2471 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2472 {
2473         int retval;
2474         uint8_t value_buf[4];
2475         if (!target_was_examined(target)) {
2476                 LOG_ERROR("Target not examined yet");
2477                 return ERROR_FAIL;
2478         }
2479
2480         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2481                           address,
2482                           value);
2483
2484         target_buffer_set_u32(target, value_buf, value);
2485         retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2486         if (retval != ERROR_OK)
2487                 LOG_DEBUG("failed: %i", retval);
2488
2489         return retval;
2490 }
2491
2492 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2493 {
2494         int retval;
2495         uint8_t value_buf[2];
2496         if (!target_was_examined(target)) {
2497                 LOG_ERROR("Target not examined yet");
2498                 return ERROR_FAIL;
2499         }
2500
2501         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2502                           address,
2503                           value);
2504
2505         target_buffer_set_u16(target, value_buf, value);
2506         retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2507         if (retval != ERROR_OK)
2508                 LOG_DEBUG("failed: %i", retval);
2509
2510         return retval;
2511 }
2512
2513 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2514 {
2515         int retval;
2516         if (!target_was_examined(target)) {
2517                 LOG_ERROR("Target not examined yet");
2518                 return ERROR_FAIL;
2519         }
2520
2521         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2522                           address, value);
2523
2524         retval = target_write_phys_memory(target, address, 1, 1, &value);
2525         if (retval != ERROR_OK)
2526                 LOG_DEBUG("failed: %i", retval);
2527
2528         return retval;
2529 }
2530
2531 static int find_target(struct command_context *cmd_ctx, const char *name)
2532 {
2533         struct target *target = get_target(name);
2534         if (target == NULL) {
2535                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2536                 return ERROR_FAIL;
2537         }
2538         if (!target->tap->enabled) {
2539                 LOG_USER("Target: TAP %s is disabled, "
2540                          "can't be the current target\n",
2541                          target->tap->dotted_name);
2542                 return ERROR_FAIL;
2543         }
2544
2545         cmd_ctx->current_target = target;
2546         if (cmd_ctx->current_target_override)
2547                 cmd_ctx->current_target_override = target;
2548
2549         return ERROR_OK;
2550 }
2551
2552
2553 COMMAND_HANDLER(handle_targets_command)
2554 {
2555         int retval = ERROR_OK;
2556         if (CMD_ARGC == 1) {
2557                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2558                 if (retval == ERROR_OK) {
2559                         /* we're done! */
2560                         return retval;
2561                 }
2562         }
2563
2564         struct target *target = all_targets;
2565         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2566         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2567         while (target) {
2568                 const char *state;
2569                 char marker = ' ';
2570
2571                 if (target->tap->enabled)
2572                         state = target_state_name(target);
2573                 else
2574                         state = "tap-disabled";
2575
2576                 if (CMD_CTX->current_target == target)
2577                         marker = '*';
2578
2579                 /* keep columns lined up to match the headers above */
2580                 command_print(CMD_CTX,
2581                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2582                                 target->target_number,
2583                                 marker,
2584                                 target_name(target),
2585                                 target_type_name(target),
2586                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2587                                         target->endianness)->name,
2588                                 target->tap->dotted_name,
2589                                 state);
2590                 target = target->next;
2591         }
2592
2593         return retval;
2594 }
2595
2596 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2597
2598 static int powerDropout;
2599 static int srstAsserted;
2600
2601 static int runPowerRestore;
2602 static int runPowerDropout;
2603 static int runSrstAsserted;
2604 static int runSrstDeasserted;
2605
2606 static int sense_handler(void)
2607 {
2608         static int prevSrstAsserted;
2609         static int prevPowerdropout;
2610
2611         int retval = jtag_power_dropout(&powerDropout);
2612         if (retval != ERROR_OK)
2613                 return retval;
2614
2615         int powerRestored;
2616         powerRestored = prevPowerdropout && !powerDropout;
2617         if (powerRestored)
2618                 runPowerRestore = 1;
2619
2620         int64_t current = timeval_ms();
2621         static int64_t lastPower;
2622         bool waitMore = lastPower + 2000 > current;
2623         if (powerDropout && !waitMore) {
2624                 runPowerDropout = 1;
2625                 lastPower = current;
2626         }
2627
2628         retval = jtag_srst_asserted(&srstAsserted);
2629         if (retval != ERROR_OK)
2630                 return retval;
2631
2632         int srstDeasserted;
2633         srstDeasserted = prevSrstAsserted && !srstAsserted;
2634
2635         static int64_t lastSrst;
2636         waitMore = lastSrst + 2000 > current;
2637         if (srstDeasserted && !waitMore) {
2638                 runSrstDeasserted = 1;
2639                 lastSrst = current;
2640         }
2641
2642         if (!prevSrstAsserted && srstAsserted)
2643                 runSrstAsserted = 1;
2644
2645         prevSrstAsserted = srstAsserted;
2646         prevPowerdropout = powerDropout;
2647
2648         if (srstDeasserted || powerRestored) {
2649                 /* Other than logging the event we can't do anything here.
2650                  * Issuing a reset is a particularly bad idea as we might
2651                  * be inside a reset already.
2652                  */
2653         }
2654
2655         return ERROR_OK;
2656 }
2657
2658 /* process target state changes */
2659 static int handle_target(void *priv)
2660 {
2661         Jim_Interp *interp = (Jim_Interp *)priv;
2662         int retval = ERROR_OK;
2663
2664         if (!is_jtag_poll_safe()) {
2665                 /* polling is disabled currently */
2666                 return ERROR_OK;
2667         }
2668
2669         /* we do not want to recurse here... */
2670         static int recursive;
2671         if (!recursive) {
2672                 recursive = 1;
2673                 sense_handler();
2674                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2675                  * We need to avoid an infinite loop/recursion here and we do that by
2676                  * clearing the flags after running these events.
2677                  */
2678                 int did_something = 0;
2679                 if (runSrstAsserted) {
2680                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2681                         Jim_Eval(interp, "srst_asserted");
2682                         did_something = 1;
2683                 }
2684                 if (runSrstDeasserted) {
2685                         Jim_Eval(interp, "srst_deasserted");
2686                         did_something = 1;
2687                 }
2688                 if (runPowerDropout) {
2689                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2690                         Jim_Eval(interp, "power_dropout");
2691                         did_something = 1;
2692                 }
2693                 if (runPowerRestore) {
2694                         Jim_Eval(interp, "power_restore");
2695                         did_something = 1;
2696                 }
2697
2698                 if (did_something) {
2699                         /* clear detect flags */
2700                         sense_handler();
2701                 }
2702
2703                 /* clear action flags */
2704
2705                 runSrstAsserted = 0;
2706                 runSrstDeasserted = 0;
2707                 runPowerRestore = 0;
2708                 runPowerDropout = 0;
2709
2710                 recursive = 0;
2711         }
2712
2713         /* Poll targets for state changes unless that's globally disabled.
2714          * Skip targets that are currently disabled.
2715          */
2716         for (struct target *target = all_targets;
2717                         is_jtag_poll_safe() && target;
2718                         target = target->next) {
2719
2720                 if (!target_was_examined(target))
2721                         continue;
2722
2723                 if (!target->tap->enabled)
2724                         continue;
2725
2726                 if (target->backoff.times > target->backoff.count) {
2727                         /* do not poll this time as we failed previously */
2728                         target->backoff.count++;
2729                         continue;
2730                 }
2731                 target->backoff.count = 0;
2732
2733                 /* only poll target if we've got power and srst isn't asserted */
2734                 if (!powerDropout && !srstAsserted) {
2735                         /* polling may fail silently until the target has been examined */
2736                         retval = target_poll(target);
2737                         if (retval != ERROR_OK) {
2738                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2739                                 if (target->backoff.times * polling_interval < 5000) {
2740                                         target->backoff.times *= 2;
2741                                         target->backoff.times++;
2742                                 }
2743
2744                                 /* Tell GDB to halt the debugger. This allows the user to
2745                                  * run monitor commands to handle the situation.
2746                                  */
2747                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2748                         }
2749                         if (target->backoff.times > 0) {
2750                                 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2751                                 target_reset_examined(target);
2752                                 retval = target_examine_one(target);
2753                                 /* Target examination could have failed due to unstable connection,
2754                                  * but we set the examined flag anyway to repoll it later */
2755                                 if (retval != ERROR_OK) {
2756                                         target->examined = true;
2757                                         LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2758                                                  target->backoff.times * polling_interval);
2759                                         return retval;
2760                                 }
2761                         }
2762
2763                         /* Since we succeeded, we reset backoff count */
2764                         target->backoff.times = 0;
2765                 }
2766         }
2767
2768         return retval;
2769 }
2770
2771 COMMAND_HANDLER(handle_reg_command)
2772 {
2773         struct target *target;
2774         struct reg *reg = NULL;
2775         unsigned count = 0;
2776         char *value;
2777
2778         LOG_DEBUG("-");
2779
2780         target = get_current_target(CMD_CTX);
2781
2782         /* list all available registers for the current target */
2783         if (CMD_ARGC == 0) {
2784                 struct reg_cache *cache = target->reg_cache;
2785
2786                 count = 0;
2787                 while (cache) {
2788                         unsigned i;
2789
2790                         command_print(CMD_CTX, "===== %s", cache->name);
2791
2792                         for (i = 0, reg = cache->reg_list;
2793                                         i < cache->num_regs;
2794                                         i++, reg++, count++) {
2795                                 /* only print cached values if they are valid */
2796                                 if (reg->valid) {
2797                                         value = buf_to_str(reg->value,
2798                                                         reg->size, 16);
2799                                         command_print(CMD_CTX,
2800                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2801                                                         count, reg->name,
2802                                                         reg->size, value,
2803                                                         reg->dirty
2804                                                                 ? " (dirty)"
2805                                                                 : "");
2806                                         free(value);
2807                                 } else {
2808                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2809                                                           count, reg->name,
2810                                                           reg->size) ;
2811                                 }
2812                         }
2813                         cache = cache->next;
2814                 }
2815
2816                 return ERROR_OK;
2817         }
2818
2819         /* access a single register by its ordinal number */
2820         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2821                 unsigned num;
2822                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2823
2824                 struct reg_cache *cache = target->reg_cache;
2825                 count = 0;
2826                 while (cache) {
2827                         unsigned i;
2828                         for (i = 0; i < cache->num_regs; i++) {
2829                                 if (count++ == num) {
2830                                         reg = &cache->reg_list[i];
2831                                         break;
2832                                 }
2833                         }
2834                         if (reg)
2835                                 break;
2836                         cache = cache->next;
2837                 }
2838
2839                 if (!reg) {
2840                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2841                                         "has only %i registers (0 - %i)", num, count, count - 1);
2842                         return ERROR_OK;
2843                 }
2844         } else {
2845                 /* access a single register by its name */
2846                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2847
2848                 if (!reg) {
2849                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2850                         return ERROR_OK;
2851                 }
2852         }
2853
2854         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2855
2856         /* display a register */
2857         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2858                         && (CMD_ARGV[1][0] <= '9')))) {
2859                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2860                         reg->valid = 0;
2861
2862                 if (reg->valid == 0)
2863                         reg->type->get(reg);
2864                 value = buf_to_str(reg->value, reg->size, 16);
2865                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2866                 free(value);
2867                 return ERROR_OK;
2868         }
2869
2870         /* set register value */
2871         if (CMD_ARGC == 2) {
2872                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2873                 if (buf == NULL)
2874                         return ERROR_FAIL;
2875                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2876
2877                 reg->type->set(reg, buf);
2878
2879                 value = buf_to_str(reg->value, reg->size, 16);
2880                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2881                 free(value);
2882
2883                 free(buf);
2884
2885                 return ERROR_OK;
2886         }
2887
2888         return ERROR_COMMAND_SYNTAX_ERROR;
2889 }
2890
2891 COMMAND_HANDLER(handle_poll_command)
2892 {
2893         int retval = ERROR_OK;
2894         struct target *target = get_current_target(CMD_CTX);
2895
2896         if (CMD_ARGC == 0) {
2897                 command_print(CMD_CTX, "background polling: %s",
2898                                 jtag_poll_get_enabled() ? "on" : "off");
2899                 command_print(CMD_CTX, "TAP: %s (%s)",
2900                                 target->tap->dotted_name,
2901                                 target->tap->enabled ? "enabled" : "disabled");
2902                 if (!target->tap->enabled)
2903                         return ERROR_OK;
2904                 retval = target_poll(target);
2905                 if (retval != ERROR_OK)
2906                         return retval;
2907                 retval = target_arch_state(target);
2908                 if (retval != ERROR_OK)
2909                         return retval;
2910         } else if (CMD_ARGC == 1) {
2911                 bool enable;
2912                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2913                 jtag_poll_set_enabled(enable);
2914         } else
2915                 return ERROR_COMMAND_SYNTAX_ERROR;
2916
2917         return retval;
2918 }
2919
2920 COMMAND_HANDLER(handle_wait_halt_command)
2921 {
2922         if (CMD_ARGC > 1)
2923                 return ERROR_COMMAND_SYNTAX_ERROR;
2924
2925         unsigned ms = DEFAULT_HALT_TIMEOUT;
2926         if (1 == CMD_ARGC) {
2927                 int retval = parse_uint(CMD_ARGV[0], &ms);
2928                 if (ERROR_OK != retval)
2929                         return ERROR_COMMAND_SYNTAX_ERROR;
2930         }
2931
2932         struct target *target = get_current_target(CMD_CTX);
2933         return target_wait_state(target, TARGET_HALTED, ms);
2934 }
2935
2936 /* wait for target state to change. The trick here is to have a low
2937  * latency for short waits and not to suck up all the CPU time
2938  * on longer waits.
2939  *
2940  * After 500ms, keep_alive() is invoked
2941  */
2942 int target_wait_state(struct target *target, enum target_state state, int ms)
2943 {
2944         int retval;
2945         int64_t then = 0, cur;
2946         bool once = true;
2947
2948         for (;;) {
2949                 retval = target_poll(target);
2950                 if (retval != ERROR_OK)
2951                         return retval;
2952                 if (target->state == state)
2953                         break;
2954                 cur = timeval_ms();
2955                 if (once) {
2956                         once = false;
2957                         then = timeval_ms();
2958                         LOG_DEBUG("waiting for target %s...",
2959                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2960                 }
2961
2962                 if (cur-then > 500)
2963                         keep_alive();
2964
2965                 if ((cur-then) > ms) {
2966                         LOG_ERROR("timed out while waiting for target %s",
2967                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2968                         return ERROR_FAIL;
2969                 }
2970         }
2971
2972         return ERROR_OK;
2973 }
2974
2975 COMMAND_HANDLER(handle_halt_command)
2976 {
2977         LOG_DEBUG("-");
2978
2979         struct target *target = get_current_target(CMD_CTX);
2980
2981         target->verbose_halt_msg = true;
2982
2983         int retval = target_halt(target);
2984         if (ERROR_OK != retval)
2985                 return retval;
2986
2987         if (CMD_ARGC == 1) {
2988                 unsigned wait_local;
2989                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2990                 if (ERROR_OK != retval)
2991                         return ERROR_COMMAND_SYNTAX_ERROR;
2992                 if (!wait_local)
2993                         return ERROR_OK;
2994         }
2995
2996         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2997 }
2998
2999 COMMAND_HANDLER(handle_soft_reset_halt_command)
3000 {
3001         struct target *target = get_current_target(CMD_CTX);
3002
3003         LOG_USER("requesting target halt and executing a soft reset");
3004
3005         target_soft_reset_halt(target);
3006
3007         return ERROR_OK;
3008 }
3009
3010 COMMAND_HANDLER(handle_reset_command)
3011 {
3012         if (CMD_ARGC > 1)
3013                 return ERROR_COMMAND_SYNTAX_ERROR;
3014
3015         enum target_reset_mode reset_mode = RESET_RUN;
3016         if (CMD_ARGC == 1) {
3017                 const Jim_Nvp *n;
3018                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3019                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3020                         return ERROR_COMMAND_SYNTAX_ERROR;
3021                 reset_mode = n->value;
3022         }
3023
3024         /* reset *all* targets */
3025         return target_process_reset(CMD_CTX, reset_mode);
3026 }
3027
3028
3029 COMMAND_HANDLER(handle_resume_command)
3030 {
3031         int current = 1;
3032         if (CMD_ARGC > 1)
3033                 return ERROR_COMMAND_SYNTAX_ERROR;
3034
3035         struct target *target = get_current_target(CMD_CTX);
3036
3037         /* with no CMD_ARGV, resume from current pc, addr = 0,
3038          * with one arguments, addr = CMD_ARGV[0],
3039          * handle breakpoints, not debugging */
3040         target_addr_t addr = 0;
3041         if (CMD_ARGC == 1) {
3042                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3043                 current = 0;
3044         }
3045
3046         return target_resume(target, current, addr, 1, 0);
3047 }
3048
3049 COMMAND_HANDLER(handle_step_command)
3050 {
3051         if (CMD_ARGC > 1)
3052                 return ERROR_COMMAND_SYNTAX_ERROR;
3053
3054         LOG_DEBUG("-");
3055
3056         /* with no CMD_ARGV, step from current pc, addr = 0,
3057          * with one argument addr = CMD_ARGV[0],
3058          * handle breakpoints, debugging */
3059         target_addr_t addr = 0;
3060         int current_pc = 1;
3061         if (CMD_ARGC == 1) {
3062                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3063                 current_pc = 0;
3064         }
3065
3066         struct target *target = get_current_target(CMD_CTX);
3067
3068         return target->type->step(target, current_pc, addr, 1);
3069 }
3070
3071 static void handle_md_output(struct command_context *cmd_ctx,
3072                 struct target *target, target_addr_t address, unsigned size,
3073                 unsigned count, const uint8_t *buffer)
3074 {
3075         const unsigned line_bytecnt = 32;
3076         unsigned line_modulo = line_bytecnt / size;
3077
3078         char output[line_bytecnt * 4 + 1];
3079         unsigned output_len = 0;
3080
3081         const char *value_fmt;
3082         switch (size) {
3083         case 8:
3084                 value_fmt = "%16.16"PRIx64" ";
3085                 break;
3086         case 4:
3087                 value_fmt = "%8.8"PRIx64" ";
3088                 break;
3089         case 2:
3090                 value_fmt = "%4.4"PRIx64" ";
3091                 break;
3092         case 1:
3093                 value_fmt = "%2.2"PRIx64" ";
3094                 break;
3095         default:
3096                 /* "can't happen", caller checked */
3097                 LOG_ERROR("invalid memory read size: %u", size);
3098                 return;
3099         }
3100
3101         for (unsigned i = 0; i < count; i++) {
3102                 if (i % line_modulo == 0) {
3103                         output_len += snprintf(output + output_len,
3104                                         sizeof(output) - output_len,
3105                                         TARGET_ADDR_FMT ": ",
3106                                         (address + (i * size)));
3107                 }
3108
3109                 uint64_t value = 0;
3110                 const uint8_t *value_ptr = buffer + i * size;
3111                 switch (size) {
3112                 case 8:
3113                         value = target_buffer_get_u64(target, value_ptr);
3114                         break;
3115                 case 4:
3116                         value = target_buffer_get_u32(target, value_ptr);
3117                         break;
3118                 case 2:
3119                         value = target_buffer_get_u16(target, value_ptr);
3120                         break;
3121                 case 1:
3122                         value = *value_ptr;
3123                 }
3124                 output_len += snprintf(output + output_len,
3125                                 sizeof(output) - output_len,
3126                                 value_fmt, value);
3127
3128                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3129                         command_print(cmd_ctx, "%s", output);
3130                         output_len = 0;
3131                 }
3132         }
3133 }
3134
3135 COMMAND_HANDLER(handle_md_command)
3136 {
3137         if (CMD_ARGC < 1)
3138                 return ERROR_COMMAND_SYNTAX_ERROR;
3139
3140         unsigned size = 0;
3141         switch (CMD_NAME[2]) {
3142         case 'd':
3143                 size = 8;
3144                 break;
3145         case 'w':
3146                 size = 4;
3147                 break;
3148         case 'h':
3149                 size = 2;
3150                 break;
3151         case 'b':
3152                 size = 1;
3153                 break;
3154         default:
3155                 return ERROR_COMMAND_SYNTAX_ERROR;
3156         }
3157
3158         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3159         int (*fn)(struct target *target,
3160                         target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3161         if (physical) {
3162                 CMD_ARGC--;
3163                 CMD_ARGV++;
3164                 fn = target_read_phys_memory;
3165         } else
3166                 fn = target_read_memory;
3167         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3168                 return ERROR_COMMAND_SYNTAX_ERROR;
3169
3170         target_addr_t address;
3171         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3172
3173         unsigned count = 1;
3174         if (CMD_ARGC == 2)
3175                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3176
3177         uint8_t *buffer = calloc(count, size);
3178         if (buffer == NULL) {
3179                 LOG_ERROR("Failed to allocate md read buffer");
3180                 return ERROR_FAIL;
3181         }
3182
3183         struct target *target = get_current_target(CMD_CTX);
3184         int retval = fn(target, address, size, count, buffer);
3185         if (ERROR_OK == retval)
3186                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3187
3188         free(buffer);
3189
3190         return retval;
3191 }
3192
3193 typedef int (*target_write_fn)(struct target *target,
3194                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3195
3196 static int target_fill_mem(struct target *target,
3197                 target_addr_t address,
3198                 target_write_fn fn,
3199                 unsigned data_size,
3200                 /* value */
3201                 uint64_t b,
3202                 /* count */
3203                 unsigned c)
3204 {
3205         /* We have to write in reasonably large chunks to be able
3206          * to fill large memory areas with any sane speed */
3207         const unsigned chunk_size = 16384;
3208         uint8_t *target_buf = malloc(chunk_size * data_size);
3209         if (target_buf == NULL) {
3210                 LOG_ERROR("Out of memory");
3211                 return ERROR_FAIL;
3212         }
3213
3214         for (unsigned i = 0; i < chunk_size; i++) {
3215                 switch (data_size) {
3216                 case 8:
3217                         target_buffer_set_u64(target, target_buf + i * data_size, b);
3218                         break;
3219                 case 4:
3220                         target_buffer_set_u32(target, target_buf + i * data_size, b);
3221                         break;
3222                 case 2:
3223                         target_buffer_set_u16(target, target_buf + i * data_size, b);
3224                         break;
3225                 case 1:
3226                         target_buffer_set_u8(target, target_buf + i * data_size, b);
3227                         break;
3228                 default:
3229                         exit(-1);
3230                 }
3231         }
3232
3233         int retval = ERROR_OK;
3234
3235         for (unsigned x = 0; x < c; x += chunk_size) {
3236                 unsigned current;
3237                 current = c - x;
3238                 if (current > chunk_size)
3239                         current = chunk_size;
3240                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3241                 if (retval != ERROR_OK)
3242                         break;
3243                 /* avoid GDB timeouts */
3244                 keep_alive();
3245         }
3246         free(target_buf);
3247
3248         return retval;
3249 }
3250
3251
3252 COMMAND_HANDLER(handle_mw_command)
3253 {
3254         if (CMD_ARGC < 2)
3255                 return ERROR_COMMAND_SYNTAX_ERROR;
3256         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3257         target_write_fn fn;
3258         if (physical) {
3259                 CMD_ARGC--;
3260                 CMD_ARGV++;
3261                 fn = target_write_phys_memory;
3262         } else
3263                 fn = target_write_memory;
3264         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3265                 return ERROR_COMMAND_SYNTAX_ERROR;
3266
3267         target_addr_t address;
3268         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3269
3270         target_addr_t value;
3271         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3272
3273         unsigned count = 1;
3274         if (CMD_ARGC == 3)
3275                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3276
3277         struct target *target = get_current_target(CMD_CTX);
3278         unsigned wordsize;
3279         switch (CMD_NAME[2]) {
3280                 case 'd':
3281                         wordsize = 8;
3282                         break;
3283                 case 'w':
3284                         wordsize = 4;
3285                         break;
3286                 case 'h':
3287                         wordsize = 2;
3288                         break;
3289                 case 'b':
3290                         wordsize = 1;
3291                         break;
3292                 default:
3293                         return ERROR_COMMAND_SYNTAX_ERROR;
3294         }
3295
3296         return target_fill_mem(target, address, fn, wordsize, value, count);
3297 }
3298
3299 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3300                 target_addr_t *min_address, target_addr_t *max_address)
3301 {
3302         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3303                 return ERROR_COMMAND_SYNTAX_ERROR;
3304
3305         /* a base address isn't always necessary,
3306          * default to 0x0 (i.e. don't relocate) */
3307         if (CMD_ARGC >= 2) {
3308                 target_addr_t addr;
3309                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3310                 image->base_address = addr;
3311                 image->base_address_set = 1;
3312         } else
3313                 image->base_address_set = 0;
3314
3315         image->start_address_set = 0;
3316
3317         if (CMD_ARGC >= 4)
3318                 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3319         if (CMD_ARGC == 5) {
3320                 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3321                 /* use size (given) to find max (required) */
3322                 *max_address += *min_address;
3323         }
3324
3325         if (*min_address > *max_address)
3326                 return ERROR_COMMAND_SYNTAX_ERROR;
3327
3328         return ERROR_OK;
3329 }
3330
3331 COMMAND_HANDLER(handle_load_image_command)
3332 {
3333         uint8_t *buffer;
3334         size_t buf_cnt;
3335         uint32_t image_size;
3336         target_addr_t min_address = 0;
3337         target_addr_t max_address = -1;
3338         int i;
3339         struct image image;
3340
3341         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3342                         &image, &min_address, &max_address);
3343         if (ERROR_OK != retval)
3344                 return retval;
3345
3346         struct target *target = get_current_target(CMD_CTX);
3347
3348         struct duration bench;
3349         duration_start(&bench);
3350
3351         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3352                 return ERROR_FAIL;
3353
3354         image_size = 0x0;
3355         retval = ERROR_OK;
3356         for (i = 0; i < image.num_sections; i++) {
3357                 buffer = malloc(image.sections[i].size);
3358                 if (buffer == NULL) {
3359                         command_print(CMD_CTX,
3360                                                   "error allocating buffer for section (%d bytes)",
3361                                                   (int)(image.sections[i].size));
3362                         retval = ERROR_FAIL;
3363                         break;
3364                 }
3365
3366                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3367                 if (retval != ERROR_OK) {
3368                         free(buffer);
3369                         break;
3370                 }
3371
3372                 uint32_t offset = 0;
3373                 uint32_t length = buf_cnt;
3374
3375                 /* DANGER!!! beware of unsigned comparision here!!! */
3376
3377                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3378                                 (image.sections[i].base_address < max_address)) {
3379
3380                         if (image.sections[i].base_address < min_address) {
3381                                 /* clip addresses below */
3382                                 offset += min_address-image.sections[i].base_address;
3383                                 length -= offset;
3384                         }
3385
3386                         if (image.sections[i].base_address + buf_cnt > max_address)
3387                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3388
3389                         retval = target_write_buffer(target,
3390                                         image.sections[i].base_address + offset, length, buffer + offset);
3391                         if (retval != ERROR_OK) {
3392                                 free(buffer);
3393                                 break;
3394                         }
3395                         image_size += length;
3396                         command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3397                                         (unsigned int)length,
3398                                         image.sections[i].base_address + offset);
3399                 }
3400
3401                 free(buffer);
3402         }
3403
3404         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3405                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3406                                 "in %fs (%0.3f KiB/s)", image_size,
3407                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3408         }
3409
3410         image_close(&image);
3411
3412         return retval;
3413
3414 }
3415
3416 COMMAND_HANDLER(handle_dump_image_command)
3417 {
3418         struct fileio *fileio;
3419         uint8_t *buffer;
3420         int retval, retvaltemp;
3421         target_addr_t address, size;
3422         struct duration bench;
3423         struct target *target = get_current_target(CMD_CTX);
3424
3425         if (CMD_ARGC != 3)
3426                 return ERROR_COMMAND_SYNTAX_ERROR;
3427
3428         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3429         COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3430
3431         uint32_t buf_size = (size > 4096) ? 4096 : size;
3432         buffer = malloc(buf_size);
3433         if (!buffer)
3434                 return ERROR_FAIL;
3435
3436         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3437         if (retval != ERROR_OK) {
3438                 free(buffer);
3439                 return retval;
3440         }
3441
3442         duration_start(&bench);
3443
3444         while (size > 0) {
3445                 size_t size_written;
3446                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3447                 retval = target_read_buffer(target, address, this_run_size, buffer);
3448                 if (retval != ERROR_OK)
3449                         break;
3450
3451                 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3452                 if (retval != ERROR_OK)
3453                         break;
3454
3455                 size -= this_run_size;
3456                 address += this_run_size;
3457         }
3458
3459         free(buffer);
3460
3461         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3462                 size_t filesize;
3463                 retval = fileio_size(fileio, &filesize);
3464                 if (retval != ERROR_OK)
3465                         return retval;
3466                 command_print(CMD_CTX,
3467                                 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3468                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3469         }
3470
3471         retvaltemp = fileio_close(fileio);
3472         if (retvaltemp != ERROR_OK)
3473                 return retvaltemp;
3474
3475         return retval;
3476 }
3477
3478 enum verify_mode {
3479         IMAGE_TEST = 0,
3480         IMAGE_VERIFY = 1,
3481         IMAGE_CHECKSUM_ONLY = 2
3482 };
3483
3484 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3485 {
3486         uint8_t *buffer;
3487         size_t buf_cnt;
3488         uint32_t image_size;
3489         int i;
3490         int retval;
3491         uint32_t checksum = 0;
3492         uint32_t mem_checksum = 0;
3493
3494         struct image image;
3495
3496         struct target *target = get_current_target(CMD_CTX);
3497
3498         if (CMD_ARGC < 1)
3499                 return ERROR_COMMAND_SYNTAX_ERROR;
3500
3501         if (!target) {
3502                 LOG_ERROR("no target selected");
3503                 return ERROR_FAIL;
3504         }
3505
3506         struct duration bench;
3507         duration_start(&bench);
3508
3509         if (CMD_ARGC >= 2) {
3510                 target_addr_t addr;
3511                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3512                 image.base_address = addr;
3513                 image.base_address_set = 1;
3514         } else {
3515                 image.base_address_set = 0;
3516                 image.base_address = 0x0;
3517         }
3518
3519         image.start_address_set = 0;
3520
3521         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3522         if (retval != ERROR_OK)
3523                 return retval;
3524
3525         image_size = 0x0;
3526         int diffs = 0;
3527         retval = ERROR_OK;
3528         for (i = 0; i < image.num_sections; i++) {
3529                 buffer = malloc(image.sections[i].size);
3530                 if (buffer == NULL) {
3531                         command_print(CMD_CTX,
3532                                         "error allocating buffer for section (%d bytes)",
3533                                         (int)(image.sections[i].size));
3534                         break;
3535                 }
3536                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3537                 if (retval != ERROR_OK) {
3538                         free(buffer);
3539                         break;
3540                 }
3541
3542                 if (verify >= IMAGE_VERIFY) {
3543                         /* calculate checksum of image */
3544                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3545                         if (retval != ERROR_OK) {
3546                                 free(buffer);
3547                                 break;
3548                         }
3549
3550                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3551                         if (retval != ERROR_OK) {
3552                                 free(buffer);
3553                                 break;
3554                         }
3555                         if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3556                                 LOG_ERROR("checksum mismatch");
3557                                 free(buffer);
3558                                 retval = ERROR_FAIL;
3559                                 goto done;
3560                         }
3561                         if (checksum != mem_checksum) {
3562                                 /* failed crc checksum, fall back to a binary compare */
3563                                 uint8_t *data;
3564
3565                                 if (diffs == 0)
3566                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3567
3568                                 data = malloc(buf_cnt);
3569
3570                                 /* Can we use 32bit word accesses? */
3571                                 int size = 1;
3572                                 int count = buf_cnt;
3573                                 if ((count % 4) == 0) {
3574                                         size *= 4;
3575                                         count /= 4;
3576                                 }
3577                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3578                                 if (retval == ERROR_OK) {
3579                                         uint32_t t;
3580                                         for (t = 0; t < buf_cnt; t++) {
3581                                                 if (data[t] != buffer[t]) {
3582                                                         command_print(CMD_CTX,
3583                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3584                                                                                   diffs,
3585                                                                                   (unsigned)(t + image.sections[i].base_address),
3586                                                                                   data[t],
3587                                                                                   buffer[t]);
3588                                                         if (diffs++ >= 127) {
3589                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3590                                                                 free(data);
3591                                                                 free(buffer);
3592                                                                 goto done;
3593                                                         }
3594                                                 }
3595                                                 keep_alive();
3596                                         }
3597                                 }
3598                                 free(data);
3599                         }
3600                 } else {
3601                         command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3602                                                   image.sections[i].base_address,
3603                                                   buf_cnt);
3604                 }
3605
3606                 free(buffer);
3607                 image_size += buf_cnt;
3608         }
3609         if (diffs > 0)
3610                 command_print(CMD_CTX, "No more differences found.");
3611 done:
3612         if (diffs > 0)
3613                 retval = ERROR_FAIL;
3614         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3615                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3616                                 "in %fs (%0.3f KiB/s)", image_size,
3617                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3618         }
3619
3620         image_close(&image);
3621
3622         return retval;
3623 }
3624
3625 COMMAND_HANDLER(handle_verify_image_checksum_command)
3626 {
3627         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3628 }
3629
3630 COMMAND_HANDLER(handle_verify_image_command)
3631 {
3632         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3633 }
3634
3635 COMMAND_HANDLER(handle_test_image_command)
3636 {
3637         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3638 }
3639
3640 static int handle_bp_command_list(struct command_context *cmd_ctx)
3641 {
3642         struct target *target = get_current_target(cmd_ctx);
3643         struct breakpoint *breakpoint = target->breakpoints;
3644         while (breakpoint) {
3645                 if (breakpoint->type == BKPT_SOFT) {
3646                         char *buf = buf_to_str(breakpoint->orig_instr,
3647                                         breakpoint->length, 16);
3648                         command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3649                                         breakpoint->address,
3650                                         breakpoint->length,
3651                                         breakpoint->set, buf);
3652                         free(buf);
3653                 } else {
3654                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3655                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3656                                                         breakpoint->asid,
3657                                                         breakpoint->length, breakpoint->set);
3658                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3659                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3660                                                         breakpoint->address,
3661                                                         breakpoint->length, breakpoint->set);
3662                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3663                                                         breakpoint->asid);
3664                         } else
3665                                 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3666                                                         breakpoint->address,
3667                                                         breakpoint->length, breakpoint->set);
3668                 }
3669
3670                 breakpoint = breakpoint->next;
3671         }
3672         return ERROR_OK;
3673 }
3674
3675 static int handle_bp_command_set(struct command_context *cmd_ctx,
3676                 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3677 {
3678         struct target *target = get_current_target(cmd_ctx);
3679         int retval;
3680
3681         if (asid == 0) {
3682                 retval = breakpoint_add(target, addr, length, hw);
3683                 if (ERROR_OK == retval)
3684                         command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3685                 else {
3686                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3687                         return retval;
3688                 }
3689         } else if (addr == 0) {
3690                 if (target->type->add_context_breakpoint == NULL) {
3691                         LOG_WARNING("Context breakpoint not available");
3692                         return ERROR_OK;
3693                 }
3694                 retval = context_breakpoint_add(target, asid, length, hw);
3695                 if (ERROR_OK == retval)
3696                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3697                 else {
3698                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3699                         return retval;
3700                 }
3701         } else {
3702                 if (target->type->add_hybrid_breakpoint == NULL) {
3703                         LOG_WARNING("Hybrid breakpoint not available");
3704                         return ERROR_OK;
3705                 }
3706                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3707                 if (ERROR_OK == retval)
3708                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3709                 else {
3710                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3711                         return retval;
3712                 }
3713         }
3714         return ERROR_OK;
3715 }
3716
3717 COMMAND_HANDLER(handle_bp_command)
3718 {
3719         target_addr_t addr;
3720         uint32_t asid;
3721         uint32_t length;
3722         int hw = BKPT_SOFT;
3723
3724         switch (CMD_ARGC) {
3725                 case 0:
3726                         return handle_bp_command_list(CMD_CTX);
3727
3728                 case 2:
3729                         asid = 0;
3730                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3731                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3732                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3733
3734                 case 3:
3735                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3736                                 hw = BKPT_HARD;
3737                                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3738                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3739                                 asid = 0;
3740                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3741                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3742                                 hw = BKPT_HARD;
3743                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3744                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3745                                 addr = 0;
3746                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3747                         }
3748                         /* fallthrough */
3749                 case 4:
3750                         hw = BKPT_HARD;
3751                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3752                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3753                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3754                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3755
3756                 default:
3757                         return ERROR_COMMAND_SYNTAX_ERROR;
3758         }
3759 }
3760
3761 COMMAND_HANDLER(handle_rbp_command)
3762 {
3763         if (CMD_ARGC != 1)
3764                 return ERROR_COMMAND_SYNTAX_ERROR;
3765
3766         target_addr_t addr;
3767         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3768
3769         struct target *target = get_current_target(CMD_CTX);
3770         breakpoint_remove(target, addr);
3771
3772         return ERROR_OK;
3773 }
3774
3775 COMMAND_HANDLER(handle_wp_command)
3776 {
3777         struct target *target = get_current_target(CMD_CTX);
3778
3779         if (CMD_ARGC == 0) {
3780                 struct watchpoint *watchpoint = target->watchpoints;
3781
3782                 while (watchpoint) {
3783                         command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3784                                         ", len: 0x%8.8" PRIx32
3785                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3786                                         ", mask: 0x%8.8" PRIx32,
3787                                         watchpoint->address,
3788                                         watchpoint->length,
3789                                         (int)watchpoint->rw,
3790                                         watchpoint->value,
3791                                         watchpoint->mask);
3792                         watchpoint = watchpoint->next;
3793                 }
3794                 return ERROR_OK;
3795         }
3796
3797         enum watchpoint_rw type = WPT_ACCESS;
3798         uint32_t addr = 0;
3799         uint32_t length = 0;
3800         uint32_t data_value = 0x0;
3801         uint32_t data_mask = 0xffffffff;
3802
3803         switch (CMD_ARGC) {
3804         case 5:
3805                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3806                 /* fall through */
3807         case 4:
3808                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3809                 /* fall through */
3810         case 3:
3811                 switch (CMD_ARGV[2][0]) {
3812                 case 'r':
3813                         type = WPT_READ;
3814                         break;
3815                 case 'w':
3816                         type = WPT_WRITE;
3817                         break;
3818                 case 'a':
3819                         type = WPT_ACCESS;
3820                         break;
3821                 default:
3822                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3823                         return ERROR_COMMAND_SYNTAX_ERROR;
3824                 }
3825                 /* fall through */
3826         case 2:
3827                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3828                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3829                 break;
3830
3831         default:
3832                 return ERROR_COMMAND_SYNTAX_ERROR;
3833         }
3834
3835         int retval = watchpoint_add(target, addr, length, type,
3836                         data_value, data_mask);
3837         if (ERROR_OK != retval)
3838                 LOG_ERROR("Failure setting watchpoints");
3839
3840         return retval;
3841 }
3842
3843 COMMAND_HANDLER(handle_rwp_command)
3844 {
3845         if (CMD_ARGC != 1)
3846                 return ERROR_COMMAND_SYNTAX_ERROR;
3847
3848         uint32_t addr;
3849         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3850
3851         struct target *target = get_current_target(CMD_CTX);
3852         watchpoint_remove(target, addr);
3853
3854         return ERROR_OK;
3855 }
3856
3857 /**
3858  * Translate a virtual address to a physical address.
3859  *
3860  * The low-level target implementation must have logged a detailed error
3861  * which is forwarded to telnet/GDB session.
3862  */
3863 COMMAND_HANDLER(handle_virt2phys_command)
3864 {
3865         if (CMD_ARGC != 1)
3866                 return ERROR_COMMAND_SYNTAX_ERROR;
3867
3868         target_addr_t va;
3869         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3870         target_addr_t pa;
3871
3872         struct target *target = get_current_target(CMD_CTX);
3873         int retval = target->type->virt2phys(target, va, &pa);
3874         if (retval == ERROR_OK)
3875                 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3876
3877         return retval;
3878 }
3879
3880 static void writeData(FILE *f, const void *data, size_t len)
3881 {
3882         size_t written = fwrite(data, 1, len, f);
3883         if (written != len)
3884                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3885 }
3886
3887 static void writeLong(FILE *f, int l, struct target *target)
3888 {
3889         uint8_t val[4];
3890
3891         target_buffer_set_u32(target, val, l);
3892         writeData(f, val, 4);
3893 }
3894
3895 static void writeString(FILE *f, char *s)
3896 {
3897         writeData(f, s, strlen(s));
3898 }
3899
3900 typedef unsigned char UNIT[2];  /* unit of profiling */
3901
3902 /* Dump a gmon.out histogram file. */
3903 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3904                         uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3905 {
3906         uint32_t i;
3907         FILE *f = fopen(filename, "w");
3908         if (f == NULL)
3909                 return;
3910         writeString(f, "gmon");
3911         writeLong(f, 0x00000001, target); /* Version */
3912         writeLong(f, 0, target); /* padding */
3913         writeLong(f, 0, target); /* padding */
3914         writeLong(f, 0, target); /* padding */
3915
3916         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3917         writeData(f, &zero, 1);
3918
3919         /* figure out bucket size */
3920         uint32_t min;
3921         uint32_t max;
3922         if (with_range) {
3923                 min = start_address;
3924                 max = end_address;
3925         } else {
3926                 min = samples[0];
3927                 max = samples[0];
3928                 for (i = 0; i < sampleNum; i++) {
3929                         if (min > samples[i])
3930                                 min = samples[i];
3931                         if (max < samples[i])
3932                                 max = samples[i];
3933                 }
3934
3935                 /* max should be (largest sample + 1)
3936                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3937                 max++;
3938         }
3939
3940         int addressSpace = max - min;
3941         assert(addressSpace >= 2);
3942
3943         /* FIXME: What is the reasonable number of buckets?
3944          * The profiling result will be more accurate if there are enough buckets. */
3945         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3946         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3947         if (numBuckets > maxBuckets)
3948                 numBuckets = maxBuckets;
3949         int *buckets = malloc(sizeof(int) * numBuckets);
3950         if (buckets == NULL) {
3951                 fclose(f);
3952                 return;
3953         }
3954         memset(buckets, 0, sizeof(int) * numBuckets);
3955         for (i = 0; i < sampleNum; i++) {
3956                 uint32_t address = samples[i];
3957
3958                 if ((address < min) || (max <= address))
3959                         continue;
3960
3961                 long long a = address - min;
3962                 long long b = numBuckets;
3963                 long long c = addressSpace;
3964                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3965                 buckets[index_t]++;
3966         }
3967
3968         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3969         writeLong(f, min, target);                      /* low_pc */
3970         writeLong(f, max, target);                      /* high_pc */
3971         writeLong(f, numBuckets, target);       /* # of buckets */
3972         float sample_rate = sampleNum / (duration_ms / 1000.0);
3973         writeLong(f, sample_rate, target);
3974         writeString(f, "seconds");
3975         for (i = 0; i < (15-strlen("seconds")); i++)
3976                 writeData(f, &zero, 1);
3977         writeString(f, "s");
3978
3979         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3980
3981         char *data = malloc(2 * numBuckets);
3982         if (data != NULL) {
3983                 for (i = 0; i < numBuckets; i++) {
3984                         int val;
3985                         val = buckets[i];
3986                         if (val > 65535)
3987                                 val = 65535;
3988                         data[i * 2] = val&0xff;
3989                         data[i * 2 + 1] = (val >> 8) & 0xff;
3990                 }
3991                 free(buckets);
3992                 writeData(f, data, numBuckets * 2);
3993                 free(data);
3994         } else
3995                 free(buckets);
3996
3997         fclose(f);
3998 }
3999
4000 /* profiling samples the CPU PC as quickly as OpenOCD is able,
4001  * which will be used as a random sampling of PC */
4002 COMMAND_HANDLER(handle_profile_command)
4003 {
4004         struct target *target = get_current_target(CMD_CTX);
4005
4006         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4007                 return ERROR_COMMAND_SYNTAX_ERROR;
4008
4009         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
4010         uint32_t offset;
4011         uint32_t num_of_samples;
4012         int retval = ERROR_OK;
4013
4014         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4015
4016         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4017         if (samples == NULL) {
4018                 LOG_ERROR("No memory to store samples.");
4019                 return ERROR_FAIL;
4020         }
4021
4022         uint64_t timestart_ms = timeval_ms();
4023         /**
4024          * Some cores let us sample the PC without the
4025          * annoying halt/resume step; for example, ARMv7 PCSR.
4026          * Provide a way to use that more efficient mechanism.
4027          */
4028         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4029                                 &num_of_samples, offset);
4030         if (retval != ERROR_OK) {
4031                 free(samples);
4032                 return retval;
4033         }
4034         uint32_t duration_ms = timeval_ms() - timestart_ms;
4035
4036         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4037
4038         retval = target_poll(target);
4039         if (retval != ERROR_OK) {
4040                 free(samples);
4041                 return retval;
4042         }
4043         if (target->state == TARGET_RUNNING) {
4044                 retval = target_halt(target);
4045                 if (retval != ERROR_OK) {
4046                         free(samples);
4047                         return retval;
4048                 }
4049         }
4050
4051         retval = target_poll(target);
4052         if (retval != ERROR_OK) {
4053                 free(samples);
4054                 return retval;
4055         }
4056
4057         uint32_t start_address = 0;
4058         uint32_t end_address = 0;
4059         bool with_range = false;
4060         if (CMD_ARGC == 4) {
4061                 with_range = true;
4062                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4063                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4064         }
4065
4066         write_gmon(samples, num_of_samples, CMD_ARGV[1],
4067                    with_range, start_address, end_address, target, duration_ms);
4068         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4069
4070         free(samples);
4071         return retval;
4072 }
4073
4074 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4075 {
4076         char *namebuf;
4077         Jim_Obj *nameObjPtr, *valObjPtr;
4078         int result;
4079
4080         namebuf = alloc_printf("%s(%d)", varname, idx);
4081         if (!namebuf)
4082                 return JIM_ERR;
4083
4084         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4085         valObjPtr = Jim_NewIntObj(interp, val);
4086         if (!nameObjPtr || !valObjPtr) {
4087                 free(namebuf);
4088                 return JIM_ERR;
4089         }
4090
4091         Jim_IncrRefCount(nameObjPtr);
4092         Jim_IncrRefCount(valObjPtr);
4093         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4094         Jim_DecrRefCount(interp, nameObjPtr);
4095         Jim_DecrRefCount(interp, valObjPtr);
4096         free(namebuf);
4097         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4098         return result;
4099 }
4100
4101 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4102 {
4103         struct command_context *context;
4104         struct target *target;
4105
4106         context = current_command_context(interp);
4107         assert(context != NULL);
4108
4109         target = get_current_target(context);
4110         if (target == NULL) {
4111                 LOG_ERROR("mem2array: no current target");
4112                 return JIM_ERR;
4113         }
4114
4115         return target_mem2array(interp, target, argc - 1, argv + 1);
4116 }
4117
4118 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4119 {
4120         long l;
4121         uint32_t width;
4122         int len;
4123         uint32_t addr;
4124         uint32_t count;
4125         uint32_t v;
4126         const char *varname;
4127         const char *phys;
4128         bool is_phys;
4129         int  n, e, retval;
4130         uint32_t i;
4131
4132         /* argv[1] = name of array to receive the data
4133          * argv[2] = desired width
4134          * argv[3] = memory address
4135          * argv[4] = count of times to read
4136          */
4137
4138         if (argc < 4 || argc > 5) {
4139                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4140                 return JIM_ERR;
4141         }
4142         varname = Jim_GetString(argv[0], &len);
4143         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4144
4145         e = Jim_GetLong(interp, argv[1], &l);
4146         width = l;
4147         if (e != JIM_OK)
4148                 return e;
4149
4150         e = Jim_GetLong(interp, argv[2], &l);
4151         addr = l;
4152         if (e != JIM_OK)
4153                 return e;
4154         e = Jim_GetLong(interp, argv[3], &l);
4155         len = l;
4156         if (e != JIM_OK)
4157                 return e;
4158         is_phys = false;
4159         if (argc > 4) {
4160                 phys = Jim_GetString(argv[4], &n);
4161                 if (!strncmp(phys, "phys", n))
4162                         is_phys = true;
4163                 else
4164                         return JIM_ERR;
4165         }
4166         switch (width) {
4167                 case 8:
4168                         width = 1;
4169                         break;
4170                 case 16:
4171                         width = 2;
4172                         break;
4173                 case 32:
4174                         width = 4;
4175                         break;
4176                 default:
4177                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4178                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4179                         return JIM_ERR;
4180         }
4181         if (len == 0) {
4182                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4183                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4184                 return JIM_ERR;
4185         }
4186         if ((addr + (len * width)) < addr) {
4187                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4188                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4189                 return JIM_ERR;
4190         }
4191         /* absurd transfer size? */
4192         if (len > 65536) {
4193                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4194                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4195                 return JIM_ERR;
4196         }
4197
4198         if ((width == 1) ||
4199                 ((width == 2) && ((addr & 1) == 0)) ||
4200                 ((width == 4) && ((addr & 3) == 0))) {
4201                 /* all is well */
4202         } else {
4203                 char buf[100];
4204                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4205                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4206                                 addr,
4207                                 width);
4208                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4209                 return JIM_ERR;
4210         }
4211
4212         /* Transfer loop */
4213
4214         /* index counter */
4215         n = 0;
4216
4217         size_t buffersize = 4096;
4218         uint8_t *buffer = malloc(buffersize);
4219         if (buffer == NULL)
4220                 return JIM_ERR;
4221
4222         /* assume ok */
4223         e = JIM_OK;
4224         while (len) {
4225                 /* Slurp... in buffer size chunks */
4226
4227                 count = len; /* in objects.. */
4228                 if (count > (buffersize / width))
4229                         count = (buffersize / width);
4230
4231                 if (is_phys)
4232                         retval = target_read_phys_memory(target, addr, width, count, buffer);
4233                 else
4234                         retval = target_read_memory(target, addr, width, count, buffer);
4235                 if (retval != ERROR_OK) {
4236                         /* BOO !*/
4237                         LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4238                                           addr,
4239                                           width,
4240                                           count);
4241                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4242                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4243                         e = JIM_ERR;
4244                         break;
4245                 } else {
4246                         v = 0; /* shut up gcc */
4247                         for (i = 0; i < count ; i++, n++) {
4248                                 switch (width) {
4249                                         case 4:
4250                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
4251                                                 break;
4252                                         case 2:
4253                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
4254                                                 break;
4255                                         case 1:
4256                                                 v = buffer[i] & 0x0ff;
4257                                                 break;
4258                                 }
4259                                 new_int_array_element(interp, varname, n, v);
4260                         }
4261                         len -= count;
4262                         addr += count * width;
4263                 }
4264         }
4265
4266         free(buffer);
4267
4268         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4269
4270         return e;
4271 }
4272
4273 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4274 {
4275         char *namebuf;
4276         Jim_Obj *nameObjPtr, *valObjPtr;
4277         int result;
4278         long l;
4279
4280         namebuf = alloc_printf("%s(%d)", varname, idx);
4281         if (!namebuf)
4282                 return JIM_ERR;
4283
4284         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4285         if (!nameObjPtr) {
4286                 free(namebuf);
4287                 return JIM_ERR;
4288         }
4289
4290         Jim_IncrRefCount(nameObjPtr);
4291         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4292         Jim_DecrRefCount(interp, nameObjPtr);
4293         free(namebuf);
4294         if (valObjPtr == NULL)
4295                 return JIM_ERR;
4296
4297         result = Jim_GetLong(interp, valObjPtr, &l);
4298         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4299         *val = l;
4300         return result;
4301 }
4302
4303 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4304 {
4305         struct command_context *context;
4306         struct target *target;
4307
4308         context = current_command_context(interp);
4309         assert(context != NULL);
4310
4311         target = get_current_target(context);
4312         if (target == NULL) {
4313                 LOG_ERROR("array2mem: no current target");
4314                 return JIM_ERR;
4315         }
4316
4317         return target_array2mem(interp, target, argc-1, argv + 1);
4318 }
4319
4320 static int target_array2mem(Jim_Interp *interp, struct target *target,
4321                 int argc, Jim_Obj *const *argv)
4322 {
4323         long l;
4324         uint32_t width;
4325         int len;
4326         uint32_t addr;
4327         uint32_t count;
4328         uint32_t v;
4329         const char *varname;
4330         const char *phys;
4331         bool is_phys;
4332         int  n, e, retval;
4333         uint32_t i;
4334
4335         /* argv[1] = name of array to get the data
4336          * argv[2] = desired width
4337          * argv[3] = memory address
4338          * argv[4] = count to write
4339          */
4340         if (argc < 4 || argc > 5) {
4341                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4342                 return JIM_ERR;
4343         }
4344         varname = Jim_GetString(argv[0], &len);
4345         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4346
4347         e = Jim_GetLong(interp, argv[1], &l);
4348         width = l;
4349         if (e != JIM_OK)
4350                 return e;
4351
4352         e = Jim_GetLong(interp, argv[2], &l);
4353         addr = l;
4354         if (e != JIM_OK)
4355                 return e;
4356         e = Jim_GetLong(interp, argv[3], &l);
4357         len = l;
4358         if (e != JIM_OK)
4359                 return e;
4360         is_phys = false;
4361         if (argc > 4) {
4362                 phys = Jim_GetString(argv[4], &n);
4363                 if (!strncmp(phys, "phys", n))
4364                         is_phys = true;
4365                 else
4366                         return JIM_ERR;
4367         }
4368         switch (width) {
4369                 case 8:
4370                         width = 1;
4371                         break;
4372                 case 16:
4373                         width = 2;
4374                         break;
4375                 case 32:
4376                         width = 4;
4377                         break;
4378                 default:
4379                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4380                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4381                                         "Invalid width param, must be 8/16/32", NULL);
4382                         return JIM_ERR;
4383         }
4384         if (len == 0) {
4385                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4386                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4387                                 "array2mem: zero width read?", NULL);
4388                 return JIM_ERR;
4389         }
4390         if ((addr + (len * width)) < addr) {
4391                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4392                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4393                                 "array2mem: addr + len - wraps to zero?", NULL);
4394                 return JIM_ERR;
4395         }
4396         /* absurd transfer size? */
4397         if (len > 65536) {
4398                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4399                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4400                                 "array2mem: absurd > 64K item request", NULL);
4401                 return JIM_ERR;
4402         }
4403
4404         if ((width == 1) ||
4405                 ((width == 2) && ((addr & 1) == 0)) ||
4406                 ((width == 4) && ((addr & 3) == 0))) {
4407                 /* all is well */
4408         } else {
4409                 char buf[100];
4410                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4411                 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4412                                 addr,
4413                                 width);
4414                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4415                 return JIM_ERR;
4416         }
4417
4418         /* Transfer loop */
4419
4420         /* index counter */
4421         n = 0;
4422         /* assume ok */
4423         e = JIM_OK;
4424
4425         size_t buffersize = 4096;
4426         uint8_t *buffer = malloc(buffersize);
4427         if (buffer == NULL)
4428                 return JIM_ERR;
4429
4430         while (len) {
4431                 /* Slurp... in buffer size chunks */
4432
4433                 count = len; /* in objects.. */
4434                 if (count > (buffersize / width))
4435                         count = (buffersize / width);
4436
4437                 v = 0; /* shut up gcc */
4438                 for (i = 0; i < count; i++, n++) {
4439                         get_int_array_element(interp, varname, n, &v);
4440                         switch (width) {
4441                         case 4:
4442                                 target_buffer_set_u32(target, &buffer[i * width], v);
4443                                 break;
4444                         case 2:
4445                                 target_buffer_set_u16(target, &buffer[i * width], v);
4446                                 break;
4447                         case 1:
4448                                 buffer[i] = v & 0x0ff;
4449                                 break;
4450                         }
4451                 }
4452                 len -= count;
4453
4454                 if (is_phys)
4455                         retval = target_write_phys_memory(target, addr, width, count, buffer);
4456                 else
4457                         retval = target_write_memory(target, addr, width, count, buffer);
4458                 if (retval != ERROR_OK) {
4459                         /* BOO !*/
4460                         LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4461                                           addr,
4462                                           width,
4463                                           count);
4464                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4465                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4466                         e = JIM_ERR;
4467                         break;
4468                 }
4469                 addr += count * width;
4470         }
4471
4472         free(buffer);
4473
4474         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4475
4476         return e;
4477 }
4478
4479 /* FIX? should we propagate errors here rather than printing them
4480  * and continuing?
4481  */
4482 void target_handle_event(struct target *target, enum target_event e)
4483 {
4484         struct target_event_action *teap;
4485
4486         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4487                 if (teap->event == e) {
4488                         LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4489                                            target->target_number,
4490                                            target_name(target),
4491                                            target_type_name(target),
4492                                            e,
4493                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4494                                            Jim_GetString(teap->body, NULL));
4495
4496                         /* Override current target by the target an event
4497                          * is issued from (lot of scripts need it).
4498                          * Return back to previous override as soon
4499                          * as the handler processing is done */
4500                         struct command_context *cmd_ctx = current_command_context(teap->interp);
4501                         struct target *saved_target_override = cmd_ctx->current_target_override;
4502                         cmd_ctx->current_target_override = target;
4503
4504                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4505                                 Jim_MakeErrorMessage(teap->interp);
4506                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4507                         }
4508
4509                         cmd_ctx->current_target_override = saved_target_override;
4510                 }
4511         }
4512 }
4513
4514 /**
4515  * Returns true only if the target has a handler for the specified event.
4516  */
4517 bool target_has_event_action(struct target *target, enum target_event event)
4518 {
4519         struct target_event_action *teap;
4520
4521         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4522                 if (teap->event == event)
4523                         return true;
4524         }
4525         return false;
4526 }
4527
4528 enum target_cfg_param {
4529         TCFG_TYPE,
4530         TCFG_EVENT,
4531         TCFG_WORK_AREA_VIRT,
4532         TCFG_WORK_AREA_PHYS,
4533         TCFG_WORK_AREA_SIZE,
4534         TCFG_WORK_AREA_BACKUP,
4535         TCFG_ENDIAN,
4536         TCFG_COREID,
4537         TCFG_CHAIN_POSITION,
4538         TCFG_DBGBASE,
4539         TCFG_RTOS,
4540         TCFG_DEFER_EXAMINE,
4541         TCFG_GDB_PORT,
4542 };
4543
4544 static Jim_Nvp nvp_config_opts[] = {
4545         { .name = "-type",             .value = TCFG_TYPE },
4546         { .name = "-event",            .value = TCFG_EVENT },
4547         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4548         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4549         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4550         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4551         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4552         { .name = "-coreid",           .value = TCFG_COREID },
4553         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4554         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4555         { .name = "-rtos",             .value = TCFG_RTOS },
4556         { .name = "-defer-examine",    .value = TCFG_DEFER_EXAMINE },
4557         { .name = "-gdb-port",         .value = TCFG_GDB_PORT },
4558         { .name = NULL, .value = -1 }
4559 };
4560
4561 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4562 {
4563         Jim_Nvp *n;
4564         Jim_Obj *o;
4565         jim_wide w;
4566         int e;
4567
4568         /* parse config or cget options ... */
4569         while (goi->argc > 0) {
4570                 Jim_SetEmptyResult(goi->interp);
4571                 /* Jim_GetOpt_Debug(goi); */
4572
4573                 if (target->type->target_jim_configure) {
4574                         /* target defines a configure function */
4575                         /* target gets first dibs on parameters */
4576                         e = (*(target->type->target_jim_configure))(target, goi);
4577                         if (e == JIM_OK) {
4578                                 /* more? */
4579                                 continue;
4580                         }
4581                         if (e == JIM_ERR) {
4582                                 /* An error */
4583                                 return e;
4584                         }
4585                         /* otherwise we 'continue' below */
4586                 }
4587                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4588                 if (e != JIM_OK) {
4589                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4590                         return e;
4591                 }
4592                 switch (n->value) {
4593                 case TCFG_TYPE:
4594                         /* not setable */
4595                         if (goi->isconfigure) {
4596                                 Jim_SetResultFormatted(goi->interp,
4597                                                 "not settable: %s", n->name);
4598                                 return JIM_ERR;
4599                         } else {
4600 no_params:
4601                                 if (goi->argc != 0) {
4602                                         Jim_WrongNumArgs(goi->interp,
4603                                                         goi->argc, goi->argv,
4604                                                         "NO PARAMS");
4605                                         return JIM_ERR;
4606                                 }
4607                         }
4608                         Jim_SetResultString(goi->interp,
4609                                         target_type_name(target), -1);
4610                         /* loop for more */
4611                         break;
4612                 case TCFG_EVENT:
4613                         if (goi->argc == 0) {
4614                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4615                                 return JIM_ERR;
4616                         }
4617
4618                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4619                         if (e != JIM_OK) {
4620                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4621                                 return e;
4622                         }
4623
4624                         if (goi->isconfigure) {
4625                                 if (goi->argc != 1) {
4626                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4627                                         return JIM_ERR;
4628                                 }
4629                         } else {
4630                                 if (goi->argc != 0) {
4631                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4632                                         return JIM_ERR;
4633                                 }
4634                         }
4635
4636                         {
4637                                 struct target_event_action *teap;
4638
4639                                 teap = target->event_action;
4640                                 /* replace existing? */
4641                                 while (teap) {
4642                                         if (teap->event == (enum target_event)n->value)
4643                                                 break;
4644                                         teap = teap->next;
4645                                 }
4646
4647                                 if (goi->isconfigure) {
4648                                         bool replace = true;
4649                                         if (teap == NULL) {
4650                                                 /* create new */
4651                                                 teap = calloc(1, sizeof(*teap));
4652                                                 replace = false;
4653                                         }
4654                                         teap->event = n->value;
4655                                         teap->interp = goi->interp;
4656                                         Jim_GetOpt_Obj(goi, &o);
4657                                         if (teap->body)
4658                                                 Jim_DecrRefCount(teap->interp, teap->body);
4659                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4660                                         /*
4661                                          * FIXME:
4662                                          *     Tcl/TK - "tk events" have a nice feature.
4663                                          *     See the "BIND" command.
4664                                          *    We should support that here.
4665                                          *     You can specify %X and %Y in the event code.
4666                                          *     The idea is: %T - target name.
4667                                          *     The idea is: %N - target number
4668                                          *     The idea is: %E - event name.
4669                                          */
4670                                         Jim_IncrRefCount(teap->body);
4671
4672                                         if (!replace) {
4673                                                 /* add to head of event list */
4674                                                 teap->next = target->event_action;
4675                                                 target->event_action = teap;
4676                                         }
4677                                         Jim_SetEmptyResult(goi->interp);
4678                                 } else {
4679                                         /* get */
4680                                         if (teap == NULL)
4681                                                 Jim_SetEmptyResult(goi->interp);
4682                                         else
4683                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4684                                 }
4685                         }
4686                         /* loop for more */
4687                         break;
4688
4689                 case TCFG_WORK_AREA_VIRT:
4690                         if (goi->isconfigure) {
4691                                 target_free_all_working_areas(target);
4692                                 e = Jim_GetOpt_Wide(goi, &w);
4693                                 if (e != JIM_OK)
4694                                         return e;
4695                                 target->working_area_virt = w;
4696                                 target->working_area_virt_spec = true;
4697                         } else {
4698                                 if (goi->argc != 0)
4699                                         goto no_params;
4700                         }
4701                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4702                         /* loop for more */
4703                         break;
4704
4705                 case TCFG_WORK_AREA_PHYS:
4706                         if (goi->isconfigure) {
4707                                 target_free_all_working_areas(target);
4708                                 e = Jim_GetOpt_Wide(goi, &w);
4709                                 if (e != JIM_OK)
4710                                         return e;
4711                                 target->working_area_phys = w;
4712                                 target->working_area_phys_spec = true;
4713                         } else {
4714                                 if (goi->argc != 0)
4715                                         goto no_params;
4716                         }
4717                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4718                         /* loop for more */
4719                         break;
4720
4721                 case TCFG_WORK_AREA_SIZE:
4722                         if (goi->isconfigure) {
4723                                 target_free_all_working_areas(target);
4724                                 e = Jim_GetOpt_Wide(goi, &w);
4725                                 if (e != JIM_OK)
4726                                         return e;
4727                                 target->working_area_size = w;
4728                         } else {
4729                                 if (goi->argc != 0)
4730                                         goto no_params;
4731                         }
4732                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4733                         /* loop for more */
4734                         break;
4735
4736                 case TCFG_WORK_AREA_BACKUP:
4737                         if (goi->isconfigure) {
4738                                 target_free_all_working_areas(target);
4739                                 e = Jim_GetOpt_Wide(goi, &w);
4740                                 if (e != JIM_OK)
4741                                         return e;
4742                                 /* make this exactly 1 or 0 */
4743                                 target->backup_working_area = (!!w);
4744                         } else {
4745                                 if (goi->argc != 0)
4746                                         goto no_params;
4747                         }
4748                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4749                         /* loop for more e*/
4750                         break;
4751
4752
4753                 case TCFG_ENDIAN:
4754                         if (goi->isconfigure) {
4755                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4756                                 if (e != JIM_OK) {
4757                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4758                                         return e;
4759                                 }
4760                                 target->endianness = n->value;
4761                         } else {
4762                                 if (goi->argc != 0)
4763                                         goto no_params;
4764                         }
4765                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4766                         if (n->name == NULL) {
4767                                 target->endianness = TARGET_LITTLE_ENDIAN;
4768                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4769                         }
4770                         Jim_SetResultString(goi->interp, n->name, -1);
4771                         /* loop for more */
4772                         break;
4773
4774                 case TCFG_COREID:
4775                         if (goi->isconfigure) {
4776                                 e = Jim_GetOpt_Wide(goi, &w);
4777                                 if (e != JIM_OK)
4778                                         return e;
4779                                 target->coreid = (int32_t)w;
4780                         } else {
4781                                 if (goi->argc != 0)
4782                                         goto no_params;
4783                         }
4784                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4785                         /* loop for more */
4786                         break;
4787
4788                 case TCFG_CHAIN_POSITION:
4789                         if (goi->isconfigure) {
4790                                 Jim_Obj *o_t;
4791                                 struct jtag_tap *tap;
4792
4793                                 if (target->has_dap) {
4794                                         Jim_SetResultString(goi->interp,
4795                                                 "target requires -dap parameter instead of -chain-position!", -1);
4796                                         return JIM_ERR;
4797                                 }
4798
4799                                 target_free_all_working_areas(target);
4800                                 e = Jim_GetOpt_Obj(goi, &o_t);
4801                                 if (e != JIM_OK)
4802                                         return e;
4803                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4804                                 if (tap == NULL)
4805                                         return JIM_ERR;
4806                                 target->tap = tap;
4807                                 target->tap_configured = true;
4808                         } else {
4809                                 if (goi->argc != 0)
4810                                         goto no_params;
4811                         }
4812                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4813                         /* loop for more e*/
4814                         break;
4815                 case TCFG_DBGBASE:
4816                         if (goi->isconfigure) {
4817                                 e = Jim_GetOpt_Wide(goi, &w);
4818                                 if (e != JIM_OK)
4819                                         return e;
4820                                 target->dbgbase = (uint32_t)w;
4821                                 target->dbgbase_set = true;
4822                         } else {
4823                                 if (goi->argc != 0)
4824                                         goto no_params;
4825                         }
4826                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4827                         /* loop for more */
4828                         break;
4829                 case TCFG_RTOS:
4830                         /* RTOS */
4831                         {
4832                                 int result = rtos_create(goi, target);
4833                                 if (result != JIM_OK)
4834                                         return result;
4835                         }
4836                         /* loop for more */
4837                         break;
4838
4839                 case TCFG_DEFER_EXAMINE:
4840                         /* DEFER_EXAMINE */
4841                         target->defer_examine = true;
4842                         /* loop for more */
4843                         break;
4844
4845                 case TCFG_GDB_PORT:
4846                         if (goi->isconfigure) {
4847                                 const char *s;
4848                                 e = Jim_GetOpt_String(goi, &s, NULL);
4849                                 if (e != JIM_OK)
4850                                         return e;
4851                                 target->gdb_port_override = strdup(s);
4852                         } else {
4853                                 if (goi->argc != 0)
4854                                         goto no_params;
4855                         }
4856                         Jim_SetResultString(goi->interp, target->gdb_port_override ? : "undefined", -1);
4857                         /* loop for more */
4858                         break;
4859                 }
4860         } /* while (goi->argc) */
4861
4862
4863                 /* done - we return */
4864         return JIM_OK;
4865 }
4866
4867 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4868 {
4869         Jim_GetOptInfo goi;
4870
4871         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4872         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4873         if (goi.argc < 1) {
4874                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4875                                  "missing: -option ...");
4876                 return JIM_ERR;
4877         }
4878         struct target *target = Jim_CmdPrivData(goi.interp);
4879         return target_configure(&goi, target);
4880 }
4881
4882 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4883 {
4884         const char *cmd_name = Jim_GetString(argv[0], NULL);
4885
4886         Jim_GetOptInfo goi;
4887         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4888
4889         if (goi.argc < 2 || goi.argc > 4) {
4890                 Jim_SetResultFormatted(goi.interp,
4891                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4892                 return JIM_ERR;
4893         }
4894
4895         target_write_fn fn;
4896         fn = target_write_memory;
4897
4898         int e;
4899         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4900                 /* consume it */
4901                 struct Jim_Obj *obj;
4902                 e = Jim_GetOpt_Obj(&goi, &obj);
4903                 if (e != JIM_OK)
4904                         return e;
4905
4906                 fn = target_write_phys_memory;
4907         }
4908
4909         jim_wide a;
4910         e = Jim_GetOpt_Wide(&goi, &a);
4911         if (e != JIM_OK)
4912                 return e;
4913
4914         jim_wide b;
4915         e = Jim_GetOpt_Wide(&goi, &b);
4916         if (e != JIM_OK)
4917                 return e;
4918
4919         jim_wide c = 1;
4920         if (goi.argc == 1) {
4921                 e = Jim_GetOpt_Wide(&goi, &c);
4922                 if (e != JIM_OK)
4923                         return e;
4924         }
4925
4926         /* all args must be consumed */
4927         if (goi.argc != 0)
4928                 return JIM_ERR;
4929
4930         struct target *target = Jim_CmdPrivData(goi.interp);
4931         unsigned data_size;
4932         if (strcasecmp(cmd_name, "mww") == 0)
4933                 data_size = 4;
4934         else if (strcasecmp(cmd_name, "mwh") == 0)
4935                 data_size = 2;
4936         else if (strcasecmp(cmd_name, "mwb") == 0)
4937                 data_size = 1;
4938         else {
4939                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4940                 return JIM_ERR;
4941         }
4942
4943         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4944 }
4945
4946 /**
4947 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4948 *
4949 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4950 *         mdh [phys] <address> [<count>] - for 16 bit reads
4951 *         mdb [phys] <address> [<count>] - for  8 bit reads
4952 *
4953 *  Count defaults to 1.
4954 *
4955 *  Calls target_read_memory or target_read_phys_memory depending on
4956 *  the presence of the "phys" argument
4957 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4958 *  to int representation in base16.
4959 *  Also outputs read data in a human readable form using command_print
4960 *
4961 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4962 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4963 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4964 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4965 *  on success, with [<count>] number of elements.
4966 *
4967 *  In case of little endian target:
4968 *      Example1: "mdw 0x00000000"  returns "10123456"
4969 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4970 *      Example3: "mdb 0x00000000" returns "56"
4971 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4972 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4973 **/
4974 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4975 {
4976         const char *cmd_name = Jim_GetString(argv[0], NULL);
4977
4978         Jim_GetOptInfo goi;
4979         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4980
4981         if ((goi.argc < 1) || (goi.argc > 3)) {
4982                 Jim_SetResultFormatted(goi.interp,
4983                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4984                 return JIM_ERR;
4985         }
4986
4987         int (*fn)(struct target *target,
4988                         target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4989         fn = target_read_memory;
4990
4991         int e;
4992         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4993                 /* consume it */
4994                 struct Jim_Obj *obj;
4995                 e = Jim_GetOpt_Obj(&goi, &obj);
4996                 if (e != JIM_OK)
4997                         return e;
4998
4999                 fn = target_read_phys_memory;
5000         }
5001
5002         /* Read address parameter */
5003         jim_wide addr;
5004         e = Jim_GetOpt_Wide(&goi, &addr);
5005         if (e != JIM_OK)
5006                 return JIM_ERR;
5007
5008         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
5009         jim_wide count;
5010         if (goi.argc == 1) {
5011                 e = Jim_GetOpt_Wide(&goi, &count);
5012                 if (e != JIM_OK)
5013                         return JIM_ERR;
5014         } else
5015                 count = 1;
5016
5017         /* all args must be consumed */
5018         if (goi.argc != 0)
5019                 return JIM_ERR;
5020
5021         jim_wide dwidth = 1; /* shut up gcc */
5022         if (strcasecmp(cmd_name, "mdw") == 0)
5023                 dwidth = 4;
5024         else if (strcasecmp(cmd_name, "mdh") == 0)
5025                 dwidth = 2;
5026         else if (strcasecmp(cmd_name, "mdb") == 0)
5027                 dwidth = 1;
5028         else {
5029                 LOG_ERROR("command '%s' unknown: ", cmd_name);
5030                 return JIM_ERR;
5031         }
5032
5033         /* convert count to "bytes" */
5034         int bytes = count * dwidth;
5035
5036         struct target *target = Jim_CmdPrivData(goi.interp);
5037         uint8_t  target_buf[32];
5038         jim_wide x, y, z;
5039         while (bytes > 0) {
5040                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
5041
5042                 /* Try to read out next block */
5043                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
5044
5045                 if (e != ERROR_OK) {
5046                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
5047                         return JIM_ERR;
5048                 }
5049
5050                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
5051                 switch (dwidth) {
5052                 case 4:
5053                         for (x = 0; x < 16 && x < y; x += 4) {
5054                                 z = target_buffer_get_u32(target, &(target_buf[x]));
5055                                 command_print_sameline(NULL, "%08x ", (int)(z));
5056                         }
5057                         for (; (x < 16) ; x += 4)
5058                                 command_print_sameline(NULL, "         ");
5059                         break;
5060                 case 2:
5061                         for (x = 0; x < 16 && x < y; x += 2) {
5062                                 z = target_buffer_get_u16(target, &(target_buf[x]));
5063                                 command_print_sameline(NULL, "%04x ", (int)(z));
5064                         }
5065                         for (; (x < 16) ; x += 2)
5066                                 command_print_sameline(NULL, "     ");
5067                         break;
5068                 case 1:
5069                 default:
5070                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
5071                                 z = target_buffer_get_u8(target, &(target_buf[x]));
5072                                 command_print_sameline(NULL, "%02x ", (int)(z));
5073                         }
5074                         for (; (x < 16) ; x += 1)
5075                                 command_print_sameline(NULL, "   ");
5076                         break;
5077                 }
5078                 /* ascii-ify the bytes */
5079                 for (x = 0 ; x < y ; x++) {
5080                         if ((target_buf[x] >= 0x20) &&
5081                                 (target_buf[x] <= 0x7e)) {
5082                                 /* good */
5083                         } else {
5084                                 /* smack it */
5085                                 target_buf[x] = '.';
5086                         }
5087                 }
5088                 /* space pad  */
5089                 while (x < 16) {
5090                         target_buf[x] = ' ';
5091                         x++;
5092                 }
5093                 /* terminate */
5094                 target_buf[16] = 0;
5095                 /* print - with a newline */
5096                 command_print_sameline(NULL, "%s\n", target_buf);
5097                 /* NEXT... */
5098                 bytes -= 16;
5099                 addr += 16;
5100         }
5101         return JIM_OK;
5102 }
5103
5104 static int jim_target_mem2array(Jim_Interp *interp,
5105                 int argc, Jim_Obj *const *argv)
5106 {
5107         struct target *target = Jim_CmdPrivData(interp);
5108         return target_mem2array(interp, target, argc - 1, argv + 1);
5109 }
5110
5111 static int jim_target_array2mem(Jim_Interp *interp,
5112                 int argc, Jim_Obj *const *argv)
5113 {
5114         struct target *target = Jim_CmdPrivData(interp);
5115         return target_array2mem(interp, target, argc - 1, argv + 1);
5116 }
5117
5118 static int jim_target_tap_disabled(Jim_Interp *interp)
5119 {
5120         Jim_SetResultFormatted(interp, "[TAP is disabled]");
5121         return JIM_ERR;
5122 }
5123
5124 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5125 {
5126         bool allow_defer = false;
5127
5128         Jim_GetOptInfo goi;
5129         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5130         if (goi.argc > 1) {
5131                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5132                 Jim_SetResultFormatted(goi.interp,
5133                                 "usage: %s ['allow-defer']", cmd_name);
5134                 return JIM_ERR;
5135         }
5136         if (goi.argc > 0 &&
5137             strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5138                 /* consume it */
5139                 struct Jim_Obj *obj;
5140                 int e = Jim_GetOpt_Obj(&goi, &obj);
5141                 if (e != JIM_OK)
5142                         return e;
5143                 allow_defer = true;
5144         }
5145
5146         struct target *target = Jim_CmdPrivData(interp);
5147         if (!target->tap->enabled)
5148                 return jim_target_tap_disabled(interp);
5149
5150         if (allow_defer && target->defer_examine) {
5151                 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5152                 LOG_INFO("Use arp_examine command to examine it manually!");
5153                 return JIM_OK;
5154         }
5155
5156         int e = target->type->examine(target);
5157         if (e != ERROR_OK)
5158                 return JIM_ERR;
5159         return JIM_OK;
5160 }
5161
5162 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5163 {
5164         struct target *target = Jim_CmdPrivData(interp);
5165
5166         Jim_SetResultBool(interp, target_was_examined(target));
5167         return JIM_OK;
5168 }
5169
5170 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5171 {
5172         struct target *target = Jim_CmdPrivData(interp);
5173
5174         Jim_SetResultBool(interp, target->defer_examine);
5175         return JIM_OK;
5176 }
5177
5178 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5179 {
5180         if (argc != 1) {
5181                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5182                 return JIM_ERR;
5183         }
5184         struct target *target = Jim_CmdPrivData(interp);
5185
5186         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5187                 return JIM_ERR;
5188
5189         return JIM_OK;
5190 }
5191
5192 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5193 {
5194         if (argc != 1) {
5195                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5196                 return JIM_ERR;
5197         }
5198         struct target *target = Jim_CmdPrivData(interp);
5199         if (!target->tap->enabled)
5200                 return jim_target_tap_disabled(interp);
5201
5202         int e;
5203         if (!(target_was_examined(target)))
5204                 e = ERROR_TARGET_NOT_EXAMINED;
5205         else
5206                 e = target->type->poll(target);
5207         if (e != ERROR_OK)
5208                 return JIM_ERR;
5209         return JIM_OK;
5210 }
5211
5212 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5213 {
5214         Jim_GetOptInfo goi;
5215         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5216
5217         if (goi.argc != 2) {
5218                 Jim_WrongNumArgs(interp, 0, argv,
5219                                 "([tT]|[fF]|assert|deassert) BOOL");
5220                 return JIM_ERR;
5221         }
5222
5223         Jim_Nvp *n;
5224         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5225         if (e != JIM_OK) {
5226                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5227                 return e;
5228         }
5229         /* the halt or not param */
5230         jim_wide a;
5231         e = Jim_GetOpt_Wide(&goi, &a);
5232         if (e != JIM_OK)
5233                 return e;
5234
5235         struct target *target = Jim_CmdPrivData(goi.interp);
5236         if (!target->tap->enabled)
5237                 return jim_target_tap_disabled(interp);
5238
5239         if (!target->type->assert_reset || !target->type->deassert_reset) {
5240                 Jim_SetResultFormatted(interp,
5241                                 "No target-specific reset for %s",
5242                                 target_name(target));
5243                 return JIM_ERR;
5244         }
5245
5246         if (target->defer_examine)
5247                 target_reset_examined(target);
5248
5249         /* determine if we should halt or not. */
5250         target->reset_halt = !!a;
5251         /* When this happens - all workareas are invalid. */
5252         target_free_all_working_areas_restore(target, 0);
5253
5254         /* do the assert */
5255         if (n->value == NVP_ASSERT)
5256                 e = target->type->assert_reset(target);
5257         else
5258                 e = target->type->deassert_reset(target);
5259         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5260 }
5261
5262 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5263 {
5264         if (argc != 1) {
5265                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5266                 return JIM_ERR;
5267         }
5268         struct target *target = Jim_CmdPrivData(interp);
5269         if (!target->tap->enabled)
5270                 return jim_target_tap_disabled(interp);
5271         int e = target->type->halt(target);
5272         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5273 }
5274
5275 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5276 {
5277         Jim_GetOptInfo goi;
5278         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5279
5280         /* params:  <name>  statename timeoutmsecs */
5281         if (goi.argc != 2) {
5282                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5283                 Jim_SetResultFormatted(goi.interp,
5284                                 "%s <state_name> <timeout_in_msec>", cmd_name);
5285                 return JIM_ERR;
5286         }
5287
5288         Jim_Nvp *n;
5289         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5290         if (e != JIM_OK) {
5291                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5292                 return e;
5293         }
5294         jim_wide a;
5295         e = Jim_GetOpt_Wide(&goi, &a);
5296         if (e != JIM_OK)
5297                 return e;
5298         struct target *target = Jim_CmdPrivData(interp);
5299         if (!target->tap->enabled)
5300                 return jim_target_tap_disabled(interp);
5301
5302         e = target_wait_state(target, n->value, a);
5303         if (e != ERROR_OK) {
5304                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5305                 Jim_SetResultFormatted(goi.interp,
5306                                 "target: %s wait %s fails (%#s) %s",
5307                                 target_name(target), n->name,
5308                                 eObj, target_strerror_safe(e));
5309                 Jim_FreeNewObj(interp, eObj);
5310                 return JIM_ERR;
5311         }
5312         return JIM_OK;
5313 }
5314 /* List for human, Events defined for this target.
5315  * scripts/programs should use 'name cget -event NAME'
5316  */
5317 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5318 {
5319         struct command_context *cmd_ctx = current_command_context(interp);
5320         assert(cmd_ctx != NULL);
5321
5322         struct target *target = Jim_CmdPrivData(interp);
5323         struct target_event_action *teap = target->event_action;
5324         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5325                                    target->target_number,
5326                                    target_name(target));
5327         command_print(cmd_ctx, "%-25s | Body", "Event");
5328         command_print(cmd_ctx, "------------------------- | "
5329                         "----------------------------------------");
5330         while (teap) {
5331                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5332                 command_print(cmd_ctx, "%-25s | %s",
5333                                 opt->name, Jim_GetString(teap->body, NULL));
5334                 teap = teap->next;
5335         }
5336         command_print(cmd_ctx, "***END***");
5337         return JIM_OK;
5338 }
5339 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5340 {
5341         if (argc != 1) {
5342                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5343                 return JIM_ERR;
5344         }
5345         struct target *target = Jim_CmdPrivData(interp);
5346         Jim_SetResultString(interp, target_state_name(target), -1);
5347         return JIM_OK;
5348 }
5349 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5350 {
5351         Jim_GetOptInfo goi;
5352         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5353         if (goi.argc != 1) {
5354                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5355                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5356                 return JIM_ERR;
5357         }
5358         Jim_Nvp *n;
5359         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5360         if (e != JIM_OK) {
5361                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5362                 return e;
5363         }
5364         struct target *target = Jim_CmdPrivData(interp);
5365         target_handle_event(target, n->value);
5366         return JIM_OK;
5367 }
5368
5369 static const struct command_registration target_instance_command_handlers[] = {
5370         {
5371                 .name = "configure",
5372                 .mode = COMMAND_CONFIG,
5373                 .jim_handler = jim_target_configure,
5374                 .help  = "configure a new target for use",
5375                 .usage = "[target_attribute ...]",
5376         },
5377         {
5378                 .name = "cget",
5379                 .mode = COMMAND_ANY,
5380                 .jim_handler = jim_target_configure,
5381                 .help  = "returns the specified target attribute",
5382                 .usage = "target_attribute",
5383         },
5384         {
5385                 .name = "mww",
5386                 .mode = COMMAND_EXEC,
5387                 .jim_handler = jim_target_mw,
5388                 .help = "Write 32-bit word(s) to target memory",
5389                 .usage = "address data [count]",
5390         },
5391         {
5392                 .name = "mwh",
5393                 .mode = COMMAND_EXEC,
5394                 .jim_handler = jim_target_mw,
5395                 .help = "Write 16-bit half-word(s) to target memory",
5396                 .usage = "address data [count]",
5397         },
5398         {
5399                 .name = "mwb",
5400                 .mode = COMMAND_EXEC,
5401                 .jim_handler = jim_target_mw,
5402                 .help = "Write byte(s) to target memory",
5403                 .usage = "address data [count]",
5404         },
5405         {
5406                 .name = "mdw",
5407                 .mode = COMMAND_EXEC,
5408                 .jim_handler = jim_target_md,
5409                 .help = "Display target memory as 32-bit words",
5410                 .usage = "address [count]",
5411         },
5412         {
5413                 .name = "mdh",
5414                 .mode = COMMAND_EXEC,
5415                 .jim_handler = jim_target_md,
5416                 .help = "Display target memory as 16-bit half-words",
5417                 .usage = "address [count]",
5418         },
5419         {
5420                 .name = "mdb",
5421                 .mode = COMMAND_EXEC,
5422                 .jim_handler = jim_target_md,
5423                 .help = "Display target memory as 8-bit bytes",
5424                 .usage = "address [count]",
5425         },
5426         {
5427                 .name = "array2mem",
5428                 .mode = COMMAND_EXEC,
5429                 .jim_handler = jim_target_array2mem,
5430                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5431                         "to target memory",
5432                 .usage = "arrayname bitwidth address count",
5433         },
5434         {
5435                 .name = "mem2array",
5436                 .mode = COMMAND_EXEC,
5437                 .jim_handler = jim_target_mem2array,
5438                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5439                         "from target memory",
5440                 .usage = "arrayname bitwidth address count",
5441         },
5442         {
5443                 .name = "eventlist",
5444                 .mode = COMMAND_EXEC,
5445                 .jim_handler = jim_target_event_list,
5446                 .help = "displays a table of events defined for this target",
5447         },
5448         {
5449                 .name = "curstate",
5450                 .mode = COMMAND_EXEC,
5451                 .jim_handler = jim_target_current_state,
5452                 .help = "displays the current state of this target",
5453         },
5454         {
5455                 .name = "arp_examine",
5456                 .mode = COMMAND_EXEC,
5457                 .jim_handler = jim_target_examine,
5458                 .help = "used internally for reset processing",
5459                 .usage = "['allow-defer']",
5460         },
5461         {
5462                 .name = "was_examined",
5463                 .mode = COMMAND_EXEC,
5464                 .jim_handler = jim_target_was_examined,
5465                 .help = "used internally for reset processing",
5466         },
5467         {
5468                 .name = "examine_deferred",
5469                 .mode = COMMAND_EXEC,
5470                 .jim_handler = jim_target_examine_deferred,
5471                 .help = "used internally for reset processing",
5472         },
5473         {
5474                 .name = "arp_halt_gdb",
5475                 .mode = COMMAND_EXEC,
5476                 .jim_handler = jim_target_halt_gdb,
5477                 .help = "used internally for reset processing to halt GDB",
5478         },
5479         {
5480                 .name = "arp_poll",
5481                 .mode = COMMAND_EXEC,
5482                 .jim_handler = jim_target_poll,
5483                 .help = "used internally for reset processing",
5484         },
5485         {
5486                 .name = "arp_reset",
5487                 .mode = COMMAND_EXEC,
5488                 .jim_handler = jim_target_reset,
5489                 .help = "used internally for reset processing",
5490         },
5491         {
5492                 .name = "arp_halt",
5493                 .mode = COMMAND_EXEC,
5494                 .jim_handler = jim_target_halt,
5495                 .help = "used internally for reset processing",
5496         },
5497         {
5498                 .name = "arp_waitstate",
5499                 .mode = COMMAND_EXEC,
5500                 .jim_handler = jim_target_wait_state,
5501                 .help = "used internally for reset processing",
5502         },
5503         {
5504                 .name = "invoke-event",
5505                 .mode = COMMAND_EXEC,
5506                 .jim_handler = jim_target_invoke_event,
5507                 .help = "invoke handler for specified event",
5508                 .usage = "event_name",
5509         },
5510         COMMAND_REGISTRATION_DONE
5511 };
5512
5513 static int target_create(Jim_GetOptInfo *goi)
5514 {
5515         Jim_Obj *new_cmd;
5516         Jim_Cmd *cmd;
5517         const char *cp;
5518         int e;
5519         int x;
5520         struct target *target;
5521         struct command_context *cmd_ctx;
5522
5523         cmd_ctx = current_command_context(goi->interp);
5524         assert(cmd_ctx != NULL);
5525
5526         if (goi->argc < 3) {
5527                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5528                 return JIM_ERR;
5529         }
5530
5531         /* COMMAND */
5532         Jim_GetOpt_Obj(goi, &new_cmd);
5533         /* does this command exist? */
5534         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5535         if (cmd) {
5536                 cp = Jim_GetString(new_cmd, NULL);
5537                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5538                 return JIM_ERR;
5539         }
5540
5541         /* TYPE */
5542         e = Jim_GetOpt_String(goi, &cp, NULL);
5543         if (e != JIM_OK)
5544                 return e;
5545         struct transport *tr = get_current_transport();
5546         if (tr->override_target) {
5547                 e = tr->override_target(&cp);
5548                 if (e != ERROR_OK) {
5549                         LOG_ERROR("The selected transport doesn't support this target");
5550                         return JIM_ERR;
5551                 }
5552                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5553         }
5554         /* now does target type exist */
5555         for (x = 0 ; target_types[x] ; x++) {
5556                 if (0 == strcmp(cp, target_types[x]->name)) {
5557                         /* found */
5558                         break;
5559                 }
5560
5561                 /* check for deprecated name */
5562                 if (target_types[x]->deprecated_name) {
5563                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5564                                 /* found */
5565                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5566                                 break;
5567                         }
5568                 }
5569         }
5570         if (target_types[x] == NULL) {
5571                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5572                 for (x = 0 ; target_types[x] ; x++) {
5573                         if (target_types[x + 1]) {
5574                                 Jim_AppendStrings(goi->interp,
5575                                                                    Jim_GetResult(goi->interp),
5576                                                                    target_types[x]->name,
5577                                                                    ", ", NULL);
5578                         } else {
5579                                 Jim_AppendStrings(goi->interp,
5580                                                                    Jim_GetResult(goi->interp),
5581                                                                    " or ",
5582                                                                    target_types[x]->name, NULL);
5583                         }
5584                 }
5585                 return JIM_ERR;
5586         }
5587
5588         /* Create it */
5589         target = calloc(1, sizeof(struct target));
5590         /* set target number */
5591         target->target_number = new_target_number();
5592         cmd_ctx->current_target = target;
5593
5594         /* allocate memory for each unique target type */
5595         target->type = calloc(1, sizeof(struct target_type));
5596
5597         memcpy(target->type, target_types[x], sizeof(struct target_type));
5598
5599         /* will be set by "-endian" */
5600         target->endianness = TARGET_ENDIAN_UNKNOWN;
5601
5602         /* default to first core, override with -coreid */
5603         target->coreid = 0;
5604
5605         target->working_area        = 0x0;
5606         target->working_area_size   = 0x0;
5607         target->working_areas       = NULL;
5608         target->backup_working_area = 0;
5609
5610         target->state               = TARGET_UNKNOWN;
5611         target->debug_reason        = DBG_REASON_UNDEFINED;
5612         target->reg_cache           = NULL;
5613         target->breakpoints         = NULL;
5614         target->watchpoints         = NULL;
5615         target->next                = NULL;
5616         target->arch_info           = NULL;
5617
5618         target->verbose_halt_msg        = true;
5619
5620         target->halt_issued                     = false;
5621
5622         /* initialize trace information */
5623         target->trace_info = calloc(1, sizeof(struct trace));
5624
5625         target->dbgmsg          = NULL;
5626         target->dbg_msg_enabled = 0;
5627
5628         target->endianness = TARGET_ENDIAN_UNKNOWN;
5629
5630         target->rtos = NULL;
5631         target->rtos_auto_detect = false;
5632
5633         target->gdb_port_override = NULL;
5634
5635         /* Do the rest as "configure" options */
5636         goi->isconfigure = 1;
5637         e = target_configure(goi, target);
5638
5639         if (e == JIM_OK) {
5640                 if (target->has_dap) {
5641                         if (!target->dap_configured) {
5642                                 Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5643                                 e = JIM_ERR;
5644                         }
5645                 } else {
5646                         if (!target->tap_configured) {
5647                                 Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5648                                 e = JIM_ERR;
5649                         }
5650                 }
5651                 /* tap must be set after target was configured */
5652                 if (target->tap == NULL)
5653                         e = JIM_ERR;
5654         }
5655
5656         if (e != JIM_OK) {
5657                 free(target->gdb_port_override);
5658                 free(target->type);
5659                 free(target);
5660                 return e;
5661         }
5662
5663         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5664                 /* default endian to little if not specified */
5665                 target->endianness = TARGET_LITTLE_ENDIAN;
5666         }
5667
5668         cp = Jim_GetString(new_cmd, NULL);
5669         target->cmd_name = strdup(cp);
5670
5671         if (target->type->target_create) {
5672                 e = (*(target->type->target_create))(target, goi->interp);
5673                 if (e != ERROR_OK) {
5674                         LOG_DEBUG("target_create failed");
5675                         free(target->gdb_port_override);
5676                         free(target->type);
5677                         free(target->cmd_name);
5678                         free(target);
5679                         return JIM_ERR;
5680                 }
5681         }
5682
5683         /* create the target specific commands */
5684         if (target->type->commands) {
5685                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5686                 if (ERROR_OK != e)
5687                         LOG_ERROR("unable to register '%s' commands", cp);
5688         }
5689
5690         /* append to end of list */
5691         {
5692                 struct target **tpp;
5693                 tpp = &(all_targets);
5694                 while (*tpp)
5695                         tpp = &((*tpp)->next);
5696                 *tpp = target;
5697         }
5698
5699         /* now - create the new target name command */
5700         const struct command_registration target_subcommands[] = {
5701                 {
5702                         .chain = target_instance_command_handlers,
5703                 },
5704                 {
5705                         .chain = target->type->commands,
5706                 },
5707                 COMMAND_REGISTRATION_DONE
5708         };
5709         const struct command_registration target_commands[] = {
5710                 {
5711                         .name = cp,
5712                         .mode = COMMAND_ANY,
5713                         .help = "target command group",
5714                         .usage = "",
5715                         .chain = target_subcommands,
5716                 },
5717                 COMMAND_REGISTRATION_DONE
5718         };
5719         e = register_commands(cmd_ctx, NULL, target_commands);
5720         if (ERROR_OK != e)
5721                 return JIM_ERR;
5722
5723         struct command *c = command_find_in_context(cmd_ctx, cp);
5724         assert(c);
5725         command_set_handler_data(c, target);
5726
5727         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5728 }
5729
5730 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5731 {
5732         if (argc != 1) {
5733                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5734                 return JIM_ERR;
5735         }
5736         struct command_context *cmd_ctx = current_command_context(interp);
5737         assert(cmd_ctx != NULL);
5738
5739         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5740         return JIM_OK;
5741 }
5742
5743 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5744 {
5745         if (argc != 1) {
5746                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5747                 return JIM_ERR;
5748         }
5749         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5750         for (unsigned x = 0; NULL != target_types[x]; x++) {
5751                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5752                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5753         }
5754         return JIM_OK;
5755 }
5756
5757 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5758 {
5759         if (argc != 1) {
5760                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5761                 return JIM_ERR;
5762         }
5763         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5764         struct target *target = all_targets;
5765         while (target) {
5766                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5767                         Jim_NewStringObj(interp, target_name(target), -1));
5768                 target = target->next;
5769         }
5770         return JIM_OK;
5771 }
5772
5773 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5774 {
5775         int i;
5776         const char *targetname;
5777         int retval, len;
5778         struct target *target = (struct target *) NULL;
5779         struct target_list *head, *curr, *new;
5780         curr = (struct target_list *) NULL;
5781         head = (struct target_list *) NULL;
5782
5783         retval = 0;
5784         LOG_DEBUG("%d", argc);
5785         /* argv[1] = target to associate in smp
5786          * argv[2] = target to assoicate in smp
5787          * argv[3] ...
5788          */
5789
5790         for (i = 1; i < argc; i++) {
5791
5792                 targetname = Jim_GetString(argv[i], &len);
5793                 target = get_target(targetname);
5794                 LOG_DEBUG("%s ", targetname);
5795                 if (target) {
5796                         new = malloc(sizeof(struct target_list));
5797                         new->target = target;
5798                         new->next = (struct target_list *)NULL;
5799                         if (head == (struct target_list *)NULL) {
5800                                 head = new;
5801                                 curr = head;
5802                         } else {
5803                                 curr->next = new;
5804                                 curr = new;
5805                         }
5806                 }
5807         }
5808         /*  now parse the list of cpu and put the target in smp mode*/
5809         curr = head;
5810
5811         while (curr != (struct target_list *)NULL) {
5812                 target = curr->target;
5813                 target->smp = 1;
5814                 target->head = head;
5815                 curr = curr->next;
5816         }
5817
5818         if (target && target->rtos)
5819                 retval = rtos_smp_init(head->target);
5820
5821         return retval;
5822 }
5823
5824
5825 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5826 {
5827         Jim_GetOptInfo goi;
5828         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5829         if (goi.argc < 3) {
5830                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5831                         "<name> <target_type> [<target_options> ...]");
5832                 return JIM_ERR;
5833         }
5834         return target_create(&goi);
5835 }
5836
5837 static const struct command_registration target_subcommand_handlers[] = {
5838         {
5839                 .name = "init",
5840                 .mode = COMMAND_CONFIG,
5841                 .handler = handle_target_init_command,
5842                 .help = "initialize targets",
5843         },
5844         {
5845                 .name = "create",
5846                 /* REVISIT this should be COMMAND_CONFIG ... */
5847                 .mode = COMMAND_ANY,
5848                 .jim_handler = jim_target_create,
5849                 .usage = "name type '-chain-position' name [options ...]",
5850                 .help = "Creates and selects a new target",
5851         },
5852         {
5853                 .name = "current",
5854                 .mode = COMMAND_ANY,
5855                 .jim_handler = jim_target_current,
5856                 .help = "Returns the currently selected target",
5857         },
5858         {
5859                 .name = "types",
5860                 .mode = COMMAND_ANY,
5861                 .jim_handler = jim_target_types,
5862                 .help = "Returns the available target types as "
5863                                 "a list of strings",
5864         },
5865         {
5866                 .name = "names",
5867                 .mode = COMMAND_ANY,
5868                 .jim_handler = jim_target_names,
5869                 .help = "Returns the names of all targets as a list of strings",
5870         },
5871         {
5872                 .name = "smp",
5873                 .mode = COMMAND_ANY,
5874                 .jim_handler = jim_target_smp,
5875                 .usage = "targetname1 targetname2 ...",
5876                 .help = "gather several target in a smp list"
5877         },
5878
5879         COMMAND_REGISTRATION_DONE
5880 };
5881
5882 struct FastLoad {
5883         target_addr_t address;
5884         uint8_t *data;
5885         int length;
5886
5887 };
5888
5889 static int fastload_num;
5890 static struct FastLoad *fastload;
5891
5892 static void free_fastload(void)
5893 {
5894         if (fastload != NULL) {
5895                 int i;
5896                 for (i = 0; i < fastload_num; i++) {
5897                         if (fastload[i].data)
5898                                 free(fastload[i].data);
5899                 }
5900                 free(fastload);
5901                 fastload = NULL;
5902         }
5903 }
5904
5905 COMMAND_HANDLER(handle_fast_load_image_command)
5906 {
5907         uint8_t *buffer;
5908         size_t buf_cnt;
5909         uint32_t image_size;
5910         target_addr_t min_address = 0;
5911         target_addr_t max_address = -1;
5912         int i;
5913
5914         struct image image;
5915
5916         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5917                         &image, &min_address, &max_address);
5918         if (ERROR_OK != retval)
5919                 return retval;
5920
5921         struct duration bench;
5922         duration_start(&bench);
5923
5924         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5925         if (retval != ERROR_OK)
5926                 return retval;
5927
5928         image_size = 0x0;
5929         retval = ERROR_OK;
5930         fastload_num = image.num_sections;
5931         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5932         if (fastload == NULL) {
5933                 command_print(CMD_CTX, "out of memory");
5934                 image_close(&image);
5935                 return ERROR_FAIL;
5936         }
5937         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5938         for (i = 0; i < image.num_sections; i++) {
5939                 buffer = malloc(image.sections[i].size);
5940                 if (buffer == NULL) {
5941                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5942                                                   (int)(image.sections[i].size));
5943                         retval = ERROR_FAIL;
5944                         break;
5945                 }
5946
5947                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5948                 if (retval != ERROR_OK) {
5949                         free(buffer);
5950                         break;
5951                 }
5952
5953                 uint32_t offset = 0;
5954                 uint32_t length = buf_cnt;
5955
5956                 /* DANGER!!! beware of unsigned comparision here!!! */
5957
5958                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5959                                 (image.sections[i].base_address < max_address)) {
5960                         if (image.sections[i].base_address < min_address) {
5961                                 /* clip addresses below */
5962                                 offset += min_address-image.sections[i].base_address;
5963                                 length -= offset;
5964                         }
5965
5966                         if (image.sections[i].base_address + buf_cnt > max_address)
5967                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5968
5969                         fastload[i].address = image.sections[i].base_address + offset;
5970                         fastload[i].data = malloc(length);
5971                         if (fastload[i].data == NULL) {
5972                                 free(buffer);
5973                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5974                                                           length);
5975                                 retval = ERROR_FAIL;
5976                                 break;
5977                         }
5978                         memcpy(fastload[i].data, buffer + offset, length);
5979                         fastload[i].length = length;
5980
5981                         image_size += length;
5982                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5983                                                   (unsigned int)length,
5984                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5985                 }
5986
5987                 free(buffer);
5988         }
5989
5990         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5991                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5992                                 "in %fs (%0.3f KiB/s)", image_size,
5993                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5994
5995                 command_print(CMD_CTX,
5996                                 "WARNING: image has not been loaded to target!"
5997                                 "You can issue a 'fast_load' to finish loading.");
5998         }
5999
6000         image_close(&image);
6001
6002         if (retval != ERROR_OK)
6003                 free_fastload();
6004
6005         return retval;
6006 }
6007
6008 COMMAND_HANDLER(handle_fast_load_command)
6009 {
6010         if (CMD_ARGC > 0)
6011                 return ERROR_COMMAND_SYNTAX_ERROR;
6012         if (fastload == NULL) {
6013                 LOG_ERROR("No image in memory");
6014                 return ERROR_FAIL;
6015         }
6016         int i;
6017         int64_t ms = timeval_ms();
6018         int size = 0;
6019         int retval = ERROR_OK;
6020         for (i = 0; i < fastload_num; i++) {
6021                 struct target *target = get_current_target(CMD_CTX);
6022                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
6023                                           (unsigned int)(fastload[i].address),
6024                                           (unsigned int)(fastload[i].length));
6025                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
6026                 if (retval != ERROR_OK)
6027                         break;
6028                 size += fastload[i].length;
6029         }
6030         if (retval == ERROR_OK) {
6031                 int64_t after = timeval_ms();
6032                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
6033         }
6034         return retval;
6035 }
6036
6037 static const struct command_registration target_command_handlers[] = {
6038         {
6039                 .name = "targets",
6040                 .handler = handle_targets_command,
6041                 .mode = COMMAND_ANY,
6042                 .help = "change current default target (one parameter) "
6043                         "or prints table of all targets (no parameters)",
6044                 .usage = "[target]",
6045         },
6046         {
6047                 .name = "target",
6048                 .mode = COMMAND_CONFIG,
6049                 .help = "configure target",
6050
6051                 .chain = target_subcommand_handlers,
6052         },
6053         COMMAND_REGISTRATION_DONE
6054 };
6055
6056 int target_register_commands(struct command_context *cmd_ctx)
6057 {
6058         return register_commands(cmd_ctx, NULL, target_command_handlers);
6059 }
6060
6061 static bool target_reset_nag = true;
6062
6063 bool get_target_reset_nag(void)
6064 {
6065         return target_reset_nag;
6066 }
6067
6068 COMMAND_HANDLER(handle_target_reset_nag)
6069 {
6070         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
6071                         &target_reset_nag, "Nag after each reset about options to improve "
6072                         "performance");
6073 }
6074
6075 COMMAND_HANDLER(handle_ps_command)
6076 {
6077         struct target *target = get_current_target(CMD_CTX);
6078         char *display;
6079         if (target->state != TARGET_HALTED) {
6080                 LOG_INFO("target not halted !!");
6081                 return ERROR_OK;
6082         }
6083
6084         if ((target->rtos) && (target->rtos->type)
6085                         && (target->rtos->type->ps_command)) {
6086                 display = target->rtos->type->ps_command(target);
6087                 command_print(CMD_CTX, "%s", display);
6088                 free(display);
6089                 return ERROR_OK;
6090         } else {
6091                 LOG_INFO("failed");
6092                 return ERROR_TARGET_FAILURE;
6093         }
6094 }
6095
6096 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
6097 {
6098         if (text != NULL)
6099                 command_print_sameline(cmd_ctx, "%s", text);
6100         for (int i = 0; i < size; i++)
6101                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
6102         command_print(cmd_ctx, " ");
6103 }
6104
6105 COMMAND_HANDLER(handle_test_mem_access_command)
6106 {
6107         struct target *target = get_current_target(CMD_CTX);
6108         uint32_t test_size;
6109         int retval = ERROR_OK;
6110
6111         if (target->state != TARGET_HALTED) {
6112                 LOG_INFO("target not halted !!");
6113                 return ERROR_FAIL;
6114         }
6115
6116         if (CMD_ARGC != 1)
6117                 return ERROR_COMMAND_SYNTAX_ERROR;
6118
6119         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6120
6121         /* Test reads */
6122         size_t num_bytes = test_size + 4;
6123
6124         struct working_area *wa = NULL;
6125         retval = target_alloc_working_area(target, num_bytes, &wa);
6126         if (retval != ERROR_OK) {
6127                 LOG_ERROR("Not enough working area");
6128                 return ERROR_FAIL;
6129         }
6130
6131         uint8_t *test_pattern = malloc(num_bytes);
6132
6133         for (size_t i = 0; i < num_bytes; i++)
6134                 test_pattern[i] = rand();
6135
6136         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6137         if (retval != ERROR_OK) {
6138                 LOG_ERROR("Test pattern write failed");
6139                 goto out;
6140         }
6141
6142         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6143                 for (int size = 1; size <= 4; size *= 2) {
6144                         for (int offset = 0; offset < 4; offset++) {
6145                                 uint32_t count = test_size / size;
6146                                 size_t host_bufsiz = (count + 2) * size + host_offset;
6147                                 uint8_t *read_ref = malloc(host_bufsiz);
6148                                 uint8_t *read_buf = malloc(host_bufsiz);
6149
6150                                 for (size_t i = 0; i < host_bufsiz; i++) {
6151                                         read_ref[i] = rand();
6152                                         read_buf[i] = read_ref[i];
6153                                 }
6154                                 command_print_sameline(CMD_CTX,
6155                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6156                                                 size, offset, host_offset ? "un" : "");
6157
6158                                 struct duration bench;
6159                                 duration_start(&bench);
6160
6161                                 retval = target_read_memory(target, wa->address + offset, size, count,
6162                                                 read_buf + size + host_offset);
6163
6164                                 duration_measure(&bench);
6165
6166                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6167                                         command_print(CMD_CTX, "Unsupported alignment");
6168                                         goto next;
6169                                 } else if (retval != ERROR_OK) {
6170                                         command_print(CMD_CTX, "Memory read failed");
6171                                         goto next;
6172                                 }
6173
6174                                 /* replay on host */
6175                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6176
6177                                 /* check result */
6178                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
6179                                 if (result == 0) {
6180                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6181                                                         duration_elapsed(&bench),
6182                                                         duration_kbps(&bench, count * size));
6183                                 } else {
6184                                         command_print(CMD_CTX, "Compare failed");
6185                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6186                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6187                                 }
6188 next:
6189                                 free(read_ref);
6190                                 free(read_buf);
6191                         }
6192                 }
6193         }
6194
6195 out:
6196         free(test_pattern);
6197
6198         if (wa != NULL)
6199                 target_free_working_area(target, wa);
6200
6201         /* Test writes */
6202         num_bytes = test_size + 4 + 4 + 4;
6203
6204         retval = target_alloc_working_area(target, num_bytes, &wa);
6205         if (retval != ERROR_OK) {
6206                 LOG_ERROR("Not enough working area");
6207                 return ERROR_FAIL;
6208         }
6209
6210         test_pattern = malloc(num_bytes);
6211
6212         for (size_t i = 0; i < num_bytes; i++)
6213                 test_pattern[i] = rand();
6214
6215         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6216                 for (int size = 1; size <= 4; size *= 2) {
6217                         for (int offset = 0; offset < 4; offset++) {
6218                                 uint32_t count = test_size / size;
6219                                 size_t host_bufsiz = count * size + host_offset;
6220                                 uint8_t *read_ref = malloc(num_bytes);
6221                                 uint8_t *read_buf = malloc(num_bytes);
6222                                 uint8_t *write_buf = malloc(host_bufsiz);
6223
6224                                 for (size_t i = 0; i < host_bufsiz; i++)
6225                                         write_buf[i] = rand();
6226                                 command_print_sameline(CMD_CTX,
6227                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6228                                                 size, offset, host_offset ? "un" : "");
6229
6230                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6231                                 if (retval != ERROR_OK) {
6232                                         command_print(CMD_CTX, "Test pattern write failed");
6233                                         goto nextw;
6234                                 }
6235
6236                                 /* replay on host */
6237                                 memcpy(read_ref, test_pattern, num_bytes);
6238                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6239
6240                                 struct duration bench;
6241                                 duration_start(&bench);
6242
6243                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
6244                                                 write_buf + host_offset);
6245
6246                                 duration_measure(&bench);
6247
6248                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6249                                         command_print(CMD_CTX, "Unsupported alignment");
6250                                         goto nextw;
6251                                 } else if (retval != ERROR_OK) {
6252                                         command_print(CMD_CTX, "Memory write failed");
6253                                         goto nextw;
6254                                 }
6255
6256                                 /* read back */
6257                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6258                                 if (retval != ERROR_OK) {
6259                                         command_print(CMD_CTX, "Test pattern write failed");
6260                                         goto nextw;
6261                                 }
6262
6263                                 /* check result */
6264                                 int result = memcmp(read_ref, read_buf, num_bytes);
6265                                 if (result == 0) {
6266                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6267                                                         duration_elapsed(&bench),
6268                                                         duration_kbps(&bench, count * size));
6269                                 } else {
6270                                         command_print(CMD_CTX, "Compare failed");
6271                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6272                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6273                                 }
6274 nextw:
6275                                 free(read_ref);
6276                                 free(read_buf);
6277                         }
6278                 }
6279         }
6280
6281         free(test_pattern);
6282
6283         if (wa != NULL)
6284                 target_free_working_area(target, wa);
6285         return retval;
6286 }
6287
6288 static const struct command_registration target_exec_command_handlers[] = {
6289         {
6290                 .name = "fast_load_image",
6291                 .handler = handle_fast_load_image_command,
6292                 .mode = COMMAND_ANY,
6293                 .help = "Load image into server memory for later use by "
6294                         "fast_load; primarily for profiling",
6295                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6296                         "[min_address [max_length]]",
6297         },
6298         {
6299                 .name = "fast_load",
6300                 .handler = handle_fast_load_command,
6301                 .mode = COMMAND_EXEC,
6302                 .help = "loads active fast load image to current target "
6303                         "- mainly for profiling purposes",
6304                 .usage = "",
6305         },
6306         {
6307                 .name = "profile",
6308                 .handler = handle_profile_command,
6309                 .mode = COMMAND_EXEC,
6310                 .usage = "seconds filename [start end]",
6311                 .help = "profiling samples the CPU PC",
6312         },
6313         /** @todo don't register virt2phys() unless target supports it */
6314         {
6315                 .name = "virt2phys",
6316                 .handler = handle_virt2phys_command,
6317                 .mode = COMMAND_ANY,
6318                 .help = "translate a virtual address into a physical address",
6319                 .usage = "virtual_address",
6320         },
6321         {
6322                 .name = "reg",
6323                 .handler = handle_reg_command,
6324                 .mode = COMMAND_EXEC,
6325                 .help = "display (reread from target with \"force\") or set a register; "
6326                         "with no arguments, displays all registers and their values",
6327                 .usage = "[(register_number|register_name) [(value|'force')]]",
6328         },
6329         {
6330                 .name = "poll",
6331                 .handler = handle_poll_command,
6332                 .mode = COMMAND_EXEC,
6333                 .help = "poll target state; or reconfigure background polling",
6334                 .usage = "['on'|'off']",
6335         },
6336         {
6337                 .name = "wait_halt",
6338                 .handler = handle_wait_halt_command,
6339                 .mode = COMMAND_EXEC,
6340                 .help = "wait up to the specified number of milliseconds "
6341                         "(default 5000) for a previously requested halt",
6342                 .usage = "[milliseconds]",
6343         },
6344         {
6345                 .name = "halt",
6346                 .handler = handle_halt_command,
6347                 .mode = COMMAND_EXEC,
6348                 .help = "request target to halt, then wait up to the specified"
6349                         "number of milliseconds (default 5000) for it to complete",
6350                 .usage = "[milliseconds]",
6351         },
6352         {
6353                 .name = "resume",
6354                 .handler = handle_resume_command,
6355                 .mode = COMMAND_EXEC,
6356                 .help = "resume target execution from current PC or address",
6357                 .usage = "[address]",
6358         },
6359         {
6360                 .name = "reset",
6361                 .handler = handle_reset_command,
6362                 .mode = COMMAND_EXEC,
6363                 .usage = "[run|halt|init]",
6364                 .help = "Reset all targets into the specified mode."
6365                         "Default reset mode is run, if not given.",
6366         },
6367         {
6368                 .name = "soft_reset_halt",
6369                 .handler = handle_soft_reset_halt_command,
6370                 .mode = COMMAND_EXEC,
6371                 .usage = "",
6372                 .help = "halt the target and do a soft reset",
6373         },
6374         {
6375                 .name = "step",
6376                 .handler = handle_step_command,
6377                 .mode = COMMAND_EXEC,
6378                 .help = "step one instruction from current PC or address",
6379                 .usage = "[address]",
6380         },
6381         {
6382                 .name = "mdd",
6383                 .handler = handle_md_command,
6384                 .mode = COMMAND_EXEC,
6385                 .help = "display memory words",
6386                 .usage = "['phys'] address [count]",
6387         },
6388         {
6389                 .name = "mdw",
6390                 .handler = handle_md_command,
6391                 .mode = COMMAND_EXEC,
6392                 .help = "display memory words",
6393                 .usage = "['phys'] address [count]",
6394         },
6395         {
6396                 .name = "mdh",
6397                 .handler = handle_md_command,
6398                 .mode = COMMAND_EXEC,
6399                 .help = "display memory half-words",
6400                 .usage = "['phys'] address [count]",
6401         },
6402         {
6403                 .name = "mdb",
6404                 .handler = handle_md_command,
6405                 .mode = COMMAND_EXEC,
6406                 .help = "display memory bytes",
6407                 .usage = "['phys'] address [count]",
6408         },
6409         {
6410                 .name = "mwd",
6411                 .handler = handle_mw_command,
6412                 .mode = COMMAND_EXEC,
6413                 .help = "write memory word",
6414                 .usage = "['phys'] address value [count]",
6415         },
6416         {
6417                 .name = "mww",
6418                 .handler = handle_mw_command,
6419                 .mode = COMMAND_EXEC,
6420                 .help = "write memory word",
6421                 .usage = "['phys'] address value [count]",
6422         },
6423         {
6424                 .name = "mwh",
6425                 .handler = handle_mw_command,
6426                 .mode = COMMAND_EXEC,
6427                 .help = "write memory half-word",
6428                 .usage = "['phys'] address value [count]",
6429         },
6430         {
6431                 .name = "mwb",
6432                 .handler = handle_mw_command,
6433                 .mode = COMMAND_EXEC,
6434                 .help = "write memory byte",
6435                 .usage = "['phys'] address value [count]",
6436         },
6437         {
6438                 .name = "bp",
6439                 .handler = handle_bp_command,
6440                 .mode = COMMAND_EXEC,
6441                 .help = "list or set hardware or software breakpoint",
6442                 .usage = "<address> [<asid>] <length> ['hw'|'hw_ctx']",
6443         },
6444         {
6445                 .name = "rbp",
6446                 .handler = handle_rbp_command,
6447                 .mode = COMMAND_EXEC,
6448                 .help = "remove breakpoint",
6449                 .usage = "address",
6450         },
6451         {
6452                 .name = "wp",
6453                 .handler = handle_wp_command,
6454                 .mode = COMMAND_EXEC,
6455                 .help = "list (no params) or create watchpoints",
6456                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6457         },
6458         {
6459                 .name = "rwp",
6460                 .handler = handle_rwp_command,
6461                 .mode = COMMAND_EXEC,
6462                 .help = "remove watchpoint",
6463                 .usage = "address",
6464         },
6465         {
6466                 .name = "load_image",
6467                 .handler = handle_load_image_command,
6468                 .mode = COMMAND_EXEC,
6469                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6470                         "[min_address] [max_length]",
6471         },
6472         {
6473                 .name = "dump_image",
6474                 .handler = handle_dump_image_command,
6475                 .mode = COMMAND_EXEC,
6476                 .usage = "filename address size",
6477         },
6478         {
6479                 .name = "verify_image_checksum",
6480                 .handler = handle_verify_image_checksum_command,
6481                 .mode = COMMAND_EXEC,
6482                 .usage = "filename [offset [type]]",
6483         },
6484         {
6485                 .name = "verify_image",
6486                 .handler = handle_verify_image_command,
6487                 .mode = COMMAND_EXEC,
6488                 .usage = "filename [offset [type]]",
6489         },
6490         {
6491                 .name = "test_image",
6492                 .handler = handle_test_image_command,
6493                 .mode = COMMAND_EXEC,
6494                 .usage = "filename [offset [type]]",
6495         },
6496         {
6497                 .name = "mem2array",
6498                 .mode = COMMAND_EXEC,
6499                 .jim_handler = jim_mem2array,
6500                 .help = "read 8/16/32 bit memory and return as a TCL array "
6501                         "for script processing",
6502                 .usage = "arrayname bitwidth address count",
6503         },
6504         {
6505                 .name = "array2mem",
6506                 .mode = COMMAND_EXEC,
6507                 .jim_handler = jim_array2mem,
6508                 .help = "convert a TCL array to memory locations "
6509                         "and write the 8/16/32 bit values",
6510                 .usage = "arrayname bitwidth address count",
6511         },
6512         {
6513                 .name = "reset_nag",
6514                 .handler = handle_target_reset_nag,
6515                 .mode = COMMAND_ANY,
6516                 .help = "Nag after each reset about options that could have been "
6517                                 "enabled to improve performance. ",
6518                 .usage = "['enable'|'disable']",
6519         },
6520         {
6521                 .name = "ps",
6522                 .handler = handle_ps_command,
6523                 .mode = COMMAND_EXEC,
6524                 .help = "list all tasks ",
6525                 .usage = " ",
6526         },
6527         {
6528                 .name = "test_mem_access",
6529                 .handler = handle_test_mem_access_command,
6530                 .mode = COMMAND_EXEC,
6531                 .help = "Test the target's memory access functions",
6532                 .usage = "size",
6533         },
6534
6535         COMMAND_REGISTRATION_DONE
6536 };
6537 static int target_register_user_commands(struct command_context *cmd_ctx)
6538 {
6539         int retval = ERROR_OK;
6540         retval = target_request_register_commands(cmd_ctx);
6541         if (retval != ERROR_OK)
6542                 return retval;
6543
6544         retval = trace_register_commands(cmd_ctx);
6545         if (retval != ERROR_OK)
6546                 return retval;
6547
6548
6549         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6550 }