]> git.sur5r.net Git - openocd/blob - src/target/target.c
bf3669192ea7dc92f65ed2848d89fcfde0b19b62
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63                 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65                 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type avr_target;
98 extern struct target_type dsp563xx_target;
99 extern struct target_type dsp5680xx_target;
100 extern struct target_type testee_target;
101 extern struct target_type avr32_ap7k_target;
102 extern struct target_type hla_target;
103 extern struct target_type nds32_v2_target;
104 extern struct target_type nds32_v3_target;
105 extern struct target_type nds32_v3m_target;
106 extern struct target_type or1k_target;
107 extern struct target_type quark_x10xx_target;
108 extern struct target_type quark_d20xx_target;
109 extern struct target_type stm8_target;
110 extern struct target_type riscv_target;
111 extern struct target_type mem_ap_target;
112 extern struct target_type esirisc_target;
113
114 static struct target_type *target_types[] = {
115         &arm7tdmi_target,
116         &arm9tdmi_target,
117         &arm920t_target,
118         &arm720t_target,
119         &arm966e_target,
120         &arm946e_target,
121         &arm926ejs_target,
122         &fa526_target,
123         &feroceon_target,
124         &dragonite_target,
125         &xscale_target,
126         &cortexm_target,
127         &cortexa_target,
128         &cortexr4_target,
129         &arm11_target,
130         &ls1_sap_target,
131         &mips_m4k_target,
132         &avr_target,
133         &dsp563xx_target,
134         &dsp5680xx_target,
135         &testee_target,
136         &avr32_ap7k_target,
137         &hla_target,
138         &nds32_v2_target,
139         &nds32_v3_target,
140         &nds32_v3m_target,
141         &or1k_target,
142         &quark_x10xx_target,
143         &quark_d20xx_target,
144         &stm8_target,
145         &riscv_target,
146         &mem_ap_target,
147         &esirisc_target,
148 #if BUILD_TARGET64
149         &aarch64_target,
150 #endif
151         NULL,
152 };
153
154 struct target *all_targets;
155 static struct target_event_callback *target_event_callbacks;
156 static struct target_timer_callback *target_timer_callbacks;
157 LIST_HEAD(target_reset_callback_list);
158 LIST_HEAD(target_trace_callback_list);
159 static const int polling_interval = 100;
160
161 static const Jim_Nvp nvp_assert[] = {
162         { .name = "assert", NVP_ASSERT },
163         { .name = "deassert", NVP_DEASSERT },
164         { .name = "T", NVP_ASSERT },
165         { .name = "F", NVP_DEASSERT },
166         { .name = "t", NVP_ASSERT },
167         { .name = "f", NVP_DEASSERT },
168         { .name = NULL, .value = -1 }
169 };
170
171 static const Jim_Nvp nvp_error_target[] = {
172         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
173         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
174         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
175         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
176         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
177         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
178         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
179         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
180         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
181         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
182         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
183         { .value = -1, .name = NULL }
184 };
185
186 static const char *target_strerror_safe(int err)
187 {
188         const Jim_Nvp *n;
189
190         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
191         if (n->name == NULL)
192                 return "unknown";
193         else
194                 return n->name;
195 }
196
197 static const Jim_Nvp nvp_target_event[] = {
198
199         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
200         { .value = TARGET_EVENT_HALTED, .name = "halted" },
201         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
202         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
203         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
204
205         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
206         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
207
208         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
209         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
210         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
211         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
212         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
213         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
214         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
215         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
216
217         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
218         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
219
220         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
221         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
222
223         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
224         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
225
226         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
227         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
228
229         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
230         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
231
232         { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
233
234         { .name = NULL, .value = -1 }
235 };
236
237 static const Jim_Nvp nvp_target_state[] = {
238         { .name = "unknown", .value = TARGET_UNKNOWN },
239         { .name = "running", .value = TARGET_RUNNING },
240         { .name = "halted",  .value = TARGET_HALTED },
241         { .name = "reset",   .value = TARGET_RESET },
242         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
243         { .name = NULL, .value = -1 },
244 };
245
246 static const Jim_Nvp nvp_target_debug_reason[] = {
247         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
248         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
249         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
250         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
251         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
252         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
253         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
254         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
255         { .name = NULL, .value = -1 },
256 };
257
258 static const Jim_Nvp nvp_target_endian[] = {
259         { .name = "big",    .value = TARGET_BIG_ENDIAN },
260         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
261         { .name = "be",     .value = TARGET_BIG_ENDIAN },
262         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
263         { .name = NULL,     .value = -1 },
264 };
265
266 static const Jim_Nvp nvp_reset_modes[] = {
267         { .name = "unknown", .value = RESET_UNKNOWN },
268         { .name = "run"    , .value = RESET_RUN },
269         { .name = "halt"   , .value = RESET_HALT },
270         { .name = "init"   , .value = RESET_INIT },
271         { .name = NULL     , .value = -1 },
272 };
273
274 const char *debug_reason_name(struct target *t)
275 {
276         const char *cp;
277
278         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
279                         t->debug_reason)->name;
280         if (!cp) {
281                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
282                 cp = "(*BUG*unknown*BUG*)";
283         }
284         return cp;
285 }
286
287 const char *target_state_name(struct target *t)
288 {
289         const char *cp;
290         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
291         if (!cp) {
292                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
293                 cp = "(*BUG*unknown*BUG*)";
294         }
295
296         if (!target_was_examined(t) && t->defer_examine)
297                 cp = "examine deferred";
298
299         return cp;
300 }
301
302 const char *target_event_name(enum target_event event)
303 {
304         const char *cp;
305         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
306         if (!cp) {
307                 LOG_ERROR("Invalid target event: %d", (int)(event));
308                 cp = "(*BUG*unknown*BUG*)";
309         }
310         return cp;
311 }
312
313 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
314 {
315         const char *cp;
316         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
317         if (!cp) {
318                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
319                 cp = "(*BUG*unknown*BUG*)";
320         }
321         return cp;
322 }
323
324 /* determine the number of the new target */
325 static int new_target_number(void)
326 {
327         struct target *t;
328         int x;
329
330         /* number is 0 based */
331         x = -1;
332         t = all_targets;
333         while (t) {
334                 if (x < t->target_number)
335                         x = t->target_number;
336                 t = t->next;
337         }
338         return x + 1;
339 }
340
341 /* read a uint64_t from a buffer in target memory endianness */
342 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
343 {
344         if (target->endianness == TARGET_LITTLE_ENDIAN)
345                 return le_to_h_u64(buffer);
346         else
347                 return be_to_h_u64(buffer);
348 }
349
350 /* read a uint32_t from a buffer in target memory endianness */
351 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
352 {
353         if (target->endianness == TARGET_LITTLE_ENDIAN)
354                 return le_to_h_u32(buffer);
355         else
356                 return be_to_h_u32(buffer);
357 }
358
359 /* read a uint24_t from a buffer in target memory endianness */
360 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
361 {
362         if (target->endianness == TARGET_LITTLE_ENDIAN)
363                 return le_to_h_u24(buffer);
364         else
365                 return be_to_h_u24(buffer);
366 }
367
368 /* read a uint16_t from a buffer in target memory endianness */
369 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
370 {
371         if (target->endianness == TARGET_LITTLE_ENDIAN)
372                 return le_to_h_u16(buffer);
373         else
374                 return be_to_h_u16(buffer);
375 }
376
377 /* read a uint8_t from a buffer in target memory endianness */
378 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
379 {
380         return *buffer & 0x0ff;
381 }
382
383 /* write a uint64_t to a buffer in target memory endianness */
384 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
385 {
386         if (target->endianness == TARGET_LITTLE_ENDIAN)
387                 h_u64_to_le(buffer, value);
388         else
389                 h_u64_to_be(buffer, value);
390 }
391
392 /* write a uint32_t to a buffer in target memory endianness */
393 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
394 {
395         if (target->endianness == TARGET_LITTLE_ENDIAN)
396                 h_u32_to_le(buffer, value);
397         else
398                 h_u32_to_be(buffer, value);
399 }
400
401 /* write a uint24_t to a buffer in target memory endianness */
402 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
403 {
404         if (target->endianness == TARGET_LITTLE_ENDIAN)
405                 h_u24_to_le(buffer, value);
406         else
407                 h_u24_to_be(buffer, value);
408 }
409
410 /* write a uint16_t to a buffer in target memory endianness */
411 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
412 {
413         if (target->endianness == TARGET_LITTLE_ENDIAN)
414                 h_u16_to_le(buffer, value);
415         else
416                 h_u16_to_be(buffer, value);
417 }
418
419 /* write a uint8_t to a buffer in target memory endianness */
420 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
421 {
422         *buffer = value;
423 }
424
425 /* write a uint64_t array to a buffer in target memory endianness */
426 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
427 {
428         uint32_t i;
429         for (i = 0; i < count; i++)
430                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
431 }
432
433 /* write a uint32_t array to a buffer in target memory endianness */
434 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
435 {
436         uint32_t i;
437         for (i = 0; i < count; i++)
438                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
439 }
440
441 /* write a uint16_t array to a buffer in target memory endianness */
442 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
443 {
444         uint32_t i;
445         for (i = 0; i < count; i++)
446                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
447 }
448
449 /* write a uint64_t array to a buffer in target memory endianness */
450 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
451 {
452         uint32_t i;
453         for (i = 0; i < count; i++)
454                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
455 }
456
457 /* write a uint32_t array to a buffer in target memory endianness */
458 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
459 {
460         uint32_t i;
461         for (i = 0; i < count; i++)
462                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
463 }
464
465 /* write a uint16_t array to a buffer in target memory endianness */
466 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
467 {
468         uint32_t i;
469         for (i = 0; i < count; i++)
470                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
471 }
472
473 /* return a pointer to a configured target; id is name or number */
474 struct target *get_target(const char *id)
475 {
476         struct target *target;
477
478         /* try as tcltarget name */
479         for (target = all_targets; target; target = target->next) {
480                 if (target_name(target) == NULL)
481                         continue;
482                 if (strcmp(id, target_name(target)) == 0)
483                         return target;
484         }
485
486         /* It's OK to remove this fallback sometime after August 2010 or so */
487
488         /* no match, try as number */
489         unsigned num;
490         if (parse_uint(id, &num) != ERROR_OK)
491                 return NULL;
492
493         for (target = all_targets; target; target = target->next) {
494                 if (target->target_number == (int)num) {
495                         LOG_WARNING("use '%s' as target identifier, not '%u'",
496                                         target_name(target), num);
497                         return target;
498                 }
499         }
500
501         return NULL;
502 }
503
504 /* returns a pointer to the n-th configured target */
505 struct target *get_target_by_num(int num)
506 {
507         struct target *target = all_targets;
508
509         while (target) {
510                 if (target->target_number == num)
511                         return target;
512                 target = target->next;
513         }
514
515         return NULL;
516 }
517
518 struct target *get_current_target(struct command_context *cmd_ctx)
519 {
520         struct target *target = cmd_ctx->current_target_override
521                 ? cmd_ctx->current_target_override
522                 : cmd_ctx->current_target;
523
524         if (target == NULL) {
525                 LOG_ERROR("BUG: current_target out of bounds");
526                 exit(-1);
527         }
528
529         return target;
530 }
531
532 int target_poll(struct target *target)
533 {
534         int retval;
535
536         /* We can't poll until after examine */
537         if (!target_was_examined(target)) {
538                 /* Fail silently lest we pollute the log */
539                 return ERROR_FAIL;
540         }
541
542         retval = target->type->poll(target);
543         if (retval != ERROR_OK)
544                 return retval;
545
546         if (target->halt_issued) {
547                 if (target->state == TARGET_HALTED)
548                         target->halt_issued = false;
549                 else {
550                         int64_t t = timeval_ms() - target->halt_issued_time;
551                         if (t > DEFAULT_HALT_TIMEOUT) {
552                                 target->halt_issued = false;
553                                 LOG_INFO("Halt timed out, wake up GDB.");
554                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
555                         }
556                 }
557         }
558
559         return ERROR_OK;
560 }
561
562 int target_halt(struct target *target)
563 {
564         int retval;
565         /* We can't poll until after examine */
566         if (!target_was_examined(target)) {
567                 LOG_ERROR("Target not examined yet");
568                 return ERROR_FAIL;
569         }
570
571         retval = target->type->halt(target);
572         if (retval != ERROR_OK)
573                 return retval;
574
575         target->halt_issued = true;
576         target->halt_issued_time = timeval_ms();
577
578         return ERROR_OK;
579 }
580
581 /**
582  * Make the target (re)start executing using its saved execution
583  * context (possibly with some modifications).
584  *
585  * @param target Which target should start executing.
586  * @param current True to use the target's saved program counter instead
587  *      of the address parameter
588  * @param address Optionally used as the program counter.
589  * @param handle_breakpoints True iff breakpoints at the resumption PC
590  *      should be skipped.  (For example, maybe execution was stopped by
591  *      such a breakpoint, in which case it would be counterprodutive to
592  *      let it re-trigger.
593  * @param debug_execution False if all working areas allocated by OpenOCD
594  *      should be released and/or restored to their original contents.
595  *      (This would for example be true to run some downloaded "helper"
596  *      algorithm code, which resides in one such working buffer and uses
597  *      another for data storage.)
598  *
599  * @todo Resolve the ambiguity about what the "debug_execution" flag
600  * signifies.  For example, Target implementations don't agree on how
601  * it relates to invalidation of the register cache, or to whether
602  * breakpoints and watchpoints should be enabled.  (It would seem wrong
603  * to enable breakpoints when running downloaded "helper" algorithms
604  * (debug_execution true), since the breakpoints would be set to match
605  * target firmware being debugged, not the helper algorithm.... and
606  * enabling them could cause such helpers to malfunction (for example,
607  * by overwriting data with a breakpoint instruction.  On the other
608  * hand the infrastructure for running such helpers might use this
609  * procedure but rely on hardware breakpoint to detect termination.)
610  */
611 int target_resume(struct target *target, int current, target_addr_t address,
612                 int handle_breakpoints, int debug_execution)
613 {
614         int retval;
615
616         /* We can't poll until after examine */
617         if (!target_was_examined(target)) {
618                 LOG_ERROR("Target not examined yet");
619                 return ERROR_FAIL;
620         }
621
622         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
623
624         /* note that resume *must* be asynchronous. The CPU can halt before
625          * we poll. The CPU can even halt at the current PC as a result of
626          * a software breakpoint being inserted by (a bug?) the application.
627          */
628         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
629         if (retval != ERROR_OK)
630                 return retval;
631
632         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
633
634         return retval;
635 }
636
637 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
638 {
639         char buf[100];
640         int retval;
641         Jim_Nvp *n;
642         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
643         if (n->name == NULL) {
644                 LOG_ERROR("invalid reset mode");
645                 return ERROR_FAIL;
646         }
647
648         struct target *target;
649         for (target = all_targets; target; target = target->next)
650                 target_call_reset_callbacks(target, reset_mode);
651
652         /* disable polling during reset to make reset event scripts
653          * more predictable, i.e. dr/irscan & pathmove in events will
654          * not have JTAG operations injected into the middle of a sequence.
655          */
656         bool save_poll = jtag_poll_get_enabled();
657
658         jtag_poll_set_enabled(false);
659
660         sprintf(buf, "ocd_process_reset %s", n->name);
661         retval = Jim_Eval(cmd_ctx->interp, buf);
662
663         jtag_poll_set_enabled(save_poll);
664
665         if (retval != JIM_OK) {
666                 Jim_MakeErrorMessage(cmd_ctx->interp);
667                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
668                 return ERROR_FAIL;
669         }
670
671         /* We want any events to be processed before the prompt */
672         retval = target_call_timer_callbacks_now();
673
674         for (target = all_targets; target; target = target->next) {
675                 target->type->check_reset(target);
676                 target->running_alg = false;
677         }
678
679         return retval;
680 }
681
682 static int identity_virt2phys(struct target *target,
683                 target_addr_t virtual, target_addr_t *physical)
684 {
685         *physical = virtual;
686         return ERROR_OK;
687 }
688
689 static int no_mmu(struct target *target, int *enabled)
690 {
691         *enabled = 0;
692         return ERROR_OK;
693 }
694
695 static int default_examine(struct target *target)
696 {
697         target_set_examined(target);
698         return ERROR_OK;
699 }
700
701 /* no check by default */
702 static int default_check_reset(struct target *target)
703 {
704         return ERROR_OK;
705 }
706
707 int target_examine_one(struct target *target)
708 {
709         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
710
711         int retval = target->type->examine(target);
712         if (retval != ERROR_OK)
713                 return retval;
714
715         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
716
717         return ERROR_OK;
718 }
719
720 static int jtag_enable_callback(enum jtag_event event, void *priv)
721 {
722         struct target *target = priv;
723
724         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
725                 return ERROR_OK;
726
727         jtag_unregister_event_callback(jtag_enable_callback, target);
728
729         return target_examine_one(target);
730 }
731
732 /* Targets that correctly implement init + examine, i.e.
733  * no communication with target during init:
734  *
735  * XScale
736  */
737 int target_examine(void)
738 {
739         int retval = ERROR_OK;
740         struct target *target;
741
742         for (target = all_targets; target; target = target->next) {
743                 /* defer examination, but don't skip it */
744                 if (!target->tap->enabled) {
745                         jtag_register_event_callback(jtag_enable_callback,
746                                         target);
747                         continue;
748                 }
749
750                 if (target->defer_examine)
751                         continue;
752
753                 retval = target_examine_one(target);
754                 if (retval != ERROR_OK)
755                         return retval;
756         }
757         return retval;
758 }
759
760 const char *target_type_name(struct target *target)
761 {
762         return target->type->name;
763 }
764
765 static int target_soft_reset_halt(struct target *target)
766 {
767         if (!target_was_examined(target)) {
768                 LOG_ERROR("Target not examined yet");
769                 return ERROR_FAIL;
770         }
771         if (!target->type->soft_reset_halt) {
772                 LOG_ERROR("Target %s does not support soft_reset_halt",
773                                 target_name(target));
774                 return ERROR_FAIL;
775         }
776         return target->type->soft_reset_halt(target);
777 }
778
779 /**
780  * Downloads a target-specific native code algorithm to the target,
781  * and executes it.  * Note that some targets may need to set up, enable,
782  * and tear down a breakpoint (hard or * soft) to detect algorithm
783  * termination, while others may support  lower overhead schemes where
784  * soft breakpoints embedded in the algorithm automatically terminate the
785  * algorithm.
786  *
787  * @param target used to run the algorithm
788  * @param arch_info target-specific description of the algorithm.
789  */
790 int target_run_algorithm(struct target *target,
791                 int num_mem_params, struct mem_param *mem_params,
792                 int num_reg_params, struct reg_param *reg_param,
793                 uint32_t entry_point, uint32_t exit_point,
794                 int timeout_ms, void *arch_info)
795 {
796         int retval = ERROR_FAIL;
797
798         if (!target_was_examined(target)) {
799                 LOG_ERROR("Target not examined yet");
800                 goto done;
801         }
802         if (!target->type->run_algorithm) {
803                 LOG_ERROR("Target type '%s' does not support %s",
804                                 target_type_name(target), __func__);
805                 goto done;
806         }
807
808         target->running_alg = true;
809         retval = target->type->run_algorithm(target,
810                         num_mem_params, mem_params,
811                         num_reg_params, reg_param,
812                         entry_point, exit_point, timeout_ms, arch_info);
813         target->running_alg = false;
814
815 done:
816         return retval;
817 }
818
819 /**
820  * Executes a target-specific native code algorithm and leaves it running.
821  *
822  * @param target used to run the algorithm
823  * @param arch_info target-specific description of the algorithm.
824  */
825 int target_start_algorithm(struct target *target,
826                 int num_mem_params, struct mem_param *mem_params,
827                 int num_reg_params, struct reg_param *reg_params,
828                 uint32_t entry_point, uint32_t exit_point,
829                 void *arch_info)
830 {
831         int retval = ERROR_FAIL;
832
833         if (!target_was_examined(target)) {
834                 LOG_ERROR("Target not examined yet");
835                 goto done;
836         }
837         if (!target->type->start_algorithm) {
838                 LOG_ERROR("Target type '%s' does not support %s",
839                                 target_type_name(target), __func__);
840                 goto done;
841         }
842         if (target->running_alg) {
843                 LOG_ERROR("Target is already running an algorithm");
844                 goto done;
845         }
846
847         target->running_alg = true;
848         retval = target->type->start_algorithm(target,
849                         num_mem_params, mem_params,
850                         num_reg_params, reg_params,
851                         entry_point, exit_point, arch_info);
852
853 done:
854         return retval;
855 }
856
857 /**
858  * Waits for an algorithm started with target_start_algorithm() to complete.
859  *
860  * @param target used to run the algorithm
861  * @param arch_info target-specific description of the algorithm.
862  */
863 int target_wait_algorithm(struct target *target,
864                 int num_mem_params, struct mem_param *mem_params,
865                 int num_reg_params, struct reg_param *reg_params,
866                 uint32_t exit_point, int timeout_ms,
867                 void *arch_info)
868 {
869         int retval = ERROR_FAIL;
870
871         if (!target->type->wait_algorithm) {
872                 LOG_ERROR("Target type '%s' does not support %s",
873                                 target_type_name(target), __func__);
874                 goto done;
875         }
876         if (!target->running_alg) {
877                 LOG_ERROR("Target is not running an algorithm");
878                 goto done;
879         }
880
881         retval = target->type->wait_algorithm(target,
882                         num_mem_params, mem_params,
883                         num_reg_params, reg_params,
884                         exit_point, timeout_ms, arch_info);
885         if (retval != ERROR_TARGET_TIMEOUT)
886                 target->running_alg = false;
887
888 done:
889         return retval;
890 }
891
892 /**
893  * Streams data to a circular buffer on target intended for consumption by code
894  * running asynchronously on target.
895  *
896  * This is intended for applications where target-specific native code runs
897  * on the target, receives data from the circular buffer, does something with
898  * it (most likely writing it to a flash memory), and advances the circular
899  * buffer pointer.
900  *
901  * This assumes that the helper algorithm has already been loaded to the target,
902  * but has not been started yet. Given memory and register parameters are passed
903  * to the algorithm.
904  *
905  * The buffer is defined by (buffer_start, buffer_size) arguments and has the
906  * following format:
907  *
908  *     [buffer_start + 0, buffer_start + 4):
909  *         Write Pointer address (aka head). Written and updated by this
910  *         routine when new data is written to the circular buffer.
911  *     [buffer_start + 4, buffer_start + 8):
912  *         Read Pointer address (aka tail). Updated by code running on the
913  *         target after it consumes data.
914  *     [buffer_start + 8, buffer_start + buffer_size):
915  *         Circular buffer contents.
916  *
917  * See contrib/loaders/flash/stm32f1x.S for an example.
918  *
919  * @param target used to run the algorithm
920  * @param buffer address on the host where data to be sent is located
921  * @param count number of blocks to send
922  * @param block_size size in bytes of each block
923  * @param num_mem_params count of memory-based params to pass to algorithm
924  * @param mem_params memory-based params to pass to algorithm
925  * @param num_reg_params count of register-based params to pass to algorithm
926  * @param reg_params memory-based params to pass to algorithm
927  * @param buffer_start address on the target of the circular buffer structure
928  * @param buffer_size size of the circular buffer structure
929  * @param entry_point address on the target to execute to start the algorithm
930  * @param exit_point address at which to set a breakpoint to catch the
931  *     end of the algorithm; can be 0 if target triggers a breakpoint itself
932  */
933
934 int target_run_flash_async_algorithm(struct target *target,
935                 const uint8_t *buffer, uint32_t count, int block_size,
936                 int num_mem_params, struct mem_param *mem_params,
937                 int num_reg_params, struct reg_param *reg_params,
938                 uint32_t buffer_start, uint32_t buffer_size,
939                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
940 {
941         int retval;
942         int timeout = 0;
943
944         const uint8_t *buffer_orig = buffer;
945
946         /* Set up working area. First word is write pointer, second word is read pointer,
947          * rest is fifo data area. */
948         uint32_t wp_addr = buffer_start;
949         uint32_t rp_addr = buffer_start + 4;
950         uint32_t fifo_start_addr = buffer_start + 8;
951         uint32_t fifo_end_addr = buffer_start + buffer_size;
952
953         uint32_t wp = fifo_start_addr;
954         uint32_t rp = fifo_start_addr;
955
956         /* validate block_size is 2^n */
957         assert(!block_size || !(block_size & (block_size - 1)));
958
959         retval = target_write_u32(target, wp_addr, wp);
960         if (retval != ERROR_OK)
961                 return retval;
962         retval = target_write_u32(target, rp_addr, rp);
963         if (retval != ERROR_OK)
964                 return retval;
965
966         /* Start up algorithm on target and let it idle while writing the first chunk */
967         retval = target_start_algorithm(target, num_mem_params, mem_params,
968                         num_reg_params, reg_params,
969                         entry_point,
970                         exit_point,
971                         arch_info);
972
973         if (retval != ERROR_OK) {
974                 LOG_ERROR("error starting target flash write algorithm");
975                 return retval;
976         }
977
978         while (count > 0) {
979
980                 retval = target_read_u32(target, rp_addr, &rp);
981                 if (retval != ERROR_OK) {
982                         LOG_ERROR("failed to get read pointer");
983                         break;
984                 }
985
986                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
987                         (size_t) (buffer - buffer_orig), count, wp, rp);
988
989                 if (rp == 0) {
990                         LOG_ERROR("flash write algorithm aborted by target");
991                         retval = ERROR_FLASH_OPERATION_FAILED;
992                         break;
993                 }
994
995                 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
996                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
997                         break;
998                 }
999
1000                 /* Count the number of bytes available in the fifo without
1001                  * crossing the wrap around. Make sure to not fill it completely,
1002                  * because that would make wp == rp and that's the empty condition. */
1003                 uint32_t thisrun_bytes;
1004                 if (rp > wp)
1005                         thisrun_bytes = rp - wp - block_size;
1006                 else if (rp > fifo_start_addr)
1007                         thisrun_bytes = fifo_end_addr - wp;
1008                 else
1009                         thisrun_bytes = fifo_end_addr - wp - block_size;
1010
1011                 if (thisrun_bytes == 0) {
1012                         /* Throttle polling a bit if transfer is (much) faster than flash
1013                          * programming. The exact delay shouldn't matter as long as it's
1014                          * less than buffer size / flash speed. This is very unlikely to
1015                          * run when using high latency connections such as USB. */
1016                         alive_sleep(10);
1017
1018                         /* to stop an infinite loop on some targets check and increment a timeout
1019                          * this issue was observed on a stellaris using the new ICDI interface */
1020                         if (timeout++ >= 500) {
1021                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1022                                 return ERROR_FLASH_OPERATION_FAILED;
1023                         }
1024                         continue;
1025                 }
1026
1027                 /* reset our timeout */
1028                 timeout = 0;
1029
1030                 /* Limit to the amount of data we actually want to write */
1031                 if (thisrun_bytes > count * block_size)
1032                         thisrun_bytes = count * block_size;
1033
1034                 /* Write data to fifo */
1035                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1036                 if (retval != ERROR_OK)
1037                         break;
1038
1039                 /* Update counters and wrap write pointer */
1040                 buffer += thisrun_bytes;
1041                 count -= thisrun_bytes / block_size;
1042                 wp += thisrun_bytes;
1043                 if (wp >= fifo_end_addr)
1044                         wp = fifo_start_addr;
1045
1046                 /* Store updated write pointer to target */
1047                 retval = target_write_u32(target, wp_addr, wp);
1048                 if (retval != ERROR_OK)
1049                         break;
1050         }
1051
1052         if (retval != ERROR_OK) {
1053                 /* abort flash write algorithm on target */
1054                 target_write_u32(target, wp_addr, 0);
1055         }
1056
1057         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1058                         num_reg_params, reg_params,
1059                         exit_point,
1060                         10000,
1061                         arch_info);
1062
1063         if (retval2 != ERROR_OK) {
1064                 LOG_ERROR("error waiting for target flash write algorithm");
1065                 retval = retval2;
1066         }
1067
1068         if (retval == ERROR_OK) {
1069                 /* check if algorithm set rp = 0 after fifo writer loop finished */
1070                 retval = target_read_u32(target, rp_addr, &rp);
1071                 if (retval == ERROR_OK && rp == 0) {
1072                         LOG_ERROR("flash write algorithm aborted by target");
1073                         retval = ERROR_FLASH_OPERATION_FAILED;
1074                 }
1075         }
1076
1077         return retval;
1078 }
1079
1080 int target_read_memory(struct target *target,
1081                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1082 {
1083         if (!target_was_examined(target)) {
1084                 LOG_ERROR("Target not examined yet");
1085                 return ERROR_FAIL;
1086         }
1087         if (!target->type->read_memory) {
1088                 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1089                 return ERROR_FAIL;
1090         }
1091         return target->type->read_memory(target, address, size, count, buffer);
1092 }
1093
1094 int target_read_phys_memory(struct target *target,
1095                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1096 {
1097         if (!target_was_examined(target)) {
1098                 LOG_ERROR("Target not examined yet");
1099                 return ERROR_FAIL;
1100         }
1101         if (!target->type->read_phys_memory) {
1102                 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1103                 return ERROR_FAIL;
1104         }
1105         return target->type->read_phys_memory(target, address, size, count, buffer);
1106 }
1107
1108 int target_write_memory(struct target *target,
1109                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1110 {
1111         if (!target_was_examined(target)) {
1112                 LOG_ERROR("Target not examined yet");
1113                 return ERROR_FAIL;
1114         }
1115         if (!target->type->write_memory) {
1116                 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1117                 return ERROR_FAIL;
1118         }
1119         return target->type->write_memory(target, address, size, count, buffer);
1120 }
1121
1122 int target_write_phys_memory(struct target *target,
1123                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1124 {
1125         if (!target_was_examined(target)) {
1126                 LOG_ERROR("Target not examined yet");
1127                 return ERROR_FAIL;
1128         }
1129         if (!target->type->write_phys_memory) {
1130                 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1131                 return ERROR_FAIL;
1132         }
1133         return target->type->write_phys_memory(target, address, size, count, buffer);
1134 }
1135
1136 int target_add_breakpoint(struct target *target,
1137                 struct breakpoint *breakpoint)
1138 {
1139         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1140                 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1141                 return ERROR_TARGET_NOT_HALTED;
1142         }
1143         return target->type->add_breakpoint(target, breakpoint);
1144 }
1145
1146 int target_add_context_breakpoint(struct target *target,
1147                 struct breakpoint *breakpoint)
1148 {
1149         if (target->state != TARGET_HALTED) {
1150                 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1151                 return ERROR_TARGET_NOT_HALTED;
1152         }
1153         return target->type->add_context_breakpoint(target, breakpoint);
1154 }
1155
1156 int target_add_hybrid_breakpoint(struct target *target,
1157                 struct breakpoint *breakpoint)
1158 {
1159         if (target->state != TARGET_HALTED) {
1160                 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1161                 return ERROR_TARGET_NOT_HALTED;
1162         }
1163         return target->type->add_hybrid_breakpoint(target, breakpoint);
1164 }
1165
1166 int target_remove_breakpoint(struct target *target,
1167                 struct breakpoint *breakpoint)
1168 {
1169         return target->type->remove_breakpoint(target, breakpoint);
1170 }
1171
1172 int target_add_watchpoint(struct target *target,
1173                 struct watchpoint *watchpoint)
1174 {
1175         if (target->state != TARGET_HALTED) {
1176                 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1177                 return ERROR_TARGET_NOT_HALTED;
1178         }
1179         return target->type->add_watchpoint(target, watchpoint);
1180 }
1181 int target_remove_watchpoint(struct target *target,
1182                 struct watchpoint *watchpoint)
1183 {
1184         return target->type->remove_watchpoint(target, watchpoint);
1185 }
1186 int target_hit_watchpoint(struct target *target,
1187                 struct watchpoint **hit_watchpoint)
1188 {
1189         if (target->state != TARGET_HALTED) {
1190                 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1191                 return ERROR_TARGET_NOT_HALTED;
1192         }
1193
1194         if (target->type->hit_watchpoint == NULL) {
1195                 /* For backward compatible, if hit_watchpoint is not implemented,
1196                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1197                  * information. */
1198                 return ERROR_FAIL;
1199         }
1200
1201         return target->type->hit_watchpoint(target, hit_watchpoint);
1202 }
1203
1204 const char *target_get_gdb_arch(struct target *target)
1205 {
1206         if (target->type->get_gdb_arch == NULL)
1207                 return NULL;
1208         return target->type->get_gdb_arch(target);
1209 }
1210
1211 int target_get_gdb_reg_list(struct target *target,
1212                 struct reg **reg_list[], int *reg_list_size,
1213                 enum target_register_class reg_class)
1214 {
1215         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1216 }
1217
1218 bool target_supports_gdb_connection(struct target *target)
1219 {
1220         /*
1221          * based on current code, we can simply exclude all the targets that
1222          * don't provide get_gdb_reg_list; this could change with new targets.
1223          */
1224         return !!target->type->get_gdb_reg_list;
1225 }
1226
1227 int target_step(struct target *target,
1228                 int current, target_addr_t address, int handle_breakpoints)
1229 {
1230         return target->type->step(target, current, address, handle_breakpoints);
1231 }
1232
1233 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1234 {
1235         if (target->state != TARGET_HALTED) {
1236                 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1237                 return ERROR_TARGET_NOT_HALTED;
1238         }
1239         return target->type->get_gdb_fileio_info(target, fileio_info);
1240 }
1241
1242 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1243 {
1244         if (target->state != TARGET_HALTED) {
1245                 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1246                 return ERROR_TARGET_NOT_HALTED;
1247         }
1248         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1249 }
1250
1251 int target_profiling(struct target *target, uint32_t *samples,
1252                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1253 {
1254         if (target->state != TARGET_HALTED) {
1255                 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1256                 return ERROR_TARGET_NOT_HALTED;
1257         }
1258         return target->type->profiling(target, samples, max_num_samples,
1259                         num_samples, seconds);
1260 }
1261
1262 /**
1263  * Reset the @c examined flag for the given target.
1264  * Pure paranoia -- targets are zeroed on allocation.
1265  */
1266 static void target_reset_examined(struct target *target)
1267 {
1268         target->examined = false;
1269 }
1270
1271 static int handle_target(void *priv);
1272
1273 static int target_init_one(struct command_context *cmd_ctx,
1274                 struct target *target)
1275 {
1276         target_reset_examined(target);
1277
1278         struct target_type *type = target->type;
1279         if (type->examine == NULL)
1280                 type->examine = default_examine;
1281
1282         if (type->check_reset == NULL)
1283                 type->check_reset = default_check_reset;
1284
1285         assert(type->init_target != NULL);
1286
1287         int retval = type->init_target(cmd_ctx, target);
1288         if (ERROR_OK != retval) {
1289                 LOG_ERROR("target '%s' init failed", target_name(target));
1290                 return retval;
1291         }
1292
1293         /* Sanity-check MMU support ... stub in what we must, to help
1294          * implement it in stages, but warn if we need to do so.
1295          */
1296         if (type->mmu) {
1297                 if (type->virt2phys == NULL) {
1298                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1299                         type->virt2phys = identity_virt2phys;
1300                 }
1301         } else {
1302                 /* Make sure no-MMU targets all behave the same:  make no
1303                  * distinction between physical and virtual addresses, and
1304                  * ensure that virt2phys() is always an identity mapping.
1305                  */
1306                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1307                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1308
1309                 type->mmu = no_mmu;
1310                 type->write_phys_memory = type->write_memory;
1311                 type->read_phys_memory = type->read_memory;
1312                 type->virt2phys = identity_virt2phys;
1313         }
1314
1315         if (target->type->read_buffer == NULL)
1316                 target->type->read_buffer = target_read_buffer_default;
1317
1318         if (target->type->write_buffer == NULL)
1319                 target->type->write_buffer = target_write_buffer_default;
1320
1321         if (target->type->get_gdb_fileio_info == NULL)
1322                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1323
1324         if (target->type->gdb_fileio_end == NULL)
1325                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1326
1327         if (target->type->profiling == NULL)
1328                 target->type->profiling = target_profiling_default;
1329
1330         return ERROR_OK;
1331 }
1332
1333 static int target_init(struct command_context *cmd_ctx)
1334 {
1335         struct target *target;
1336         int retval;
1337
1338         for (target = all_targets; target; target = target->next) {
1339                 retval = target_init_one(cmd_ctx, target);
1340                 if (ERROR_OK != retval)
1341                         return retval;
1342         }
1343
1344         if (!all_targets)
1345                 return ERROR_OK;
1346
1347         retval = target_register_user_commands(cmd_ctx);
1348         if (ERROR_OK != retval)
1349                 return retval;
1350
1351         retval = target_register_timer_callback(&handle_target,
1352                         polling_interval, 1, cmd_ctx->interp);
1353         if (ERROR_OK != retval)
1354                 return retval;
1355
1356         return ERROR_OK;
1357 }
1358
1359 COMMAND_HANDLER(handle_target_init_command)
1360 {
1361         int retval;
1362
1363         if (CMD_ARGC != 0)
1364                 return ERROR_COMMAND_SYNTAX_ERROR;
1365
1366         static bool target_initialized;
1367         if (target_initialized) {
1368                 LOG_INFO("'target init' has already been called");
1369                 return ERROR_OK;
1370         }
1371         target_initialized = true;
1372
1373         retval = command_run_line(CMD_CTX, "init_targets");
1374         if (ERROR_OK != retval)
1375                 return retval;
1376
1377         retval = command_run_line(CMD_CTX, "init_target_events");
1378         if (ERROR_OK != retval)
1379                 return retval;
1380
1381         retval = command_run_line(CMD_CTX, "init_board");
1382         if (ERROR_OK != retval)
1383                 return retval;
1384
1385         LOG_DEBUG("Initializing targets...");
1386         return target_init(CMD_CTX);
1387 }
1388
1389 int target_register_event_callback(int (*callback)(struct target *target,
1390                 enum target_event event, void *priv), void *priv)
1391 {
1392         struct target_event_callback **callbacks_p = &target_event_callbacks;
1393
1394         if (callback == NULL)
1395                 return ERROR_COMMAND_SYNTAX_ERROR;
1396
1397         if (*callbacks_p) {
1398                 while ((*callbacks_p)->next)
1399                         callbacks_p = &((*callbacks_p)->next);
1400                 callbacks_p = &((*callbacks_p)->next);
1401         }
1402
1403         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1404         (*callbacks_p)->callback = callback;
1405         (*callbacks_p)->priv = priv;
1406         (*callbacks_p)->next = NULL;
1407
1408         return ERROR_OK;
1409 }
1410
1411 int target_register_reset_callback(int (*callback)(struct target *target,
1412                 enum target_reset_mode reset_mode, void *priv), void *priv)
1413 {
1414         struct target_reset_callback *entry;
1415
1416         if (callback == NULL)
1417                 return ERROR_COMMAND_SYNTAX_ERROR;
1418
1419         entry = malloc(sizeof(struct target_reset_callback));
1420         if (entry == NULL) {
1421                 LOG_ERROR("error allocating buffer for reset callback entry");
1422                 return ERROR_COMMAND_SYNTAX_ERROR;
1423         }
1424
1425         entry->callback = callback;
1426         entry->priv = priv;
1427         list_add(&entry->list, &target_reset_callback_list);
1428
1429
1430         return ERROR_OK;
1431 }
1432
1433 int target_register_trace_callback(int (*callback)(struct target *target,
1434                 size_t len, uint8_t *data, void *priv), void *priv)
1435 {
1436         struct target_trace_callback *entry;
1437
1438         if (callback == NULL)
1439                 return ERROR_COMMAND_SYNTAX_ERROR;
1440
1441         entry = malloc(sizeof(struct target_trace_callback));
1442         if (entry == NULL) {
1443                 LOG_ERROR("error allocating buffer for trace callback entry");
1444                 return ERROR_COMMAND_SYNTAX_ERROR;
1445         }
1446
1447         entry->callback = callback;
1448         entry->priv = priv;
1449         list_add(&entry->list, &target_trace_callback_list);
1450
1451
1452         return ERROR_OK;
1453 }
1454
1455 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1456 {
1457         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1458
1459         if (callback == NULL)
1460                 return ERROR_COMMAND_SYNTAX_ERROR;
1461
1462         if (*callbacks_p) {
1463                 while ((*callbacks_p)->next)
1464                         callbacks_p = &((*callbacks_p)->next);
1465                 callbacks_p = &((*callbacks_p)->next);
1466         }
1467
1468         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1469         (*callbacks_p)->callback = callback;
1470         (*callbacks_p)->periodic = periodic;
1471         (*callbacks_p)->time_ms = time_ms;
1472         (*callbacks_p)->removed = false;
1473
1474         gettimeofday(&(*callbacks_p)->when, NULL);
1475         timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1476
1477         (*callbacks_p)->priv = priv;
1478         (*callbacks_p)->next = NULL;
1479
1480         return ERROR_OK;
1481 }
1482
1483 int target_unregister_event_callback(int (*callback)(struct target *target,
1484                 enum target_event event, void *priv), void *priv)
1485 {
1486         struct target_event_callback **p = &target_event_callbacks;
1487         struct target_event_callback *c = target_event_callbacks;
1488
1489         if (callback == NULL)
1490                 return ERROR_COMMAND_SYNTAX_ERROR;
1491
1492         while (c) {
1493                 struct target_event_callback *next = c->next;
1494                 if ((c->callback == callback) && (c->priv == priv)) {
1495                         *p = next;
1496                         free(c);
1497                         return ERROR_OK;
1498                 } else
1499                         p = &(c->next);
1500                 c = next;
1501         }
1502
1503         return ERROR_OK;
1504 }
1505
1506 int target_unregister_reset_callback(int (*callback)(struct target *target,
1507                 enum target_reset_mode reset_mode, void *priv), void *priv)
1508 {
1509         struct target_reset_callback *entry;
1510
1511         if (callback == NULL)
1512                 return ERROR_COMMAND_SYNTAX_ERROR;
1513
1514         list_for_each_entry(entry, &target_reset_callback_list, list) {
1515                 if (entry->callback == callback && entry->priv == priv) {
1516                         list_del(&entry->list);
1517                         free(entry);
1518                         break;
1519                 }
1520         }
1521
1522         return ERROR_OK;
1523 }
1524
1525 int target_unregister_trace_callback(int (*callback)(struct target *target,
1526                 size_t len, uint8_t *data, void *priv), void *priv)
1527 {
1528         struct target_trace_callback *entry;
1529
1530         if (callback == NULL)
1531                 return ERROR_COMMAND_SYNTAX_ERROR;
1532
1533         list_for_each_entry(entry, &target_trace_callback_list, list) {
1534                 if (entry->callback == callback && entry->priv == priv) {
1535                         list_del(&entry->list);
1536                         free(entry);
1537                         break;
1538                 }
1539         }
1540
1541         return ERROR_OK;
1542 }
1543
1544 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1545 {
1546         if (callback == NULL)
1547                 return ERROR_COMMAND_SYNTAX_ERROR;
1548
1549         for (struct target_timer_callback *c = target_timer_callbacks;
1550              c; c = c->next) {
1551                 if ((c->callback == callback) && (c->priv == priv)) {
1552                         c->removed = true;
1553                         return ERROR_OK;
1554                 }
1555         }
1556
1557         return ERROR_FAIL;
1558 }
1559
1560 int target_call_event_callbacks(struct target *target, enum target_event event)
1561 {
1562         struct target_event_callback *callback = target_event_callbacks;
1563         struct target_event_callback *next_callback;
1564
1565         if (event == TARGET_EVENT_HALTED) {
1566                 /* execute early halted first */
1567                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1568         }
1569
1570         LOG_DEBUG("target event %i (%s)", event,
1571                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1572
1573         target_handle_event(target, event);
1574
1575         while (callback) {
1576                 next_callback = callback->next;
1577                 callback->callback(target, event, callback->priv);
1578                 callback = next_callback;
1579         }
1580
1581         return ERROR_OK;
1582 }
1583
1584 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1585 {
1586         struct target_reset_callback *callback;
1587
1588         LOG_DEBUG("target reset %i (%s)", reset_mode,
1589                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1590
1591         list_for_each_entry(callback, &target_reset_callback_list, list)
1592                 callback->callback(target, reset_mode, callback->priv);
1593
1594         return ERROR_OK;
1595 }
1596
1597 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1598 {
1599         struct target_trace_callback *callback;
1600
1601         list_for_each_entry(callback, &target_trace_callback_list, list)
1602                 callback->callback(target, len, data, callback->priv);
1603
1604         return ERROR_OK;
1605 }
1606
1607 static int target_timer_callback_periodic_restart(
1608                 struct target_timer_callback *cb, struct timeval *now)
1609 {
1610         cb->when = *now;
1611         timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1612         return ERROR_OK;
1613 }
1614
1615 static int target_call_timer_callback(struct target_timer_callback *cb,
1616                 struct timeval *now)
1617 {
1618         cb->callback(cb->priv);
1619
1620         if (cb->periodic)
1621                 return target_timer_callback_periodic_restart(cb, now);
1622
1623         return target_unregister_timer_callback(cb->callback, cb->priv);
1624 }
1625
1626 static int target_call_timer_callbacks_check_time(int checktime)
1627 {
1628         static bool callback_processing;
1629
1630         /* Do not allow nesting */
1631         if (callback_processing)
1632                 return ERROR_OK;
1633
1634         callback_processing = true;
1635
1636         keep_alive();
1637
1638         struct timeval now;
1639         gettimeofday(&now, NULL);
1640
1641         /* Store an address of the place containing a pointer to the
1642          * next item; initially, that's a standalone "root of the
1643          * list" variable. */
1644         struct target_timer_callback **callback = &target_timer_callbacks;
1645         while (*callback) {
1646                 if ((*callback)->removed) {
1647                         struct target_timer_callback *p = *callback;
1648                         *callback = (*callback)->next;
1649                         free(p);
1650                         continue;
1651                 }
1652
1653                 bool call_it = (*callback)->callback &&
1654                         ((!checktime && (*callback)->periodic) ||
1655                          timeval_compare(&now, &(*callback)->when) >= 0);
1656
1657                 if (call_it)
1658                         target_call_timer_callback(*callback, &now);
1659
1660                 callback = &(*callback)->next;
1661         }
1662
1663         callback_processing = false;
1664         return ERROR_OK;
1665 }
1666
1667 int target_call_timer_callbacks(void)
1668 {
1669         return target_call_timer_callbacks_check_time(1);
1670 }
1671
1672 /* invoke periodic callbacks immediately */
1673 int target_call_timer_callbacks_now(void)
1674 {
1675         return target_call_timer_callbacks_check_time(0);
1676 }
1677
1678 /* Prints the working area layout for debug purposes */
1679 static void print_wa_layout(struct target *target)
1680 {
1681         struct working_area *c = target->working_areas;
1682
1683         while (c) {
1684                 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1685                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1686                         c->address, c->address + c->size - 1, c->size);
1687                 c = c->next;
1688         }
1689 }
1690
1691 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1692 static void target_split_working_area(struct working_area *area, uint32_t size)
1693 {
1694         assert(area->free); /* Shouldn't split an allocated area */
1695         assert(size <= area->size); /* Caller should guarantee this */
1696
1697         /* Split only if not already the right size */
1698         if (size < area->size) {
1699                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1700
1701                 if (new_wa == NULL)
1702                         return;
1703
1704                 new_wa->next = area->next;
1705                 new_wa->size = area->size - size;
1706                 new_wa->address = area->address + size;
1707                 new_wa->backup = NULL;
1708                 new_wa->user = NULL;
1709                 new_wa->free = true;
1710
1711                 area->next = new_wa;
1712                 area->size = size;
1713
1714                 /* If backup memory was allocated to this area, it has the wrong size
1715                  * now so free it and it will be reallocated if/when needed */
1716                 if (area->backup) {
1717                         free(area->backup);
1718                         area->backup = NULL;
1719                 }
1720         }
1721 }
1722
1723 /* Merge all adjacent free areas into one */
1724 static void target_merge_working_areas(struct target *target)
1725 {
1726         struct working_area *c = target->working_areas;
1727
1728         while (c && c->next) {
1729                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1730
1731                 /* Find two adjacent free areas */
1732                 if (c->free && c->next->free) {
1733                         /* Merge the last into the first */
1734                         c->size += c->next->size;
1735
1736                         /* Remove the last */
1737                         struct working_area *to_be_freed = c->next;
1738                         c->next = c->next->next;
1739                         if (to_be_freed->backup)
1740                                 free(to_be_freed->backup);
1741                         free(to_be_freed);
1742
1743                         /* If backup memory was allocated to the remaining area, it's has
1744                          * the wrong size now */
1745                         if (c->backup) {
1746                                 free(c->backup);
1747                                 c->backup = NULL;
1748                         }
1749                 } else {
1750                         c = c->next;
1751                 }
1752         }
1753 }
1754
1755 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1756 {
1757         /* Reevaluate working area address based on MMU state*/
1758         if (target->working_areas == NULL) {
1759                 int retval;
1760                 int enabled;
1761
1762                 retval = target->type->mmu(target, &enabled);
1763                 if (retval != ERROR_OK)
1764                         return retval;
1765
1766                 if (!enabled) {
1767                         if (target->working_area_phys_spec) {
1768                                 LOG_DEBUG("MMU disabled, using physical "
1769                                         "address for working memory " TARGET_ADDR_FMT,
1770                                         target->working_area_phys);
1771                                 target->working_area = target->working_area_phys;
1772                         } else {
1773                                 LOG_ERROR("No working memory available. "
1774                                         "Specify -work-area-phys to target.");
1775                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1776                         }
1777                 } else {
1778                         if (target->working_area_virt_spec) {
1779                                 LOG_DEBUG("MMU enabled, using virtual "
1780                                         "address for working memory " TARGET_ADDR_FMT,
1781                                         target->working_area_virt);
1782                                 target->working_area = target->working_area_virt;
1783                         } else {
1784                                 LOG_ERROR("No working memory available. "
1785                                         "Specify -work-area-virt to target.");
1786                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1787                         }
1788                 }
1789
1790                 /* Set up initial working area on first call */
1791                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1792                 if (new_wa) {
1793                         new_wa->next = NULL;
1794                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1795                         new_wa->address = target->working_area;
1796                         new_wa->backup = NULL;
1797                         new_wa->user = NULL;
1798                         new_wa->free = true;
1799                 }
1800
1801                 target->working_areas = new_wa;
1802         }
1803
1804         /* only allocate multiples of 4 byte */
1805         if (size % 4)
1806                 size = (size + 3) & (~3UL);
1807
1808         struct working_area *c = target->working_areas;
1809
1810         /* Find the first large enough working area */
1811         while (c) {
1812                 if (c->free && c->size >= size)
1813                         break;
1814                 c = c->next;
1815         }
1816
1817         if (c == NULL)
1818                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1819
1820         /* Split the working area into the requested size */
1821         target_split_working_area(c, size);
1822
1823         LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1824                           size, c->address);
1825
1826         if (target->backup_working_area) {
1827                 if (c->backup == NULL) {
1828                         c->backup = malloc(c->size);
1829                         if (c->backup == NULL)
1830                                 return ERROR_FAIL;
1831                 }
1832
1833                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1834                 if (retval != ERROR_OK)
1835                         return retval;
1836         }
1837
1838         /* mark as used, and return the new (reused) area */
1839         c->free = false;
1840         *area = c;
1841
1842         /* user pointer */
1843         c->user = area;
1844
1845         print_wa_layout(target);
1846
1847         return ERROR_OK;
1848 }
1849
1850 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1851 {
1852         int retval;
1853
1854         retval = target_alloc_working_area_try(target, size, area);
1855         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1856                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1857         return retval;
1858
1859 }
1860
1861 static int target_restore_working_area(struct target *target, struct working_area *area)
1862 {
1863         int retval = ERROR_OK;
1864
1865         if (target->backup_working_area && area->backup != NULL) {
1866                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1867                 if (retval != ERROR_OK)
1868                         LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1869                                         area->size, area->address);
1870         }
1871
1872         return retval;
1873 }
1874
1875 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1876 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1877 {
1878         int retval = ERROR_OK;
1879
1880         if (area->free)
1881                 return retval;
1882
1883         if (restore) {
1884                 retval = target_restore_working_area(target, area);
1885                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1886                 if (retval != ERROR_OK)
1887                         return retval;
1888         }
1889
1890         area->free = true;
1891
1892         LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1893                         area->size, area->address);
1894
1895         /* mark user pointer invalid */
1896         /* TODO: Is this really safe? It points to some previous caller's memory.
1897          * How could we know that the area pointer is still in that place and not
1898          * some other vital data? What's the purpose of this, anyway? */
1899         *area->user = NULL;
1900         area->user = NULL;
1901
1902         target_merge_working_areas(target);
1903
1904         print_wa_layout(target);
1905
1906         return retval;
1907 }
1908
1909 int target_free_working_area(struct target *target, struct working_area *area)
1910 {
1911         return target_free_working_area_restore(target, area, 1);
1912 }
1913
1914 static void target_destroy(struct target *target)
1915 {
1916         if (target->type->deinit_target)
1917                 target->type->deinit_target(target);
1918
1919         if (target->semihosting)
1920                 free(target->semihosting);
1921
1922         jtag_unregister_event_callback(jtag_enable_callback, target);
1923
1924         struct target_event_action *teap = target->event_action;
1925         while (teap) {
1926                 struct target_event_action *next = teap->next;
1927                 Jim_DecrRefCount(teap->interp, teap->body);
1928                 free(teap);
1929                 teap = next;
1930         }
1931
1932         target_free_all_working_areas(target);
1933         /* Now we have none or only one working area marked as free */
1934         if (target->working_areas) {
1935                 free(target->working_areas->backup);
1936                 free(target->working_areas);
1937         }
1938
1939         /* release the targets SMP list */
1940         if (target->smp) {
1941                 struct target_list *head = target->head;
1942                 while (head != NULL) {
1943                         struct target_list *pos = head->next;
1944                         head->target->smp = 0;
1945                         free(head);
1946                         head = pos;
1947                 }
1948                 target->smp = 0;
1949         }
1950
1951         free(target->gdb_port_override);
1952         free(target->type);
1953         free(target->trace_info);
1954         free(target->fileio_info);
1955         free(target->cmd_name);
1956         free(target);
1957 }
1958
1959 void target_quit(void)
1960 {
1961         struct target_event_callback *pe = target_event_callbacks;
1962         while (pe) {
1963                 struct target_event_callback *t = pe->next;
1964                 free(pe);
1965                 pe = t;
1966         }
1967         target_event_callbacks = NULL;
1968
1969         struct target_timer_callback *pt = target_timer_callbacks;
1970         while (pt) {
1971                 struct target_timer_callback *t = pt->next;
1972                 free(pt);
1973                 pt = t;
1974         }
1975         target_timer_callbacks = NULL;
1976
1977         for (struct target *target = all_targets; target;) {
1978                 struct target *tmp;
1979
1980                 tmp = target->next;
1981                 target_destroy(target);
1982                 target = tmp;
1983         }
1984
1985         all_targets = NULL;
1986 }
1987
1988 /* free resources and restore memory, if restoring memory fails,
1989  * free up resources anyway
1990  */
1991 static void target_free_all_working_areas_restore(struct target *target, int restore)
1992 {
1993         struct working_area *c = target->working_areas;
1994
1995         LOG_DEBUG("freeing all working areas");
1996
1997         /* Loop through all areas, restoring the allocated ones and marking them as free */
1998         while (c) {
1999                 if (!c->free) {
2000                         if (restore)
2001                                 target_restore_working_area(target, c);
2002                         c->free = true;
2003                         *c->user = NULL; /* Same as above */
2004                         c->user = NULL;
2005                 }
2006                 c = c->next;
2007         }
2008
2009         /* Run a merge pass to combine all areas into one */
2010         target_merge_working_areas(target);
2011
2012         print_wa_layout(target);
2013 }
2014
2015 void target_free_all_working_areas(struct target *target)
2016 {
2017         target_free_all_working_areas_restore(target, 1);
2018 }
2019
2020 /* Find the largest number of bytes that can be allocated */
2021 uint32_t target_get_working_area_avail(struct target *target)
2022 {
2023         struct working_area *c = target->working_areas;
2024         uint32_t max_size = 0;
2025
2026         if (c == NULL)
2027                 return target->working_area_size;
2028
2029         while (c) {
2030                 if (c->free && max_size < c->size)
2031                         max_size = c->size;
2032
2033                 c = c->next;
2034         }
2035
2036         return max_size;
2037 }
2038
2039 int target_arch_state(struct target *target)
2040 {
2041         int retval;
2042         if (target == NULL) {
2043                 LOG_WARNING("No target has been configured");
2044                 return ERROR_OK;
2045         }
2046
2047         if (target->state != TARGET_HALTED)
2048                 return ERROR_OK;
2049
2050         retval = target->type->arch_state(target);
2051         return retval;
2052 }
2053
2054 static int target_get_gdb_fileio_info_default(struct target *target,
2055                 struct gdb_fileio_info *fileio_info)
2056 {
2057         /* If target does not support semi-hosting function, target
2058            has no need to provide .get_gdb_fileio_info callback.
2059            It just return ERROR_FAIL and gdb_server will return "Txx"
2060            as target halted every time.  */
2061         return ERROR_FAIL;
2062 }
2063
2064 static int target_gdb_fileio_end_default(struct target *target,
2065                 int retcode, int fileio_errno, bool ctrl_c)
2066 {
2067         return ERROR_OK;
2068 }
2069
2070 static int target_profiling_default(struct target *target, uint32_t *samples,
2071                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2072 {
2073         struct timeval timeout, now;
2074
2075         gettimeofday(&timeout, NULL);
2076         timeval_add_time(&timeout, seconds, 0);
2077
2078         LOG_INFO("Starting profiling. Halting and resuming the"
2079                         " target as often as we can...");
2080
2081         uint32_t sample_count = 0;
2082         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2083         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2084
2085         int retval = ERROR_OK;
2086         for (;;) {
2087                 target_poll(target);
2088                 if (target->state == TARGET_HALTED) {
2089                         uint32_t t = buf_get_u32(reg->value, 0, 32);
2090                         samples[sample_count++] = t;
2091                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
2092                         retval = target_resume(target, 1, 0, 0, 0);
2093                         target_poll(target);
2094                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2095                 } else if (target->state == TARGET_RUNNING) {
2096                         /* We want to quickly sample the PC. */
2097                         retval = target_halt(target);
2098                 } else {
2099                         LOG_INFO("Target not halted or running");
2100                         retval = ERROR_OK;
2101                         break;
2102                 }
2103
2104                 if (retval != ERROR_OK)
2105                         break;
2106
2107                 gettimeofday(&now, NULL);
2108                 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2109                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2110                         break;
2111                 }
2112         }
2113
2114         *num_samples = sample_count;
2115         return retval;
2116 }
2117
2118 /* Single aligned words are guaranteed to use 16 or 32 bit access
2119  * mode respectively, otherwise data is handled as quickly as
2120  * possible
2121  */
2122 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2123 {
2124         LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2125                           size, address);
2126
2127         if (!target_was_examined(target)) {
2128                 LOG_ERROR("Target not examined yet");
2129                 return ERROR_FAIL;
2130         }
2131
2132         if (size == 0)
2133                 return ERROR_OK;
2134
2135         if ((address + size - 1) < address) {
2136                 /* GDB can request this when e.g. PC is 0xfffffffc */
2137                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2138                                   address,
2139                                   size);
2140                 return ERROR_FAIL;
2141         }
2142
2143         return target->type->write_buffer(target, address, size, buffer);
2144 }
2145
2146 static int target_write_buffer_default(struct target *target,
2147         target_addr_t address, uint32_t count, const uint8_t *buffer)
2148 {
2149         uint32_t size;
2150
2151         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2152          * will have something to do with the size we leave to it. */
2153         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2154                 if (address & size) {
2155                         int retval = target_write_memory(target, address, size, 1, buffer);
2156                         if (retval != ERROR_OK)
2157                                 return retval;
2158                         address += size;
2159                         count -= size;
2160                         buffer += size;
2161                 }
2162         }
2163
2164         /* Write the data with as large access size as possible. */
2165         for (; size > 0; size /= 2) {
2166                 uint32_t aligned = count - count % size;
2167                 if (aligned > 0) {
2168                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2169                         if (retval != ERROR_OK)
2170                                 return retval;
2171                         address += aligned;
2172                         count -= aligned;
2173                         buffer += aligned;
2174                 }
2175         }
2176
2177         return ERROR_OK;
2178 }
2179
2180 /* Single aligned words are guaranteed to use 16 or 32 bit access
2181  * mode respectively, otherwise data is handled as quickly as
2182  * possible
2183  */
2184 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2185 {
2186         LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2187                           size, address);
2188
2189         if (!target_was_examined(target)) {
2190                 LOG_ERROR("Target not examined yet");
2191                 return ERROR_FAIL;
2192         }
2193
2194         if (size == 0)
2195                 return ERROR_OK;
2196
2197         if ((address + size - 1) < address) {
2198                 /* GDB can request this when e.g. PC is 0xfffffffc */
2199                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2200                                   address,
2201                                   size);
2202                 return ERROR_FAIL;
2203         }
2204
2205         return target->type->read_buffer(target, address, size, buffer);
2206 }
2207
2208 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2209 {
2210         uint32_t size;
2211
2212         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2213          * will have something to do with the size we leave to it. */
2214         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2215                 if (address & size) {
2216                         int retval = target_read_memory(target, address, size, 1, buffer);
2217                         if (retval != ERROR_OK)
2218                                 return retval;
2219                         address += size;
2220                         count -= size;
2221                         buffer += size;
2222                 }
2223         }
2224
2225         /* Read the data with as large access size as possible. */
2226         for (; size > 0; size /= 2) {
2227                 uint32_t aligned = count - count % size;
2228                 if (aligned > 0) {
2229                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2230                         if (retval != ERROR_OK)
2231                                 return retval;
2232                         address += aligned;
2233                         count -= aligned;
2234                         buffer += aligned;
2235                 }
2236         }
2237
2238         return ERROR_OK;
2239 }
2240
2241 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2242 {
2243         uint8_t *buffer;
2244         int retval;
2245         uint32_t i;
2246         uint32_t checksum = 0;
2247         if (!target_was_examined(target)) {
2248                 LOG_ERROR("Target not examined yet");
2249                 return ERROR_FAIL;
2250         }
2251
2252         retval = target->type->checksum_memory(target, address, size, &checksum);
2253         if (retval != ERROR_OK) {
2254                 buffer = malloc(size);
2255                 if (buffer == NULL) {
2256                         LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2257                         return ERROR_COMMAND_SYNTAX_ERROR;
2258                 }
2259                 retval = target_read_buffer(target, address, size, buffer);
2260                 if (retval != ERROR_OK) {
2261                         free(buffer);
2262                         return retval;
2263                 }
2264
2265                 /* convert to target endianness */
2266                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2267                         uint32_t target_data;
2268                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2269                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2270                 }
2271
2272                 retval = image_calculate_checksum(buffer, size, &checksum);
2273                 free(buffer);
2274         }
2275
2276         *crc = checksum;
2277
2278         return retval;
2279 }
2280
2281 int target_blank_check_memory(struct target *target,
2282         struct target_memory_check_block *blocks, int num_blocks,
2283         uint8_t erased_value)
2284 {
2285         if (!target_was_examined(target)) {
2286                 LOG_ERROR("Target not examined yet");
2287                 return ERROR_FAIL;
2288         }
2289
2290         if (target->type->blank_check_memory == NULL)
2291                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2292
2293         return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2294 }
2295
2296 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2297 {
2298         uint8_t value_buf[8];
2299         if (!target_was_examined(target)) {
2300                 LOG_ERROR("Target not examined yet");
2301                 return ERROR_FAIL;
2302         }
2303
2304         int retval = target_read_memory(target, address, 8, 1, value_buf);
2305
2306         if (retval == ERROR_OK) {
2307                 *value = target_buffer_get_u64(target, value_buf);
2308                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2309                                   address,
2310                                   *value);
2311         } else {
2312                 *value = 0x0;
2313                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2314                                   address);
2315         }
2316
2317         return retval;
2318 }
2319
2320 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2321 {
2322         uint8_t value_buf[4];
2323         if (!target_was_examined(target)) {
2324                 LOG_ERROR("Target not examined yet");
2325                 return ERROR_FAIL;
2326         }
2327
2328         int retval = target_read_memory(target, address, 4, 1, value_buf);
2329
2330         if (retval == ERROR_OK) {
2331                 *value = target_buffer_get_u32(target, value_buf);
2332                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2333                                   address,
2334                                   *value);
2335         } else {
2336                 *value = 0x0;
2337                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2338                                   address);
2339         }
2340
2341         return retval;
2342 }
2343
2344 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2345 {
2346         uint8_t value_buf[2];
2347         if (!target_was_examined(target)) {
2348                 LOG_ERROR("Target not examined yet");
2349                 return ERROR_FAIL;
2350         }
2351
2352         int retval = target_read_memory(target, address, 2, 1, value_buf);
2353
2354         if (retval == ERROR_OK) {
2355                 *value = target_buffer_get_u16(target, value_buf);
2356                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2357                                   address,
2358                                   *value);
2359         } else {
2360                 *value = 0x0;
2361                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2362                                   address);
2363         }
2364
2365         return retval;
2366 }
2367
2368 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2369 {
2370         if (!target_was_examined(target)) {
2371                 LOG_ERROR("Target not examined yet");
2372                 return ERROR_FAIL;
2373         }
2374
2375         int retval = target_read_memory(target, address, 1, 1, value);
2376
2377         if (retval == ERROR_OK) {
2378                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2379                                   address,
2380                                   *value);
2381         } else {
2382                 *value = 0x0;
2383                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2384                                   address);
2385         }
2386
2387         return retval;
2388 }
2389
2390 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2391 {
2392         int retval;
2393         uint8_t value_buf[8];
2394         if (!target_was_examined(target)) {
2395                 LOG_ERROR("Target not examined yet");
2396                 return ERROR_FAIL;
2397         }
2398
2399         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2400                           address,
2401                           value);
2402
2403         target_buffer_set_u64(target, value_buf, value);
2404         retval = target_write_memory(target, address, 8, 1, value_buf);
2405         if (retval != ERROR_OK)
2406                 LOG_DEBUG("failed: %i", retval);
2407
2408         return retval;
2409 }
2410
2411 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2412 {
2413         int retval;
2414         uint8_t value_buf[4];
2415         if (!target_was_examined(target)) {
2416                 LOG_ERROR("Target not examined yet");
2417                 return ERROR_FAIL;
2418         }
2419
2420         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2421                           address,
2422                           value);
2423
2424         target_buffer_set_u32(target, value_buf, value);
2425         retval = target_write_memory(target, address, 4, 1, value_buf);
2426         if (retval != ERROR_OK)
2427                 LOG_DEBUG("failed: %i", retval);
2428
2429         return retval;
2430 }
2431
2432 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2433 {
2434         int retval;
2435         uint8_t value_buf[2];
2436         if (!target_was_examined(target)) {
2437                 LOG_ERROR("Target not examined yet");
2438                 return ERROR_FAIL;
2439         }
2440
2441         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2442                           address,
2443                           value);
2444
2445         target_buffer_set_u16(target, value_buf, value);
2446         retval = target_write_memory(target, address, 2, 1, value_buf);
2447         if (retval != ERROR_OK)
2448                 LOG_DEBUG("failed: %i", retval);
2449
2450         return retval;
2451 }
2452
2453 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2454 {
2455         int retval;
2456         if (!target_was_examined(target)) {
2457                 LOG_ERROR("Target not examined yet");
2458                 return ERROR_FAIL;
2459         }
2460
2461         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2462                           address, value);
2463
2464         retval = target_write_memory(target, address, 1, 1, &value);
2465         if (retval != ERROR_OK)
2466                 LOG_DEBUG("failed: %i", retval);
2467
2468         return retval;
2469 }
2470
2471 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2472 {
2473         int retval;
2474         uint8_t value_buf[8];
2475         if (!target_was_examined(target)) {
2476                 LOG_ERROR("Target not examined yet");
2477                 return ERROR_FAIL;
2478         }
2479
2480         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2481                           address,
2482                           value);
2483
2484         target_buffer_set_u64(target, value_buf, value);
2485         retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2486         if (retval != ERROR_OK)
2487                 LOG_DEBUG("failed: %i", retval);
2488
2489         return retval;
2490 }
2491
2492 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2493 {
2494         int retval;
2495         uint8_t value_buf[4];
2496         if (!target_was_examined(target)) {
2497                 LOG_ERROR("Target not examined yet");
2498                 return ERROR_FAIL;
2499         }
2500
2501         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2502                           address,
2503                           value);
2504
2505         target_buffer_set_u32(target, value_buf, value);
2506         retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2507         if (retval != ERROR_OK)
2508                 LOG_DEBUG("failed: %i", retval);
2509
2510         return retval;
2511 }
2512
2513 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2514 {
2515         int retval;
2516         uint8_t value_buf[2];
2517         if (!target_was_examined(target)) {
2518                 LOG_ERROR("Target not examined yet");
2519                 return ERROR_FAIL;
2520         }
2521
2522         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2523                           address,
2524                           value);
2525
2526         target_buffer_set_u16(target, value_buf, value);
2527         retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2528         if (retval != ERROR_OK)
2529                 LOG_DEBUG("failed: %i", retval);
2530
2531         return retval;
2532 }
2533
2534 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2535 {
2536         int retval;
2537         if (!target_was_examined(target)) {
2538                 LOG_ERROR("Target not examined yet");
2539                 return ERROR_FAIL;
2540         }
2541
2542         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2543                           address, value);
2544
2545         retval = target_write_phys_memory(target, address, 1, 1, &value);
2546         if (retval != ERROR_OK)
2547                 LOG_DEBUG("failed: %i", retval);
2548
2549         return retval;
2550 }
2551
2552 static int find_target(struct command_context *cmd_ctx, const char *name)
2553 {
2554         struct target *target = get_target(name);
2555         if (target == NULL) {
2556                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2557                 return ERROR_FAIL;
2558         }
2559         if (!target->tap->enabled) {
2560                 LOG_USER("Target: TAP %s is disabled, "
2561                          "can't be the current target\n",
2562                          target->tap->dotted_name);
2563                 return ERROR_FAIL;
2564         }
2565
2566         cmd_ctx->current_target = target;
2567         if (cmd_ctx->current_target_override)
2568                 cmd_ctx->current_target_override = target;
2569
2570         return ERROR_OK;
2571 }
2572
2573
2574 COMMAND_HANDLER(handle_targets_command)
2575 {
2576         int retval = ERROR_OK;
2577         if (CMD_ARGC == 1) {
2578                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2579                 if (retval == ERROR_OK) {
2580                         /* we're done! */
2581                         return retval;
2582                 }
2583         }
2584
2585         struct target *target = all_targets;
2586         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2587         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2588         while (target) {
2589                 const char *state;
2590                 char marker = ' ';
2591
2592                 if (target->tap->enabled)
2593                         state = target_state_name(target);
2594                 else
2595                         state = "tap-disabled";
2596
2597                 if (CMD_CTX->current_target == target)
2598                         marker = '*';
2599
2600                 /* keep columns lined up to match the headers above */
2601                 command_print(CMD_CTX,
2602                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2603                                 target->target_number,
2604                                 marker,
2605                                 target_name(target),
2606                                 target_type_name(target),
2607                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2608                                         target->endianness)->name,
2609                                 target->tap->dotted_name,
2610                                 state);
2611                 target = target->next;
2612         }
2613
2614         return retval;
2615 }
2616
2617 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2618
2619 static int powerDropout;
2620 static int srstAsserted;
2621
2622 static int runPowerRestore;
2623 static int runPowerDropout;
2624 static int runSrstAsserted;
2625 static int runSrstDeasserted;
2626
2627 static int sense_handler(void)
2628 {
2629         static int prevSrstAsserted;
2630         static int prevPowerdropout;
2631
2632         int retval = jtag_power_dropout(&powerDropout);
2633         if (retval != ERROR_OK)
2634                 return retval;
2635
2636         int powerRestored;
2637         powerRestored = prevPowerdropout && !powerDropout;
2638         if (powerRestored)
2639                 runPowerRestore = 1;
2640
2641         int64_t current = timeval_ms();
2642         static int64_t lastPower;
2643         bool waitMore = lastPower + 2000 > current;
2644         if (powerDropout && !waitMore) {
2645                 runPowerDropout = 1;
2646                 lastPower = current;
2647         }
2648
2649         retval = jtag_srst_asserted(&srstAsserted);
2650         if (retval != ERROR_OK)
2651                 return retval;
2652
2653         int srstDeasserted;
2654         srstDeasserted = prevSrstAsserted && !srstAsserted;
2655
2656         static int64_t lastSrst;
2657         waitMore = lastSrst + 2000 > current;
2658         if (srstDeasserted && !waitMore) {
2659                 runSrstDeasserted = 1;
2660                 lastSrst = current;
2661         }
2662
2663         if (!prevSrstAsserted && srstAsserted)
2664                 runSrstAsserted = 1;
2665
2666         prevSrstAsserted = srstAsserted;
2667         prevPowerdropout = powerDropout;
2668
2669         if (srstDeasserted || powerRestored) {
2670                 /* Other than logging the event we can't do anything here.
2671                  * Issuing a reset is a particularly bad idea as we might
2672                  * be inside a reset already.
2673                  */
2674         }
2675
2676         return ERROR_OK;
2677 }
2678
2679 /* process target state changes */
2680 static int handle_target(void *priv)
2681 {
2682         Jim_Interp *interp = (Jim_Interp *)priv;
2683         int retval = ERROR_OK;
2684
2685         if (!is_jtag_poll_safe()) {
2686                 /* polling is disabled currently */
2687                 return ERROR_OK;
2688         }
2689
2690         /* we do not want to recurse here... */
2691         static int recursive;
2692         if (!recursive) {
2693                 recursive = 1;
2694                 sense_handler();
2695                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2696                  * We need to avoid an infinite loop/recursion here and we do that by
2697                  * clearing the flags after running these events.
2698                  */
2699                 int did_something = 0;
2700                 if (runSrstAsserted) {
2701                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2702                         Jim_Eval(interp, "srst_asserted");
2703                         did_something = 1;
2704                 }
2705                 if (runSrstDeasserted) {
2706                         Jim_Eval(interp, "srst_deasserted");
2707                         did_something = 1;
2708                 }
2709                 if (runPowerDropout) {
2710                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2711                         Jim_Eval(interp, "power_dropout");
2712                         did_something = 1;
2713                 }
2714                 if (runPowerRestore) {
2715                         Jim_Eval(interp, "power_restore");
2716                         did_something = 1;
2717                 }
2718
2719                 if (did_something) {
2720                         /* clear detect flags */
2721                         sense_handler();
2722                 }
2723
2724                 /* clear action flags */
2725
2726                 runSrstAsserted = 0;
2727                 runSrstDeasserted = 0;
2728                 runPowerRestore = 0;
2729                 runPowerDropout = 0;
2730
2731                 recursive = 0;
2732         }
2733
2734         /* Poll targets for state changes unless that's globally disabled.
2735          * Skip targets that are currently disabled.
2736          */
2737         for (struct target *target = all_targets;
2738                         is_jtag_poll_safe() && target;
2739                         target = target->next) {
2740
2741                 if (!target_was_examined(target))
2742                         continue;
2743
2744                 if (!target->tap->enabled)
2745                         continue;
2746
2747                 if (target->backoff.times > target->backoff.count) {
2748                         /* do not poll this time as we failed previously */
2749                         target->backoff.count++;
2750                         continue;
2751                 }
2752                 target->backoff.count = 0;
2753
2754                 /* only poll target if we've got power and srst isn't asserted */
2755                 if (!powerDropout && !srstAsserted) {
2756                         /* polling may fail silently until the target has been examined */
2757                         retval = target_poll(target);
2758                         if (retval != ERROR_OK) {
2759                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2760                                 if (target->backoff.times * polling_interval < 5000) {
2761                                         target->backoff.times *= 2;
2762                                         target->backoff.times++;
2763                                 }
2764
2765                                 /* Tell GDB to halt the debugger. This allows the user to
2766                                  * run monitor commands to handle the situation.
2767                                  */
2768                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2769                         }
2770                         if (target->backoff.times > 0) {
2771                                 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2772                                 target_reset_examined(target);
2773                                 retval = target_examine_one(target);
2774                                 /* Target examination could have failed due to unstable connection,
2775                                  * but we set the examined flag anyway to repoll it later */
2776                                 if (retval != ERROR_OK) {
2777                                         target->examined = true;
2778                                         LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2779                                                  target->backoff.times * polling_interval);
2780                                         return retval;
2781                                 }
2782                         }
2783
2784                         /* Since we succeeded, we reset backoff count */
2785                         target->backoff.times = 0;
2786                 }
2787         }
2788
2789         return retval;
2790 }
2791
2792 COMMAND_HANDLER(handle_reg_command)
2793 {
2794         struct target *target;
2795         struct reg *reg = NULL;
2796         unsigned count = 0;
2797         char *value;
2798
2799         LOG_DEBUG("-");
2800
2801         target = get_current_target(CMD_CTX);
2802
2803         /* list all available registers for the current target */
2804         if (CMD_ARGC == 0) {
2805                 struct reg_cache *cache = target->reg_cache;
2806
2807                 count = 0;
2808                 while (cache) {
2809                         unsigned i;
2810
2811                         command_print(CMD_CTX, "===== %s", cache->name);
2812
2813                         for (i = 0, reg = cache->reg_list;
2814                                         i < cache->num_regs;
2815                                         i++, reg++, count++) {
2816                                 if (reg->exist == false)
2817                                         continue;
2818                                 /* only print cached values if they are valid */
2819                                 if (reg->valid) {
2820                                         value = buf_to_str(reg->value,
2821                                                         reg->size, 16);
2822                                         command_print(CMD_CTX,
2823                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2824                                                         count, reg->name,
2825                                                         reg->size, value,
2826                                                         reg->dirty
2827                                                                 ? " (dirty)"
2828                                                                 : "");
2829                                         free(value);
2830                                 } else {
2831                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2832                                                           count, reg->name,
2833                                                           reg->size) ;
2834                                 }
2835                         }
2836                         cache = cache->next;
2837                 }
2838
2839                 return ERROR_OK;
2840         }
2841
2842         /* access a single register by its ordinal number */
2843         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2844                 unsigned num;
2845                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2846
2847                 struct reg_cache *cache = target->reg_cache;
2848                 count = 0;
2849                 while (cache) {
2850                         unsigned i;
2851                         for (i = 0; i < cache->num_regs; i++) {
2852                                 if (count++ == num) {
2853                                         reg = &cache->reg_list[i];
2854                                         break;
2855                                 }
2856                         }
2857                         if (reg)
2858                                 break;
2859                         cache = cache->next;
2860                 }
2861
2862                 if (!reg) {
2863                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2864                                         "has only %i registers (0 - %i)", num, count, count - 1);
2865                         return ERROR_OK;
2866                 }
2867         } else {
2868                 /* access a single register by its name */
2869                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2870
2871                 if (!reg)
2872                         goto not_found;
2873         }
2874
2875         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2876
2877         if (!reg->exist)
2878                 goto not_found;
2879
2880         /* display a register */
2881         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2882                         && (CMD_ARGV[1][0] <= '9')))) {
2883                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2884                         reg->valid = 0;
2885
2886                 if (reg->valid == 0)
2887                         reg->type->get(reg);
2888                 value = buf_to_str(reg->value, reg->size, 16);
2889                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2890                 free(value);
2891                 return ERROR_OK;
2892         }
2893
2894         /* set register value */
2895         if (CMD_ARGC == 2) {
2896                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2897                 if (buf == NULL)
2898                         return ERROR_FAIL;
2899                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2900
2901                 reg->type->set(reg, buf);
2902
2903                 value = buf_to_str(reg->value, reg->size, 16);
2904                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2905                 free(value);
2906
2907                 free(buf);
2908
2909                 return ERROR_OK;
2910         }
2911
2912         return ERROR_COMMAND_SYNTAX_ERROR;
2913
2914 not_found:
2915         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2916         return ERROR_OK;
2917 }
2918
2919 COMMAND_HANDLER(handle_poll_command)
2920 {
2921         int retval = ERROR_OK;
2922         struct target *target = get_current_target(CMD_CTX);
2923
2924         if (CMD_ARGC == 0) {
2925                 command_print(CMD_CTX, "background polling: %s",
2926                                 jtag_poll_get_enabled() ? "on" : "off");
2927                 command_print(CMD_CTX, "TAP: %s (%s)",
2928                                 target->tap->dotted_name,
2929                                 target->tap->enabled ? "enabled" : "disabled");
2930                 if (!target->tap->enabled)
2931                         return ERROR_OK;
2932                 retval = target_poll(target);
2933                 if (retval != ERROR_OK)
2934                         return retval;
2935                 retval = target_arch_state(target);
2936                 if (retval != ERROR_OK)
2937                         return retval;
2938         } else if (CMD_ARGC == 1) {
2939                 bool enable;
2940                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2941                 jtag_poll_set_enabled(enable);
2942         } else
2943                 return ERROR_COMMAND_SYNTAX_ERROR;
2944
2945         return retval;
2946 }
2947
2948 COMMAND_HANDLER(handle_wait_halt_command)
2949 {
2950         if (CMD_ARGC > 1)
2951                 return ERROR_COMMAND_SYNTAX_ERROR;
2952
2953         unsigned ms = DEFAULT_HALT_TIMEOUT;
2954         if (1 == CMD_ARGC) {
2955                 int retval = parse_uint(CMD_ARGV[0], &ms);
2956                 if (ERROR_OK != retval)
2957                         return ERROR_COMMAND_SYNTAX_ERROR;
2958         }
2959
2960         struct target *target = get_current_target(CMD_CTX);
2961         return target_wait_state(target, TARGET_HALTED, ms);
2962 }
2963
2964 /* wait for target state to change. The trick here is to have a low
2965  * latency for short waits and not to suck up all the CPU time
2966  * on longer waits.
2967  *
2968  * After 500ms, keep_alive() is invoked
2969  */
2970 int target_wait_state(struct target *target, enum target_state state, int ms)
2971 {
2972         int retval;
2973         int64_t then = 0, cur;
2974         bool once = true;
2975
2976         for (;;) {
2977                 retval = target_poll(target);
2978                 if (retval != ERROR_OK)
2979                         return retval;
2980                 if (target->state == state)
2981                         break;
2982                 cur = timeval_ms();
2983                 if (once) {
2984                         once = false;
2985                         then = timeval_ms();
2986                         LOG_DEBUG("waiting for target %s...",
2987                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2988                 }
2989
2990                 if (cur-then > 500)
2991                         keep_alive();
2992
2993                 if ((cur-then) > ms) {
2994                         LOG_ERROR("timed out while waiting for target %s",
2995                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2996                         return ERROR_FAIL;
2997                 }
2998         }
2999
3000         return ERROR_OK;
3001 }
3002
3003 COMMAND_HANDLER(handle_halt_command)
3004 {
3005         LOG_DEBUG("-");
3006
3007         struct target *target = get_current_target(CMD_CTX);
3008
3009         target->verbose_halt_msg = true;
3010
3011         int retval = target_halt(target);
3012         if (ERROR_OK != retval)
3013                 return retval;
3014
3015         if (CMD_ARGC == 1) {
3016                 unsigned wait_local;
3017                 retval = parse_uint(CMD_ARGV[0], &wait_local);
3018                 if (ERROR_OK != retval)
3019                         return ERROR_COMMAND_SYNTAX_ERROR;
3020                 if (!wait_local)
3021                         return ERROR_OK;
3022         }
3023
3024         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
3025 }
3026
3027 COMMAND_HANDLER(handle_soft_reset_halt_command)
3028 {
3029         struct target *target = get_current_target(CMD_CTX);
3030
3031         LOG_USER("requesting target halt and executing a soft reset");
3032
3033         target_soft_reset_halt(target);
3034
3035         return ERROR_OK;
3036 }
3037
3038 COMMAND_HANDLER(handle_reset_command)
3039 {
3040         if (CMD_ARGC > 1)
3041                 return ERROR_COMMAND_SYNTAX_ERROR;
3042
3043         enum target_reset_mode reset_mode = RESET_RUN;
3044         if (CMD_ARGC == 1) {
3045                 const Jim_Nvp *n;
3046                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3047                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3048                         return ERROR_COMMAND_SYNTAX_ERROR;
3049                 reset_mode = n->value;
3050         }
3051
3052         /* reset *all* targets */
3053         return target_process_reset(CMD_CTX, reset_mode);
3054 }
3055
3056
3057 COMMAND_HANDLER(handle_resume_command)
3058 {
3059         int current = 1;
3060         if (CMD_ARGC > 1)
3061                 return ERROR_COMMAND_SYNTAX_ERROR;
3062
3063         struct target *target = get_current_target(CMD_CTX);
3064
3065         /* with no CMD_ARGV, resume from current pc, addr = 0,
3066          * with one arguments, addr = CMD_ARGV[0],
3067          * handle breakpoints, not debugging */
3068         target_addr_t addr = 0;
3069         if (CMD_ARGC == 1) {
3070                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3071                 current = 0;
3072         }
3073
3074         return target_resume(target, current, addr, 1, 0);
3075 }
3076
3077 COMMAND_HANDLER(handle_step_command)
3078 {
3079         if (CMD_ARGC > 1)
3080                 return ERROR_COMMAND_SYNTAX_ERROR;
3081
3082         LOG_DEBUG("-");
3083
3084         /* with no CMD_ARGV, step from current pc, addr = 0,
3085          * with one argument addr = CMD_ARGV[0],
3086          * handle breakpoints, debugging */
3087         target_addr_t addr = 0;
3088         int current_pc = 1;
3089         if (CMD_ARGC == 1) {
3090                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3091                 current_pc = 0;
3092         }
3093
3094         struct target *target = get_current_target(CMD_CTX);
3095
3096         return target->type->step(target, current_pc, addr, 1);
3097 }
3098
3099 static void handle_md_output(struct command_context *cmd_ctx,
3100                 struct target *target, target_addr_t address, unsigned size,
3101                 unsigned count, const uint8_t *buffer)
3102 {
3103         const unsigned line_bytecnt = 32;
3104         unsigned line_modulo = line_bytecnt / size;
3105
3106         char output[line_bytecnt * 4 + 1];
3107         unsigned output_len = 0;
3108
3109         const char *value_fmt;
3110         switch (size) {
3111         case 8:
3112                 value_fmt = "%16.16"PRIx64" ";
3113                 break;
3114         case 4:
3115                 value_fmt = "%8.8"PRIx64" ";
3116                 break;
3117         case 2:
3118                 value_fmt = "%4.4"PRIx64" ";
3119                 break;
3120         case 1:
3121                 value_fmt = "%2.2"PRIx64" ";
3122                 break;
3123         default:
3124                 /* "can't happen", caller checked */
3125                 LOG_ERROR("invalid memory read size: %u", size);
3126                 return;
3127         }
3128
3129         for (unsigned i = 0; i < count; i++) {
3130                 if (i % line_modulo == 0) {
3131                         output_len += snprintf(output + output_len,
3132                                         sizeof(output) - output_len,
3133                                         TARGET_ADDR_FMT ": ",
3134                                         (address + (i * size)));
3135                 }
3136
3137                 uint64_t value = 0;
3138                 const uint8_t *value_ptr = buffer + i * size;
3139                 switch (size) {
3140                 case 8:
3141                         value = target_buffer_get_u64(target, value_ptr);
3142                         break;
3143                 case 4:
3144                         value = target_buffer_get_u32(target, value_ptr);
3145                         break;
3146                 case 2:
3147                         value = target_buffer_get_u16(target, value_ptr);
3148                         break;
3149                 case 1:
3150                         value = *value_ptr;
3151                 }
3152                 output_len += snprintf(output + output_len,
3153                                 sizeof(output) - output_len,
3154                                 value_fmt, value);
3155
3156                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3157                         command_print(cmd_ctx, "%s", output);
3158                         output_len = 0;
3159                 }
3160         }
3161 }
3162
3163 COMMAND_HANDLER(handle_md_command)
3164 {
3165         if (CMD_ARGC < 1)
3166                 return ERROR_COMMAND_SYNTAX_ERROR;
3167
3168         unsigned size = 0;
3169         switch (CMD_NAME[2]) {
3170         case 'd':
3171                 size = 8;
3172                 break;
3173         case 'w':
3174                 size = 4;
3175                 break;
3176         case 'h':
3177                 size = 2;
3178                 break;
3179         case 'b':
3180                 size = 1;
3181                 break;
3182         default:
3183                 return ERROR_COMMAND_SYNTAX_ERROR;
3184         }
3185
3186         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3187         int (*fn)(struct target *target,
3188                         target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3189         if (physical) {
3190                 CMD_ARGC--;
3191                 CMD_ARGV++;
3192                 fn = target_read_phys_memory;
3193         } else
3194                 fn = target_read_memory;
3195         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3196                 return ERROR_COMMAND_SYNTAX_ERROR;
3197
3198         target_addr_t address;
3199         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3200
3201         unsigned count = 1;
3202         if (CMD_ARGC == 2)
3203                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3204
3205         uint8_t *buffer = calloc(count, size);
3206         if (buffer == NULL) {
3207                 LOG_ERROR("Failed to allocate md read buffer");
3208                 return ERROR_FAIL;
3209         }
3210
3211         struct target *target = get_current_target(CMD_CTX);
3212         int retval = fn(target, address, size, count, buffer);
3213         if (ERROR_OK == retval)
3214                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3215
3216         free(buffer);
3217
3218         return retval;
3219 }
3220
3221 typedef int (*target_write_fn)(struct target *target,
3222                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3223
3224 static int target_fill_mem(struct target *target,
3225                 target_addr_t address,
3226                 target_write_fn fn,
3227                 unsigned data_size,
3228                 /* value */
3229                 uint64_t b,
3230                 /* count */
3231                 unsigned c)
3232 {
3233         /* We have to write in reasonably large chunks to be able
3234          * to fill large memory areas with any sane speed */
3235         const unsigned chunk_size = 16384;
3236         uint8_t *target_buf = malloc(chunk_size * data_size);
3237         if (target_buf == NULL) {
3238                 LOG_ERROR("Out of memory");
3239                 return ERROR_FAIL;
3240         }
3241
3242         for (unsigned i = 0; i < chunk_size; i++) {
3243                 switch (data_size) {
3244                 case 8:
3245                         target_buffer_set_u64(target, target_buf + i * data_size, b);
3246                         break;
3247                 case 4:
3248                         target_buffer_set_u32(target, target_buf + i * data_size, b);
3249                         break;
3250                 case 2:
3251                         target_buffer_set_u16(target, target_buf + i * data_size, b);
3252                         break;
3253                 case 1:
3254                         target_buffer_set_u8(target, target_buf + i * data_size, b);
3255                         break;
3256                 default:
3257                         exit(-1);
3258                 }
3259         }
3260
3261         int retval = ERROR_OK;
3262
3263         for (unsigned x = 0; x < c; x += chunk_size) {
3264                 unsigned current;
3265                 current = c - x;
3266                 if (current > chunk_size)
3267                         current = chunk_size;
3268                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3269                 if (retval != ERROR_OK)
3270                         break;
3271                 /* avoid GDB timeouts */
3272                 keep_alive();
3273         }
3274         free(target_buf);
3275
3276         return retval;
3277 }
3278
3279
3280 COMMAND_HANDLER(handle_mw_command)
3281 {
3282         if (CMD_ARGC < 2)
3283                 return ERROR_COMMAND_SYNTAX_ERROR;
3284         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3285         target_write_fn fn;
3286         if (physical) {
3287                 CMD_ARGC--;
3288                 CMD_ARGV++;
3289                 fn = target_write_phys_memory;
3290         } else
3291                 fn = target_write_memory;
3292         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3293                 return ERROR_COMMAND_SYNTAX_ERROR;
3294
3295         target_addr_t address;
3296         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3297
3298         target_addr_t value;
3299         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3300
3301         unsigned count = 1;
3302         if (CMD_ARGC == 3)
3303                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3304
3305         struct target *target = get_current_target(CMD_CTX);
3306         unsigned wordsize;
3307         switch (CMD_NAME[2]) {
3308                 case 'd':
3309                         wordsize = 8;
3310                         break;
3311                 case 'w':
3312                         wordsize = 4;
3313                         break;
3314                 case 'h':
3315                         wordsize = 2;
3316                         break;
3317                 case 'b':
3318                         wordsize = 1;
3319                         break;
3320                 default:
3321                         return ERROR_COMMAND_SYNTAX_ERROR;
3322         }
3323
3324         return target_fill_mem(target, address, fn, wordsize, value, count);
3325 }
3326
3327 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3328                 target_addr_t *min_address, target_addr_t *max_address)
3329 {
3330         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3331                 return ERROR_COMMAND_SYNTAX_ERROR;
3332
3333         /* a base address isn't always necessary,
3334          * default to 0x0 (i.e. don't relocate) */
3335         if (CMD_ARGC >= 2) {
3336                 target_addr_t addr;
3337                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3338                 image->base_address = addr;
3339                 image->base_address_set = 1;
3340         } else
3341                 image->base_address_set = 0;
3342
3343         image->start_address_set = 0;
3344
3345         if (CMD_ARGC >= 4)
3346                 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3347         if (CMD_ARGC == 5) {
3348                 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3349                 /* use size (given) to find max (required) */
3350                 *max_address += *min_address;
3351         }
3352
3353         if (*min_address > *max_address)
3354                 return ERROR_COMMAND_SYNTAX_ERROR;
3355
3356         return ERROR_OK;
3357 }
3358
3359 COMMAND_HANDLER(handle_load_image_command)
3360 {
3361         uint8_t *buffer;
3362         size_t buf_cnt;
3363         uint32_t image_size;
3364         target_addr_t min_address = 0;
3365         target_addr_t max_address = -1;
3366         int i;
3367         struct image image;
3368
3369         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3370                         &image, &min_address, &max_address);
3371         if (ERROR_OK != retval)
3372                 return retval;
3373
3374         struct target *target = get_current_target(CMD_CTX);
3375
3376         struct duration bench;
3377         duration_start(&bench);
3378
3379         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3380                 return ERROR_FAIL;
3381
3382         image_size = 0x0;
3383         retval = ERROR_OK;
3384         for (i = 0; i < image.num_sections; i++) {
3385                 buffer = malloc(image.sections[i].size);
3386                 if (buffer == NULL) {
3387                         command_print(CMD_CTX,
3388                                                   "error allocating buffer for section (%d bytes)",
3389                                                   (int)(image.sections[i].size));
3390                         retval = ERROR_FAIL;
3391                         break;
3392                 }
3393
3394                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3395                 if (retval != ERROR_OK) {
3396                         free(buffer);
3397                         break;
3398                 }
3399
3400                 uint32_t offset = 0;
3401                 uint32_t length = buf_cnt;
3402
3403                 /* DANGER!!! beware of unsigned comparision here!!! */
3404
3405                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3406                                 (image.sections[i].base_address < max_address)) {
3407
3408                         if (image.sections[i].base_address < min_address) {
3409                                 /* clip addresses below */
3410                                 offset += min_address-image.sections[i].base_address;
3411                                 length -= offset;
3412                         }
3413
3414                         if (image.sections[i].base_address + buf_cnt > max_address)
3415                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3416
3417                         retval = target_write_buffer(target,
3418                                         image.sections[i].base_address + offset, length, buffer + offset);
3419                         if (retval != ERROR_OK) {
3420                                 free(buffer);
3421                                 break;
3422                         }
3423                         image_size += length;
3424                         command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3425                                         (unsigned int)length,
3426                                         image.sections[i].base_address + offset);
3427                 }
3428
3429                 free(buffer);
3430         }
3431
3432         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3433                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3434                                 "in %fs (%0.3f KiB/s)", image_size,
3435                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3436         }
3437
3438         image_close(&image);
3439
3440         return retval;
3441
3442 }
3443
3444 COMMAND_HANDLER(handle_dump_image_command)
3445 {
3446         struct fileio *fileio;
3447         uint8_t *buffer;
3448         int retval, retvaltemp;
3449         target_addr_t address, size;
3450         struct duration bench;
3451         struct target *target = get_current_target(CMD_CTX);
3452
3453         if (CMD_ARGC != 3)
3454                 return ERROR_COMMAND_SYNTAX_ERROR;
3455
3456         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3457         COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3458
3459         uint32_t buf_size = (size > 4096) ? 4096 : size;
3460         buffer = malloc(buf_size);
3461         if (!buffer)
3462                 return ERROR_FAIL;
3463
3464         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3465         if (retval != ERROR_OK) {
3466                 free(buffer);
3467                 return retval;
3468         }
3469
3470         duration_start(&bench);
3471
3472         while (size > 0) {
3473                 size_t size_written;
3474                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3475                 retval = target_read_buffer(target, address, this_run_size, buffer);
3476                 if (retval != ERROR_OK)
3477                         break;
3478
3479                 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3480                 if (retval != ERROR_OK)
3481                         break;
3482
3483                 size -= this_run_size;
3484                 address += this_run_size;
3485         }
3486
3487         free(buffer);
3488
3489         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3490                 size_t filesize;
3491                 retval = fileio_size(fileio, &filesize);
3492                 if (retval != ERROR_OK)
3493                         return retval;
3494                 command_print(CMD_CTX,
3495                                 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3496                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3497         }
3498
3499         retvaltemp = fileio_close(fileio);
3500         if (retvaltemp != ERROR_OK)
3501                 return retvaltemp;
3502
3503         return retval;
3504 }
3505
3506 enum verify_mode {
3507         IMAGE_TEST = 0,
3508         IMAGE_VERIFY = 1,
3509         IMAGE_CHECKSUM_ONLY = 2
3510 };
3511
3512 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3513 {
3514         uint8_t *buffer;
3515         size_t buf_cnt;
3516         uint32_t image_size;
3517         int i;
3518         int retval;
3519         uint32_t checksum = 0;
3520         uint32_t mem_checksum = 0;
3521
3522         struct image image;
3523
3524         struct target *target = get_current_target(CMD_CTX);
3525
3526         if (CMD_ARGC < 1)
3527                 return ERROR_COMMAND_SYNTAX_ERROR;
3528
3529         if (!target) {
3530                 LOG_ERROR("no target selected");
3531                 return ERROR_FAIL;
3532         }
3533
3534         struct duration bench;
3535         duration_start(&bench);
3536
3537         if (CMD_ARGC >= 2) {
3538                 target_addr_t addr;
3539                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3540                 image.base_address = addr;
3541                 image.base_address_set = 1;
3542         } else {
3543                 image.base_address_set = 0;
3544                 image.base_address = 0x0;
3545         }
3546
3547         image.start_address_set = 0;
3548
3549         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3550         if (retval != ERROR_OK)
3551                 return retval;
3552
3553         image_size = 0x0;
3554         int diffs = 0;
3555         retval = ERROR_OK;
3556         for (i = 0; i < image.num_sections; i++) {
3557                 buffer = malloc(image.sections[i].size);
3558                 if (buffer == NULL) {
3559                         command_print(CMD_CTX,
3560                                         "error allocating buffer for section (%d bytes)",
3561                                         (int)(image.sections[i].size));
3562                         break;
3563                 }
3564                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3565                 if (retval != ERROR_OK) {
3566                         free(buffer);
3567                         break;
3568                 }
3569
3570                 if (verify >= IMAGE_VERIFY) {
3571                         /* calculate checksum of image */
3572                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3573                         if (retval != ERROR_OK) {
3574                                 free(buffer);
3575                                 break;
3576                         }
3577
3578                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3579                         if (retval != ERROR_OK) {
3580                                 free(buffer);
3581                                 break;
3582                         }
3583                         if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3584                                 LOG_ERROR("checksum mismatch");
3585                                 free(buffer);
3586                                 retval = ERROR_FAIL;
3587                                 goto done;
3588                         }
3589                         if (checksum != mem_checksum) {
3590                                 /* failed crc checksum, fall back to a binary compare */
3591                                 uint8_t *data;
3592
3593                                 if (diffs == 0)
3594                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3595
3596                                 data = malloc(buf_cnt);
3597
3598                                 /* Can we use 32bit word accesses? */
3599                                 int size = 1;
3600                                 int count = buf_cnt;
3601                                 if ((count % 4) == 0) {
3602                                         size *= 4;
3603                                         count /= 4;
3604                                 }
3605                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3606                                 if (retval == ERROR_OK) {
3607                                         uint32_t t;
3608                                         for (t = 0; t < buf_cnt; t++) {
3609                                                 if (data[t] != buffer[t]) {
3610                                                         command_print(CMD_CTX,
3611                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3612                                                                                   diffs,
3613                                                                                   (unsigned)(t + image.sections[i].base_address),
3614                                                                                   data[t],
3615                                                                                   buffer[t]);
3616                                                         if (diffs++ >= 127) {
3617                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3618                                                                 free(data);
3619                                                                 free(buffer);
3620                                                                 goto done;
3621                                                         }
3622                                                 }
3623                                                 keep_alive();
3624                                         }
3625                                 }
3626                                 free(data);
3627                         }
3628                 } else {
3629                         command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3630                                                   image.sections[i].base_address,
3631                                                   buf_cnt);
3632                 }
3633
3634                 free(buffer);
3635                 image_size += buf_cnt;
3636         }
3637         if (diffs > 0)
3638                 command_print(CMD_CTX, "No more differences found.");
3639 done:
3640         if (diffs > 0)
3641                 retval = ERROR_FAIL;
3642         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3643                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3644                                 "in %fs (%0.3f KiB/s)", image_size,
3645                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3646         }
3647
3648         image_close(&image);
3649
3650         return retval;
3651 }
3652
3653 COMMAND_HANDLER(handle_verify_image_checksum_command)
3654 {
3655         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3656 }
3657
3658 COMMAND_HANDLER(handle_verify_image_command)
3659 {
3660         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3661 }
3662
3663 COMMAND_HANDLER(handle_test_image_command)
3664 {
3665         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3666 }
3667
3668 static int handle_bp_command_list(struct command_context *cmd_ctx)
3669 {
3670         struct target *target = get_current_target(cmd_ctx);
3671         struct breakpoint *breakpoint = target->breakpoints;
3672         while (breakpoint) {
3673                 if (breakpoint->type == BKPT_SOFT) {
3674                         char *buf = buf_to_str(breakpoint->orig_instr,
3675                                         breakpoint->length, 16);
3676                         command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3677                                         breakpoint->address,
3678                                         breakpoint->length,
3679                                         breakpoint->set, buf);
3680                         free(buf);
3681                 } else {
3682                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3683                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3684                                                         breakpoint->asid,
3685                                                         breakpoint->length, breakpoint->set);
3686                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3687                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3688                                                         breakpoint->address,
3689                                                         breakpoint->length, breakpoint->set);
3690                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3691                                                         breakpoint->asid);
3692                         } else
3693                                 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3694                                                         breakpoint->address,
3695                                                         breakpoint->length, breakpoint->set);
3696                 }
3697
3698                 breakpoint = breakpoint->next;
3699         }
3700         return ERROR_OK;
3701 }
3702
3703 static int handle_bp_command_set(struct command_context *cmd_ctx,
3704                 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3705 {
3706         struct target *target = get_current_target(cmd_ctx);
3707         int retval;
3708
3709         if (asid == 0) {
3710                 retval = breakpoint_add(target, addr, length, hw);
3711                 if (ERROR_OK == retval)
3712                         command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3713                 else {
3714                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3715                         return retval;
3716                 }
3717         } else if (addr == 0) {
3718                 if (target->type->add_context_breakpoint == NULL) {
3719                         LOG_WARNING("Context breakpoint not available");
3720                         return ERROR_OK;
3721                 }
3722                 retval = context_breakpoint_add(target, asid, length, hw);
3723                 if (ERROR_OK == retval)
3724                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3725                 else {
3726                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3727                         return retval;
3728                 }
3729         } else {
3730                 if (target->type->add_hybrid_breakpoint == NULL) {
3731                         LOG_WARNING("Hybrid breakpoint not available");
3732                         return ERROR_OK;
3733                 }
3734                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3735                 if (ERROR_OK == retval)
3736                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3737                 else {
3738                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3739                         return retval;
3740                 }
3741         }
3742         return ERROR_OK;
3743 }
3744
3745 COMMAND_HANDLER(handle_bp_command)
3746 {
3747         target_addr_t addr;
3748         uint32_t asid;
3749         uint32_t length;
3750         int hw = BKPT_SOFT;
3751
3752         switch (CMD_ARGC) {
3753                 case 0:
3754                         return handle_bp_command_list(CMD_CTX);
3755
3756                 case 2:
3757                         asid = 0;
3758                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3759                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3760                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3761
3762                 case 3:
3763                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3764                                 hw = BKPT_HARD;
3765                                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3766                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3767                                 asid = 0;
3768                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3769                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3770                                 hw = BKPT_HARD;
3771                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3772                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3773                                 addr = 0;
3774                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3775                         }
3776                         /* fallthrough */
3777                 case 4:
3778                         hw = BKPT_HARD;
3779                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3780                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3781                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3782                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3783
3784                 default:
3785                         return ERROR_COMMAND_SYNTAX_ERROR;
3786         }
3787 }
3788
3789 COMMAND_HANDLER(handle_rbp_command)
3790 {
3791         if (CMD_ARGC != 1)
3792                 return ERROR_COMMAND_SYNTAX_ERROR;
3793
3794         target_addr_t addr;
3795         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3796
3797         struct target *target = get_current_target(CMD_CTX);
3798         breakpoint_remove(target, addr);
3799
3800         return ERROR_OK;
3801 }
3802
3803 COMMAND_HANDLER(handle_wp_command)
3804 {
3805         struct target *target = get_current_target(CMD_CTX);
3806
3807         if (CMD_ARGC == 0) {
3808                 struct watchpoint *watchpoint = target->watchpoints;
3809
3810                 while (watchpoint) {
3811                         command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3812                                         ", len: 0x%8.8" PRIx32
3813                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3814                                         ", mask: 0x%8.8" PRIx32,
3815                                         watchpoint->address,
3816                                         watchpoint->length,
3817                                         (int)watchpoint->rw,
3818                                         watchpoint->value,
3819                                         watchpoint->mask);
3820                         watchpoint = watchpoint->next;
3821                 }
3822                 return ERROR_OK;
3823         }
3824
3825         enum watchpoint_rw type = WPT_ACCESS;
3826         uint32_t addr = 0;
3827         uint32_t length = 0;
3828         uint32_t data_value = 0x0;
3829         uint32_t data_mask = 0xffffffff;
3830
3831         switch (CMD_ARGC) {
3832         case 5:
3833                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3834                 /* fall through */
3835         case 4:
3836                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3837                 /* fall through */
3838         case 3:
3839                 switch (CMD_ARGV[2][0]) {
3840                 case 'r':
3841                         type = WPT_READ;
3842                         break;
3843                 case 'w':
3844                         type = WPT_WRITE;
3845                         break;
3846                 case 'a':
3847                         type = WPT_ACCESS;
3848                         break;
3849                 default:
3850                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3851                         return ERROR_COMMAND_SYNTAX_ERROR;
3852                 }
3853                 /* fall through */
3854         case 2:
3855                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3856                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3857                 break;
3858
3859         default:
3860                 return ERROR_COMMAND_SYNTAX_ERROR;
3861         }
3862
3863         int retval = watchpoint_add(target, addr, length, type,
3864                         data_value, data_mask);
3865         if (ERROR_OK != retval)
3866                 LOG_ERROR("Failure setting watchpoints");
3867
3868         return retval;
3869 }
3870
3871 COMMAND_HANDLER(handle_rwp_command)
3872 {
3873         if (CMD_ARGC != 1)
3874                 return ERROR_COMMAND_SYNTAX_ERROR;
3875
3876         uint32_t addr;
3877         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3878
3879         struct target *target = get_current_target(CMD_CTX);
3880         watchpoint_remove(target, addr);
3881
3882         return ERROR_OK;
3883 }
3884
3885 /**
3886  * Translate a virtual address to a physical address.
3887  *
3888  * The low-level target implementation must have logged a detailed error
3889  * which is forwarded to telnet/GDB session.
3890  */
3891 COMMAND_HANDLER(handle_virt2phys_command)
3892 {
3893         if (CMD_ARGC != 1)
3894                 return ERROR_COMMAND_SYNTAX_ERROR;
3895
3896         target_addr_t va;
3897         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3898         target_addr_t pa;
3899
3900         struct target *target = get_current_target(CMD_CTX);
3901         int retval = target->type->virt2phys(target, va, &pa);
3902         if (retval == ERROR_OK)
3903                 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3904
3905         return retval;
3906 }
3907
3908 static void writeData(FILE *f, const void *data, size_t len)
3909 {
3910         size_t written = fwrite(data, 1, len, f);
3911         if (written != len)
3912                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3913 }
3914
3915 static void writeLong(FILE *f, int l, struct target *target)
3916 {
3917         uint8_t val[4];
3918
3919         target_buffer_set_u32(target, val, l);
3920         writeData(f, val, 4);
3921 }
3922
3923 static void writeString(FILE *f, char *s)
3924 {
3925         writeData(f, s, strlen(s));
3926 }
3927
3928 typedef unsigned char UNIT[2];  /* unit of profiling */
3929
3930 /* Dump a gmon.out histogram file. */
3931 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3932                         uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3933 {
3934         uint32_t i;
3935         FILE *f = fopen(filename, "w");
3936         if (f == NULL)
3937                 return;
3938         writeString(f, "gmon");
3939         writeLong(f, 0x00000001, target); /* Version */
3940         writeLong(f, 0, target); /* padding */
3941         writeLong(f, 0, target); /* padding */
3942         writeLong(f, 0, target); /* padding */
3943
3944         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3945         writeData(f, &zero, 1);
3946
3947         /* figure out bucket size */
3948         uint32_t min;
3949         uint32_t max;
3950         if (with_range) {
3951                 min = start_address;
3952                 max = end_address;
3953         } else {
3954                 min = samples[0];
3955                 max = samples[0];
3956                 for (i = 0; i < sampleNum; i++) {
3957                         if (min > samples[i])
3958                                 min = samples[i];
3959                         if (max < samples[i])
3960                                 max = samples[i];
3961                 }
3962
3963                 /* max should be (largest sample + 1)
3964                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3965                 max++;
3966         }
3967
3968         int addressSpace = max - min;
3969         assert(addressSpace >= 2);
3970
3971         /* FIXME: What is the reasonable number of buckets?
3972          * The profiling result will be more accurate if there are enough buckets. */
3973         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3974         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3975         if (numBuckets > maxBuckets)
3976                 numBuckets = maxBuckets;
3977         int *buckets = malloc(sizeof(int) * numBuckets);
3978         if (buckets == NULL) {
3979                 fclose(f);
3980                 return;
3981         }
3982         memset(buckets, 0, sizeof(int) * numBuckets);
3983         for (i = 0; i < sampleNum; i++) {
3984                 uint32_t address = samples[i];
3985
3986                 if ((address < min) || (max <= address))
3987                         continue;
3988
3989                 long long a = address - min;
3990                 long long b = numBuckets;
3991                 long long c = addressSpace;
3992                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3993                 buckets[index_t]++;
3994         }
3995
3996         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3997         writeLong(f, min, target);                      /* low_pc */
3998         writeLong(f, max, target);                      /* high_pc */
3999         writeLong(f, numBuckets, target);       /* # of buckets */
4000         float sample_rate = sampleNum / (duration_ms / 1000.0);
4001         writeLong(f, sample_rate, target);
4002         writeString(f, "seconds");
4003         for (i = 0; i < (15-strlen("seconds")); i++)
4004                 writeData(f, &zero, 1);
4005         writeString(f, "s");
4006
4007         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
4008
4009         char *data = malloc(2 * numBuckets);
4010         if (data != NULL) {
4011                 for (i = 0; i < numBuckets; i++) {
4012                         int val;
4013                         val = buckets[i];
4014                         if (val > 65535)
4015                                 val = 65535;
4016                         data[i * 2] = val&0xff;
4017                         data[i * 2 + 1] = (val >> 8) & 0xff;
4018                 }
4019                 free(buckets);
4020                 writeData(f, data, numBuckets * 2);
4021                 free(data);
4022         } else
4023                 free(buckets);
4024
4025         fclose(f);
4026 }
4027
4028 /* profiling samples the CPU PC as quickly as OpenOCD is able,
4029  * which will be used as a random sampling of PC */
4030 COMMAND_HANDLER(handle_profile_command)
4031 {
4032         struct target *target = get_current_target(CMD_CTX);
4033
4034         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4035                 return ERROR_COMMAND_SYNTAX_ERROR;
4036
4037         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
4038         uint32_t offset;
4039         uint32_t num_of_samples;
4040         int retval = ERROR_OK;
4041
4042         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4043
4044         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4045         if (samples == NULL) {
4046                 LOG_ERROR("No memory to store samples.");
4047                 return ERROR_FAIL;
4048         }
4049
4050         uint64_t timestart_ms = timeval_ms();
4051         /**
4052          * Some cores let us sample the PC without the
4053          * annoying halt/resume step; for example, ARMv7 PCSR.
4054          * Provide a way to use that more efficient mechanism.
4055          */
4056         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4057                                 &num_of_samples, offset);
4058         if (retval != ERROR_OK) {
4059                 free(samples);
4060                 return retval;
4061         }
4062         uint32_t duration_ms = timeval_ms() - timestart_ms;
4063
4064         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4065
4066         retval = target_poll(target);
4067         if (retval != ERROR_OK) {
4068                 free(samples);
4069                 return retval;
4070         }
4071         if (target->state == TARGET_RUNNING) {
4072                 retval = target_halt(target);
4073                 if (retval != ERROR_OK) {
4074                         free(samples);
4075                         return retval;
4076                 }
4077         }
4078
4079         retval = target_poll(target);
4080         if (retval != ERROR_OK) {
4081                 free(samples);
4082                 return retval;
4083         }
4084
4085         uint32_t start_address = 0;
4086         uint32_t end_address = 0;
4087         bool with_range = false;
4088         if (CMD_ARGC == 4) {
4089                 with_range = true;
4090                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4091                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4092         }
4093
4094         write_gmon(samples, num_of_samples, CMD_ARGV[1],
4095                    with_range, start_address, end_address, target, duration_ms);
4096         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4097
4098         free(samples);
4099         return retval;
4100 }
4101
4102 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4103 {
4104         char *namebuf;
4105         Jim_Obj *nameObjPtr, *valObjPtr;
4106         int result;
4107
4108         namebuf = alloc_printf("%s(%d)", varname, idx);
4109         if (!namebuf)
4110                 return JIM_ERR;
4111
4112         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4113         valObjPtr = Jim_NewIntObj(interp, val);
4114         if (!nameObjPtr || !valObjPtr) {
4115                 free(namebuf);
4116                 return JIM_ERR;
4117         }
4118
4119         Jim_IncrRefCount(nameObjPtr);
4120         Jim_IncrRefCount(valObjPtr);
4121         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4122         Jim_DecrRefCount(interp, nameObjPtr);
4123         Jim_DecrRefCount(interp, valObjPtr);
4124         free(namebuf);
4125         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4126         return result;
4127 }
4128
4129 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4130 {
4131         struct command_context *context;
4132         struct target *target;
4133
4134         context = current_command_context(interp);
4135         assert(context != NULL);
4136
4137         target = get_current_target(context);
4138         if (target == NULL) {
4139                 LOG_ERROR("mem2array: no current target");
4140                 return JIM_ERR;
4141         }
4142
4143         return target_mem2array(interp, target, argc - 1, argv + 1);
4144 }
4145
4146 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4147 {
4148         long l;
4149         uint32_t width;
4150         int len;
4151         uint32_t addr;
4152         uint32_t count;
4153         uint32_t v;
4154         const char *varname;
4155         const char *phys;
4156         bool is_phys;
4157         int  n, e, retval;
4158         uint32_t i;
4159
4160         /* argv[1] = name of array to receive the data
4161          * argv[2] = desired width
4162          * argv[3] = memory address
4163          * argv[4] = count of times to read
4164          */
4165
4166         if (argc < 4 || argc > 5) {
4167                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4168                 return JIM_ERR;
4169         }
4170         varname = Jim_GetString(argv[0], &len);
4171         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4172
4173         e = Jim_GetLong(interp, argv[1], &l);
4174         width = l;
4175         if (e != JIM_OK)
4176                 return e;
4177
4178         e = Jim_GetLong(interp, argv[2], &l);
4179         addr = l;
4180         if (e != JIM_OK)
4181                 return e;
4182         e = Jim_GetLong(interp, argv[3], &l);
4183         len = l;
4184         if (e != JIM_OK)
4185                 return e;
4186         is_phys = false;
4187         if (argc > 4) {
4188                 phys = Jim_GetString(argv[4], &n);
4189                 if (!strncmp(phys, "phys", n))
4190                         is_phys = true;
4191                 else
4192                         return JIM_ERR;
4193         }
4194         switch (width) {
4195                 case 8:
4196                         width = 1;
4197                         break;
4198                 case 16:
4199                         width = 2;
4200                         break;
4201                 case 32:
4202                         width = 4;
4203                         break;
4204                 default:
4205                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4206                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4207                         return JIM_ERR;
4208         }
4209         if (len == 0) {
4210                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4211                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4212                 return JIM_ERR;
4213         }
4214         if ((addr + (len * width)) < addr) {
4215                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4216                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4217                 return JIM_ERR;
4218         }
4219         /* absurd transfer size? */
4220         if (len > 65536) {
4221                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4222                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4223                 return JIM_ERR;
4224         }
4225
4226         if ((width == 1) ||
4227                 ((width == 2) && ((addr & 1) == 0)) ||
4228                 ((width == 4) && ((addr & 3) == 0))) {
4229                 /* all is well */
4230         } else {
4231                 char buf[100];
4232                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4233                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4234                                 addr,
4235                                 width);
4236                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4237                 return JIM_ERR;
4238         }
4239
4240         /* Transfer loop */
4241
4242         /* index counter */
4243         n = 0;
4244
4245         size_t buffersize = 4096;
4246         uint8_t *buffer = malloc(buffersize);
4247         if (buffer == NULL)
4248                 return JIM_ERR;
4249
4250         /* assume ok */
4251         e = JIM_OK;
4252         while (len) {
4253                 /* Slurp... in buffer size chunks */
4254
4255                 count = len; /* in objects.. */
4256                 if (count > (buffersize / width))
4257                         count = (buffersize / width);
4258
4259                 if (is_phys)
4260                         retval = target_read_phys_memory(target, addr, width, count, buffer);
4261                 else
4262                         retval = target_read_memory(target, addr, width, count, buffer);
4263                 if (retval != ERROR_OK) {
4264                         /* BOO !*/
4265                         LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4266                                           addr,
4267                                           width,
4268                                           count);
4269                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4270                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4271                         e = JIM_ERR;
4272                         break;
4273                 } else {
4274                         v = 0; /* shut up gcc */
4275                         for (i = 0; i < count ; i++, n++) {
4276                                 switch (width) {
4277                                         case 4:
4278                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
4279                                                 break;
4280                                         case 2:
4281                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
4282                                                 break;
4283                                         case 1:
4284                                                 v = buffer[i] & 0x0ff;
4285                                                 break;
4286                                 }
4287                                 new_int_array_element(interp, varname, n, v);
4288                         }
4289                         len -= count;
4290                         addr += count * width;
4291                 }
4292         }
4293
4294         free(buffer);
4295
4296         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4297
4298         return e;
4299 }
4300
4301 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4302 {
4303         char *namebuf;
4304         Jim_Obj *nameObjPtr, *valObjPtr;
4305         int result;
4306         long l;
4307
4308         namebuf = alloc_printf("%s(%d)", varname, idx);
4309         if (!namebuf)
4310                 return JIM_ERR;
4311
4312         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4313         if (!nameObjPtr) {
4314                 free(namebuf);
4315                 return JIM_ERR;
4316         }
4317
4318         Jim_IncrRefCount(nameObjPtr);
4319         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4320         Jim_DecrRefCount(interp, nameObjPtr);
4321         free(namebuf);
4322         if (valObjPtr == NULL)
4323                 return JIM_ERR;
4324
4325         result = Jim_GetLong(interp, valObjPtr, &l);
4326         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4327         *val = l;
4328         return result;
4329 }
4330
4331 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4332 {
4333         struct command_context *context;
4334         struct target *target;
4335
4336         context = current_command_context(interp);
4337         assert(context != NULL);
4338
4339         target = get_current_target(context);
4340         if (target == NULL) {
4341                 LOG_ERROR("array2mem: no current target");
4342                 return JIM_ERR;
4343         }
4344
4345         return target_array2mem(interp, target, argc-1, argv + 1);
4346 }
4347
4348 static int target_array2mem(Jim_Interp *interp, struct target *target,
4349                 int argc, Jim_Obj *const *argv)
4350 {
4351         long l;
4352         uint32_t width;
4353         int len;
4354         uint32_t addr;
4355         uint32_t count;
4356         uint32_t v;
4357         const char *varname;
4358         const char *phys;
4359         bool is_phys;
4360         int  n, e, retval;
4361         uint32_t i;
4362
4363         /* argv[1] = name of array to get the data
4364          * argv[2] = desired width
4365          * argv[3] = memory address
4366          * argv[4] = count to write
4367          */
4368         if (argc < 4 || argc > 5) {
4369                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4370                 return JIM_ERR;
4371         }
4372         varname = Jim_GetString(argv[0], &len);
4373         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4374
4375         e = Jim_GetLong(interp, argv[1], &l);
4376         width = l;
4377         if (e != JIM_OK)
4378                 return e;
4379
4380         e = Jim_GetLong(interp, argv[2], &l);
4381         addr = l;
4382         if (e != JIM_OK)
4383                 return e;
4384         e = Jim_GetLong(interp, argv[3], &l);
4385         len = l;
4386         if (e != JIM_OK)
4387                 return e;
4388         is_phys = false;
4389         if (argc > 4) {
4390                 phys = Jim_GetString(argv[4], &n);
4391                 if (!strncmp(phys, "phys", n))
4392                         is_phys = true;
4393                 else
4394                         return JIM_ERR;
4395         }
4396         switch (width) {
4397                 case 8:
4398                         width = 1;
4399                         break;
4400                 case 16:
4401                         width = 2;
4402                         break;
4403                 case 32:
4404                         width = 4;
4405                         break;
4406                 default:
4407                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4408                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4409                                         "Invalid width param, must be 8/16/32", NULL);
4410                         return JIM_ERR;
4411         }
4412         if (len == 0) {
4413                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4414                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4415                                 "array2mem: zero width read?", NULL);
4416                 return JIM_ERR;
4417         }
4418         if ((addr + (len * width)) < addr) {
4419                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4420                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4421                                 "array2mem: addr + len - wraps to zero?", NULL);
4422                 return JIM_ERR;
4423         }
4424         /* absurd transfer size? */
4425         if (len > 65536) {
4426                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4427                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4428                                 "array2mem: absurd > 64K item request", NULL);
4429                 return JIM_ERR;
4430         }
4431
4432         if ((width == 1) ||
4433                 ((width == 2) && ((addr & 1) == 0)) ||
4434                 ((width == 4) && ((addr & 3) == 0))) {
4435                 /* all is well */
4436         } else {
4437                 char buf[100];
4438                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4439                 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4440                                 addr,
4441                                 width);
4442                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4443                 return JIM_ERR;
4444         }
4445
4446         /* Transfer loop */
4447
4448         /* index counter */
4449         n = 0;
4450         /* assume ok */
4451         e = JIM_OK;
4452
4453         size_t buffersize = 4096;
4454         uint8_t *buffer = malloc(buffersize);
4455         if (buffer == NULL)
4456                 return JIM_ERR;
4457
4458         while (len) {
4459                 /* Slurp... in buffer size chunks */
4460
4461                 count = len; /* in objects.. */
4462                 if (count > (buffersize / width))
4463                         count = (buffersize / width);
4464
4465                 v = 0; /* shut up gcc */
4466                 for (i = 0; i < count; i++, n++) {
4467                         get_int_array_element(interp, varname, n, &v);
4468                         switch (width) {
4469                         case 4:
4470                                 target_buffer_set_u32(target, &buffer[i * width], v);
4471                                 break;
4472                         case 2:
4473                                 target_buffer_set_u16(target, &buffer[i * width], v);
4474                                 break;
4475                         case 1:
4476                                 buffer[i] = v & 0x0ff;
4477                                 break;
4478                         }
4479                 }
4480                 len -= count;
4481
4482                 if (is_phys)
4483                         retval = target_write_phys_memory(target, addr, width, count, buffer);
4484                 else
4485                         retval = target_write_memory(target, addr, width, count, buffer);
4486                 if (retval != ERROR_OK) {
4487                         /* BOO !*/
4488                         LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4489                                           addr,
4490                                           width,
4491                                           count);
4492                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4493                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4494                         e = JIM_ERR;
4495                         break;
4496                 }
4497                 addr += count * width;
4498         }
4499
4500         free(buffer);
4501
4502         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4503
4504         return e;
4505 }
4506
4507 /* FIX? should we propagate errors here rather than printing them
4508  * and continuing?
4509  */
4510 void target_handle_event(struct target *target, enum target_event e)
4511 {
4512         struct target_event_action *teap;
4513
4514         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4515                 if (teap->event == e) {
4516                         LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4517                                            target->target_number,
4518                                            target_name(target),
4519                                            target_type_name(target),
4520                                            e,
4521                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4522                                            Jim_GetString(teap->body, NULL));
4523
4524                         /* Override current target by the target an event
4525                          * is issued from (lot of scripts need it).
4526                          * Return back to previous override as soon
4527                          * as the handler processing is done */
4528                         struct command_context *cmd_ctx = current_command_context(teap->interp);
4529                         struct target *saved_target_override = cmd_ctx->current_target_override;
4530                         cmd_ctx->current_target_override = target;
4531
4532                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4533                                 Jim_MakeErrorMessage(teap->interp);
4534                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4535                         }
4536
4537                         cmd_ctx->current_target_override = saved_target_override;
4538                 }
4539         }
4540 }
4541
4542 /**
4543  * Returns true only if the target has a handler for the specified event.
4544  */
4545 bool target_has_event_action(struct target *target, enum target_event event)
4546 {
4547         struct target_event_action *teap;
4548
4549         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4550                 if (teap->event == event)
4551                         return true;
4552         }
4553         return false;
4554 }
4555
4556 enum target_cfg_param {
4557         TCFG_TYPE,
4558         TCFG_EVENT,
4559         TCFG_WORK_AREA_VIRT,
4560         TCFG_WORK_AREA_PHYS,
4561         TCFG_WORK_AREA_SIZE,
4562         TCFG_WORK_AREA_BACKUP,
4563         TCFG_ENDIAN,
4564         TCFG_COREID,
4565         TCFG_CHAIN_POSITION,
4566         TCFG_DBGBASE,
4567         TCFG_RTOS,
4568         TCFG_DEFER_EXAMINE,
4569         TCFG_GDB_PORT,
4570 };
4571
4572 static Jim_Nvp nvp_config_opts[] = {
4573         { .name = "-type",             .value = TCFG_TYPE },
4574         { .name = "-event",            .value = TCFG_EVENT },
4575         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4576         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4577         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4578         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4579         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4580         { .name = "-coreid",           .value = TCFG_COREID },
4581         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4582         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4583         { .name = "-rtos",             .value = TCFG_RTOS },
4584         { .name = "-defer-examine",    .value = TCFG_DEFER_EXAMINE },
4585         { .name = "-gdb-port",         .value = TCFG_GDB_PORT },
4586         { .name = NULL, .value = -1 }
4587 };
4588
4589 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4590 {
4591         Jim_Nvp *n;
4592         Jim_Obj *o;
4593         jim_wide w;
4594         int e;
4595
4596         /* parse config or cget options ... */
4597         while (goi->argc > 0) {
4598                 Jim_SetEmptyResult(goi->interp);
4599                 /* Jim_GetOpt_Debug(goi); */
4600
4601                 if (target->type->target_jim_configure) {
4602                         /* target defines a configure function */
4603                         /* target gets first dibs on parameters */
4604                         e = (*(target->type->target_jim_configure))(target, goi);
4605                         if (e == JIM_OK) {
4606                                 /* more? */
4607                                 continue;
4608                         }
4609                         if (e == JIM_ERR) {
4610                                 /* An error */
4611                                 return e;
4612                         }
4613                         /* otherwise we 'continue' below */
4614                 }
4615                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4616                 if (e != JIM_OK) {
4617                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4618                         return e;
4619                 }
4620                 switch (n->value) {
4621                 case TCFG_TYPE:
4622                         /* not setable */
4623                         if (goi->isconfigure) {
4624                                 Jim_SetResultFormatted(goi->interp,
4625                                                 "not settable: %s", n->name);
4626                                 return JIM_ERR;
4627                         } else {
4628 no_params:
4629                                 if (goi->argc != 0) {
4630                                         Jim_WrongNumArgs(goi->interp,
4631                                                         goi->argc, goi->argv,
4632                                                         "NO PARAMS");
4633                                         return JIM_ERR;
4634                                 }
4635                         }
4636                         Jim_SetResultString(goi->interp,
4637                                         target_type_name(target), -1);
4638                         /* loop for more */
4639                         break;
4640                 case TCFG_EVENT:
4641                         if (goi->argc == 0) {
4642                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4643                                 return JIM_ERR;
4644                         }
4645
4646                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4647                         if (e != JIM_OK) {
4648                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4649                                 return e;
4650                         }
4651
4652                         if (goi->isconfigure) {
4653                                 if (goi->argc != 1) {
4654                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4655                                         return JIM_ERR;
4656                                 }
4657                         } else {
4658                                 if (goi->argc != 0) {
4659                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4660                                         return JIM_ERR;
4661                                 }
4662                         }
4663
4664                         {
4665                                 struct target_event_action *teap;
4666
4667                                 teap = target->event_action;
4668                                 /* replace existing? */
4669                                 while (teap) {
4670                                         if (teap->event == (enum target_event)n->value)
4671                                                 break;
4672                                         teap = teap->next;
4673                                 }
4674
4675                                 if (goi->isconfigure) {
4676                                         bool replace = true;
4677                                         if (teap == NULL) {
4678                                                 /* create new */
4679                                                 teap = calloc(1, sizeof(*teap));
4680                                                 replace = false;
4681                                         }
4682                                         teap->event = n->value;
4683                                         teap->interp = goi->interp;
4684                                         Jim_GetOpt_Obj(goi, &o);
4685                                         if (teap->body)
4686                                                 Jim_DecrRefCount(teap->interp, teap->body);
4687                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4688                                         /*
4689                                          * FIXME:
4690                                          *     Tcl/TK - "tk events" have a nice feature.
4691                                          *     See the "BIND" command.
4692                                          *    We should support that here.
4693                                          *     You can specify %X and %Y in the event code.
4694                                          *     The idea is: %T - target name.
4695                                          *     The idea is: %N - target number
4696                                          *     The idea is: %E - event name.
4697                                          */
4698                                         Jim_IncrRefCount(teap->body);
4699
4700                                         if (!replace) {
4701                                                 /* add to head of event list */
4702                                                 teap->next = target->event_action;
4703                                                 target->event_action = teap;
4704                                         }
4705                                         Jim_SetEmptyResult(goi->interp);
4706                                 } else {
4707                                         /* get */
4708                                         if (teap == NULL)
4709                                                 Jim_SetEmptyResult(goi->interp);
4710                                         else
4711                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4712                                 }
4713                         }
4714                         /* loop for more */
4715                         break;
4716
4717                 case TCFG_WORK_AREA_VIRT:
4718                         if (goi->isconfigure) {
4719                                 target_free_all_working_areas(target);
4720                                 e = Jim_GetOpt_Wide(goi, &w);
4721                                 if (e != JIM_OK)
4722                                         return e;
4723                                 target->working_area_virt = w;
4724                                 target->working_area_virt_spec = true;
4725                         } else {
4726                                 if (goi->argc != 0)
4727                                         goto no_params;
4728                         }
4729                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4730                         /* loop for more */
4731                         break;
4732
4733                 case TCFG_WORK_AREA_PHYS:
4734                         if (goi->isconfigure) {
4735                                 target_free_all_working_areas(target);
4736                                 e = Jim_GetOpt_Wide(goi, &w);
4737                                 if (e != JIM_OK)
4738                                         return e;
4739                                 target->working_area_phys = w;
4740                                 target->working_area_phys_spec = true;
4741                         } else {
4742                                 if (goi->argc != 0)
4743                                         goto no_params;
4744                         }
4745                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4746                         /* loop for more */
4747                         break;
4748
4749                 case TCFG_WORK_AREA_SIZE:
4750                         if (goi->isconfigure) {
4751                                 target_free_all_working_areas(target);
4752                                 e = Jim_GetOpt_Wide(goi, &w);
4753                                 if (e != JIM_OK)
4754                                         return e;
4755                                 target->working_area_size = w;
4756                         } else {
4757                                 if (goi->argc != 0)
4758                                         goto no_params;
4759                         }
4760                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4761                         /* loop for more */
4762                         break;
4763
4764                 case TCFG_WORK_AREA_BACKUP:
4765                         if (goi->isconfigure) {
4766                                 target_free_all_working_areas(target);
4767                                 e = Jim_GetOpt_Wide(goi, &w);
4768                                 if (e != JIM_OK)
4769                                         return e;
4770                                 /* make this exactly 1 or 0 */
4771                                 target->backup_working_area = (!!w);
4772                         } else {
4773                                 if (goi->argc != 0)
4774                                         goto no_params;
4775                         }
4776                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4777                         /* loop for more e*/
4778                         break;
4779
4780
4781                 case TCFG_ENDIAN:
4782                         if (goi->isconfigure) {
4783                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4784                                 if (e != JIM_OK) {
4785                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4786                                         return e;
4787                                 }
4788                                 target->endianness = n->value;
4789                         } else {
4790                                 if (goi->argc != 0)
4791                                         goto no_params;
4792                         }
4793                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4794                         if (n->name == NULL) {
4795                                 target->endianness = TARGET_LITTLE_ENDIAN;
4796                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4797                         }
4798                         Jim_SetResultString(goi->interp, n->name, -1);
4799                         /* loop for more */
4800                         break;
4801
4802                 case TCFG_COREID:
4803                         if (goi->isconfigure) {
4804                                 e = Jim_GetOpt_Wide(goi, &w);
4805                                 if (e != JIM_OK)
4806                                         return e;
4807                                 target->coreid = (int32_t)w;
4808                         } else {
4809                                 if (goi->argc != 0)
4810                                         goto no_params;
4811                         }
4812                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4813                         /* loop for more */
4814                         break;
4815
4816                 case TCFG_CHAIN_POSITION:
4817                         if (goi->isconfigure) {
4818                                 Jim_Obj *o_t;
4819                                 struct jtag_tap *tap;
4820
4821                                 if (target->has_dap) {
4822                                         Jim_SetResultString(goi->interp,
4823                                                 "target requires -dap parameter instead of -chain-position!", -1);
4824                                         return JIM_ERR;
4825                                 }
4826
4827                                 target_free_all_working_areas(target);
4828                                 e = Jim_GetOpt_Obj(goi, &o_t);
4829                                 if (e != JIM_OK)
4830                                         return e;
4831                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4832                                 if (tap == NULL)
4833                                         return JIM_ERR;
4834                                 target->tap = tap;
4835                                 target->tap_configured = true;
4836                         } else {
4837                                 if (goi->argc != 0)
4838                                         goto no_params;
4839                         }
4840                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4841                         /* loop for more e*/
4842                         break;
4843                 case TCFG_DBGBASE:
4844                         if (goi->isconfigure) {
4845                                 e = Jim_GetOpt_Wide(goi, &w);
4846                                 if (e != JIM_OK)
4847                                         return e;
4848                                 target->dbgbase = (uint32_t)w;
4849                                 target->dbgbase_set = true;
4850                         } else {
4851                                 if (goi->argc != 0)
4852                                         goto no_params;
4853                         }
4854                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4855                         /* loop for more */
4856                         break;
4857                 case TCFG_RTOS:
4858                         /* RTOS */
4859                         {
4860                                 int result = rtos_create(goi, target);
4861                                 if (result != JIM_OK)
4862                                         return result;
4863                         }
4864                         /* loop for more */
4865                         break;
4866
4867                 case TCFG_DEFER_EXAMINE:
4868                         /* DEFER_EXAMINE */
4869                         target->defer_examine = true;
4870                         /* loop for more */
4871                         break;
4872
4873                 case TCFG_GDB_PORT:
4874                         if (goi->isconfigure) {
4875                                 const char *s;
4876                                 e = Jim_GetOpt_String(goi, &s, NULL);
4877                                 if (e != JIM_OK)
4878                                         return e;
4879                                 target->gdb_port_override = strdup(s);
4880                         } else {
4881                                 if (goi->argc != 0)
4882                                         goto no_params;
4883                         }
4884                         Jim_SetResultString(goi->interp, target->gdb_port_override ? : "undefined", -1);
4885                         /* loop for more */
4886                         break;
4887                 }
4888         } /* while (goi->argc) */
4889
4890
4891                 /* done - we return */
4892         return JIM_OK;
4893 }
4894
4895 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4896 {
4897         Jim_GetOptInfo goi;
4898
4899         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4900         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4901         if (goi.argc < 1) {
4902                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4903                                  "missing: -option ...");
4904                 return JIM_ERR;
4905         }
4906         struct target *target = Jim_CmdPrivData(goi.interp);
4907         return target_configure(&goi, target);
4908 }
4909
4910 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4911 {
4912         const char *cmd_name = Jim_GetString(argv[0], NULL);
4913
4914         Jim_GetOptInfo goi;
4915         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4916
4917         if (goi.argc < 2 || goi.argc > 4) {
4918                 Jim_SetResultFormatted(goi.interp,
4919                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4920                 return JIM_ERR;
4921         }
4922
4923         target_write_fn fn;
4924         fn = target_write_memory;
4925
4926         int e;
4927         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4928                 /* consume it */
4929                 struct Jim_Obj *obj;
4930                 e = Jim_GetOpt_Obj(&goi, &obj);
4931                 if (e != JIM_OK)
4932                         return e;
4933
4934                 fn = target_write_phys_memory;
4935         }
4936
4937         jim_wide a;
4938         e = Jim_GetOpt_Wide(&goi, &a);
4939         if (e != JIM_OK)
4940                 return e;
4941
4942         jim_wide b;
4943         e = Jim_GetOpt_Wide(&goi, &b);
4944         if (e != JIM_OK)
4945                 return e;
4946
4947         jim_wide c = 1;
4948         if (goi.argc == 1) {
4949                 e = Jim_GetOpt_Wide(&goi, &c);
4950                 if (e != JIM_OK)
4951                         return e;
4952         }
4953
4954         /* all args must be consumed */
4955         if (goi.argc != 0)
4956                 return JIM_ERR;
4957
4958         struct target *target = Jim_CmdPrivData(goi.interp);
4959         unsigned data_size;
4960         if (strcasecmp(cmd_name, "mww") == 0)
4961                 data_size = 4;
4962         else if (strcasecmp(cmd_name, "mwh") == 0)
4963                 data_size = 2;
4964         else if (strcasecmp(cmd_name, "mwb") == 0)
4965                 data_size = 1;
4966         else {
4967                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4968                 return JIM_ERR;
4969         }
4970
4971         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4972 }
4973
4974 /**
4975 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4976 *
4977 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4978 *         mdh [phys] <address> [<count>] - for 16 bit reads
4979 *         mdb [phys] <address> [<count>] - for  8 bit reads
4980 *
4981 *  Count defaults to 1.
4982 *
4983 *  Calls target_read_memory or target_read_phys_memory depending on
4984 *  the presence of the "phys" argument
4985 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4986 *  to int representation in base16.
4987 *  Also outputs read data in a human readable form using command_print
4988 *
4989 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4990 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4991 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4992 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4993 *  on success, with [<count>] number of elements.
4994 *
4995 *  In case of little endian target:
4996 *      Example1: "mdw 0x00000000"  returns "10123456"
4997 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4998 *      Example3: "mdb 0x00000000" returns "56"
4999 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
5000 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
5001 **/
5002 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5003 {
5004         const char *cmd_name = Jim_GetString(argv[0], NULL);
5005
5006         Jim_GetOptInfo goi;
5007         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5008
5009         if ((goi.argc < 1) || (goi.argc > 3)) {
5010                 Jim_SetResultFormatted(goi.interp,
5011                                 "usage: %s [phys] <address> [<count>]", cmd_name);
5012                 return JIM_ERR;
5013         }
5014
5015         int (*fn)(struct target *target,
5016                         target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
5017         fn = target_read_memory;
5018
5019         int e;
5020         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
5021                 /* consume it */
5022                 struct Jim_Obj *obj;
5023                 e = Jim_GetOpt_Obj(&goi, &obj);
5024                 if (e != JIM_OK)
5025                         return e;
5026
5027                 fn = target_read_phys_memory;
5028         }
5029
5030         /* Read address parameter */
5031         jim_wide addr;
5032         e = Jim_GetOpt_Wide(&goi, &addr);
5033         if (e != JIM_OK)
5034                 return JIM_ERR;
5035
5036         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
5037         jim_wide count;
5038         if (goi.argc == 1) {
5039                 e = Jim_GetOpt_Wide(&goi, &count);
5040                 if (e != JIM_OK)
5041                         return JIM_ERR;
5042         } else
5043                 count = 1;
5044
5045         /* all args must be consumed */
5046         if (goi.argc != 0)
5047                 return JIM_ERR;
5048
5049         jim_wide dwidth = 1; /* shut up gcc */
5050         if (strcasecmp(cmd_name, "mdw") == 0)
5051                 dwidth = 4;
5052         else if (strcasecmp(cmd_name, "mdh") == 0)
5053                 dwidth = 2;
5054         else if (strcasecmp(cmd_name, "mdb") == 0)
5055                 dwidth = 1;
5056         else {
5057                 LOG_ERROR("command '%s' unknown: ", cmd_name);
5058                 return JIM_ERR;
5059         }
5060
5061         /* convert count to "bytes" */
5062         int bytes = count * dwidth;
5063
5064         struct target *target = Jim_CmdPrivData(goi.interp);
5065         uint8_t  target_buf[32];
5066         jim_wide x, y, z;
5067         while (bytes > 0) {
5068                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
5069
5070                 /* Try to read out next block */
5071                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
5072
5073                 if (e != ERROR_OK) {
5074                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
5075                         return JIM_ERR;
5076                 }
5077
5078                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
5079                 switch (dwidth) {
5080                 case 4:
5081                         for (x = 0; x < 16 && x < y; x += 4) {
5082                                 z = target_buffer_get_u32(target, &(target_buf[x]));
5083                                 command_print_sameline(NULL, "%08x ", (int)(z));
5084                         }
5085                         for (; (x < 16) ; x += 4)
5086                                 command_print_sameline(NULL, "         ");
5087                         break;
5088                 case 2:
5089                         for (x = 0; x < 16 && x < y; x += 2) {
5090                                 z = target_buffer_get_u16(target, &(target_buf[x]));
5091                                 command_print_sameline(NULL, "%04x ", (int)(z));
5092                         }
5093                         for (; (x < 16) ; x += 2)
5094                                 command_print_sameline(NULL, "     ");
5095                         break;
5096                 case 1:
5097                 default:
5098                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
5099                                 z = target_buffer_get_u8(target, &(target_buf[x]));
5100                                 command_print_sameline(NULL, "%02x ", (int)(z));
5101                         }
5102                         for (; (x < 16) ; x += 1)
5103                                 command_print_sameline(NULL, "   ");
5104                         break;
5105                 }
5106                 /* ascii-ify the bytes */
5107                 for (x = 0 ; x < y ; x++) {
5108                         if ((target_buf[x] >= 0x20) &&
5109                                 (target_buf[x] <= 0x7e)) {
5110                                 /* good */
5111                         } else {
5112                                 /* smack it */
5113                                 target_buf[x] = '.';
5114                         }
5115                 }
5116                 /* space pad  */
5117                 while (x < 16) {
5118                         target_buf[x] = ' ';
5119                         x++;
5120                 }
5121                 /* terminate */
5122                 target_buf[16] = 0;
5123                 /* print - with a newline */
5124                 command_print_sameline(NULL, "%s\n", target_buf);
5125                 /* NEXT... */
5126                 bytes -= 16;
5127                 addr += 16;
5128         }
5129         return JIM_OK;
5130 }
5131
5132 static int jim_target_mem2array(Jim_Interp *interp,
5133                 int argc, Jim_Obj *const *argv)
5134 {
5135         struct target *target = Jim_CmdPrivData(interp);
5136         return target_mem2array(interp, target, argc - 1, argv + 1);
5137 }
5138
5139 static int jim_target_array2mem(Jim_Interp *interp,
5140                 int argc, Jim_Obj *const *argv)
5141 {
5142         struct target *target = Jim_CmdPrivData(interp);
5143         return target_array2mem(interp, target, argc - 1, argv + 1);
5144 }
5145
5146 static int jim_target_tap_disabled(Jim_Interp *interp)
5147 {
5148         Jim_SetResultFormatted(interp, "[TAP is disabled]");
5149         return JIM_ERR;
5150 }
5151
5152 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5153 {
5154         bool allow_defer = false;
5155
5156         Jim_GetOptInfo goi;
5157         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5158         if (goi.argc > 1) {
5159                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5160                 Jim_SetResultFormatted(goi.interp,
5161                                 "usage: %s ['allow-defer']", cmd_name);
5162                 return JIM_ERR;
5163         }
5164         if (goi.argc > 0 &&
5165             strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5166                 /* consume it */
5167                 struct Jim_Obj *obj;
5168                 int e = Jim_GetOpt_Obj(&goi, &obj);
5169                 if (e != JIM_OK)
5170                         return e;
5171                 allow_defer = true;
5172         }
5173
5174         struct target *target = Jim_CmdPrivData(interp);
5175         if (!target->tap->enabled)
5176                 return jim_target_tap_disabled(interp);
5177
5178         if (allow_defer && target->defer_examine) {
5179                 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5180                 LOG_INFO("Use arp_examine command to examine it manually!");
5181                 return JIM_OK;
5182         }
5183
5184         int e = target->type->examine(target);
5185         if (e != ERROR_OK)
5186                 return JIM_ERR;
5187         return JIM_OK;
5188 }
5189
5190 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5191 {
5192         struct target *target = Jim_CmdPrivData(interp);
5193
5194         Jim_SetResultBool(interp, target_was_examined(target));
5195         return JIM_OK;
5196 }
5197
5198 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5199 {
5200         struct target *target = Jim_CmdPrivData(interp);
5201
5202         Jim_SetResultBool(interp, target->defer_examine);
5203         return JIM_OK;
5204 }
5205
5206 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5207 {
5208         if (argc != 1) {
5209                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5210                 return JIM_ERR;
5211         }
5212         struct target *target = Jim_CmdPrivData(interp);
5213
5214         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5215                 return JIM_ERR;
5216
5217         return JIM_OK;
5218 }
5219
5220 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5221 {
5222         if (argc != 1) {
5223                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5224                 return JIM_ERR;
5225         }
5226         struct target *target = Jim_CmdPrivData(interp);
5227         if (!target->tap->enabled)
5228                 return jim_target_tap_disabled(interp);
5229
5230         int e;
5231         if (!(target_was_examined(target)))
5232                 e = ERROR_TARGET_NOT_EXAMINED;
5233         else
5234                 e = target->type->poll(target);
5235         if (e != ERROR_OK)
5236                 return JIM_ERR;
5237         return JIM_OK;
5238 }
5239
5240 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5241 {
5242         Jim_GetOptInfo goi;
5243         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5244
5245         if (goi.argc != 2) {
5246                 Jim_WrongNumArgs(interp, 0, argv,
5247                                 "([tT]|[fF]|assert|deassert) BOOL");
5248                 return JIM_ERR;
5249         }
5250
5251         Jim_Nvp *n;
5252         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5253         if (e != JIM_OK) {
5254                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5255                 return e;
5256         }
5257         /* the halt or not param */
5258         jim_wide a;
5259         e = Jim_GetOpt_Wide(&goi, &a);
5260         if (e != JIM_OK)
5261                 return e;
5262
5263         struct target *target = Jim_CmdPrivData(goi.interp);
5264         if (!target->tap->enabled)
5265                 return jim_target_tap_disabled(interp);
5266
5267         if (!target->type->assert_reset || !target->type->deassert_reset) {
5268                 Jim_SetResultFormatted(interp,
5269                                 "No target-specific reset for %s",
5270                                 target_name(target));
5271                 return JIM_ERR;
5272         }
5273
5274         if (target->defer_examine)
5275                 target_reset_examined(target);
5276
5277         /* determine if we should halt or not. */
5278         target->reset_halt = !!a;
5279         /* When this happens - all workareas are invalid. */
5280         target_free_all_working_areas_restore(target, 0);
5281
5282         /* do the assert */
5283         if (n->value == NVP_ASSERT)
5284                 e = target->type->assert_reset(target);
5285         else
5286                 e = target->type->deassert_reset(target);
5287         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5288 }
5289
5290 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5291 {
5292         if (argc != 1) {
5293                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5294                 return JIM_ERR;
5295         }
5296         struct target *target = Jim_CmdPrivData(interp);
5297         if (!target->tap->enabled)
5298                 return jim_target_tap_disabled(interp);
5299         int e = target->type->halt(target);
5300         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5301 }
5302
5303 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5304 {
5305         Jim_GetOptInfo goi;
5306         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5307
5308         /* params:  <name>  statename timeoutmsecs */
5309         if (goi.argc != 2) {
5310                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5311                 Jim_SetResultFormatted(goi.interp,
5312                                 "%s <state_name> <timeout_in_msec>", cmd_name);
5313                 return JIM_ERR;
5314         }
5315
5316         Jim_Nvp *n;
5317         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5318         if (e != JIM_OK) {
5319                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5320                 return e;
5321         }
5322         jim_wide a;
5323         e = Jim_GetOpt_Wide(&goi, &a);
5324         if (e != JIM_OK)
5325                 return e;
5326         struct target *target = Jim_CmdPrivData(interp);
5327         if (!target->tap->enabled)
5328                 return jim_target_tap_disabled(interp);
5329
5330         e = target_wait_state(target, n->value, a);
5331         if (e != ERROR_OK) {
5332                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5333                 Jim_SetResultFormatted(goi.interp,
5334                                 "target: %s wait %s fails (%#s) %s",
5335                                 target_name(target), n->name,
5336                                 eObj, target_strerror_safe(e));
5337                 Jim_FreeNewObj(interp, eObj);
5338                 return JIM_ERR;
5339         }
5340         return JIM_OK;
5341 }
5342 /* List for human, Events defined for this target.
5343  * scripts/programs should use 'name cget -event NAME'
5344  */
5345 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5346 {
5347         struct command_context *cmd_ctx = current_command_context(interp);
5348         assert(cmd_ctx != NULL);
5349
5350         struct target *target = Jim_CmdPrivData(interp);
5351         struct target_event_action *teap = target->event_action;
5352         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5353                                    target->target_number,
5354                                    target_name(target));
5355         command_print(cmd_ctx, "%-25s | Body", "Event");
5356         command_print(cmd_ctx, "------------------------- | "
5357                         "----------------------------------------");
5358         while (teap) {
5359                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5360                 command_print(cmd_ctx, "%-25s | %s",
5361                                 opt->name, Jim_GetString(teap->body, NULL));
5362                 teap = teap->next;
5363         }
5364         command_print(cmd_ctx, "***END***");
5365         return JIM_OK;
5366 }
5367 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5368 {
5369         if (argc != 1) {
5370                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5371                 return JIM_ERR;
5372         }
5373         struct target *target = Jim_CmdPrivData(interp);
5374         Jim_SetResultString(interp, target_state_name(target), -1);
5375         return JIM_OK;
5376 }
5377 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5378 {
5379         Jim_GetOptInfo goi;
5380         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5381         if (goi.argc != 1) {
5382                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5383                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5384                 return JIM_ERR;
5385         }
5386         Jim_Nvp *n;
5387         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5388         if (e != JIM_OK) {
5389                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5390                 return e;
5391         }
5392         struct target *target = Jim_CmdPrivData(interp);
5393         target_handle_event(target, n->value);
5394         return JIM_OK;
5395 }
5396
5397 static const struct command_registration target_instance_command_handlers[] = {
5398         {
5399                 .name = "configure",
5400                 .mode = COMMAND_CONFIG,
5401                 .jim_handler = jim_target_configure,
5402                 .help  = "configure a new target for use",
5403                 .usage = "[target_attribute ...]",
5404         },
5405         {
5406                 .name = "cget",
5407                 .mode = COMMAND_ANY,
5408                 .jim_handler = jim_target_configure,
5409                 .help  = "returns the specified target attribute",
5410                 .usage = "target_attribute",
5411         },
5412         {
5413                 .name = "mww",
5414                 .mode = COMMAND_EXEC,
5415                 .jim_handler = jim_target_mw,
5416                 .help = "Write 32-bit word(s) to target memory",
5417                 .usage = "address data [count]",
5418         },
5419         {
5420                 .name = "mwh",
5421                 .mode = COMMAND_EXEC,
5422                 .jim_handler = jim_target_mw,
5423                 .help = "Write 16-bit half-word(s) to target memory",
5424                 .usage = "address data [count]",
5425         },
5426         {
5427                 .name = "mwb",
5428                 .mode = COMMAND_EXEC,
5429                 .jim_handler = jim_target_mw,
5430                 .help = "Write byte(s) to target memory",
5431                 .usage = "address data [count]",
5432         },
5433         {
5434                 .name = "mdw",
5435                 .mode = COMMAND_EXEC,
5436                 .jim_handler = jim_target_md,
5437                 .help = "Display target memory as 32-bit words",
5438                 .usage = "address [count]",
5439         },
5440         {
5441                 .name = "mdh",
5442                 .mode = COMMAND_EXEC,
5443                 .jim_handler = jim_target_md,
5444                 .help = "Display target memory as 16-bit half-words",
5445                 .usage = "address [count]",
5446         },
5447         {
5448                 .name = "mdb",
5449                 .mode = COMMAND_EXEC,
5450                 .jim_handler = jim_target_md,
5451                 .help = "Display target memory as 8-bit bytes",
5452                 .usage = "address [count]",
5453         },
5454         {
5455                 .name = "array2mem",
5456                 .mode = COMMAND_EXEC,
5457                 .jim_handler = jim_target_array2mem,
5458                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5459                         "to target memory",
5460                 .usage = "arrayname bitwidth address count",
5461         },
5462         {
5463                 .name = "mem2array",
5464                 .mode = COMMAND_EXEC,
5465                 .jim_handler = jim_target_mem2array,
5466                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5467                         "from target memory",
5468                 .usage = "arrayname bitwidth address count",
5469         },
5470         {
5471                 .name = "eventlist",
5472                 .mode = COMMAND_EXEC,
5473                 .jim_handler = jim_target_event_list,
5474                 .help = "displays a table of events defined for this target",
5475         },
5476         {
5477                 .name = "curstate",
5478                 .mode = COMMAND_EXEC,
5479                 .jim_handler = jim_target_current_state,
5480                 .help = "displays the current state of this target",
5481         },
5482         {
5483                 .name = "arp_examine",
5484                 .mode = COMMAND_EXEC,
5485                 .jim_handler = jim_target_examine,
5486                 .help = "used internally for reset processing",
5487                 .usage = "['allow-defer']",
5488         },
5489         {
5490                 .name = "was_examined",
5491                 .mode = COMMAND_EXEC,
5492                 .jim_handler = jim_target_was_examined,
5493                 .help = "used internally for reset processing",
5494         },
5495         {
5496                 .name = "examine_deferred",
5497                 .mode = COMMAND_EXEC,
5498                 .jim_handler = jim_target_examine_deferred,
5499                 .help = "used internally for reset processing",
5500         },
5501         {
5502                 .name = "arp_halt_gdb",
5503                 .mode = COMMAND_EXEC,
5504                 .jim_handler = jim_target_halt_gdb,
5505                 .help = "used internally for reset processing to halt GDB",
5506         },
5507         {
5508                 .name = "arp_poll",
5509                 .mode = COMMAND_EXEC,
5510                 .jim_handler = jim_target_poll,
5511                 .help = "used internally for reset processing",
5512         },
5513         {
5514                 .name = "arp_reset",
5515                 .mode = COMMAND_EXEC,
5516                 .jim_handler = jim_target_reset,
5517                 .help = "used internally for reset processing",
5518         },
5519         {
5520                 .name = "arp_halt",
5521                 .mode = COMMAND_EXEC,
5522                 .jim_handler = jim_target_halt,
5523                 .help = "used internally for reset processing",
5524         },
5525         {
5526                 .name = "arp_waitstate",
5527                 .mode = COMMAND_EXEC,
5528                 .jim_handler = jim_target_wait_state,
5529                 .help = "used internally for reset processing",
5530         },
5531         {
5532                 .name = "invoke-event",
5533                 .mode = COMMAND_EXEC,
5534                 .jim_handler = jim_target_invoke_event,
5535                 .help = "invoke handler for specified event",
5536                 .usage = "event_name",
5537         },
5538         COMMAND_REGISTRATION_DONE
5539 };
5540
5541 static int target_create(Jim_GetOptInfo *goi)
5542 {
5543         Jim_Obj *new_cmd;
5544         Jim_Cmd *cmd;
5545         const char *cp;
5546         int e;
5547         int x;
5548         struct target *target;
5549         struct command_context *cmd_ctx;
5550
5551         cmd_ctx = current_command_context(goi->interp);
5552         assert(cmd_ctx != NULL);
5553
5554         if (goi->argc < 3) {
5555                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5556                 return JIM_ERR;
5557         }
5558
5559         /* COMMAND */
5560         Jim_GetOpt_Obj(goi, &new_cmd);
5561         /* does this command exist? */
5562         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5563         if (cmd) {
5564                 cp = Jim_GetString(new_cmd, NULL);
5565                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5566                 return JIM_ERR;
5567         }
5568
5569         /* TYPE */
5570         e = Jim_GetOpt_String(goi, &cp, NULL);
5571         if (e != JIM_OK)
5572                 return e;
5573         struct transport *tr = get_current_transport();
5574         if (tr->override_target) {
5575                 e = tr->override_target(&cp);
5576                 if (e != ERROR_OK) {
5577                         LOG_ERROR("The selected transport doesn't support this target");
5578                         return JIM_ERR;
5579                 }
5580                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5581         }
5582         /* now does target type exist */
5583         for (x = 0 ; target_types[x] ; x++) {
5584                 if (0 == strcmp(cp, target_types[x]->name)) {
5585                         /* found */
5586                         break;
5587                 }
5588
5589                 /* check for deprecated name */
5590                 if (target_types[x]->deprecated_name) {
5591                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5592                                 /* found */
5593                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5594                                 break;
5595                         }
5596                 }
5597         }
5598         if (target_types[x] == NULL) {
5599                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5600                 for (x = 0 ; target_types[x] ; x++) {
5601                         if (target_types[x + 1]) {
5602                                 Jim_AppendStrings(goi->interp,
5603                                                                    Jim_GetResult(goi->interp),
5604                                                                    target_types[x]->name,
5605                                                                    ", ", NULL);
5606                         } else {
5607                                 Jim_AppendStrings(goi->interp,
5608                                                                    Jim_GetResult(goi->interp),
5609                                                                    " or ",
5610                                                                    target_types[x]->name, NULL);
5611                         }
5612                 }
5613                 return JIM_ERR;
5614         }
5615
5616         /* Create it */
5617         target = calloc(1, sizeof(struct target));
5618         /* set target number */
5619         target->target_number = new_target_number();
5620         cmd_ctx->current_target = target;
5621
5622         /* allocate memory for each unique target type */
5623         target->type = calloc(1, sizeof(struct target_type));
5624
5625         memcpy(target->type, target_types[x], sizeof(struct target_type));
5626
5627         /* will be set by "-endian" */
5628         target->endianness = TARGET_ENDIAN_UNKNOWN;
5629
5630         /* default to first core, override with -coreid */
5631         target->coreid = 0;
5632
5633         target->working_area        = 0x0;
5634         target->working_area_size   = 0x0;
5635         target->working_areas       = NULL;
5636         target->backup_working_area = 0;
5637
5638         target->state               = TARGET_UNKNOWN;
5639         target->debug_reason        = DBG_REASON_UNDEFINED;
5640         target->reg_cache           = NULL;
5641         target->breakpoints         = NULL;
5642         target->watchpoints         = NULL;
5643         target->next                = NULL;
5644         target->arch_info           = NULL;
5645
5646         target->verbose_halt_msg        = true;
5647
5648         target->halt_issued                     = false;
5649
5650         /* initialize trace information */
5651         target->trace_info = calloc(1, sizeof(struct trace));
5652
5653         target->dbgmsg          = NULL;
5654         target->dbg_msg_enabled = 0;
5655
5656         target->endianness = TARGET_ENDIAN_UNKNOWN;
5657
5658         target->rtos = NULL;
5659         target->rtos_auto_detect = false;
5660
5661         target->gdb_port_override = NULL;
5662
5663         /* Do the rest as "configure" options */
5664         goi->isconfigure = 1;
5665         e = target_configure(goi, target);
5666
5667         if (e == JIM_OK) {
5668                 if (target->has_dap) {
5669                         if (!target->dap_configured) {
5670                                 Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5671                                 e = JIM_ERR;
5672                         }
5673                 } else {
5674                         if (!target->tap_configured) {
5675                                 Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5676                                 e = JIM_ERR;
5677                         }
5678                 }
5679                 /* tap must be set after target was configured */
5680                 if (target->tap == NULL)
5681                         e = JIM_ERR;
5682         }
5683
5684         if (e != JIM_OK) {
5685                 free(target->gdb_port_override);
5686                 free(target->type);
5687                 free(target);
5688                 return e;
5689         }
5690
5691         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5692                 /* default endian to little if not specified */
5693                 target->endianness = TARGET_LITTLE_ENDIAN;
5694         }
5695
5696         cp = Jim_GetString(new_cmd, NULL);
5697         target->cmd_name = strdup(cp);
5698
5699         if (target->type->target_create) {
5700                 e = (*(target->type->target_create))(target, goi->interp);
5701                 if (e != ERROR_OK) {
5702                         LOG_DEBUG("target_create failed");
5703                         free(target->gdb_port_override);
5704                         free(target->type);
5705                         free(target->cmd_name);
5706                         free(target);
5707                         return JIM_ERR;
5708                 }
5709         }
5710
5711         /* create the target specific commands */
5712         if (target->type->commands) {
5713                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5714                 if (ERROR_OK != e)
5715                         LOG_ERROR("unable to register '%s' commands", cp);
5716         }
5717
5718         /* append to end of list */
5719         {
5720                 struct target **tpp;
5721                 tpp = &(all_targets);
5722                 while (*tpp)
5723                         tpp = &((*tpp)->next);
5724                 *tpp = target;
5725         }
5726
5727         /* now - create the new target name command */
5728         const struct command_registration target_subcommands[] = {
5729                 {
5730                         .chain = target_instance_command_handlers,
5731                 },
5732                 {
5733                         .chain = target->type->commands,
5734                 },
5735                 COMMAND_REGISTRATION_DONE
5736         };
5737         const struct command_registration target_commands[] = {
5738                 {
5739                         .name = cp,
5740                         .mode = COMMAND_ANY,
5741                         .help = "target command group",
5742                         .usage = "",
5743                         .chain = target_subcommands,
5744                 },
5745                 COMMAND_REGISTRATION_DONE
5746         };
5747         e = register_commands(cmd_ctx, NULL, target_commands);
5748         if (ERROR_OK != e)
5749                 return JIM_ERR;
5750
5751         struct command *c = command_find_in_context(cmd_ctx, cp);
5752         assert(c);
5753         command_set_handler_data(c, target);
5754
5755         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5756 }
5757
5758 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5759 {
5760         if (argc != 1) {
5761                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5762                 return JIM_ERR;
5763         }
5764         struct command_context *cmd_ctx = current_command_context(interp);
5765         assert(cmd_ctx != NULL);
5766
5767         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5768         return JIM_OK;
5769 }
5770
5771 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5772 {
5773         if (argc != 1) {
5774                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5775                 return JIM_ERR;
5776         }
5777         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5778         for (unsigned x = 0; NULL != target_types[x]; x++) {
5779                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5780                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5781         }
5782         return JIM_OK;
5783 }
5784
5785 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5786 {
5787         if (argc != 1) {
5788                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5789                 return JIM_ERR;
5790         }
5791         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5792         struct target *target = all_targets;
5793         while (target) {
5794                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5795                         Jim_NewStringObj(interp, target_name(target), -1));
5796                 target = target->next;
5797         }
5798         return JIM_OK;
5799 }
5800
5801 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5802 {
5803         int i;
5804         const char *targetname;
5805         int retval, len;
5806         struct target *target = (struct target *) NULL;
5807         struct target_list *head, *curr, *new;
5808         curr = (struct target_list *) NULL;
5809         head = (struct target_list *) NULL;
5810
5811         retval = 0;
5812         LOG_DEBUG("%d", argc);
5813         /* argv[1] = target to associate in smp
5814          * argv[2] = target to assoicate in smp
5815          * argv[3] ...
5816          */
5817
5818         for (i = 1; i < argc; i++) {
5819
5820                 targetname = Jim_GetString(argv[i], &len);
5821                 target = get_target(targetname);
5822                 LOG_DEBUG("%s ", targetname);
5823                 if (target) {
5824                         new = malloc(sizeof(struct target_list));
5825                         new->target = target;
5826                         new->next = (struct target_list *)NULL;
5827                         if (head == (struct target_list *)NULL) {
5828                                 head = new;
5829                                 curr = head;
5830                         } else {
5831                                 curr->next = new;
5832                                 curr = new;
5833                         }
5834                 }
5835         }
5836         /*  now parse the list of cpu and put the target in smp mode*/
5837         curr = head;
5838
5839         while (curr != (struct target_list *)NULL) {
5840                 target = curr->target;
5841                 target->smp = 1;
5842                 target->head = head;
5843                 curr = curr->next;
5844         }
5845
5846         if (target && target->rtos)
5847                 retval = rtos_smp_init(head->target);
5848
5849         return retval;
5850 }
5851
5852
5853 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5854 {
5855         Jim_GetOptInfo goi;
5856         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5857         if (goi.argc < 3) {
5858                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5859                         "<name> <target_type> [<target_options> ...]");
5860                 return JIM_ERR;
5861         }
5862         return target_create(&goi);
5863 }
5864
5865 static const struct command_registration target_subcommand_handlers[] = {
5866         {
5867                 .name = "init",
5868                 .mode = COMMAND_CONFIG,
5869                 .handler = handle_target_init_command,
5870                 .help = "initialize targets",
5871         },
5872         {
5873                 .name = "create",
5874                 /* REVISIT this should be COMMAND_CONFIG ... */
5875                 .mode = COMMAND_ANY,
5876                 .jim_handler = jim_target_create,
5877                 .usage = "name type '-chain-position' name [options ...]",
5878                 .help = "Creates and selects a new target",
5879         },
5880         {
5881                 .name = "current",
5882                 .mode = COMMAND_ANY,
5883                 .jim_handler = jim_target_current,
5884                 .help = "Returns the currently selected target",
5885         },
5886         {
5887                 .name = "types",
5888                 .mode = COMMAND_ANY,
5889                 .jim_handler = jim_target_types,
5890                 .help = "Returns the available target types as "
5891                                 "a list of strings",
5892         },
5893         {
5894                 .name = "names",
5895                 .mode = COMMAND_ANY,
5896                 .jim_handler = jim_target_names,
5897                 .help = "Returns the names of all targets as a list of strings",
5898         },
5899         {
5900                 .name = "smp",
5901                 .mode = COMMAND_ANY,
5902                 .jim_handler = jim_target_smp,
5903                 .usage = "targetname1 targetname2 ...",
5904                 .help = "gather several target in a smp list"
5905         },
5906
5907         COMMAND_REGISTRATION_DONE
5908 };
5909
5910 struct FastLoad {
5911         target_addr_t address;
5912         uint8_t *data;
5913         int length;
5914
5915 };
5916
5917 static int fastload_num;
5918 static struct FastLoad *fastload;
5919
5920 static void free_fastload(void)
5921 {
5922         if (fastload != NULL) {
5923                 int i;
5924                 for (i = 0; i < fastload_num; i++) {
5925                         if (fastload[i].data)
5926                                 free(fastload[i].data);
5927                 }
5928                 free(fastload);
5929                 fastload = NULL;
5930         }
5931 }
5932
5933 COMMAND_HANDLER(handle_fast_load_image_command)
5934 {
5935         uint8_t *buffer;
5936         size_t buf_cnt;
5937         uint32_t image_size;
5938         target_addr_t min_address = 0;
5939         target_addr_t max_address = -1;
5940         int i;
5941
5942         struct image image;
5943
5944         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5945                         &image, &min_address, &max_address);
5946         if (ERROR_OK != retval)
5947                 return retval;
5948
5949         struct duration bench;
5950         duration_start(&bench);
5951
5952         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5953         if (retval != ERROR_OK)
5954                 return retval;
5955
5956         image_size = 0x0;
5957         retval = ERROR_OK;
5958         fastload_num = image.num_sections;
5959         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5960         if (fastload == NULL) {
5961                 command_print(CMD_CTX, "out of memory");
5962                 image_close(&image);
5963                 return ERROR_FAIL;
5964         }
5965         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5966         for (i = 0; i < image.num_sections; i++) {
5967                 buffer = malloc(image.sections[i].size);
5968                 if (buffer == NULL) {
5969                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5970                                                   (int)(image.sections[i].size));
5971                         retval = ERROR_FAIL;
5972                         break;
5973                 }
5974
5975                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5976                 if (retval != ERROR_OK) {
5977                         free(buffer);
5978                         break;
5979                 }
5980
5981                 uint32_t offset = 0;
5982                 uint32_t length = buf_cnt;
5983
5984                 /* DANGER!!! beware of unsigned comparision here!!! */
5985
5986                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5987                                 (image.sections[i].base_address < max_address)) {
5988                         if (image.sections[i].base_address < min_address) {
5989                                 /* clip addresses below */
5990                                 offset += min_address-image.sections[i].base_address;
5991                                 length -= offset;
5992                         }
5993
5994                         if (image.sections[i].base_address + buf_cnt > max_address)
5995                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5996
5997                         fastload[i].address = image.sections[i].base_address + offset;
5998                         fastload[i].data = malloc(length);
5999                         if (fastload[i].data == NULL) {
6000                                 free(buffer);
6001                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
6002                                                           length);
6003                                 retval = ERROR_FAIL;
6004                                 break;
6005                         }
6006                         memcpy(fastload[i].data, buffer + offset, length);
6007                         fastload[i].length = length;
6008
6009                         image_size += length;
6010                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
6011                                                   (unsigned int)length,
6012                                                   ((unsigned int)(image.sections[i].base_address + offset)));
6013                 }
6014
6015                 free(buffer);
6016         }
6017
6018         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
6019                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
6020                                 "in %fs (%0.3f KiB/s)", image_size,
6021                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
6022
6023                 command_print(CMD_CTX,
6024                                 "WARNING: image has not been loaded to target!"
6025                                 "You can issue a 'fast_load' to finish loading.");
6026         }
6027
6028         image_close(&image);
6029
6030         if (retval != ERROR_OK)
6031                 free_fastload();
6032
6033         return retval;
6034 }
6035
6036 COMMAND_HANDLER(handle_fast_load_command)
6037 {
6038         if (CMD_ARGC > 0)
6039                 return ERROR_COMMAND_SYNTAX_ERROR;
6040         if (fastload == NULL) {
6041                 LOG_ERROR("No image in memory");
6042                 return ERROR_FAIL;
6043         }
6044         int i;
6045         int64_t ms = timeval_ms();
6046         int size = 0;
6047         int retval = ERROR_OK;
6048         for (i = 0; i < fastload_num; i++) {
6049                 struct target *target = get_current_target(CMD_CTX);
6050                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
6051                                           (unsigned int)(fastload[i].address),
6052                                           (unsigned int)(fastload[i].length));
6053                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
6054                 if (retval != ERROR_OK)
6055                         break;
6056                 size += fastload[i].length;
6057         }
6058         if (retval == ERROR_OK) {
6059                 int64_t after = timeval_ms();
6060                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
6061         }
6062         return retval;
6063 }
6064
6065 static const struct command_registration target_command_handlers[] = {
6066         {
6067                 .name = "targets",
6068                 .handler = handle_targets_command,
6069                 .mode = COMMAND_ANY,
6070                 .help = "change current default target (one parameter) "
6071                         "or prints table of all targets (no parameters)",
6072                 .usage = "[target]",
6073         },
6074         {
6075                 .name = "target",
6076                 .mode = COMMAND_CONFIG,
6077                 .help = "configure target",
6078
6079                 .chain = target_subcommand_handlers,
6080         },
6081         COMMAND_REGISTRATION_DONE
6082 };
6083
6084 int target_register_commands(struct command_context *cmd_ctx)
6085 {
6086         return register_commands(cmd_ctx, NULL, target_command_handlers);
6087 }
6088
6089 static bool target_reset_nag = true;
6090
6091 bool get_target_reset_nag(void)
6092 {
6093         return target_reset_nag;
6094 }
6095
6096 COMMAND_HANDLER(handle_target_reset_nag)
6097 {
6098         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
6099                         &target_reset_nag, "Nag after each reset about options to improve "
6100                         "performance");
6101 }
6102
6103 COMMAND_HANDLER(handle_ps_command)
6104 {
6105         struct target *target = get_current_target(CMD_CTX);
6106         char *display;
6107         if (target->state != TARGET_HALTED) {
6108                 LOG_INFO("target not halted !!");
6109                 return ERROR_OK;
6110         }
6111
6112         if ((target->rtos) && (target->rtos->type)
6113                         && (target->rtos->type->ps_command)) {
6114                 display = target->rtos->type->ps_command(target);
6115                 command_print(CMD_CTX, "%s", display);
6116                 free(display);
6117                 return ERROR_OK;
6118         } else {
6119                 LOG_INFO("failed");
6120                 return ERROR_TARGET_FAILURE;
6121         }
6122 }
6123
6124 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
6125 {
6126         if (text != NULL)
6127                 command_print_sameline(cmd_ctx, "%s", text);
6128         for (int i = 0; i < size; i++)
6129                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
6130         command_print(cmd_ctx, " ");
6131 }
6132
6133 COMMAND_HANDLER(handle_test_mem_access_command)
6134 {
6135         struct target *target = get_current_target(CMD_CTX);
6136         uint32_t test_size;
6137         int retval = ERROR_OK;
6138
6139         if (target->state != TARGET_HALTED) {
6140                 LOG_INFO("target not halted !!");
6141                 return ERROR_FAIL;
6142         }
6143
6144         if (CMD_ARGC != 1)
6145                 return ERROR_COMMAND_SYNTAX_ERROR;
6146
6147         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6148
6149         /* Test reads */
6150         size_t num_bytes = test_size + 4;
6151
6152         struct working_area *wa = NULL;
6153         retval = target_alloc_working_area(target, num_bytes, &wa);
6154         if (retval != ERROR_OK) {
6155                 LOG_ERROR("Not enough working area");
6156                 return ERROR_FAIL;
6157         }
6158
6159         uint8_t *test_pattern = malloc(num_bytes);
6160
6161         for (size_t i = 0; i < num_bytes; i++)
6162                 test_pattern[i] = rand();
6163
6164         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6165         if (retval != ERROR_OK) {
6166                 LOG_ERROR("Test pattern write failed");
6167                 goto out;
6168         }
6169
6170         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6171                 for (int size = 1; size <= 4; size *= 2) {
6172                         for (int offset = 0; offset < 4; offset++) {
6173                                 uint32_t count = test_size / size;
6174                                 size_t host_bufsiz = (count + 2) * size + host_offset;
6175                                 uint8_t *read_ref = malloc(host_bufsiz);
6176                                 uint8_t *read_buf = malloc(host_bufsiz);
6177
6178                                 for (size_t i = 0; i < host_bufsiz; i++) {
6179                                         read_ref[i] = rand();
6180                                         read_buf[i] = read_ref[i];
6181                                 }
6182                                 command_print_sameline(CMD_CTX,
6183                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6184                                                 size, offset, host_offset ? "un" : "");
6185
6186                                 struct duration bench;
6187                                 duration_start(&bench);
6188
6189                                 retval = target_read_memory(target, wa->address + offset, size, count,
6190                                                 read_buf + size + host_offset);
6191
6192                                 duration_measure(&bench);
6193
6194                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6195                                         command_print(CMD_CTX, "Unsupported alignment");
6196                                         goto next;
6197                                 } else if (retval != ERROR_OK) {
6198                                         command_print(CMD_CTX, "Memory read failed");
6199                                         goto next;
6200                                 }
6201
6202                                 /* replay on host */
6203                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6204
6205                                 /* check result */
6206                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
6207                                 if (result == 0) {
6208                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6209                                                         duration_elapsed(&bench),
6210                                                         duration_kbps(&bench, count * size));
6211                                 } else {
6212                                         command_print(CMD_CTX, "Compare failed");
6213                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6214                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6215                                 }
6216 next:
6217                                 free(read_ref);
6218                                 free(read_buf);
6219                         }
6220                 }
6221         }
6222
6223 out:
6224         free(test_pattern);
6225
6226         if (wa != NULL)
6227                 target_free_working_area(target, wa);
6228
6229         /* Test writes */
6230         num_bytes = test_size + 4 + 4 + 4;
6231
6232         retval = target_alloc_working_area(target, num_bytes, &wa);
6233         if (retval != ERROR_OK) {
6234                 LOG_ERROR("Not enough working area");
6235                 return ERROR_FAIL;
6236         }
6237
6238         test_pattern = malloc(num_bytes);
6239
6240         for (size_t i = 0; i < num_bytes; i++)
6241                 test_pattern[i] = rand();
6242
6243         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6244                 for (int size = 1; size <= 4; size *= 2) {
6245                         for (int offset = 0; offset < 4; offset++) {
6246                                 uint32_t count = test_size / size;
6247                                 size_t host_bufsiz = count * size + host_offset;
6248                                 uint8_t *read_ref = malloc(num_bytes);
6249                                 uint8_t *read_buf = malloc(num_bytes);
6250                                 uint8_t *write_buf = malloc(host_bufsiz);
6251
6252                                 for (size_t i = 0; i < host_bufsiz; i++)
6253                                         write_buf[i] = rand();
6254                                 command_print_sameline(CMD_CTX,
6255                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6256                                                 size, offset, host_offset ? "un" : "");
6257
6258                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6259                                 if (retval != ERROR_OK) {
6260                                         command_print(CMD_CTX, "Test pattern write failed");
6261                                         goto nextw;
6262                                 }
6263
6264                                 /* replay on host */
6265                                 memcpy(read_ref, test_pattern, num_bytes);
6266                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6267
6268                                 struct duration bench;
6269                                 duration_start(&bench);
6270
6271                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
6272                                                 write_buf + host_offset);
6273
6274                                 duration_measure(&bench);
6275
6276                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6277                                         command_print(CMD_CTX, "Unsupported alignment");
6278                                         goto nextw;
6279                                 } else if (retval != ERROR_OK) {
6280                                         command_print(CMD_CTX, "Memory write failed");
6281                                         goto nextw;
6282                                 }
6283
6284                                 /* read back */
6285                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6286                                 if (retval != ERROR_OK) {
6287                                         command_print(CMD_CTX, "Test pattern write failed");
6288                                         goto nextw;
6289                                 }
6290
6291                                 /* check result */
6292                                 int result = memcmp(read_ref, read_buf, num_bytes);
6293                                 if (result == 0) {
6294                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6295                                                         duration_elapsed(&bench),
6296                                                         duration_kbps(&bench, count * size));
6297                                 } else {
6298                                         command_print(CMD_CTX, "Compare failed");
6299                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6300                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6301                                 }
6302 nextw:
6303                                 free(read_ref);
6304                                 free(read_buf);
6305                         }
6306                 }
6307         }
6308
6309         free(test_pattern);
6310
6311         if (wa != NULL)
6312                 target_free_working_area(target, wa);
6313         return retval;
6314 }
6315
6316 static const struct command_registration target_exec_command_handlers[] = {
6317         {
6318                 .name = "fast_load_image",
6319                 .handler = handle_fast_load_image_command,
6320                 .mode = COMMAND_ANY,
6321                 .help = "Load image into server memory for later use by "
6322                         "fast_load; primarily for profiling",
6323                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6324                         "[min_address [max_length]]",
6325         },
6326         {
6327                 .name = "fast_load",
6328                 .handler = handle_fast_load_command,
6329                 .mode = COMMAND_EXEC,
6330                 .help = "loads active fast load image to current target "
6331                         "- mainly for profiling purposes",
6332                 .usage = "",
6333         },
6334         {
6335                 .name = "profile",
6336                 .handler = handle_profile_command,
6337                 .mode = COMMAND_EXEC,
6338                 .usage = "seconds filename [start end]",
6339                 .help = "profiling samples the CPU PC",
6340         },
6341         /** @todo don't register virt2phys() unless target supports it */
6342         {
6343                 .name = "virt2phys",
6344                 .handler = handle_virt2phys_command,
6345                 .mode = COMMAND_ANY,
6346                 .help = "translate a virtual address into a physical address",
6347                 .usage = "virtual_address",
6348         },
6349         {
6350                 .name = "reg",
6351                 .handler = handle_reg_command,
6352                 .mode = COMMAND_EXEC,
6353                 .help = "display (reread from target with \"force\") or set a register; "
6354                         "with no arguments, displays all registers and their values",
6355                 .usage = "[(register_number|register_name) [(value|'force')]]",
6356         },
6357         {
6358                 .name = "poll",
6359                 .handler = handle_poll_command,
6360                 .mode = COMMAND_EXEC,
6361                 .help = "poll target state; or reconfigure background polling",
6362                 .usage = "['on'|'off']",
6363         },
6364         {
6365                 .name = "wait_halt",
6366                 .handler = handle_wait_halt_command,
6367                 .mode = COMMAND_EXEC,
6368                 .help = "wait up to the specified number of milliseconds "
6369                         "(default 5000) for a previously requested halt",
6370                 .usage = "[milliseconds]",
6371         },
6372         {
6373                 .name = "halt",
6374                 .handler = handle_halt_command,
6375                 .mode = COMMAND_EXEC,
6376                 .help = "request target to halt, then wait up to the specified"
6377                         "number of milliseconds (default 5000) for it to complete",
6378                 .usage = "[milliseconds]",
6379         },
6380         {
6381                 .name = "resume",
6382                 .handler = handle_resume_command,
6383                 .mode = COMMAND_EXEC,
6384                 .help = "resume target execution from current PC or address",
6385                 .usage = "[address]",
6386         },
6387         {
6388                 .name = "reset",
6389                 .handler = handle_reset_command,
6390                 .mode = COMMAND_EXEC,
6391                 .usage = "[run|halt|init]",
6392                 .help = "Reset all targets into the specified mode."
6393                         "Default reset mode is run, if not given.",
6394         },
6395         {
6396                 .name = "soft_reset_halt",
6397                 .handler = handle_soft_reset_halt_command,
6398                 .mode = COMMAND_EXEC,
6399                 .usage = "",
6400                 .help = "halt the target and do a soft reset",
6401         },
6402         {
6403                 .name = "step",
6404                 .handler = handle_step_command,
6405                 .mode = COMMAND_EXEC,
6406                 .help = "step one instruction from current PC or address",
6407                 .usage = "[address]",
6408         },
6409         {
6410                 .name = "mdd",
6411                 .handler = handle_md_command,
6412                 .mode = COMMAND_EXEC,
6413                 .help = "display memory words",
6414                 .usage = "['phys'] address [count]",
6415         },
6416         {
6417                 .name = "mdw",
6418                 .handler = handle_md_command,
6419                 .mode = COMMAND_EXEC,
6420                 .help = "display memory words",
6421                 .usage = "['phys'] address [count]",
6422         },
6423         {
6424                 .name = "mdh",
6425                 .handler = handle_md_command,
6426                 .mode = COMMAND_EXEC,
6427                 .help = "display memory half-words",
6428                 .usage = "['phys'] address [count]",
6429         },
6430         {
6431                 .name = "mdb",
6432                 .handler = handle_md_command,
6433                 .mode = COMMAND_EXEC,
6434                 .help = "display memory bytes",
6435                 .usage = "['phys'] address [count]",
6436         },
6437         {
6438                 .name = "mwd",
6439                 .handler = handle_mw_command,
6440                 .mode = COMMAND_EXEC,
6441                 .help = "write memory word",
6442                 .usage = "['phys'] address value [count]",
6443         },
6444         {
6445                 .name = "mww",
6446                 .handler = handle_mw_command,
6447                 .mode = COMMAND_EXEC,
6448                 .help = "write memory word",
6449                 .usage = "['phys'] address value [count]",
6450         },
6451         {
6452                 .name = "mwh",
6453                 .handler = handle_mw_command,
6454                 .mode = COMMAND_EXEC,
6455                 .help = "write memory half-word",
6456                 .usage = "['phys'] address value [count]",
6457         },
6458         {
6459                 .name = "mwb",
6460                 .handler = handle_mw_command,
6461                 .mode = COMMAND_EXEC,
6462                 .help = "write memory byte",
6463                 .usage = "['phys'] address value [count]",
6464         },
6465         {
6466                 .name = "bp",
6467                 .handler = handle_bp_command,
6468                 .mode = COMMAND_EXEC,
6469                 .help = "list or set hardware or software breakpoint",
6470                 .usage = "<address> [<asid>] <length> ['hw'|'hw_ctx']",
6471         },
6472         {
6473                 .name = "rbp",
6474                 .handler = handle_rbp_command,
6475                 .mode = COMMAND_EXEC,
6476                 .help = "remove breakpoint",
6477                 .usage = "address",
6478         },
6479         {
6480                 .name = "wp",
6481                 .handler = handle_wp_command,
6482                 .mode = COMMAND_EXEC,
6483                 .help = "list (no params) or create watchpoints",
6484                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6485         },
6486         {
6487                 .name = "rwp",
6488                 .handler = handle_rwp_command,
6489                 .mode = COMMAND_EXEC,
6490                 .help = "remove watchpoint",
6491                 .usage = "address",
6492         },
6493         {
6494                 .name = "load_image",
6495                 .handler = handle_load_image_command,
6496                 .mode = COMMAND_EXEC,
6497                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6498                         "[min_address] [max_length]",
6499         },
6500         {
6501                 .name = "dump_image",
6502                 .handler = handle_dump_image_command,
6503                 .mode = COMMAND_EXEC,
6504                 .usage = "filename address size",
6505         },
6506         {
6507                 .name = "verify_image_checksum",
6508                 .handler = handle_verify_image_checksum_command,
6509                 .mode = COMMAND_EXEC,
6510                 .usage = "filename [offset [type]]",
6511         },
6512         {
6513                 .name = "verify_image",
6514                 .handler = handle_verify_image_command,
6515                 .mode = COMMAND_EXEC,
6516                 .usage = "filename [offset [type]]",
6517         },
6518         {
6519                 .name = "test_image",
6520                 .handler = handle_test_image_command,
6521                 .mode = COMMAND_EXEC,
6522                 .usage = "filename [offset [type]]",
6523         },
6524         {
6525                 .name = "mem2array",
6526                 .mode = COMMAND_EXEC,
6527                 .jim_handler = jim_mem2array,
6528                 .help = "read 8/16/32 bit memory and return as a TCL array "
6529                         "for script processing",
6530                 .usage = "arrayname bitwidth address count",
6531         },
6532         {
6533                 .name = "array2mem",
6534                 .mode = COMMAND_EXEC,
6535                 .jim_handler = jim_array2mem,
6536                 .help = "convert a TCL array to memory locations "
6537                         "and write the 8/16/32 bit values",
6538                 .usage = "arrayname bitwidth address count",
6539         },
6540         {
6541                 .name = "reset_nag",
6542                 .handler = handle_target_reset_nag,
6543                 .mode = COMMAND_ANY,
6544                 .help = "Nag after each reset about options that could have been "
6545                                 "enabled to improve performance. ",
6546                 .usage = "['enable'|'disable']",
6547         },
6548         {
6549                 .name = "ps",
6550                 .handler = handle_ps_command,
6551                 .mode = COMMAND_EXEC,
6552                 .help = "list all tasks ",
6553                 .usage = " ",
6554         },
6555         {
6556                 .name = "test_mem_access",
6557                 .handler = handle_test_mem_access_command,
6558                 .mode = COMMAND_EXEC,
6559                 .help = "Test the target's memory access functions",
6560                 .usage = "size",
6561         },
6562
6563         COMMAND_REGISTRATION_DONE
6564 };
6565 static int target_register_user_commands(struct command_context *cmd_ctx)
6566 {
6567         int retval = ERROR_OK;
6568         retval = target_request_register_commands(cmd_ctx);
6569         if (retval != ERROR_OK)
6570                 return retval;
6571
6572         retval = trace_register_commands(cmd_ctx);
6573         if (retval != ERROR_OK)
6574                 return retval;
6575
6576
6577         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6578 }