]> git.sur5r.net Git - openocd/blob - src/target/target.c
c1ccf962e9cd514f12394d6f2e089d60e9738d9b
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63                 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65                 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type avr_target;
98 extern struct target_type dsp563xx_target;
99 extern struct target_type dsp5680xx_target;
100 extern struct target_type testee_target;
101 extern struct target_type avr32_ap7k_target;
102 extern struct target_type hla_target;
103 extern struct target_type nds32_v2_target;
104 extern struct target_type nds32_v3_target;
105 extern struct target_type nds32_v3m_target;
106 extern struct target_type or1k_target;
107 extern struct target_type quark_x10xx_target;
108 extern struct target_type quark_d20xx_target;
109 extern struct target_type stm8_target;
110 extern struct target_type riscv_target;
111 extern struct target_type mem_ap_target;
112
113 static struct target_type *target_types[] = {
114         &arm7tdmi_target,
115         &arm9tdmi_target,
116         &arm920t_target,
117         &arm720t_target,
118         &arm966e_target,
119         &arm946e_target,
120         &arm926ejs_target,
121         &fa526_target,
122         &feroceon_target,
123         &dragonite_target,
124         &xscale_target,
125         &cortexm_target,
126         &cortexa_target,
127         &cortexr4_target,
128         &arm11_target,
129         &ls1_sap_target,
130         &mips_m4k_target,
131         &avr_target,
132         &dsp563xx_target,
133         &dsp5680xx_target,
134         &testee_target,
135         &avr32_ap7k_target,
136         &hla_target,
137         &nds32_v2_target,
138         &nds32_v3_target,
139         &nds32_v3m_target,
140         &or1k_target,
141         &quark_x10xx_target,
142         &quark_d20xx_target,
143         &stm8_target,
144         &riscv_target,
145 #if BUILD_TARGET64
146         &aarch64_target,
147 #endif
148         &mem_ap_target,
149         NULL,
150 };
151
152 struct target *all_targets;
153 static struct target_event_callback *target_event_callbacks;
154 static struct target_timer_callback *target_timer_callbacks;
155 LIST_HEAD(target_reset_callback_list);
156 LIST_HEAD(target_trace_callback_list);
157 static const int polling_interval = 100;
158
159 static const Jim_Nvp nvp_assert[] = {
160         { .name = "assert", NVP_ASSERT },
161         { .name = "deassert", NVP_DEASSERT },
162         { .name = "T", NVP_ASSERT },
163         { .name = "F", NVP_DEASSERT },
164         { .name = "t", NVP_ASSERT },
165         { .name = "f", NVP_DEASSERT },
166         { .name = NULL, .value = -1 }
167 };
168
169 static const Jim_Nvp nvp_error_target[] = {
170         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
171         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
172         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
173         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
174         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
175         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
176         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
177         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
178         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
179         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
180         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
181         { .value = -1, .name = NULL }
182 };
183
184 static const char *target_strerror_safe(int err)
185 {
186         const Jim_Nvp *n;
187
188         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
189         if (n->name == NULL)
190                 return "unknown";
191         else
192                 return n->name;
193 }
194
195 static const Jim_Nvp nvp_target_event[] = {
196
197         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
198         { .value = TARGET_EVENT_HALTED, .name = "halted" },
199         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
200         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
201         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
202
203         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
204         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
205
206         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
207         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
208         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
209         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
210         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
211         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
212         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
213         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
214
215         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
216         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
217
218         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
219         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
220
221         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
222         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
223
224         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
225         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
226
227         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
228         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
229
230         { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
231
232         { .name = NULL, .value = -1 }
233 };
234
235 static const Jim_Nvp nvp_target_state[] = {
236         { .name = "unknown", .value = TARGET_UNKNOWN },
237         { .name = "running", .value = TARGET_RUNNING },
238         { .name = "halted",  .value = TARGET_HALTED },
239         { .name = "reset",   .value = TARGET_RESET },
240         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
241         { .name = NULL, .value = -1 },
242 };
243
244 static const Jim_Nvp nvp_target_debug_reason[] = {
245         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
246         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
247         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
248         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
249         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
250         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
251         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
252         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
253         { .name = NULL, .value = -1 },
254 };
255
256 static const Jim_Nvp nvp_target_endian[] = {
257         { .name = "big",    .value = TARGET_BIG_ENDIAN },
258         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
259         { .name = "be",     .value = TARGET_BIG_ENDIAN },
260         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
261         { .name = NULL,     .value = -1 },
262 };
263
264 static const Jim_Nvp nvp_reset_modes[] = {
265         { .name = "unknown", .value = RESET_UNKNOWN },
266         { .name = "run"    , .value = RESET_RUN },
267         { .name = "halt"   , .value = RESET_HALT },
268         { .name = "init"   , .value = RESET_INIT },
269         { .name = NULL     , .value = -1 },
270 };
271
272 const char *debug_reason_name(struct target *t)
273 {
274         const char *cp;
275
276         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
277                         t->debug_reason)->name;
278         if (!cp) {
279                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
280                 cp = "(*BUG*unknown*BUG*)";
281         }
282         return cp;
283 }
284
285 const char *target_state_name(struct target *t)
286 {
287         const char *cp;
288         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
289         if (!cp) {
290                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
291                 cp = "(*BUG*unknown*BUG*)";
292         }
293
294         if (!target_was_examined(t) && t->defer_examine)
295                 cp = "examine deferred";
296
297         return cp;
298 }
299
300 const char *target_event_name(enum target_event event)
301 {
302         const char *cp;
303         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
304         if (!cp) {
305                 LOG_ERROR("Invalid target event: %d", (int)(event));
306                 cp = "(*BUG*unknown*BUG*)";
307         }
308         return cp;
309 }
310
311 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
312 {
313         const char *cp;
314         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
315         if (!cp) {
316                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
317                 cp = "(*BUG*unknown*BUG*)";
318         }
319         return cp;
320 }
321
322 /* determine the number of the new target */
323 static int new_target_number(void)
324 {
325         struct target *t;
326         int x;
327
328         /* number is 0 based */
329         x = -1;
330         t = all_targets;
331         while (t) {
332                 if (x < t->target_number)
333                         x = t->target_number;
334                 t = t->next;
335         }
336         return x + 1;
337 }
338
339 /* read a uint64_t from a buffer in target memory endianness */
340 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
341 {
342         if (target->endianness == TARGET_LITTLE_ENDIAN)
343                 return le_to_h_u64(buffer);
344         else
345                 return be_to_h_u64(buffer);
346 }
347
348 /* read a uint32_t from a buffer in target memory endianness */
349 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
350 {
351         if (target->endianness == TARGET_LITTLE_ENDIAN)
352                 return le_to_h_u32(buffer);
353         else
354                 return be_to_h_u32(buffer);
355 }
356
357 /* read a uint24_t from a buffer in target memory endianness */
358 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
359 {
360         if (target->endianness == TARGET_LITTLE_ENDIAN)
361                 return le_to_h_u24(buffer);
362         else
363                 return be_to_h_u24(buffer);
364 }
365
366 /* read a uint16_t from a buffer in target memory endianness */
367 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
368 {
369         if (target->endianness == TARGET_LITTLE_ENDIAN)
370                 return le_to_h_u16(buffer);
371         else
372                 return be_to_h_u16(buffer);
373 }
374
375 /* read a uint8_t from a buffer in target memory endianness */
376 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
377 {
378         return *buffer & 0x0ff;
379 }
380
381 /* write a uint64_t to a buffer in target memory endianness */
382 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
383 {
384         if (target->endianness == TARGET_LITTLE_ENDIAN)
385                 h_u64_to_le(buffer, value);
386         else
387                 h_u64_to_be(buffer, value);
388 }
389
390 /* write a uint32_t to a buffer in target memory endianness */
391 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
392 {
393         if (target->endianness == TARGET_LITTLE_ENDIAN)
394                 h_u32_to_le(buffer, value);
395         else
396                 h_u32_to_be(buffer, value);
397 }
398
399 /* write a uint24_t to a buffer in target memory endianness */
400 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
401 {
402         if (target->endianness == TARGET_LITTLE_ENDIAN)
403                 h_u24_to_le(buffer, value);
404         else
405                 h_u24_to_be(buffer, value);
406 }
407
408 /* write a uint16_t to a buffer in target memory endianness */
409 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
410 {
411         if (target->endianness == TARGET_LITTLE_ENDIAN)
412                 h_u16_to_le(buffer, value);
413         else
414                 h_u16_to_be(buffer, value);
415 }
416
417 /* write a uint8_t to a buffer in target memory endianness */
418 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
419 {
420         *buffer = value;
421 }
422
423 /* write a uint64_t array to a buffer in target memory endianness */
424 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
425 {
426         uint32_t i;
427         for (i = 0; i < count; i++)
428                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
429 }
430
431 /* write a uint32_t array to a buffer in target memory endianness */
432 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
433 {
434         uint32_t i;
435         for (i = 0; i < count; i++)
436                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
437 }
438
439 /* write a uint16_t array to a buffer in target memory endianness */
440 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
441 {
442         uint32_t i;
443         for (i = 0; i < count; i++)
444                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
445 }
446
447 /* write a uint64_t array to a buffer in target memory endianness */
448 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
449 {
450         uint32_t i;
451         for (i = 0; i < count; i++)
452                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
453 }
454
455 /* write a uint32_t array to a buffer in target memory endianness */
456 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
457 {
458         uint32_t i;
459         for (i = 0; i < count; i++)
460                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
461 }
462
463 /* write a uint16_t array to a buffer in target memory endianness */
464 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
465 {
466         uint32_t i;
467         for (i = 0; i < count; i++)
468                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
469 }
470
471 /* return a pointer to a configured target; id is name or number */
472 struct target *get_target(const char *id)
473 {
474         struct target *target;
475
476         /* try as tcltarget name */
477         for (target = all_targets; target; target = target->next) {
478                 if (target_name(target) == NULL)
479                         continue;
480                 if (strcmp(id, target_name(target)) == 0)
481                         return target;
482         }
483
484         /* It's OK to remove this fallback sometime after August 2010 or so */
485
486         /* no match, try as number */
487         unsigned num;
488         if (parse_uint(id, &num) != ERROR_OK)
489                 return NULL;
490
491         for (target = all_targets; target; target = target->next) {
492                 if (target->target_number == (int)num) {
493                         LOG_WARNING("use '%s' as target identifier, not '%u'",
494                                         target_name(target), num);
495                         return target;
496                 }
497         }
498
499         return NULL;
500 }
501
502 /* returns a pointer to the n-th configured target */
503 struct target *get_target_by_num(int num)
504 {
505         struct target *target = all_targets;
506
507         while (target) {
508                 if (target->target_number == num)
509                         return target;
510                 target = target->next;
511         }
512
513         return NULL;
514 }
515
516 struct target *get_current_target(struct command_context *cmd_ctx)
517 {
518         struct target *target = cmd_ctx->current_target_override
519                 ? cmd_ctx->current_target_override
520                 : cmd_ctx->current_target;
521
522         if (target == NULL) {
523                 LOG_ERROR("BUG: current_target out of bounds");
524                 exit(-1);
525         }
526
527         return target;
528 }
529
530 int target_poll(struct target *target)
531 {
532         int retval;
533
534         /* We can't poll until after examine */
535         if (!target_was_examined(target)) {
536                 /* Fail silently lest we pollute the log */
537                 return ERROR_FAIL;
538         }
539
540         retval = target->type->poll(target);
541         if (retval != ERROR_OK)
542                 return retval;
543
544         if (target->halt_issued) {
545                 if (target->state == TARGET_HALTED)
546                         target->halt_issued = false;
547                 else {
548                         int64_t t = timeval_ms() - target->halt_issued_time;
549                         if (t > DEFAULT_HALT_TIMEOUT) {
550                                 target->halt_issued = false;
551                                 LOG_INFO("Halt timed out, wake up GDB.");
552                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
553                         }
554                 }
555         }
556
557         return ERROR_OK;
558 }
559
560 int target_halt(struct target *target)
561 {
562         int retval;
563         /* We can't poll until after examine */
564         if (!target_was_examined(target)) {
565                 LOG_ERROR("Target not examined yet");
566                 return ERROR_FAIL;
567         }
568
569         retval = target->type->halt(target);
570         if (retval != ERROR_OK)
571                 return retval;
572
573         target->halt_issued = true;
574         target->halt_issued_time = timeval_ms();
575
576         return ERROR_OK;
577 }
578
579 /**
580  * Make the target (re)start executing using its saved execution
581  * context (possibly with some modifications).
582  *
583  * @param target Which target should start executing.
584  * @param current True to use the target's saved program counter instead
585  *      of the address parameter
586  * @param address Optionally used as the program counter.
587  * @param handle_breakpoints True iff breakpoints at the resumption PC
588  *      should be skipped.  (For example, maybe execution was stopped by
589  *      such a breakpoint, in which case it would be counterprodutive to
590  *      let it re-trigger.
591  * @param debug_execution False if all working areas allocated by OpenOCD
592  *      should be released and/or restored to their original contents.
593  *      (This would for example be true to run some downloaded "helper"
594  *      algorithm code, which resides in one such working buffer and uses
595  *      another for data storage.)
596  *
597  * @todo Resolve the ambiguity about what the "debug_execution" flag
598  * signifies.  For example, Target implementations don't agree on how
599  * it relates to invalidation of the register cache, or to whether
600  * breakpoints and watchpoints should be enabled.  (It would seem wrong
601  * to enable breakpoints when running downloaded "helper" algorithms
602  * (debug_execution true), since the breakpoints would be set to match
603  * target firmware being debugged, not the helper algorithm.... and
604  * enabling them could cause such helpers to malfunction (for example,
605  * by overwriting data with a breakpoint instruction.  On the other
606  * hand the infrastructure for running such helpers might use this
607  * procedure but rely on hardware breakpoint to detect termination.)
608  */
609 int target_resume(struct target *target, int current, target_addr_t address,
610                 int handle_breakpoints, int debug_execution)
611 {
612         int retval;
613
614         /* We can't poll until after examine */
615         if (!target_was_examined(target)) {
616                 LOG_ERROR("Target not examined yet");
617                 return ERROR_FAIL;
618         }
619
620         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
621
622         /* note that resume *must* be asynchronous. The CPU can halt before
623          * we poll. The CPU can even halt at the current PC as a result of
624          * a software breakpoint being inserted by (a bug?) the application.
625          */
626         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
627         if (retval != ERROR_OK)
628                 return retval;
629
630         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
631
632         return retval;
633 }
634
635 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
636 {
637         char buf[100];
638         int retval;
639         Jim_Nvp *n;
640         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
641         if (n->name == NULL) {
642                 LOG_ERROR("invalid reset mode");
643                 return ERROR_FAIL;
644         }
645
646         struct target *target;
647         for (target = all_targets; target; target = target->next)
648                 target_call_reset_callbacks(target, reset_mode);
649
650         /* disable polling during reset to make reset event scripts
651          * more predictable, i.e. dr/irscan & pathmove in events will
652          * not have JTAG operations injected into the middle of a sequence.
653          */
654         bool save_poll = jtag_poll_get_enabled();
655
656         jtag_poll_set_enabled(false);
657
658         sprintf(buf, "ocd_process_reset %s", n->name);
659         retval = Jim_Eval(cmd_ctx->interp, buf);
660
661         jtag_poll_set_enabled(save_poll);
662
663         if (retval != JIM_OK) {
664                 Jim_MakeErrorMessage(cmd_ctx->interp);
665                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
666                 return ERROR_FAIL;
667         }
668
669         /* We want any events to be processed before the prompt */
670         retval = target_call_timer_callbacks_now();
671
672         for (target = all_targets; target; target = target->next) {
673                 target->type->check_reset(target);
674                 target->running_alg = false;
675         }
676
677         return retval;
678 }
679
680 static int identity_virt2phys(struct target *target,
681                 target_addr_t virtual, target_addr_t *physical)
682 {
683         *physical = virtual;
684         return ERROR_OK;
685 }
686
687 static int no_mmu(struct target *target, int *enabled)
688 {
689         *enabled = 0;
690         return ERROR_OK;
691 }
692
693 static int default_examine(struct target *target)
694 {
695         target_set_examined(target);
696         return ERROR_OK;
697 }
698
699 /* no check by default */
700 static int default_check_reset(struct target *target)
701 {
702         return ERROR_OK;
703 }
704
705 int target_examine_one(struct target *target)
706 {
707         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
708
709         int retval = target->type->examine(target);
710         if (retval != ERROR_OK)
711                 return retval;
712
713         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
714
715         return ERROR_OK;
716 }
717
718 static int jtag_enable_callback(enum jtag_event event, void *priv)
719 {
720         struct target *target = priv;
721
722         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
723                 return ERROR_OK;
724
725         jtag_unregister_event_callback(jtag_enable_callback, target);
726
727         return target_examine_one(target);
728 }
729
730 /* Targets that correctly implement init + examine, i.e.
731  * no communication with target during init:
732  *
733  * XScale
734  */
735 int target_examine(void)
736 {
737         int retval = ERROR_OK;
738         struct target *target;
739
740         for (target = all_targets; target; target = target->next) {
741                 /* defer examination, but don't skip it */
742                 if (!target->tap->enabled) {
743                         jtag_register_event_callback(jtag_enable_callback,
744                                         target);
745                         continue;
746                 }
747
748                 if (target->defer_examine)
749                         continue;
750
751                 retval = target_examine_one(target);
752                 if (retval != ERROR_OK)
753                         return retval;
754         }
755         return retval;
756 }
757
758 const char *target_type_name(struct target *target)
759 {
760         return target->type->name;
761 }
762
763 static int target_soft_reset_halt(struct target *target)
764 {
765         if (!target_was_examined(target)) {
766                 LOG_ERROR("Target not examined yet");
767                 return ERROR_FAIL;
768         }
769         if (!target->type->soft_reset_halt) {
770                 LOG_ERROR("Target %s does not support soft_reset_halt",
771                                 target_name(target));
772                 return ERROR_FAIL;
773         }
774         return target->type->soft_reset_halt(target);
775 }
776
777 /**
778  * Downloads a target-specific native code algorithm to the target,
779  * and executes it.  * Note that some targets may need to set up, enable,
780  * and tear down a breakpoint (hard or * soft) to detect algorithm
781  * termination, while others may support  lower overhead schemes where
782  * soft breakpoints embedded in the algorithm automatically terminate the
783  * algorithm.
784  *
785  * @param target used to run the algorithm
786  * @param arch_info target-specific description of the algorithm.
787  */
788 int target_run_algorithm(struct target *target,
789                 int num_mem_params, struct mem_param *mem_params,
790                 int num_reg_params, struct reg_param *reg_param,
791                 uint32_t entry_point, uint32_t exit_point,
792                 int timeout_ms, void *arch_info)
793 {
794         int retval = ERROR_FAIL;
795
796         if (!target_was_examined(target)) {
797                 LOG_ERROR("Target not examined yet");
798                 goto done;
799         }
800         if (!target->type->run_algorithm) {
801                 LOG_ERROR("Target type '%s' does not support %s",
802                                 target_type_name(target), __func__);
803                 goto done;
804         }
805
806         target->running_alg = true;
807         retval = target->type->run_algorithm(target,
808                         num_mem_params, mem_params,
809                         num_reg_params, reg_param,
810                         entry_point, exit_point, timeout_ms, arch_info);
811         target->running_alg = false;
812
813 done:
814         return retval;
815 }
816
817 /**
818  * Executes a target-specific native code algorithm and leaves it running.
819  *
820  * @param target used to run the algorithm
821  * @param arch_info target-specific description of the algorithm.
822  */
823 int target_start_algorithm(struct target *target,
824                 int num_mem_params, struct mem_param *mem_params,
825                 int num_reg_params, struct reg_param *reg_params,
826                 uint32_t entry_point, uint32_t exit_point,
827                 void *arch_info)
828 {
829         int retval = ERROR_FAIL;
830
831         if (!target_was_examined(target)) {
832                 LOG_ERROR("Target not examined yet");
833                 goto done;
834         }
835         if (!target->type->start_algorithm) {
836                 LOG_ERROR("Target type '%s' does not support %s",
837                                 target_type_name(target), __func__);
838                 goto done;
839         }
840         if (target->running_alg) {
841                 LOG_ERROR("Target is already running an algorithm");
842                 goto done;
843         }
844
845         target->running_alg = true;
846         retval = target->type->start_algorithm(target,
847                         num_mem_params, mem_params,
848                         num_reg_params, reg_params,
849                         entry_point, exit_point, arch_info);
850
851 done:
852         return retval;
853 }
854
855 /**
856  * Waits for an algorithm started with target_start_algorithm() to complete.
857  *
858  * @param target used to run the algorithm
859  * @param arch_info target-specific description of the algorithm.
860  */
861 int target_wait_algorithm(struct target *target,
862                 int num_mem_params, struct mem_param *mem_params,
863                 int num_reg_params, struct reg_param *reg_params,
864                 uint32_t exit_point, int timeout_ms,
865                 void *arch_info)
866 {
867         int retval = ERROR_FAIL;
868
869         if (!target->type->wait_algorithm) {
870                 LOG_ERROR("Target type '%s' does not support %s",
871                                 target_type_name(target), __func__);
872                 goto done;
873         }
874         if (!target->running_alg) {
875                 LOG_ERROR("Target is not running an algorithm");
876                 goto done;
877         }
878
879         retval = target->type->wait_algorithm(target,
880                         num_mem_params, mem_params,
881                         num_reg_params, reg_params,
882                         exit_point, timeout_ms, arch_info);
883         if (retval != ERROR_TARGET_TIMEOUT)
884                 target->running_alg = false;
885
886 done:
887         return retval;
888 }
889
890 /**
891  * Streams data to a circular buffer on target intended for consumption by code
892  * running asynchronously on target.
893  *
894  * This is intended for applications where target-specific native code runs
895  * on the target, receives data from the circular buffer, does something with
896  * it (most likely writing it to a flash memory), and advances the circular
897  * buffer pointer.
898  *
899  * This assumes that the helper algorithm has already been loaded to the target,
900  * but has not been started yet. Given memory and register parameters are passed
901  * to the algorithm.
902  *
903  * The buffer is defined by (buffer_start, buffer_size) arguments and has the
904  * following format:
905  *
906  *     [buffer_start + 0, buffer_start + 4):
907  *         Write Pointer address (aka head). Written and updated by this
908  *         routine when new data is written to the circular buffer.
909  *     [buffer_start + 4, buffer_start + 8):
910  *         Read Pointer address (aka tail). Updated by code running on the
911  *         target after it consumes data.
912  *     [buffer_start + 8, buffer_start + buffer_size):
913  *         Circular buffer contents.
914  *
915  * See contrib/loaders/flash/stm32f1x.S for an example.
916  *
917  * @param target used to run the algorithm
918  * @param buffer address on the host where data to be sent is located
919  * @param count number of blocks to send
920  * @param block_size size in bytes of each block
921  * @param num_mem_params count of memory-based params to pass to algorithm
922  * @param mem_params memory-based params to pass to algorithm
923  * @param num_reg_params count of register-based params to pass to algorithm
924  * @param reg_params memory-based params to pass to algorithm
925  * @param buffer_start address on the target of the circular buffer structure
926  * @param buffer_size size of the circular buffer structure
927  * @param entry_point address on the target to execute to start the algorithm
928  * @param exit_point address at which to set a breakpoint to catch the
929  *     end of the algorithm; can be 0 if target triggers a breakpoint itself
930  */
931
932 int target_run_flash_async_algorithm(struct target *target,
933                 const uint8_t *buffer, uint32_t count, int block_size,
934                 int num_mem_params, struct mem_param *mem_params,
935                 int num_reg_params, struct reg_param *reg_params,
936                 uint32_t buffer_start, uint32_t buffer_size,
937                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
938 {
939         int retval;
940         int timeout = 0;
941
942         const uint8_t *buffer_orig = buffer;
943
944         /* Set up working area. First word is write pointer, second word is read pointer,
945          * rest is fifo data area. */
946         uint32_t wp_addr = buffer_start;
947         uint32_t rp_addr = buffer_start + 4;
948         uint32_t fifo_start_addr = buffer_start + 8;
949         uint32_t fifo_end_addr = buffer_start + buffer_size;
950
951         uint32_t wp = fifo_start_addr;
952         uint32_t rp = fifo_start_addr;
953
954         /* validate block_size is 2^n */
955         assert(!block_size || !(block_size & (block_size - 1)));
956
957         retval = target_write_u32(target, wp_addr, wp);
958         if (retval != ERROR_OK)
959                 return retval;
960         retval = target_write_u32(target, rp_addr, rp);
961         if (retval != ERROR_OK)
962                 return retval;
963
964         /* Start up algorithm on target and let it idle while writing the first chunk */
965         retval = target_start_algorithm(target, num_mem_params, mem_params,
966                         num_reg_params, reg_params,
967                         entry_point,
968                         exit_point,
969                         arch_info);
970
971         if (retval != ERROR_OK) {
972                 LOG_ERROR("error starting target flash write algorithm");
973                 return retval;
974         }
975
976         while (count > 0) {
977
978                 retval = target_read_u32(target, rp_addr, &rp);
979                 if (retval != ERROR_OK) {
980                         LOG_ERROR("failed to get read pointer");
981                         break;
982                 }
983
984                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
985                         (size_t) (buffer - buffer_orig), count, wp, rp);
986
987                 if (rp == 0) {
988                         LOG_ERROR("flash write algorithm aborted by target");
989                         retval = ERROR_FLASH_OPERATION_FAILED;
990                         break;
991                 }
992
993                 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
994                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
995                         break;
996                 }
997
998                 /* Count the number of bytes available in the fifo without
999                  * crossing the wrap around. Make sure to not fill it completely,
1000                  * because that would make wp == rp and that's the empty condition. */
1001                 uint32_t thisrun_bytes;
1002                 if (rp > wp)
1003                         thisrun_bytes = rp - wp - block_size;
1004                 else if (rp > fifo_start_addr)
1005                         thisrun_bytes = fifo_end_addr - wp;
1006                 else
1007                         thisrun_bytes = fifo_end_addr - wp - block_size;
1008
1009                 if (thisrun_bytes == 0) {
1010                         /* Throttle polling a bit if transfer is (much) faster than flash
1011                          * programming. The exact delay shouldn't matter as long as it's
1012                          * less than buffer size / flash speed. This is very unlikely to
1013                          * run when using high latency connections such as USB. */
1014                         alive_sleep(10);
1015
1016                         /* to stop an infinite loop on some targets check and increment a timeout
1017                          * this issue was observed on a stellaris using the new ICDI interface */
1018                         if (timeout++ >= 500) {
1019                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1020                                 return ERROR_FLASH_OPERATION_FAILED;
1021                         }
1022                         continue;
1023                 }
1024
1025                 /* reset our timeout */
1026                 timeout = 0;
1027
1028                 /* Limit to the amount of data we actually want to write */
1029                 if (thisrun_bytes > count * block_size)
1030                         thisrun_bytes = count * block_size;
1031
1032                 /* Write data to fifo */
1033                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1034                 if (retval != ERROR_OK)
1035                         break;
1036
1037                 /* Update counters and wrap write pointer */
1038                 buffer += thisrun_bytes;
1039                 count -= thisrun_bytes / block_size;
1040                 wp += thisrun_bytes;
1041                 if (wp >= fifo_end_addr)
1042                         wp = fifo_start_addr;
1043
1044                 /* Store updated write pointer to target */
1045                 retval = target_write_u32(target, wp_addr, wp);
1046                 if (retval != ERROR_OK)
1047                         break;
1048         }
1049
1050         if (retval != ERROR_OK) {
1051                 /* abort flash write algorithm on target */
1052                 target_write_u32(target, wp_addr, 0);
1053         }
1054
1055         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1056                         num_reg_params, reg_params,
1057                         exit_point,
1058                         10000,
1059                         arch_info);
1060
1061         if (retval2 != ERROR_OK) {
1062                 LOG_ERROR("error waiting for target flash write algorithm");
1063                 retval = retval2;
1064         }
1065
1066         if (retval == ERROR_OK) {
1067                 /* check if algorithm set rp = 0 after fifo writer loop finished */
1068                 retval = target_read_u32(target, rp_addr, &rp);
1069                 if (retval == ERROR_OK && rp == 0) {
1070                         LOG_ERROR("flash write algorithm aborted by target");
1071                         retval = ERROR_FLASH_OPERATION_FAILED;
1072                 }
1073         }
1074
1075         return retval;
1076 }
1077
1078 int target_read_memory(struct target *target,
1079                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1080 {
1081         if (!target_was_examined(target)) {
1082                 LOG_ERROR("Target not examined yet");
1083                 return ERROR_FAIL;
1084         }
1085         if (!target->type->read_memory) {
1086                 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1087                 return ERROR_FAIL;
1088         }
1089         return target->type->read_memory(target, address, size, count, buffer);
1090 }
1091
1092 int target_read_phys_memory(struct target *target,
1093                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1094 {
1095         if (!target_was_examined(target)) {
1096                 LOG_ERROR("Target not examined yet");
1097                 return ERROR_FAIL;
1098         }
1099         if (!target->type->read_phys_memory) {
1100                 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1101                 return ERROR_FAIL;
1102         }
1103         return target->type->read_phys_memory(target, address, size, count, buffer);
1104 }
1105
1106 int target_write_memory(struct target *target,
1107                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1108 {
1109         if (!target_was_examined(target)) {
1110                 LOG_ERROR("Target not examined yet");
1111                 return ERROR_FAIL;
1112         }
1113         if (!target->type->write_memory) {
1114                 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1115                 return ERROR_FAIL;
1116         }
1117         return target->type->write_memory(target, address, size, count, buffer);
1118 }
1119
1120 int target_write_phys_memory(struct target *target,
1121                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1122 {
1123         if (!target_was_examined(target)) {
1124                 LOG_ERROR("Target not examined yet");
1125                 return ERROR_FAIL;
1126         }
1127         if (!target->type->write_phys_memory) {
1128                 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1129                 return ERROR_FAIL;
1130         }
1131         return target->type->write_phys_memory(target, address, size, count, buffer);
1132 }
1133
1134 int target_add_breakpoint(struct target *target,
1135                 struct breakpoint *breakpoint)
1136 {
1137         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1138                 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1139                 return ERROR_TARGET_NOT_HALTED;
1140         }
1141         return target->type->add_breakpoint(target, breakpoint);
1142 }
1143
1144 int target_add_context_breakpoint(struct target *target,
1145                 struct breakpoint *breakpoint)
1146 {
1147         if (target->state != TARGET_HALTED) {
1148                 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1149                 return ERROR_TARGET_NOT_HALTED;
1150         }
1151         return target->type->add_context_breakpoint(target, breakpoint);
1152 }
1153
1154 int target_add_hybrid_breakpoint(struct target *target,
1155                 struct breakpoint *breakpoint)
1156 {
1157         if (target->state != TARGET_HALTED) {
1158                 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1159                 return ERROR_TARGET_NOT_HALTED;
1160         }
1161         return target->type->add_hybrid_breakpoint(target, breakpoint);
1162 }
1163
1164 int target_remove_breakpoint(struct target *target,
1165                 struct breakpoint *breakpoint)
1166 {
1167         return target->type->remove_breakpoint(target, breakpoint);
1168 }
1169
1170 int target_add_watchpoint(struct target *target,
1171                 struct watchpoint *watchpoint)
1172 {
1173         if (target->state != TARGET_HALTED) {
1174                 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1175                 return ERROR_TARGET_NOT_HALTED;
1176         }
1177         return target->type->add_watchpoint(target, watchpoint);
1178 }
1179 int target_remove_watchpoint(struct target *target,
1180                 struct watchpoint *watchpoint)
1181 {
1182         return target->type->remove_watchpoint(target, watchpoint);
1183 }
1184 int target_hit_watchpoint(struct target *target,
1185                 struct watchpoint **hit_watchpoint)
1186 {
1187         if (target->state != TARGET_HALTED) {
1188                 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1189                 return ERROR_TARGET_NOT_HALTED;
1190         }
1191
1192         if (target->type->hit_watchpoint == NULL) {
1193                 /* For backward compatible, if hit_watchpoint is not implemented,
1194                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1195                  * information. */
1196                 return ERROR_FAIL;
1197         }
1198
1199         return target->type->hit_watchpoint(target, hit_watchpoint);
1200 }
1201
1202 const char *target_get_gdb_arch(struct target *target)
1203 {
1204         if (target->type->get_gdb_arch == NULL)
1205                 return NULL;
1206         return target->type->get_gdb_arch(target);
1207 }
1208
1209 int target_get_gdb_reg_list(struct target *target,
1210                 struct reg **reg_list[], int *reg_list_size,
1211                 enum target_register_class reg_class)
1212 {
1213         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1214 }
1215
1216 bool target_supports_gdb_connection(struct target *target)
1217 {
1218         /*
1219          * based on current code, we can simply exclude all the targets that
1220          * don't provide get_gdb_reg_list; this could change with new targets.
1221          */
1222         return !!target->type->get_gdb_reg_list;
1223 }
1224
1225 int target_step(struct target *target,
1226                 int current, target_addr_t address, int handle_breakpoints)
1227 {
1228         return target->type->step(target, current, address, handle_breakpoints);
1229 }
1230
1231 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1232 {
1233         if (target->state != TARGET_HALTED) {
1234                 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1235                 return ERROR_TARGET_NOT_HALTED;
1236         }
1237         return target->type->get_gdb_fileio_info(target, fileio_info);
1238 }
1239
1240 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1241 {
1242         if (target->state != TARGET_HALTED) {
1243                 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1244                 return ERROR_TARGET_NOT_HALTED;
1245         }
1246         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1247 }
1248
1249 int target_profiling(struct target *target, uint32_t *samples,
1250                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1251 {
1252         if (target->state != TARGET_HALTED) {
1253                 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1254                 return ERROR_TARGET_NOT_HALTED;
1255         }
1256         return target->type->profiling(target, samples, max_num_samples,
1257                         num_samples, seconds);
1258 }
1259
1260 /**
1261  * Reset the @c examined flag for the given target.
1262  * Pure paranoia -- targets are zeroed on allocation.
1263  */
1264 static void target_reset_examined(struct target *target)
1265 {
1266         target->examined = false;
1267 }
1268
1269 static int handle_target(void *priv);
1270
1271 static int target_init_one(struct command_context *cmd_ctx,
1272                 struct target *target)
1273 {
1274         target_reset_examined(target);
1275
1276         struct target_type *type = target->type;
1277         if (type->examine == NULL)
1278                 type->examine = default_examine;
1279
1280         if (type->check_reset == NULL)
1281                 type->check_reset = default_check_reset;
1282
1283         assert(type->init_target != NULL);
1284
1285         int retval = type->init_target(cmd_ctx, target);
1286         if (ERROR_OK != retval) {
1287                 LOG_ERROR("target '%s' init failed", target_name(target));
1288                 return retval;
1289         }
1290
1291         /* Sanity-check MMU support ... stub in what we must, to help
1292          * implement it in stages, but warn if we need to do so.
1293          */
1294         if (type->mmu) {
1295                 if (type->virt2phys == NULL) {
1296                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1297                         type->virt2phys = identity_virt2phys;
1298                 }
1299         } else {
1300                 /* Make sure no-MMU targets all behave the same:  make no
1301                  * distinction between physical and virtual addresses, and
1302                  * ensure that virt2phys() is always an identity mapping.
1303                  */
1304                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1305                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1306
1307                 type->mmu = no_mmu;
1308                 type->write_phys_memory = type->write_memory;
1309                 type->read_phys_memory = type->read_memory;
1310                 type->virt2phys = identity_virt2phys;
1311         }
1312
1313         if (target->type->read_buffer == NULL)
1314                 target->type->read_buffer = target_read_buffer_default;
1315
1316         if (target->type->write_buffer == NULL)
1317                 target->type->write_buffer = target_write_buffer_default;
1318
1319         if (target->type->get_gdb_fileio_info == NULL)
1320                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1321
1322         if (target->type->gdb_fileio_end == NULL)
1323                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1324
1325         if (target->type->profiling == NULL)
1326                 target->type->profiling = target_profiling_default;
1327
1328         return ERROR_OK;
1329 }
1330
1331 static int target_init(struct command_context *cmd_ctx)
1332 {
1333         struct target *target;
1334         int retval;
1335
1336         for (target = all_targets; target; target = target->next) {
1337                 retval = target_init_one(cmd_ctx, target);
1338                 if (ERROR_OK != retval)
1339                         return retval;
1340         }
1341
1342         if (!all_targets)
1343                 return ERROR_OK;
1344
1345         retval = target_register_user_commands(cmd_ctx);
1346         if (ERROR_OK != retval)
1347                 return retval;
1348
1349         retval = target_register_timer_callback(&handle_target,
1350                         polling_interval, 1, cmd_ctx->interp);
1351         if (ERROR_OK != retval)
1352                 return retval;
1353
1354         return ERROR_OK;
1355 }
1356
1357 COMMAND_HANDLER(handle_target_init_command)
1358 {
1359         int retval;
1360
1361         if (CMD_ARGC != 0)
1362                 return ERROR_COMMAND_SYNTAX_ERROR;
1363
1364         static bool target_initialized;
1365         if (target_initialized) {
1366                 LOG_INFO("'target init' has already been called");
1367                 return ERROR_OK;
1368         }
1369         target_initialized = true;
1370
1371         retval = command_run_line(CMD_CTX, "init_targets");
1372         if (ERROR_OK != retval)
1373                 return retval;
1374
1375         retval = command_run_line(CMD_CTX, "init_target_events");
1376         if (ERROR_OK != retval)
1377                 return retval;
1378
1379         retval = command_run_line(CMD_CTX, "init_board");
1380         if (ERROR_OK != retval)
1381                 return retval;
1382
1383         LOG_DEBUG("Initializing targets...");
1384         return target_init(CMD_CTX);
1385 }
1386
1387 int target_register_event_callback(int (*callback)(struct target *target,
1388                 enum target_event event, void *priv), void *priv)
1389 {
1390         struct target_event_callback **callbacks_p = &target_event_callbacks;
1391
1392         if (callback == NULL)
1393                 return ERROR_COMMAND_SYNTAX_ERROR;
1394
1395         if (*callbacks_p) {
1396                 while ((*callbacks_p)->next)
1397                         callbacks_p = &((*callbacks_p)->next);
1398                 callbacks_p = &((*callbacks_p)->next);
1399         }
1400
1401         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1402         (*callbacks_p)->callback = callback;
1403         (*callbacks_p)->priv = priv;
1404         (*callbacks_p)->next = NULL;
1405
1406         return ERROR_OK;
1407 }
1408
1409 int target_register_reset_callback(int (*callback)(struct target *target,
1410                 enum target_reset_mode reset_mode, void *priv), void *priv)
1411 {
1412         struct target_reset_callback *entry;
1413
1414         if (callback == NULL)
1415                 return ERROR_COMMAND_SYNTAX_ERROR;
1416
1417         entry = malloc(sizeof(struct target_reset_callback));
1418         if (entry == NULL) {
1419                 LOG_ERROR("error allocating buffer for reset callback entry");
1420                 return ERROR_COMMAND_SYNTAX_ERROR;
1421         }
1422
1423         entry->callback = callback;
1424         entry->priv = priv;
1425         list_add(&entry->list, &target_reset_callback_list);
1426
1427
1428         return ERROR_OK;
1429 }
1430
1431 int target_register_trace_callback(int (*callback)(struct target *target,
1432                 size_t len, uint8_t *data, void *priv), void *priv)
1433 {
1434         struct target_trace_callback *entry;
1435
1436         if (callback == NULL)
1437                 return ERROR_COMMAND_SYNTAX_ERROR;
1438
1439         entry = malloc(sizeof(struct target_trace_callback));
1440         if (entry == NULL) {
1441                 LOG_ERROR("error allocating buffer for trace callback entry");
1442                 return ERROR_COMMAND_SYNTAX_ERROR;
1443         }
1444
1445         entry->callback = callback;
1446         entry->priv = priv;
1447         list_add(&entry->list, &target_trace_callback_list);
1448
1449
1450         return ERROR_OK;
1451 }
1452
1453 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1454 {
1455         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1456
1457         if (callback == NULL)
1458                 return ERROR_COMMAND_SYNTAX_ERROR;
1459
1460         if (*callbacks_p) {
1461                 while ((*callbacks_p)->next)
1462                         callbacks_p = &((*callbacks_p)->next);
1463                 callbacks_p = &((*callbacks_p)->next);
1464         }
1465
1466         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1467         (*callbacks_p)->callback = callback;
1468         (*callbacks_p)->periodic = periodic;
1469         (*callbacks_p)->time_ms = time_ms;
1470         (*callbacks_p)->removed = false;
1471
1472         gettimeofday(&(*callbacks_p)->when, NULL);
1473         timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1474
1475         (*callbacks_p)->priv = priv;
1476         (*callbacks_p)->next = NULL;
1477
1478         return ERROR_OK;
1479 }
1480
1481 int target_unregister_event_callback(int (*callback)(struct target *target,
1482                 enum target_event event, void *priv), void *priv)
1483 {
1484         struct target_event_callback **p = &target_event_callbacks;
1485         struct target_event_callback *c = target_event_callbacks;
1486
1487         if (callback == NULL)
1488                 return ERROR_COMMAND_SYNTAX_ERROR;
1489
1490         while (c) {
1491                 struct target_event_callback *next = c->next;
1492                 if ((c->callback == callback) && (c->priv == priv)) {
1493                         *p = next;
1494                         free(c);
1495                         return ERROR_OK;
1496                 } else
1497                         p = &(c->next);
1498                 c = next;
1499         }
1500
1501         return ERROR_OK;
1502 }
1503
1504 int target_unregister_reset_callback(int (*callback)(struct target *target,
1505                 enum target_reset_mode reset_mode, void *priv), void *priv)
1506 {
1507         struct target_reset_callback *entry;
1508
1509         if (callback == NULL)
1510                 return ERROR_COMMAND_SYNTAX_ERROR;
1511
1512         list_for_each_entry(entry, &target_reset_callback_list, list) {
1513                 if (entry->callback == callback && entry->priv == priv) {
1514                         list_del(&entry->list);
1515                         free(entry);
1516                         break;
1517                 }
1518         }
1519
1520         return ERROR_OK;
1521 }
1522
1523 int target_unregister_trace_callback(int (*callback)(struct target *target,
1524                 size_t len, uint8_t *data, void *priv), void *priv)
1525 {
1526         struct target_trace_callback *entry;
1527
1528         if (callback == NULL)
1529                 return ERROR_COMMAND_SYNTAX_ERROR;
1530
1531         list_for_each_entry(entry, &target_trace_callback_list, list) {
1532                 if (entry->callback == callback && entry->priv == priv) {
1533                         list_del(&entry->list);
1534                         free(entry);
1535                         break;
1536                 }
1537         }
1538
1539         return ERROR_OK;
1540 }
1541
1542 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1543 {
1544         if (callback == NULL)
1545                 return ERROR_COMMAND_SYNTAX_ERROR;
1546
1547         for (struct target_timer_callback *c = target_timer_callbacks;
1548              c; c = c->next) {
1549                 if ((c->callback == callback) && (c->priv == priv)) {
1550                         c->removed = true;
1551                         return ERROR_OK;
1552                 }
1553         }
1554
1555         return ERROR_FAIL;
1556 }
1557
1558 int target_call_event_callbacks(struct target *target, enum target_event event)
1559 {
1560         struct target_event_callback *callback = target_event_callbacks;
1561         struct target_event_callback *next_callback;
1562
1563         if (event == TARGET_EVENT_HALTED) {
1564                 /* execute early halted first */
1565                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1566         }
1567
1568         LOG_DEBUG("target event %i (%s)", event,
1569                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1570
1571         target_handle_event(target, event);
1572
1573         while (callback) {
1574                 next_callback = callback->next;
1575                 callback->callback(target, event, callback->priv);
1576                 callback = next_callback;
1577         }
1578
1579         return ERROR_OK;
1580 }
1581
1582 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1583 {
1584         struct target_reset_callback *callback;
1585
1586         LOG_DEBUG("target reset %i (%s)", reset_mode,
1587                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1588
1589         list_for_each_entry(callback, &target_reset_callback_list, list)
1590                 callback->callback(target, reset_mode, callback->priv);
1591
1592         return ERROR_OK;
1593 }
1594
1595 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1596 {
1597         struct target_trace_callback *callback;
1598
1599         list_for_each_entry(callback, &target_trace_callback_list, list)
1600                 callback->callback(target, len, data, callback->priv);
1601
1602         return ERROR_OK;
1603 }
1604
1605 static int target_timer_callback_periodic_restart(
1606                 struct target_timer_callback *cb, struct timeval *now)
1607 {
1608         cb->when = *now;
1609         timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1610         return ERROR_OK;
1611 }
1612
1613 static int target_call_timer_callback(struct target_timer_callback *cb,
1614                 struct timeval *now)
1615 {
1616         cb->callback(cb->priv);
1617
1618         if (cb->periodic)
1619                 return target_timer_callback_periodic_restart(cb, now);
1620
1621         return target_unregister_timer_callback(cb->callback, cb->priv);
1622 }
1623
1624 static int target_call_timer_callbacks_check_time(int checktime)
1625 {
1626         static bool callback_processing;
1627
1628         /* Do not allow nesting */
1629         if (callback_processing)
1630                 return ERROR_OK;
1631
1632         callback_processing = true;
1633
1634         keep_alive();
1635
1636         struct timeval now;
1637         gettimeofday(&now, NULL);
1638
1639         /* Store an address of the place containing a pointer to the
1640          * next item; initially, that's a standalone "root of the
1641          * list" variable. */
1642         struct target_timer_callback **callback = &target_timer_callbacks;
1643         while (*callback) {
1644                 if ((*callback)->removed) {
1645                         struct target_timer_callback *p = *callback;
1646                         *callback = (*callback)->next;
1647                         free(p);
1648                         continue;
1649                 }
1650
1651                 bool call_it = (*callback)->callback &&
1652                         ((!checktime && (*callback)->periodic) ||
1653                          timeval_compare(&now, &(*callback)->when) >= 0);
1654
1655                 if (call_it)
1656                         target_call_timer_callback(*callback, &now);
1657
1658                 callback = &(*callback)->next;
1659         }
1660
1661         callback_processing = false;
1662         return ERROR_OK;
1663 }
1664
1665 int target_call_timer_callbacks(void)
1666 {
1667         return target_call_timer_callbacks_check_time(1);
1668 }
1669
1670 /* invoke periodic callbacks immediately */
1671 int target_call_timer_callbacks_now(void)
1672 {
1673         return target_call_timer_callbacks_check_time(0);
1674 }
1675
1676 /* Prints the working area layout for debug purposes */
1677 static void print_wa_layout(struct target *target)
1678 {
1679         struct working_area *c = target->working_areas;
1680
1681         while (c) {
1682                 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1683                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1684                         c->address, c->address + c->size - 1, c->size);
1685                 c = c->next;
1686         }
1687 }
1688
1689 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1690 static void target_split_working_area(struct working_area *area, uint32_t size)
1691 {
1692         assert(area->free); /* Shouldn't split an allocated area */
1693         assert(size <= area->size); /* Caller should guarantee this */
1694
1695         /* Split only if not already the right size */
1696         if (size < area->size) {
1697                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1698
1699                 if (new_wa == NULL)
1700                         return;
1701
1702                 new_wa->next = area->next;
1703                 new_wa->size = area->size - size;
1704                 new_wa->address = area->address + size;
1705                 new_wa->backup = NULL;
1706                 new_wa->user = NULL;
1707                 new_wa->free = true;
1708
1709                 area->next = new_wa;
1710                 area->size = size;
1711
1712                 /* If backup memory was allocated to this area, it has the wrong size
1713                  * now so free it and it will be reallocated if/when needed */
1714                 if (area->backup) {
1715                         free(area->backup);
1716                         area->backup = NULL;
1717                 }
1718         }
1719 }
1720
1721 /* Merge all adjacent free areas into one */
1722 static void target_merge_working_areas(struct target *target)
1723 {
1724         struct working_area *c = target->working_areas;
1725
1726         while (c && c->next) {
1727                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1728
1729                 /* Find two adjacent free areas */
1730                 if (c->free && c->next->free) {
1731                         /* Merge the last into the first */
1732                         c->size += c->next->size;
1733
1734                         /* Remove the last */
1735                         struct working_area *to_be_freed = c->next;
1736                         c->next = c->next->next;
1737                         if (to_be_freed->backup)
1738                                 free(to_be_freed->backup);
1739                         free(to_be_freed);
1740
1741                         /* If backup memory was allocated to the remaining area, it's has
1742                          * the wrong size now */
1743                         if (c->backup) {
1744                                 free(c->backup);
1745                                 c->backup = NULL;
1746                         }
1747                 } else {
1748                         c = c->next;
1749                 }
1750         }
1751 }
1752
1753 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1754 {
1755         /* Reevaluate working area address based on MMU state*/
1756         if (target->working_areas == NULL) {
1757                 int retval;
1758                 int enabled;
1759
1760                 retval = target->type->mmu(target, &enabled);
1761                 if (retval != ERROR_OK)
1762                         return retval;
1763
1764                 if (!enabled) {
1765                         if (target->working_area_phys_spec) {
1766                                 LOG_DEBUG("MMU disabled, using physical "
1767                                         "address for working memory " TARGET_ADDR_FMT,
1768                                         target->working_area_phys);
1769                                 target->working_area = target->working_area_phys;
1770                         } else {
1771                                 LOG_ERROR("No working memory available. "
1772                                         "Specify -work-area-phys to target.");
1773                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1774                         }
1775                 } else {
1776                         if (target->working_area_virt_spec) {
1777                                 LOG_DEBUG("MMU enabled, using virtual "
1778                                         "address for working memory " TARGET_ADDR_FMT,
1779                                         target->working_area_virt);
1780                                 target->working_area = target->working_area_virt;
1781                         } else {
1782                                 LOG_ERROR("No working memory available. "
1783                                         "Specify -work-area-virt to target.");
1784                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1785                         }
1786                 }
1787
1788                 /* Set up initial working area on first call */
1789                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1790                 if (new_wa) {
1791                         new_wa->next = NULL;
1792                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1793                         new_wa->address = target->working_area;
1794                         new_wa->backup = NULL;
1795                         new_wa->user = NULL;
1796                         new_wa->free = true;
1797                 }
1798
1799                 target->working_areas = new_wa;
1800         }
1801
1802         /* only allocate multiples of 4 byte */
1803         if (size % 4)
1804                 size = (size + 3) & (~3UL);
1805
1806         struct working_area *c = target->working_areas;
1807
1808         /* Find the first large enough working area */
1809         while (c) {
1810                 if (c->free && c->size >= size)
1811                         break;
1812                 c = c->next;
1813         }
1814
1815         if (c == NULL)
1816                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1817
1818         /* Split the working area into the requested size */
1819         target_split_working_area(c, size);
1820
1821         LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1822                           size, c->address);
1823
1824         if (target->backup_working_area) {
1825                 if (c->backup == NULL) {
1826                         c->backup = malloc(c->size);
1827                         if (c->backup == NULL)
1828                                 return ERROR_FAIL;
1829                 }
1830
1831                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1832                 if (retval != ERROR_OK)
1833                         return retval;
1834         }
1835
1836         /* mark as used, and return the new (reused) area */
1837         c->free = false;
1838         *area = c;
1839
1840         /* user pointer */
1841         c->user = area;
1842
1843         print_wa_layout(target);
1844
1845         return ERROR_OK;
1846 }
1847
1848 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1849 {
1850         int retval;
1851
1852         retval = target_alloc_working_area_try(target, size, area);
1853         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1854                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1855         return retval;
1856
1857 }
1858
1859 static int target_restore_working_area(struct target *target, struct working_area *area)
1860 {
1861         int retval = ERROR_OK;
1862
1863         if (target->backup_working_area && area->backup != NULL) {
1864                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1865                 if (retval != ERROR_OK)
1866                         LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1867                                         area->size, area->address);
1868         }
1869
1870         return retval;
1871 }
1872
1873 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1874 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1875 {
1876         int retval = ERROR_OK;
1877
1878         if (area->free)
1879                 return retval;
1880
1881         if (restore) {
1882                 retval = target_restore_working_area(target, area);
1883                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1884                 if (retval != ERROR_OK)
1885                         return retval;
1886         }
1887
1888         area->free = true;
1889
1890         LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1891                         area->size, area->address);
1892
1893         /* mark user pointer invalid */
1894         /* TODO: Is this really safe? It points to some previous caller's memory.
1895          * How could we know that the area pointer is still in that place and not
1896          * some other vital data? What's the purpose of this, anyway? */
1897         *area->user = NULL;
1898         area->user = NULL;
1899
1900         target_merge_working_areas(target);
1901
1902         print_wa_layout(target);
1903
1904         return retval;
1905 }
1906
1907 int target_free_working_area(struct target *target, struct working_area *area)
1908 {
1909         return target_free_working_area_restore(target, area, 1);
1910 }
1911
1912 static void target_destroy(struct target *target)
1913 {
1914         if (target->type->deinit_target)
1915                 target->type->deinit_target(target);
1916
1917         if (target->semihosting)
1918                 free(target->semihosting);
1919
1920         jtag_unregister_event_callback(jtag_enable_callback, target);
1921
1922         struct target_event_action *teap = target->event_action;
1923         while (teap) {
1924                 struct target_event_action *next = teap->next;
1925                 Jim_DecrRefCount(teap->interp, teap->body);
1926                 free(teap);
1927                 teap = next;
1928         }
1929
1930         target_free_all_working_areas(target);
1931         /* Now we have none or only one working area marked as free */
1932         if (target->working_areas) {
1933                 free(target->working_areas->backup);
1934                 free(target->working_areas);
1935         }
1936
1937         /* release the targets SMP list */
1938         if (target->smp) {
1939                 struct target_list *head = target->head;
1940                 while (head != NULL) {
1941                         struct target_list *pos = head->next;
1942                         head->target->smp = 0;
1943                         free(head);
1944                         head = pos;
1945                 }
1946                 target->smp = 0;
1947         }
1948
1949         free(target->gdb_port_override);
1950         free(target->type);
1951         free(target->trace_info);
1952         free(target->fileio_info);
1953         free(target->cmd_name);
1954         free(target);
1955 }
1956
1957 void target_quit(void)
1958 {
1959         struct target_event_callback *pe = target_event_callbacks;
1960         while (pe) {
1961                 struct target_event_callback *t = pe->next;
1962                 free(pe);
1963                 pe = t;
1964         }
1965         target_event_callbacks = NULL;
1966
1967         struct target_timer_callback *pt = target_timer_callbacks;
1968         while (pt) {
1969                 struct target_timer_callback *t = pt->next;
1970                 free(pt);
1971                 pt = t;
1972         }
1973         target_timer_callbacks = NULL;
1974
1975         for (struct target *target = all_targets; target;) {
1976                 struct target *tmp;
1977
1978                 tmp = target->next;
1979                 target_destroy(target);
1980                 target = tmp;
1981         }
1982
1983         all_targets = NULL;
1984 }
1985
1986 /* free resources and restore memory, if restoring memory fails,
1987  * free up resources anyway
1988  */
1989 static void target_free_all_working_areas_restore(struct target *target, int restore)
1990 {
1991         struct working_area *c = target->working_areas;
1992
1993         LOG_DEBUG("freeing all working areas");
1994
1995         /* Loop through all areas, restoring the allocated ones and marking them as free */
1996         while (c) {
1997                 if (!c->free) {
1998                         if (restore)
1999                                 target_restore_working_area(target, c);
2000                         c->free = true;
2001                         *c->user = NULL; /* Same as above */
2002                         c->user = NULL;
2003                 }
2004                 c = c->next;
2005         }
2006
2007         /* Run a merge pass to combine all areas into one */
2008         target_merge_working_areas(target);
2009
2010         print_wa_layout(target);
2011 }
2012
2013 void target_free_all_working_areas(struct target *target)
2014 {
2015         target_free_all_working_areas_restore(target, 1);
2016 }
2017
2018 /* Find the largest number of bytes that can be allocated */
2019 uint32_t target_get_working_area_avail(struct target *target)
2020 {
2021         struct working_area *c = target->working_areas;
2022         uint32_t max_size = 0;
2023
2024         if (c == NULL)
2025                 return target->working_area_size;
2026
2027         while (c) {
2028                 if (c->free && max_size < c->size)
2029                         max_size = c->size;
2030
2031                 c = c->next;
2032         }
2033
2034         return max_size;
2035 }
2036
2037 int target_arch_state(struct target *target)
2038 {
2039         int retval;
2040         if (target == NULL) {
2041                 LOG_WARNING("No target has been configured");
2042                 return ERROR_OK;
2043         }
2044
2045         if (target->state != TARGET_HALTED)
2046                 return ERROR_OK;
2047
2048         retval = target->type->arch_state(target);
2049         return retval;
2050 }
2051
2052 static int target_get_gdb_fileio_info_default(struct target *target,
2053                 struct gdb_fileio_info *fileio_info)
2054 {
2055         /* If target does not support semi-hosting function, target
2056            has no need to provide .get_gdb_fileio_info callback.
2057            It just return ERROR_FAIL and gdb_server will return "Txx"
2058            as target halted every time.  */
2059         return ERROR_FAIL;
2060 }
2061
2062 static int target_gdb_fileio_end_default(struct target *target,
2063                 int retcode, int fileio_errno, bool ctrl_c)
2064 {
2065         return ERROR_OK;
2066 }
2067
2068 static int target_profiling_default(struct target *target, uint32_t *samples,
2069                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2070 {
2071         struct timeval timeout, now;
2072
2073         gettimeofday(&timeout, NULL);
2074         timeval_add_time(&timeout, seconds, 0);
2075
2076         LOG_INFO("Starting profiling. Halting and resuming the"
2077                         " target as often as we can...");
2078
2079         uint32_t sample_count = 0;
2080         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2081         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2082
2083         int retval = ERROR_OK;
2084         for (;;) {
2085                 target_poll(target);
2086                 if (target->state == TARGET_HALTED) {
2087                         uint32_t t = buf_get_u32(reg->value, 0, 32);
2088                         samples[sample_count++] = t;
2089                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
2090                         retval = target_resume(target, 1, 0, 0, 0);
2091                         target_poll(target);
2092                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2093                 } else if (target->state == TARGET_RUNNING) {
2094                         /* We want to quickly sample the PC. */
2095                         retval = target_halt(target);
2096                 } else {
2097                         LOG_INFO("Target not halted or running");
2098                         retval = ERROR_OK;
2099                         break;
2100                 }
2101
2102                 if (retval != ERROR_OK)
2103                         break;
2104
2105                 gettimeofday(&now, NULL);
2106                 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2107                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2108                         break;
2109                 }
2110         }
2111
2112         *num_samples = sample_count;
2113         return retval;
2114 }
2115
2116 /* Single aligned words are guaranteed to use 16 or 32 bit access
2117  * mode respectively, otherwise data is handled as quickly as
2118  * possible
2119  */
2120 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2121 {
2122         LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2123                           size, address);
2124
2125         if (!target_was_examined(target)) {
2126                 LOG_ERROR("Target not examined yet");
2127                 return ERROR_FAIL;
2128         }
2129
2130         if (size == 0)
2131                 return ERROR_OK;
2132
2133         if ((address + size - 1) < address) {
2134                 /* GDB can request this when e.g. PC is 0xfffffffc */
2135                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2136                                   address,
2137                                   size);
2138                 return ERROR_FAIL;
2139         }
2140
2141         return target->type->write_buffer(target, address, size, buffer);
2142 }
2143
2144 static int target_write_buffer_default(struct target *target,
2145         target_addr_t address, uint32_t count, const uint8_t *buffer)
2146 {
2147         uint32_t size;
2148
2149         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2150          * will have something to do with the size we leave to it. */
2151         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2152                 if (address & size) {
2153                         int retval = target_write_memory(target, address, size, 1, buffer);
2154                         if (retval != ERROR_OK)
2155                                 return retval;
2156                         address += size;
2157                         count -= size;
2158                         buffer += size;
2159                 }
2160         }
2161
2162         /* Write the data with as large access size as possible. */
2163         for (; size > 0; size /= 2) {
2164                 uint32_t aligned = count - count % size;
2165                 if (aligned > 0) {
2166                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2167                         if (retval != ERROR_OK)
2168                                 return retval;
2169                         address += aligned;
2170                         count -= aligned;
2171                         buffer += aligned;
2172                 }
2173         }
2174
2175         return ERROR_OK;
2176 }
2177
2178 /* Single aligned words are guaranteed to use 16 or 32 bit access
2179  * mode respectively, otherwise data is handled as quickly as
2180  * possible
2181  */
2182 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2183 {
2184         LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2185                           size, address);
2186
2187         if (!target_was_examined(target)) {
2188                 LOG_ERROR("Target not examined yet");
2189                 return ERROR_FAIL;
2190         }
2191
2192         if (size == 0)
2193                 return ERROR_OK;
2194
2195         if ((address + size - 1) < address) {
2196                 /* GDB can request this when e.g. PC is 0xfffffffc */
2197                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2198                                   address,
2199                                   size);
2200                 return ERROR_FAIL;
2201         }
2202
2203         return target->type->read_buffer(target, address, size, buffer);
2204 }
2205
2206 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2207 {
2208         uint32_t size;
2209
2210         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2211          * will have something to do with the size we leave to it. */
2212         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2213                 if (address & size) {
2214                         int retval = target_read_memory(target, address, size, 1, buffer);
2215                         if (retval != ERROR_OK)
2216                                 return retval;
2217                         address += size;
2218                         count -= size;
2219                         buffer += size;
2220                 }
2221         }
2222
2223         /* Read the data with as large access size as possible. */
2224         for (; size > 0; size /= 2) {
2225                 uint32_t aligned = count - count % size;
2226                 if (aligned > 0) {
2227                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2228                         if (retval != ERROR_OK)
2229                                 return retval;
2230                         address += aligned;
2231                         count -= aligned;
2232                         buffer += aligned;
2233                 }
2234         }
2235
2236         return ERROR_OK;
2237 }
2238
2239 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2240 {
2241         uint8_t *buffer;
2242         int retval;
2243         uint32_t i;
2244         uint32_t checksum = 0;
2245         if (!target_was_examined(target)) {
2246                 LOG_ERROR("Target not examined yet");
2247                 return ERROR_FAIL;
2248         }
2249
2250         retval = target->type->checksum_memory(target, address, size, &checksum);
2251         if (retval != ERROR_OK) {
2252                 buffer = malloc(size);
2253                 if (buffer == NULL) {
2254                         LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2255                         return ERROR_COMMAND_SYNTAX_ERROR;
2256                 }
2257                 retval = target_read_buffer(target, address, size, buffer);
2258                 if (retval != ERROR_OK) {
2259                         free(buffer);
2260                         return retval;
2261                 }
2262
2263                 /* convert to target endianness */
2264                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2265                         uint32_t target_data;
2266                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2267                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2268                 }
2269
2270                 retval = image_calculate_checksum(buffer, size, &checksum);
2271                 free(buffer);
2272         }
2273
2274         *crc = checksum;
2275
2276         return retval;
2277 }
2278
2279 int target_blank_check_memory(struct target *target,
2280         struct target_memory_check_block *blocks, int num_blocks,
2281         uint8_t erased_value)
2282 {
2283         if (!target_was_examined(target)) {
2284                 LOG_ERROR("Target not examined yet");
2285                 return ERROR_FAIL;
2286         }
2287
2288         if (target->type->blank_check_memory == NULL)
2289                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2290
2291         return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2292 }
2293
2294 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2295 {
2296         uint8_t value_buf[8];
2297         if (!target_was_examined(target)) {
2298                 LOG_ERROR("Target not examined yet");
2299                 return ERROR_FAIL;
2300         }
2301
2302         int retval = target_read_memory(target, address, 8, 1, value_buf);
2303
2304         if (retval == ERROR_OK) {
2305                 *value = target_buffer_get_u64(target, value_buf);
2306                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2307                                   address,
2308                                   *value);
2309         } else {
2310                 *value = 0x0;
2311                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2312                                   address);
2313         }
2314
2315         return retval;
2316 }
2317
2318 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2319 {
2320         uint8_t value_buf[4];
2321         if (!target_was_examined(target)) {
2322                 LOG_ERROR("Target not examined yet");
2323                 return ERROR_FAIL;
2324         }
2325
2326         int retval = target_read_memory(target, address, 4, 1, value_buf);
2327
2328         if (retval == ERROR_OK) {
2329                 *value = target_buffer_get_u32(target, value_buf);
2330                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2331                                   address,
2332                                   *value);
2333         } else {
2334                 *value = 0x0;
2335                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2336                                   address);
2337         }
2338
2339         return retval;
2340 }
2341
2342 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2343 {
2344         uint8_t value_buf[2];
2345         if (!target_was_examined(target)) {
2346                 LOG_ERROR("Target not examined yet");
2347                 return ERROR_FAIL;
2348         }
2349
2350         int retval = target_read_memory(target, address, 2, 1, value_buf);
2351
2352         if (retval == ERROR_OK) {
2353                 *value = target_buffer_get_u16(target, value_buf);
2354                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2355                                   address,
2356                                   *value);
2357         } else {
2358                 *value = 0x0;
2359                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2360                                   address);
2361         }
2362
2363         return retval;
2364 }
2365
2366 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2367 {
2368         if (!target_was_examined(target)) {
2369                 LOG_ERROR("Target not examined yet");
2370                 return ERROR_FAIL;
2371         }
2372
2373         int retval = target_read_memory(target, address, 1, 1, value);
2374
2375         if (retval == ERROR_OK) {
2376                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2377                                   address,
2378                                   *value);
2379         } else {
2380                 *value = 0x0;
2381                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2382                                   address);
2383         }
2384
2385         return retval;
2386 }
2387
2388 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2389 {
2390         int retval;
2391         uint8_t value_buf[8];
2392         if (!target_was_examined(target)) {
2393                 LOG_ERROR("Target not examined yet");
2394                 return ERROR_FAIL;
2395         }
2396
2397         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2398                           address,
2399                           value);
2400
2401         target_buffer_set_u64(target, value_buf, value);
2402         retval = target_write_memory(target, address, 8, 1, value_buf);
2403         if (retval != ERROR_OK)
2404                 LOG_DEBUG("failed: %i", retval);
2405
2406         return retval;
2407 }
2408
2409 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2410 {
2411         int retval;
2412         uint8_t value_buf[4];
2413         if (!target_was_examined(target)) {
2414                 LOG_ERROR("Target not examined yet");
2415                 return ERROR_FAIL;
2416         }
2417
2418         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2419                           address,
2420                           value);
2421
2422         target_buffer_set_u32(target, value_buf, value);
2423         retval = target_write_memory(target, address, 4, 1, value_buf);
2424         if (retval != ERROR_OK)
2425                 LOG_DEBUG("failed: %i", retval);
2426
2427         return retval;
2428 }
2429
2430 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2431 {
2432         int retval;
2433         uint8_t value_buf[2];
2434         if (!target_was_examined(target)) {
2435                 LOG_ERROR("Target not examined yet");
2436                 return ERROR_FAIL;
2437         }
2438
2439         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2440                           address,
2441                           value);
2442
2443         target_buffer_set_u16(target, value_buf, value);
2444         retval = target_write_memory(target, address, 2, 1, value_buf);
2445         if (retval != ERROR_OK)
2446                 LOG_DEBUG("failed: %i", retval);
2447
2448         return retval;
2449 }
2450
2451 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2452 {
2453         int retval;
2454         if (!target_was_examined(target)) {
2455                 LOG_ERROR("Target not examined yet");
2456                 return ERROR_FAIL;
2457         }
2458
2459         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2460                           address, value);
2461
2462         retval = target_write_memory(target, address, 1, 1, &value);
2463         if (retval != ERROR_OK)
2464                 LOG_DEBUG("failed: %i", retval);
2465
2466         return retval;
2467 }
2468
2469 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2470 {
2471         int retval;
2472         uint8_t value_buf[8];
2473         if (!target_was_examined(target)) {
2474                 LOG_ERROR("Target not examined yet");
2475                 return ERROR_FAIL;
2476         }
2477
2478         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2479                           address,
2480                           value);
2481
2482         target_buffer_set_u64(target, value_buf, value);
2483         retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2484         if (retval != ERROR_OK)
2485                 LOG_DEBUG("failed: %i", retval);
2486
2487         return retval;
2488 }
2489
2490 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2491 {
2492         int retval;
2493         uint8_t value_buf[4];
2494         if (!target_was_examined(target)) {
2495                 LOG_ERROR("Target not examined yet");
2496                 return ERROR_FAIL;
2497         }
2498
2499         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2500                           address,
2501                           value);
2502
2503         target_buffer_set_u32(target, value_buf, value);
2504         retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2505         if (retval != ERROR_OK)
2506                 LOG_DEBUG("failed: %i", retval);
2507
2508         return retval;
2509 }
2510
2511 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2512 {
2513         int retval;
2514         uint8_t value_buf[2];
2515         if (!target_was_examined(target)) {
2516                 LOG_ERROR("Target not examined yet");
2517                 return ERROR_FAIL;
2518         }
2519
2520         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2521                           address,
2522                           value);
2523
2524         target_buffer_set_u16(target, value_buf, value);
2525         retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2526         if (retval != ERROR_OK)
2527                 LOG_DEBUG("failed: %i", retval);
2528
2529         return retval;
2530 }
2531
2532 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2533 {
2534         int retval;
2535         if (!target_was_examined(target)) {
2536                 LOG_ERROR("Target not examined yet");
2537                 return ERROR_FAIL;
2538         }
2539
2540         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2541                           address, value);
2542
2543         retval = target_write_phys_memory(target, address, 1, 1, &value);
2544         if (retval != ERROR_OK)
2545                 LOG_DEBUG("failed: %i", retval);
2546
2547         return retval;
2548 }
2549
2550 static int find_target(struct command_context *cmd_ctx, const char *name)
2551 {
2552         struct target *target = get_target(name);
2553         if (target == NULL) {
2554                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2555                 return ERROR_FAIL;
2556         }
2557         if (!target->tap->enabled) {
2558                 LOG_USER("Target: TAP %s is disabled, "
2559                          "can't be the current target\n",
2560                          target->tap->dotted_name);
2561                 return ERROR_FAIL;
2562         }
2563
2564         cmd_ctx->current_target = target;
2565         if (cmd_ctx->current_target_override)
2566                 cmd_ctx->current_target_override = target;
2567
2568         return ERROR_OK;
2569 }
2570
2571
2572 COMMAND_HANDLER(handle_targets_command)
2573 {
2574         int retval = ERROR_OK;
2575         if (CMD_ARGC == 1) {
2576                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2577                 if (retval == ERROR_OK) {
2578                         /* we're done! */
2579                         return retval;
2580                 }
2581         }
2582
2583         struct target *target = all_targets;
2584         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2585         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2586         while (target) {
2587                 const char *state;
2588                 char marker = ' ';
2589
2590                 if (target->tap->enabled)
2591                         state = target_state_name(target);
2592                 else
2593                         state = "tap-disabled";
2594
2595                 if (CMD_CTX->current_target == target)
2596                         marker = '*';
2597
2598                 /* keep columns lined up to match the headers above */
2599                 command_print(CMD_CTX,
2600                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2601                                 target->target_number,
2602                                 marker,
2603                                 target_name(target),
2604                                 target_type_name(target),
2605                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2606                                         target->endianness)->name,
2607                                 target->tap->dotted_name,
2608                                 state);
2609                 target = target->next;
2610         }
2611
2612         return retval;
2613 }
2614
2615 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2616
2617 static int powerDropout;
2618 static int srstAsserted;
2619
2620 static int runPowerRestore;
2621 static int runPowerDropout;
2622 static int runSrstAsserted;
2623 static int runSrstDeasserted;
2624
2625 static int sense_handler(void)
2626 {
2627         static int prevSrstAsserted;
2628         static int prevPowerdropout;
2629
2630         int retval = jtag_power_dropout(&powerDropout);
2631         if (retval != ERROR_OK)
2632                 return retval;
2633
2634         int powerRestored;
2635         powerRestored = prevPowerdropout && !powerDropout;
2636         if (powerRestored)
2637                 runPowerRestore = 1;
2638
2639         int64_t current = timeval_ms();
2640         static int64_t lastPower;
2641         bool waitMore = lastPower + 2000 > current;
2642         if (powerDropout && !waitMore) {
2643                 runPowerDropout = 1;
2644                 lastPower = current;
2645         }
2646
2647         retval = jtag_srst_asserted(&srstAsserted);
2648         if (retval != ERROR_OK)
2649                 return retval;
2650
2651         int srstDeasserted;
2652         srstDeasserted = prevSrstAsserted && !srstAsserted;
2653
2654         static int64_t lastSrst;
2655         waitMore = lastSrst + 2000 > current;
2656         if (srstDeasserted && !waitMore) {
2657                 runSrstDeasserted = 1;
2658                 lastSrst = current;
2659         }
2660
2661         if (!prevSrstAsserted && srstAsserted)
2662                 runSrstAsserted = 1;
2663
2664         prevSrstAsserted = srstAsserted;
2665         prevPowerdropout = powerDropout;
2666
2667         if (srstDeasserted || powerRestored) {
2668                 /* Other than logging the event we can't do anything here.
2669                  * Issuing a reset is a particularly bad idea as we might
2670                  * be inside a reset already.
2671                  */
2672         }
2673
2674         return ERROR_OK;
2675 }
2676
2677 /* process target state changes */
2678 static int handle_target(void *priv)
2679 {
2680         Jim_Interp *interp = (Jim_Interp *)priv;
2681         int retval = ERROR_OK;
2682
2683         if (!is_jtag_poll_safe()) {
2684                 /* polling is disabled currently */
2685                 return ERROR_OK;
2686         }
2687
2688         /* we do not want to recurse here... */
2689         static int recursive;
2690         if (!recursive) {
2691                 recursive = 1;
2692                 sense_handler();
2693                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2694                  * We need to avoid an infinite loop/recursion here and we do that by
2695                  * clearing the flags after running these events.
2696                  */
2697                 int did_something = 0;
2698                 if (runSrstAsserted) {
2699                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2700                         Jim_Eval(interp, "srst_asserted");
2701                         did_something = 1;
2702                 }
2703                 if (runSrstDeasserted) {
2704                         Jim_Eval(interp, "srst_deasserted");
2705                         did_something = 1;
2706                 }
2707                 if (runPowerDropout) {
2708                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2709                         Jim_Eval(interp, "power_dropout");
2710                         did_something = 1;
2711                 }
2712                 if (runPowerRestore) {
2713                         Jim_Eval(interp, "power_restore");
2714                         did_something = 1;
2715                 }
2716
2717                 if (did_something) {
2718                         /* clear detect flags */
2719                         sense_handler();
2720                 }
2721
2722                 /* clear action flags */
2723
2724                 runSrstAsserted = 0;
2725                 runSrstDeasserted = 0;
2726                 runPowerRestore = 0;
2727                 runPowerDropout = 0;
2728
2729                 recursive = 0;
2730         }
2731
2732         /* Poll targets for state changes unless that's globally disabled.
2733          * Skip targets that are currently disabled.
2734          */
2735         for (struct target *target = all_targets;
2736                         is_jtag_poll_safe() && target;
2737                         target = target->next) {
2738
2739                 if (!target_was_examined(target))
2740                         continue;
2741
2742                 if (!target->tap->enabled)
2743                         continue;
2744
2745                 if (target->backoff.times > target->backoff.count) {
2746                         /* do not poll this time as we failed previously */
2747                         target->backoff.count++;
2748                         continue;
2749                 }
2750                 target->backoff.count = 0;
2751
2752                 /* only poll target if we've got power and srst isn't asserted */
2753                 if (!powerDropout && !srstAsserted) {
2754                         /* polling may fail silently until the target has been examined */
2755                         retval = target_poll(target);
2756                         if (retval != ERROR_OK) {
2757                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2758                                 if (target->backoff.times * polling_interval < 5000) {
2759                                         target->backoff.times *= 2;
2760                                         target->backoff.times++;
2761                                 }
2762
2763                                 /* Tell GDB to halt the debugger. This allows the user to
2764                                  * run monitor commands to handle the situation.
2765                                  */
2766                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2767                         }
2768                         if (target->backoff.times > 0) {
2769                                 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2770                                 target_reset_examined(target);
2771                                 retval = target_examine_one(target);
2772                                 /* Target examination could have failed due to unstable connection,
2773                                  * but we set the examined flag anyway to repoll it later */
2774                                 if (retval != ERROR_OK) {
2775                                         target->examined = true;
2776                                         LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2777                                                  target->backoff.times * polling_interval);
2778                                         return retval;
2779                                 }
2780                         }
2781
2782                         /* Since we succeeded, we reset backoff count */
2783                         target->backoff.times = 0;
2784                 }
2785         }
2786
2787         return retval;
2788 }
2789
2790 COMMAND_HANDLER(handle_reg_command)
2791 {
2792         struct target *target;
2793         struct reg *reg = NULL;
2794         unsigned count = 0;
2795         char *value;
2796
2797         LOG_DEBUG("-");
2798
2799         target = get_current_target(CMD_CTX);
2800
2801         /* list all available registers for the current target */
2802         if (CMD_ARGC == 0) {
2803                 struct reg_cache *cache = target->reg_cache;
2804
2805                 count = 0;
2806                 while (cache) {
2807                         unsigned i;
2808
2809                         command_print(CMD_CTX, "===== %s", cache->name);
2810
2811                         for (i = 0, reg = cache->reg_list;
2812                                         i < cache->num_regs;
2813                                         i++, reg++, count++) {
2814                                 if (reg->exist == false)
2815                                         continue;
2816                                 /* only print cached values if they are valid */
2817                                 if (reg->valid) {
2818                                         value = buf_to_str(reg->value,
2819                                                         reg->size, 16);
2820                                         command_print(CMD_CTX,
2821                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2822                                                         count, reg->name,
2823                                                         reg->size, value,
2824                                                         reg->dirty
2825                                                                 ? " (dirty)"
2826                                                                 : "");
2827                                         free(value);
2828                                 } else {
2829                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2830                                                           count, reg->name,
2831                                                           reg->size) ;
2832                                 }
2833                         }
2834                         cache = cache->next;
2835                 }
2836
2837                 return ERROR_OK;
2838         }
2839
2840         /* access a single register by its ordinal number */
2841         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2842                 unsigned num;
2843                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2844
2845                 struct reg_cache *cache = target->reg_cache;
2846                 count = 0;
2847                 while (cache) {
2848                         unsigned i;
2849                         for (i = 0; i < cache->num_regs; i++) {
2850                                 if (count++ == num) {
2851                                         reg = &cache->reg_list[i];
2852                                         break;
2853                                 }
2854                         }
2855                         if (reg)
2856                                 break;
2857                         cache = cache->next;
2858                 }
2859
2860                 if (!reg) {
2861                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2862                                         "has only %i registers (0 - %i)", num, count, count - 1);
2863                         return ERROR_OK;
2864                 }
2865         } else {
2866                 /* access a single register by its name */
2867                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2868
2869                 if (!reg)
2870                         goto not_found;
2871         }
2872
2873         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2874
2875         if (!reg->exist)
2876                 goto not_found;
2877
2878         /* display a register */
2879         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2880                         && (CMD_ARGV[1][0] <= '9')))) {
2881                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2882                         reg->valid = 0;
2883
2884                 if (reg->valid == 0)
2885                         reg->type->get(reg);
2886                 value = buf_to_str(reg->value, reg->size, 16);
2887                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2888                 free(value);
2889                 return ERROR_OK;
2890         }
2891
2892         /* set register value */
2893         if (CMD_ARGC == 2) {
2894                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2895                 if (buf == NULL)
2896                         return ERROR_FAIL;
2897                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2898
2899                 reg->type->set(reg, buf);
2900
2901                 value = buf_to_str(reg->value, reg->size, 16);
2902                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2903                 free(value);
2904
2905                 free(buf);
2906
2907                 return ERROR_OK;
2908         }
2909
2910         return ERROR_COMMAND_SYNTAX_ERROR;
2911
2912 not_found:
2913         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2914         return ERROR_OK;
2915 }
2916
2917 COMMAND_HANDLER(handle_poll_command)
2918 {
2919         int retval = ERROR_OK;
2920         struct target *target = get_current_target(CMD_CTX);
2921
2922         if (CMD_ARGC == 0) {
2923                 command_print(CMD_CTX, "background polling: %s",
2924                                 jtag_poll_get_enabled() ? "on" : "off");
2925                 command_print(CMD_CTX, "TAP: %s (%s)",
2926                                 target->tap->dotted_name,
2927                                 target->tap->enabled ? "enabled" : "disabled");
2928                 if (!target->tap->enabled)
2929                         return ERROR_OK;
2930                 retval = target_poll(target);
2931                 if (retval != ERROR_OK)
2932                         return retval;
2933                 retval = target_arch_state(target);
2934                 if (retval != ERROR_OK)
2935                         return retval;
2936         } else if (CMD_ARGC == 1) {
2937                 bool enable;
2938                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2939                 jtag_poll_set_enabled(enable);
2940         } else
2941                 return ERROR_COMMAND_SYNTAX_ERROR;
2942
2943         return retval;
2944 }
2945
2946 COMMAND_HANDLER(handle_wait_halt_command)
2947 {
2948         if (CMD_ARGC > 1)
2949                 return ERROR_COMMAND_SYNTAX_ERROR;
2950
2951         unsigned ms = DEFAULT_HALT_TIMEOUT;
2952         if (1 == CMD_ARGC) {
2953                 int retval = parse_uint(CMD_ARGV[0], &ms);
2954                 if (ERROR_OK != retval)
2955                         return ERROR_COMMAND_SYNTAX_ERROR;
2956         }
2957
2958         struct target *target = get_current_target(CMD_CTX);
2959         return target_wait_state(target, TARGET_HALTED, ms);
2960 }
2961
2962 /* wait for target state to change. The trick here is to have a low
2963  * latency for short waits and not to suck up all the CPU time
2964  * on longer waits.
2965  *
2966  * After 500ms, keep_alive() is invoked
2967  */
2968 int target_wait_state(struct target *target, enum target_state state, int ms)
2969 {
2970         int retval;
2971         int64_t then = 0, cur;
2972         bool once = true;
2973
2974         for (;;) {
2975                 retval = target_poll(target);
2976                 if (retval != ERROR_OK)
2977                         return retval;
2978                 if (target->state == state)
2979                         break;
2980                 cur = timeval_ms();
2981                 if (once) {
2982                         once = false;
2983                         then = timeval_ms();
2984                         LOG_DEBUG("waiting for target %s...",
2985                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2986                 }
2987
2988                 if (cur-then > 500)
2989                         keep_alive();
2990
2991                 if ((cur-then) > ms) {
2992                         LOG_ERROR("timed out while waiting for target %s",
2993                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2994                         return ERROR_FAIL;
2995                 }
2996         }
2997
2998         return ERROR_OK;
2999 }
3000
3001 COMMAND_HANDLER(handle_halt_command)
3002 {
3003         LOG_DEBUG("-");
3004
3005         struct target *target = get_current_target(CMD_CTX);
3006
3007         target->verbose_halt_msg = true;
3008
3009         int retval = target_halt(target);
3010         if (ERROR_OK != retval)
3011                 return retval;
3012
3013         if (CMD_ARGC == 1) {
3014                 unsigned wait_local;
3015                 retval = parse_uint(CMD_ARGV[0], &wait_local);
3016                 if (ERROR_OK != retval)
3017                         return ERROR_COMMAND_SYNTAX_ERROR;
3018                 if (!wait_local)
3019                         return ERROR_OK;
3020         }
3021
3022         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
3023 }
3024
3025 COMMAND_HANDLER(handle_soft_reset_halt_command)
3026 {
3027         struct target *target = get_current_target(CMD_CTX);
3028
3029         LOG_USER("requesting target halt and executing a soft reset");
3030
3031         target_soft_reset_halt(target);
3032
3033         return ERROR_OK;
3034 }
3035
3036 COMMAND_HANDLER(handle_reset_command)
3037 {
3038         if (CMD_ARGC > 1)
3039                 return ERROR_COMMAND_SYNTAX_ERROR;
3040
3041         enum target_reset_mode reset_mode = RESET_RUN;
3042         if (CMD_ARGC == 1) {
3043                 const Jim_Nvp *n;
3044                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3045                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3046                         return ERROR_COMMAND_SYNTAX_ERROR;
3047                 reset_mode = n->value;
3048         }
3049
3050         /* reset *all* targets */
3051         return target_process_reset(CMD_CTX, reset_mode);
3052 }
3053
3054
3055 COMMAND_HANDLER(handle_resume_command)
3056 {
3057         int current = 1;
3058         if (CMD_ARGC > 1)
3059                 return ERROR_COMMAND_SYNTAX_ERROR;
3060
3061         struct target *target = get_current_target(CMD_CTX);
3062
3063         /* with no CMD_ARGV, resume from current pc, addr = 0,
3064          * with one arguments, addr = CMD_ARGV[0],
3065          * handle breakpoints, not debugging */
3066         target_addr_t addr = 0;
3067         if (CMD_ARGC == 1) {
3068                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3069                 current = 0;
3070         }
3071
3072         return target_resume(target, current, addr, 1, 0);
3073 }
3074
3075 COMMAND_HANDLER(handle_step_command)
3076 {
3077         if (CMD_ARGC > 1)
3078                 return ERROR_COMMAND_SYNTAX_ERROR;
3079
3080         LOG_DEBUG("-");
3081
3082         /* with no CMD_ARGV, step from current pc, addr = 0,
3083          * with one argument addr = CMD_ARGV[0],
3084          * handle breakpoints, debugging */
3085         target_addr_t addr = 0;
3086         int current_pc = 1;
3087         if (CMD_ARGC == 1) {
3088                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3089                 current_pc = 0;
3090         }
3091
3092         struct target *target = get_current_target(CMD_CTX);
3093
3094         return target->type->step(target, current_pc, addr, 1);
3095 }
3096
3097 static void handle_md_output(struct command_context *cmd_ctx,
3098                 struct target *target, target_addr_t address, unsigned size,
3099                 unsigned count, const uint8_t *buffer)
3100 {
3101         const unsigned line_bytecnt = 32;
3102         unsigned line_modulo = line_bytecnt / size;
3103
3104         char output[line_bytecnt * 4 + 1];
3105         unsigned output_len = 0;
3106
3107         const char *value_fmt;
3108         switch (size) {
3109         case 8:
3110                 value_fmt = "%16.16"PRIx64" ";
3111                 break;
3112         case 4:
3113                 value_fmt = "%8.8"PRIx64" ";
3114                 break;
3115         case 2:
3116                 value_fmt = "%4.4"PRIx64" ";
3117                 break;
3118         case 1:
3119                 value_fmt = "%2.2"PRIx64" ";
3120                 break;
3121         default:
3122                 /* "can't happen", caller checked */
3123                 LOG_ERROR("invalid memory read size: %u", size);
3124                 return;
3125         }
3126
3127         for (unsigned i = 0; i < count; i++) {
3128                 if (i % line_modulo == 0) {
3129                         output_len += snprintf(output + output_len,
3130                                         sizeof(output) - output_len,
3131                                         TARGET_ADDR_FMT ": ",
3132                                         (address + (i * size)));
3133                 }
3134
3135                 uint64_t value = 0;
3136                 const uint8_t *value_ptr = buffer + i * size;
3137                 switch (size) {
3138                 case 8:
3139                         value = target_buffer_get_u64(target, value_ptr);
3140                         break;
3141                 case 4:
3142                         value = target_buffer_get_u32(target, value_ptr);
3143                         break;
3144                 case 2:
3145                         value = target_buffer_get_u16(target, value_ptr);
3146                         break;
3147                 case 1:
3148                         value = *value_ptr;
3149                 }
3150                 output_len += snprintf(output + output_len,
3151                                 sizeof(output) - output_len,
3152                                 value_fmt, value);
3153
3154                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3155                         command_print(cmd_ctx, "%s", output);
3156                         output_len = 0;
3157                 }
3158         }
3159 }
3160
3161 COMMAND_HANDLER(handle_md_command)
3162 {
3163         if (CMD_ARGC < 1)
3164                 return ERROR_COMMAND_SYNTAX_ERROR;
3165
3166         unsigned size = 0;
3167         switch (CMD_NAME[2]) {
3168         case 'd':
3169                 size = 8;
3170                 break;
3171         case 'w':
3172                 size = 4;
3173                 break;
3174         case 'h':
3175                 size = 2;
3176                 break;
3177         case 'b':
3178                 size = 1;
3179                 break;
3180         default:
3181                 return ERROR_COMMAND_SYNTAX_ERROR;
3182         }
3183
3184         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3185         int (*fn)(struct target *target,
3186                         target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3187         if (physical) {
3188                 CMD_ARGC--;
3189                 CMD_ARGV++;
3190                 fn = target_read_phys_memory;
3191         } else
3192                 fn = target_read_memory;
3193         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3194                 return ERROR_COMMAND_SYNTAX_ERROR;
3195
3196         target_addr_t address;
3197         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3198
3199         unsigned count = 1;
3200         if (CMD_ARGC == 2)
3201                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3202
3203         uint8_t *buffer = calloc(count, size);
3204         if (buffer == NULL) {
3205                 LOG_ERROR("Failed to allocate md read buffer");
3206                 return ERROR_FAIL;
3207         }
3208
3209         struct target *target = get_current_target(CMD_CTX);
3210         int retval = fn(target, address, size, count, buffer);
3211         if (ERROR_OK == retval)
3212                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3213
3214         free(buffer);
3215
3216         return retval;
3217 }
3218
3219 typedef int (*target_write_fn)(struct target *target,
3220                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3221
3222 static int target_fill_mem(struct target *target,
3223                 target_addr_t address,
3224                 target_write_fn fn,
3225                 unsigned data_size,
3226                 /* value */
3227                 uint64_t b,
3228                 /* count */
3229                 unsigned c)
3230 {
3231         /* We have to write in reasonably large chunks to be able
3232          * to fill large memory areas with any sane speed */
3233         const unsigned chunk_size = 16384;
3234         uint8_t *target_buf = malloc(chunk_size * data_size);
3235         if (target_buf == NULL) {
3236                 LOG_ERROR("Out of memory");
3237                 return ERROR_FAIL;
3238         }
3239
3240         for (unsigned i = 0; i < chunk_size; i++) {
3241                 switch (data_size) {
3242                 case 8:
3243                         target_buffer_set_u64(target, target_buf + i * data_size, b);
3244                         break;
3245                 case 4:
3246                         target_buffer_set_u32(target, target_buf + i * data_size, b);
3247                         break;
3248                 case 2:
3249                         target_buffer_set_u16(target, target_buf + i * data_size, b);
3250                         break;
3251                 case 1:
3252                         target_buffer_set_u8(target, target_buf + i * data_size, b);
3253                         break;
3254                 default:
3255                         exit(-1);
3256                 }
3257         }
3258
3259         int retval = ERROR_OK;
3260
3261         for (unsigned x = 0; x < c; x += chunk_size) {
3262                 unsigned current;
3263                 current = c - x;
3264                 if (current > chunk_size)
3265                         current = chunk_size;
3266                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3267                 if (retval != ERROR_OK)
3268                         break;
3269                 /* avoid GDB timeouts */
3270                 keep_alive();
3271         }
3272         free(target_buf);
3273
3274         return retval;
3275 }
3276
3277
3278 COMMAND_HANDLER(handle_mw_command)
3279 {
3280         if (CMD_ARGC < 2)
3281                 return ERROR_COMMAND_SYNTAX_ERROR;
3282         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3283         target_write_fn fn;
3284         if (physical) {
3285                 CMD_ARGC--;
3286                 CMD_ARGV++;
3287                 fn = target_write_phys_memory;
3288         } else
3289                 fn = target_write_memory;
3290         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3291                 return ERROR_COMMAND_SYNTAX_ERROR;
3292
3293         target_addr_t address;
3294         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3295
3296         target_addr_t value;
3297         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3298
3299         unsigned count = 1;
3300         if (CMD_ARGC == 3)
3301                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3302
3303         struct target *target = get_current_target(CMD_CTX);
3304         unsigned wordsize;
3305         switch (CMD_NAME[2]) {
3306                 case 'd':
3307                         wordsize = 8;
3308                         break;
3309                 case 'w':
3310                         wordsize = 4;
3311                         break;
3312                 case 'h':
3313                         wordsize = 2;
3314                         break;
3315                 case 'b':
3316                         wordsize = 1;
3317                         break;
3318                 default:
3319                         return ERROR_COMMAND_SYNTAX_ERROR;
3320         }
3321
3322         return target_fill_mem(target, address, fn, wordsize, value, count);
3323 }
3324
3325 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3326                 target_addr_t *min_address, target_addr_t *max_address)
3327 {
3328         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3329                 return ERROR_COMMAND_SYNTAX_ERROR;
3330
3331         /* a base address isn't always necessary,
3332          * default to 0x0 (i.e. don't relocate) */
3333         if (CMD_ARGC >= 2) {
3334                 target_addr_t addr;
3335                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3336                 image->base_address = addr;
3337                 image->base_address_set = 1;
3338         } else
3339                 image->base_address_set = 0;
3340
3341         image->start_address_set = 0;
3342
3343         if (CMD_ARGC >= 4)
3344                 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3345         if (CMD_ARGC == 5) {
3346                 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3347                 /* use size (given) to find max (required) */
3348                 *max_address += *min_address;
3349         }
3350
3351         if (*min_address > *max_address)
3352                 return ERROR_COMMAND_SYNTAX_ERROR;
3353
3354         return ERROR_OK;
3355 }
3356
3357 COMMAND_HANDLER(handle_load_image_command)
3358 {
3359         uint8_t *buffer;
3360         size_t buf_cnt;
3361         uint32_t image_size;
3362         target_addr_t min_address = 0;
3363         target_addr_t max_address = -1;
3364         int i;
3365         struct image image;
3366
3367         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3368                         &image, &min_address, &max_address);
3369         if (ERROR_OK != retval)
3370                 return retval;
3371
3372         struct target *target = get_current_target(CMD_CTX);
3373
3374         struct duration bench;
3375         duration_start(&bench);
3376
3377         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3378                 return ERROR_FAIL;
3379
3380         image_size = 0x0;
3381         retval = ERROR_OK;
3382         for (i = 0; i < image.num_sections; i++) {
3383                 buffer = malloc(image.sections[i].size);
3384                 if (buffer == NULL) {
3385                         command_print(CMD_CTX,
3386                                                   "error allocating buffer for section (%d bytes)",
3387                                                   (int)(image.sections[i].size));
3388                         retval = ERROR_FAIL;
3389                         break;
3390                 }
3391
3392                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3393                 if (retval != ERROR_OK) {
3394                         free(buffer);
3395                         break;
3396                 }
3397
3398                 uint32_t offset = 0;
3399                 uint32_t length = buf_cnt;
3400
3401                 /* DANGER!!! beware of unsigned comparision here!!! */
3402
3403                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3404                                 (image.sections[i].base_address < max_address)) {
3405
3406                         if (image.sections[i].base_address < min_address) {
3407                                 /* clip addresses below */
3408                                 offset += min_address-image.sections[i].base_address;
3409                                 length -= offset;
3410                         }
3411
3412                         if (image.sections[i].base_address + buf_cnt > max_address)
3413                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3414
3415                         retval = target_write_buffer(target,
3416                                         image.sections[i].base_address + offset, length, buffer + offset);
3417                         if (retval != ERROR_OK) {
3418                                 free(buffer);
3419                                 break;
3420                         }
3421                         image_size += length;
3422                         command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3423                                         (unsigned int)length,
3424                                         image.sections[i].base_address + offset);
3425                 }
3426
3427                 free(buffer);
3428         }
3429
3430         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3431                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3432                                 "in %fs (%0.3f KiB/s)", image_size,
3433                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3434         }
3435
3436         image_close(&image);
3437
3438         return retval;
3439
3440 }
3441
3442 COMMAND_HANDLER(handle_dump_image_command)
3443 {
3444         struct fileio *fileio;
3445         uint8_t *buffer;
3446         int retval, retvaltemp;
3447         target_addr_t address, size;
3448         struct duration bench;
3449         struct target *target = get_current_target(CMD_CTX);
3450
3451         if (CMD_ARGC != 3)
3452                 return ERROR_COMMAND_SYNTAX_ERROR;
3453
3454         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3455         COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3456
3457         uint32_t buf_size = (size > 4096) ? 4096 : size;
3458         buffer = malloc(buf_size);
3459         if (!buffer)
3460                 return ERROR_FAIL;
3461
3462         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3463         if (retval != ERROR_OK) {
3464                 free(buffer);
3465                 return retval;
3466         }
3467
3468         duration_start(&bench);
3469
3470         while (size > 0) {
3471                 size_t size_written;
3472                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3473                 retval = target_read_buffer(target, address, this_run_size, buffer);
3474                 if (retval != ERROR_OK)
3475                         break;
3476
3477                 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3478                 if (retval != ERROR_OK)
3479                         break;
3480
3481                 size -= this_run_size;
3482                 address += this_run_size;
3483         }
3484
3485         free(buffer);
3486
3487         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3488                 size_t filesize;
3489                 retval = fileio_size(fileio, &filesize);
3490                 if (retval != ERROR_OK)
3491                         return retval;
3492                 command_print(CMD_CTX,
3493                                 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3494                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3495         }
3496
3497         retvaltemp = fileio_close(fileio);
3498         if (retvaltemp != ERROR_OK)
3499                 return retvaltemp;
3500
3501         return retval;
3502 }
3503
3504 enum verify_mode {
3505         IMAGE_TEST = 0,
3506         IMAGE_VERIFY = 1,
3507         IMAGE_CHECKSUM_ONLY = 2
3508 };
3509
3510 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3511 {
3512         uint8_t *buffer;
3513         size_t buf_cnt;
3514         uint32_t image_size;
3515         int i;
3516         int retval;
3517         uint32_t checksum = 0;
3518         uint32_t mem_checksum = 0;
3519
3520         struct image image;
3521
3522         struct target *target = get_current_target(CMD_CTX);
3523
3524         if (CMD_ARGC < 1)
3525                 return ERROR_COMMAND_SYNTAX_ERROR;
3526
3527         if (!target) {
3528                 LOG_ERROR("no target selected");
3529                 return ERROR_FAIL;
3530         }
3531
3532         struct duration bench;
3533         duration_start(&bench);
3534
3535         if (CMD_ARGC >= 2) {
3536                 target_addr_t addr;
3537                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3538                 image.base_address = addr;
3539                 image.base_address_set = 1;
3540         } else {
3541                 image.base_address_set = 0;
3542                 image.base_address = 0x0;
3543         }
3544
3545         image.start_address_set = 0;
3546
3547         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3548         if (retval != ERROR_OK)
3549                 return retval;
3550
3551         image_size = 0x0;
3552         int diffs = 0;
3553         retval = ERROR_OK;
3554         for (i = 0; i < image.num_sections; i++) {
3555                 buffer = malloc(image.sections[i].size);
3556                 if (buffer == NULL) {
3557                         command_print(CMD_CTX,
3558                                         "error allocating buffer for section (%d bytes)",
3559                                         (int)(image.sections[i].size));
3560                         break;
3561                 }
3562                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3563                 if (retval != ERROR_OK) {
3564                         free(buffer);
3565                         break;
3566                 }
3567
3568                 if (verify >= IMAGE_VERIFY) {
3569                         /* calculate checksum of image */
3570                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3571                         if (retval != ERROR_OK) {
3572                                 free(buffer);
3573                                 break;
3574                         }
3575
3576                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3577                         if (retval != ERROR_OK) {
3578                                 free(buffer);
3579                                 break;
3580                         }
3581                         if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3582                                 LOG_ERROR("checksum mismatch");
3583                                 free(buffer);
3584                                 retval = ERROR_FAIL;
3585                                 goto done;
3586                         }
3587                         if (checksum != mem_checksum) {
3588                                 /* failed crc checksum, fall back to a binary compare */
3589                                 uint8_t *data;
3590
3591                                 if (diffs == 0)
3592                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3593
3594                                 data = malloc(buf_cnt);
3595
3596                                 /* Can we use 32bit word accesses? */
3597                                 int size = 1;
3598                                 int count = buf_cnt;
3599                                 if ((count % 4) == 0) {
3600                                         size *= 4;
3601                                         count /= 4;
3602                                 }
3603                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3604                                 if (retval == ERROR_OK) {
3605                                         uint32_t t;
3606                                         for (t = 0; t < buf_cnt; t++) {
3607                                                 if (data[t] != buffer[t]) {
3608                                                         command_print(CMD_CTX,
3609                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3610                                                                                   diffs,
3611                                                                                   (unsigned)(t + image.sections[i].base_address),
3612                                                                                   data[t],
3613                                                                                   buffer[t]);
3614                                                         if (diffs++ >= 127) {
3615                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3616                                                                 free(data);
3617                                                                 free(buffer);
3618                                                                 goto done;
3619                                                         }
3620                                                 }
3621                                                 keep_alive();
3622                                         }
3623                                 }
3624                                 free(data);
3625                         }
3626                 } else {
3627                         command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3628                                                   image.sections[i].base_address,
3629                                                   buf_cnt);
3630                 }
3631
3632                 free(buffer);
3633                 image_size += buf_cnt;
3634         }
3635         if (diffs > 0)
3636                 command_print(CMD_CTX, "No more differences found.");
3637 done:
3638         if (diffs > 0)
3639                 retval = ERROR_FAIL;
3640         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3641                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3642                                 "in %fs (%0.3f KiB/s)", image_size,
3643                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3644         }
3645
3646         image_close(&image);
3647
3648         return retval;
3649 }
3650
3651 COMMAND_HANDLER(handle_verify_image_checksum_command)
3652 {
3653         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3654 }
3655
3656 COMMAND_HANDLER(handle_verify_image_command)
3657 {
3658         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3659 }
3660
3661 COMMAND_HANDLER(handle_test_image_command)
3662 {
3663         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3664 }
3665
3666 static int handle_bp_command_list(struct command_context *cmd_ctx)
3667 {
3668         struct target *target = get_current_target(cmd_ctx);
3669         struct breakpoint *breakpoint = target->breakpoints;
3670         while (breakpoint) {
3671                 if (breakpoint->type == BKPT_SOFT) {
3672                         char *buf = buf_to_str(breakpoint->orig_instr,
3673                                         breakpoint->length, 16);
3674                         command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3675                                         breakpoint->address,
3676                                         breakpoint->length,
3677                                         breakpoint->set, buf);
3678                         free(buf);
3679                 } else {
3680                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3681                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3682                                                         breakpoint->asid,
3683                                                         breakpoint->length, breakpoint->set);
3684                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3685                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3686                                                         breakpoint->address,
3687                                                         breakpoint->length, breakpoint->set);
3688                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3689                                                         breakpoint->asid);
3690                         } else
3691                                 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3692                                                         breakpoint->address,
3693                                                         breakpoint->length, breakpoint->set);
3694                 }
3695
3696                 breakpoint = breakpoint->next;
3697         }
3698         return ERROR_OK;
3699 }
3700
3701 static int handle_bp_command_set(struct command_context *cmd_ctx,
3702                 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3703 {
3704         struct target *target = get_current_target(cmd_ctx);
3705         int retval;
3706
3707         if (asid == 0) {
3708                 retval = breakpoint_add(target, addr, length, hw);
3709                 if (ERROR_OK == retval)
3710                         command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3711                 else {
3712                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3713                         return retval;
3714                 }
3715         } else if (addr == 0) {
3716                 if (target->type->add_context_breakpoint == NULL) {
3717                         LOG_WARNING("Context breakpoint not available");
3718                         return ERROR_OK;
3719                 }
3720                 retval = context_breakpoint_add(target, asid, length, hw);
3721                 if (ERROR_OK == retval)
3722                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3723                 else {
3724                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3725                         return retval;
3726                 }
3727         } else {
3728                 if (target->type->add_hybrid_breakpoint == NULL) {
3729                         LOG_WARNING("Hybrid breakpoint not available");
3730                         return ERROR_OK;
3731                 }
3732                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3733                 if (ERROR_OK == retval)
3734                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3735                 else {
3736                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3737                         return retval;
3738                 }
3739         }
3740         return ERROR_OK;
3741 }
3742
3743 COMMAND_HANDLER(handle_bp_command)
3744 {
3745         target_addr_t addr;
3746         uint32_t asid;
3747         uint32_t length;
3748         int hw = BKPT_SOFT;
3749
3750         switch (CMD_ARGC) {
3751                 case 0:
3752                         return handle_bp_command_list(CMD_CTX);
3753
3754                 case 2:
3755                         asid = 0;
3756                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3757                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3758                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3759
3760                 case 3:
3761                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3762                                 hw = BKPT_HARD;
3763                                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3764                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3765                                 asid = 0;
3766                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3767                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3768                                 hw = BKPT_HARD;
3769                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3770                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3771                                 addr = 0;
3772                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3773                         }
3774                         /* fallthrough */
3775                 case 4:
3776                         hw = BKPT_HARD;
3777                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3778                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3779                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3780                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3781
3782                 default:
3783                         return ERROR_COMMAND_SYNTAX_ERROR;
3784         }
3785 }
3786
3787 COMMAND_HANDLER(handle_rbp_command)
3788 {
3789         if (CMD_ARGC != 1)
3790                 return ERROR_COMMAND_SYNTAX_ERROR;
3791
3792         target_addr_t addr;
3793         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3794
3795         struct target *target = get_current_target(CMD_CTX);
3796         breakpoint_remove(target, addr);
3797
3798         return ERROR_OK;
3799 }
3800
3801 COMMAND_HANDLER(handle_wp_command)
3802 {
3803         struct target *target = get_current_target(CMD_CTX);
3804
3805         if (CMD_ARGC == 0) {
3806                 struct watchpoint *watchpoint = target->watchpoints;
3807
3808                 while (watchpoint) {
3809                         command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3810                                         ", len: 0x%8.8" PRIx32
3811                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3812                                         ", mask: 0x%8.8" PRIx32,
3813                                         watchpoint->address,
3814                                         watchpoint->length,
3815                                         (int)watchpoint->rw,
3816                                         watchpoint->value,
3817                                         watchpoint->mask);
3818                         watchpoint = watchpoint->next;
3819                 }
3820                 return ERROR_OK;
3821         }
3822
3823         enum watchpoint_rw type = WPT_ACCESS;
3824         uint32_t addr = 0;
3825         uint32_t length = 0;
3826         uint32_t data_value = 0x0;
3827         uint32_t data_mask = 0xffffffff;
3828
3829         switch (CMD_ARGC) {
3830         case 5:
3831                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3832                 /* fall through */
3833         case 4:
3834                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3835                 /* fall through */
3836         case 3:
3837                 switch (CMD_ARGV[2][0]) {
3838                 case 'r':
3839                         type = WPT_READ;
3840                         break;
3841                 case 'w':
3842                         type = WPT_WRITE;
3843                         break;
3844                 case 'a':
3845                         type = WPT_ACCESS;
3846                         break;
3847                 default:
3848                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3849                         return ERROR_COMMAND_SYNTAX_ERROR;
3850                 }
3851                 /* fall through */
3852         case 2:
3853                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3854                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3855                 break;
3856
3857         default:
3858                 return ERROR_COMMAND_SYNTAX_ERROR;
3859         }
3860
3861         int retval = watchpoint_add(target, addr, length, type,
3862                         data_value, data_mask);
3863         if (ERROR_OK != retval)
3864                 LOG_ERROR("Failure setting watchpoints");
3865
3866         return retval;
3867 }
3868
3869 COMMAND_HANDLER(handle_rwp_command)
3870 {
3871         if (CMD_ARGC != 1)
3872                 return ERROR_COMMAND_SYNTAX_ERROR;
3873
3874         uint32_t addr;
3875         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3876
3877         struct target *target = get_current_target(CMD_CTX);
3878         watchpoint_remove(target, addr);
3879
3880         return ERROR_OK;
3881 }
3882
3883 /**
3884  * Translate a virtual address to a physical address.
3885  *
3886  * The low-level target implementation must have logged a detailed error
3887  * which is forwarded to telnet/GDB session.
3888  */
3889 COMMAND_HANDLER(handle_virt2phys_command)
3890 {
3891         if (CMD_ARGC != 1)
3892                 return ERROR_COMMAND_SYNTAX_ERROR;
3893
3894         target_addr_t va;
3895         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3896         target_addr_t pa;
3897
3898         struct target *target = get_current_target(CMD_CTX);
3899         int retval = target->type->virt2phys(target, va, &pa);
3900         if (retval == ERROR_OK)
3901                 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3902
3903         return retval;
3904 }
3905
3906 static void writeData(FILE *f, const void *data, size_t len)
3907 {
3908         size_t written = fwrite(data, 1, len, f);
3909         if (written != len)
3910                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3911 }
3912
3913 static void writeLong(FILE *f, int l, struct target *target)
3914 {
3915         uint8_t val[4];
3916
3917         target_buffer_set_u32(target, val, l);
3918         writeData(f, val, 4);
3919 }
3920
3921 static void writeString(FILE *f, char *s)
3922 {
3923         writeData(f, s, strlen(s));
3924 }
3925
3926 typedef unsigned char UNIT[2];  /* unit of profiling */
3927
3928 /* Dump a gmon.out histogram file. */
3929 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3930                         uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3931 {
3932         uint32_t i;
3933         FILE *f = fopen(filename, "w");
3934         if (f == NULL)
3935                 return;
3936         writeString(f, "gmon");
3937         writeLong(f, 0x00000001, target); /* Version */
3938         writeLong(f, 0, target); /* padding */
3939         writeLong(f, 0, target); /* padding */
3940         writeLong(f, 0, target); /* padding */
3941
3942         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3943         writeData(f, &zero, 1);
3944
3945         /* figure out bucket size */
3946         uint32_t min;
3947         uint32_t max;
3948         if (with_range) {
3949                 min = start_address;
3950                 max = end_address;
3951         } else {
3952                 min = samples[0];
3953                 max = samples[0];
3954                 for (i = 0; i < sampleNum; i++) {
3955                         if (min > samples[i])
3956                                 min = samples[i];
3957                         if (max < samples[i])
3958                                 max = samples[i];
3959                 }
3960
3961                 /* max should be (largest sample + 1)
3962                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3963                 max++;
3964         }
3965
3966         int addressSpace = max - min;
3967         assert(addressSpace >= 2);
3968
3969         /* FIXME: What is the reasonable number of buckets?
3970          * The profiling result will be more accurate if there are enough buckets. */
3971         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3972         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3973         if (numBuckets > maxBuckets)
3974                 numBuckets = maxBuckets;
3975         int *buckets = malloc(sizeof(int) * numBuckets);
3976         if (buckets == NULL) {
3977                 fclose(f);
3978                 return;
3979         }
3980         memset(buckets, 0, sizeof(int) * numBuckets);
3981         for (i = 0; i < sampleNum; i++) {
3982                 uint32_t address = samples[i];
3983
3984                 if ((address < min) || (max <= address))
3985                         continue;
3986
3987                 long long a = address - min;
3988                 long long b = numBuckets;
3989                 long long c = addressSpace;
3990                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3991                 buckets[index_t]++;
3992         }
3993
3994         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3995         writeLong(f, min, target);                      /* low_pc */
3996         writeLong(f, max, target);                      /* high_pc */
3997         writeLong(f, numBuckets, target);       /* # of buckets */
3998         float sample_rate = sampleNum / (duration_ms / 1000.0);
3999         writeLong(f, sample_rate, target);
4000         writeString(f, "seconds");
4001         for (i = 0; i < (15-strlen("seconds")); i++)
4002                 writeData(f, &zero, 1);
4003         writeString(f, "s");
4004
4005         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
4006
4007         char *data = malloc(2 * numBuckets);
4008         if (data != NULL) {
4009                 for (i = 0; i < numBuckets; i++) {
4010                         int val;
4011                         val = buckets[i];
4012                         if (val > 65535)
4013                                 val = 65535;
4014                         data[i * 2] = val&0xff;
4015                         data[i * 2 + 1] = (val >> 8) & 0xff;
4016                 }
4017                 free(buckets);
4018                 writeData(f, data, numBuckets * 2);
4019                 free(data);
4020         } else
4021                 free(buckets);
4022
4023         fclose(f);
4024 }
4025
4026 /* profiling samples the CPU PC as quickly as OpenOCD is able,
4027  * which will be used as a random sampling of PC */
4028 COMMAND_HANDLER(handle_profile_command)
4029 {
4030         struct target *target = get_current_target(CMD_CTX);
4031
4032         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4033                 return ERROR_COMMAND_SYNTAX_ERROR;
4034
4035         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
4036         uint32_t offset;
4037         uint32_t num_of_samples;
4038         int retval = ERROR_OK;
4039
4040         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4041
4042         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4043         if (samples == NULL) {
4044                 LOG_ERROR("No memory to store samples.");
4045                 return ERROR_FAIL;
4046         }
4047
4048         uint64_t timestart_ms = timeval_ms();
4049         /**
4050          * Some cores let us sample the PC without the
4051          * annoying halt/resume step; for example, ARMv7 PCSR.
4052          * Provide a way to use that more efficient mechanism.
4053          */
4054         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4055                                 &num_of_samples, offset);
4056         if (retval != ERROR_OK) {
4057                 free(samples);
4058                 return retval;
4059         }
4060         uint32_t duration_ms = timeval_ms() - timestart_ms;
4061
4062         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4063
4064         retval = target_poll(target);
4065         if (retval != ERROR_OK) {
4066                 free(samples);
4067                 return retval;
4068         }
4069         if (target->state == TARGET_RUNNING) {
4070                 retval = target_halt(target);
4071                 if (retval != ERROR_OK) {
4072                         free(samples);
4073                         return retval;
4074                 }
4075         }
4076
4077         retval = target_poll(target);
4078         if (retval != ERROR_OK) {
4079                 free(samples);
4080                 return retval;
4081         }
4082
4083         uint32_t start_address = 0;
4084         uint32_t end_address = 0;
4085         bool with_range = false;
4086         if (CMD_ARGC == 4) {
4087                 with_range = true;
4088                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4089                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4090         }
4091
4092         write_gmon(samples, num_of_samples, CMD_ARGV[1],
4093                    with_range, start_address, end_address, target, duration_ms);
4094         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4095
4096         free(samples);
4097         return retval;
4098 }
4099
4100 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4101 {
4102         char *namebuf;
4103         Jim_Obj *nameObjPtr, *valObjPtr;
4104         int result;
4105
4106         namebuf = alloc_printf("%s(%d)", varname, idx);
4107         if (!namebuf)
4108                 return JIM_ERR;
4109
4110         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4111         valObjPtr = Jim_NewIntObj(interp, val);
4112         if (!nameObjPtr || !valObjPtr) {
4113                 free(namebuf);
4114                 return JIM_ERR;
4115         }
4116
4117         Jim_IncrRefCount(nameObjPtr);
4118         Jim_IncrRefCount(valObjPtr);
4119         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4120         Jim_DecrRefCount(interp, nameObjPtr);
4121         Jim_DecrRefCount(interp, valObjPtr);
4122         free(namebuf);
4123         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4124         return result;
4125 }
4126
4127 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4128 {
4129         struct command_context *context;
4130         struct target *target;
4131
4132         context = current_command_context(interp);
4133         assert(context != NULL);
4134
4135         target = get_current_target(context);
4136         if (target == NULL) {
4137                 LOG_ERROR("mem2array: no current target");
4138                 return JIM_ERR;
4139         }
4140
4141         return target_mem2array(interp, target, argc - 1, argv + 1);
4142 }
4143
4144 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4145 {
4146         long l;
4147         uint32_t width;
4148         int len;
4149         uint32_t addr;
4150         uint32_t count;
4151         uint32_t v;
4152         const char *varname;
4153         const char *phys;
4154         bool is_phys;
4155         int  n, e, retval;
4156         uint32_t i;
4157
4158         /* argv[1] = name of array to receive the data
4159          * argv[2] = desired width
4160          * argv[3] = memory address
4161          * argv[4] = count of times to read
4162          */
4163
4164         if (argc < 4 || argc > 5) {
4165                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4166                 return JIM_ERR;
4167         }
4168         varname = Jim_GetString(argv[0], &len);
4169         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4170
4171         e = Jim_GetLong(interp, argv[1], &l);
4172         width = l;
4173         if (e != JIM_OK)
4174                 return e;
4175
4176         e = Jim_GetLong(interp, argv[2], &l);
4177         addr = l;
4178         if (e != JIM_OK)
4179                 return e;
4180         e = Jim_GetLong(interp, argv[3], &l);
4181         len = l;
4182         if (e != JIM_OK)
4183                 return e;
4184         is_phys = false;
4185         if (argc > 4) {
4186                 phys = Jim_GetString(argv[4], &n);
4187                 if (!strncmp(phys, "phys", n))
4188                         is_phys = true;
4189                 else
4190                         return JIM_ERR;
4191         }
4192         switch (width) {
4193                 case 8:
4194                         width = 1;
4195                         break;
4196                 case 16:
4197                         width = 2;
4198                         break;
4199                 case 32:
4200                         width = 4;
4201                         break;
4202                 default:
4203                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4204                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4205                         return JIM_ERR;
4206         }
4207         if (len == 0) {
4208                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4209                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4210                 return JIM_ERR;
4211         }
4212         if ((addr + (len * width)) < addr) {
4213                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4214                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4215                 return JIM_ERR;
4216         }
4217         /* absurd transfer size? */
4218         if (len > 65536) {
4219                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4220                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4221                 return JIM_ERR;
4222         }
4223
4224         if ((width == 1) ||
4225                 ((width == 2) && ((addr & 1) == 0)) ||
4226                 ((width == 4) && ((addr & 3) == 0))) {
4227                 /* all is well */
4228         } else {
4229                 char buf[100];
4230                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4231                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4232                                 addr,
4233                                 width);
4234                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4235                 return JIM_ERR;
4236         }
4237
4238         /* Transfer loop */
4239
4240         /* index counter */
4241         n = 0;
4242
4243         size_t buffersize = 4096;
4244         uint8_t *buffer = malloc(buffersize);
4245         if (buffer == NULL)
4246                 return JIM_ERR;
4247
4248         /* assume ok */
4249         e = JIM_OK;
4250         while (len) {
4251                 /* Slurp... in buffer size chunks */
4252
4253                 count = len; /* in objects.. */
4254                 if (count > (buffersize / width))
4255                         count = (buffersize / width);
4256
4257                 if (is_phys)
4258                         retval = target_read_phys_memory(target, addr, width, count, buffer);
4259                 else
4260                         retval = target_read_memory(target, addr, width, count, buffer);
4261                 if (retval != ERROR_OK) {
4262                         /* BOO !*/
4263                         LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4264                                           addr,
4265                                           width,
4266                                           count);
4267                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4268                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4269                         e = JIM_ERR;
4270                         break;
4271                 } else {
4272                         v = 0; /* shut up gcc */
4273                         for (i = 0; i < count ; i++, n++) {
4274                                 switch (width) {
4275                                         case 4:
4276                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
4277                                                 break;
4278                                         case 2:
4279                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
4280                                                 break;
4281                                         case 1:
4282                                                 v = buffer[i] & 0x0ff;
4283                                                 break;
4284                                 }
4285                                 new_int_array_element(interp, varname, n, v);
4286                         }
4287                         len -= count;
4288                         addr += count * width;
4289                 }
4290         }
4291
4292         free(buffer);
4293
4294         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4295
4296         return e;
4297 }
4298
4299 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4300 {
4301         char *namebuf;
4302         Jim_Obj *nameObjPtr, *valObjPtr;
4303         int result;
4304         long l;
4305
4306         namebuf = alloc_printf("%s(%d)", varname, idx);
4307         if (!namebuf)
4308                 return JIM_ERR;
4309
4310         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4311         if (!nameObjPtr) {
4312                 free(namebuf);
4313                 return JIM_ERR;
4314         }
4315
4316         Jim_IncrRefCount(nameObjPtr);
4317         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4318         Jim_DecrRefCount(interp, nameObjPtr);
4319         free(namebuf);
4320         if (valObjPtr == NULL)
4321                 return JIM_ERR;
4322
4323         result = Jim_GetLong(interp, valObjPtr, &l);
4324         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4325         *val = l;
4326         return result;
4327 }
4328
4329 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4330 {
4331         struct command_context *context;
4332         struct target *target;
4333
4334         context = current_command_context(interp);
4335         assert(context != NULL);
4336
4337         target = get_current_target(context);
4338         if (target == NULL) {
4339                 LOG_ERROR("array2mem: no current target");
4340                 return JIM_ERR;
4341         }
4342
4343         return target_array2mem(interp, target, argc-1, argv + 1);
4344 }
4345
4346 static int target_array2mem(Jim_Interp *interp, struct target *target,
4347                 int argc, Jim_Obj *const *argv)
4348 {
4349         long l;
4350         uint32_t width;
4351         int len;
4352         uint32_t addr;
4353         uint32_t count;
4354         uint32_t v;
4355         const char *varname;
4356         const char *phys;
4357         bool is_phys;
4358         int  n, e, retval;
4359         uint32_t i;
4360
4361         /* argv[1] = name of array to get the data
4362          * argv[2] = desired width
4363          * argv[3] = memory address
4364          * argv[4] = count to write
4365          */
4366         if (argc < 4 || argc > 5) {
4367                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4368                 return JIM_ERR;
4369         }
4370         varname = Jim_GetString(argv[0], &len);
4371         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4372
4373         e = Jim_GetLong(interp, argv[1], &l);
4374         width = l;
4375         if (e != JIM_OK)
4376                 return e;
4377
4378         e = Jim_GetLong(interp, argv[2], &l);
4379         addr = l;
4380         if (e != JIM_OK)
4381                 return e;
4382         e = Jim_GetLong(interp, argv[3], &l);
4383         len = l;
4384         if (e != JIM_OK)
4385                 return e;
4386         is_phys = false;
4387         if (argc > 4) {
4388                 phys = Jim_GetString(argv[4], &n);
4389                 if (!strncmp(phys, "phys", n))
4390                         is_phys = true;
4391                 else
4392                         return JIM_ERR;
4393         }
4394         switch (width) {
4395                 case 8:
4396                         width = 1;
4397                         break;
4398                 case 16:
4399                         width = 2;
4400                         break;
4401                 case 32:
4402                         width = 4;
4403                         break;
4404                 default:
4405                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4406                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4407                                         "Invalid width param, must be 8/16/32", NULL);
4408                         return JIM_ERR;
4409         }
4410         if (len == 0) {
4411                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4412                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4413                                 "array2mem: zero width read?", NULL);
4414                 return JIM_ERR;
4415         }
4416         if ((addr + (len * width)) < addr) {
4417                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4418                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4419                                 "array2mem: addr + len - wraps to zero?", NULL);
4420                 return JIM_ERR;
4421         }
4422         /* absurd transfer size? */
4423         if (len > 65536) {
4424                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4425                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4426                                 "array2mem: absurd > 64K item request", NULL);
4427                 return JIM_ERR;
4428         }
4429
4430         if ((width == 1) ||
4431                 ((width == 2) && ((addr & 1) == 0)) ||
4432                 ((width == 4) && ((addr & 3) == 0))) {
4433                 /* all is well */
4434         } else {
4435                 char buf[100];
4436                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4437                 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4438                                 addr,
4439                                 width);
4440                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4441                 return JIM_ERR;
4442         }
4443
4444         /* Transfer loop */
4445
4446         /* index counter */
4447         n = 0;
4448         /* assume ok */
4449         e = JIM_OK;
4450
4451         size_t buffersize = 4096;
4452         uint8_t *buffer = malloc(buffersize);
4453         if (buffer == NULL)
4454                 return JIM_ERR;
4455
4456         while (len) {
4457                 /* Slurp... in buffer size chunks */
4458
4459                 count = len; /* in objects.. */
4460                 if (count > (buffersize / width))
4461                         count = (buffersize / width);
4462
4463                 v = 0; /* shut up gcc */
4464                 for (i = 0; i < count; i++, n++) {
4465                         get_int_array_element(interp, varname, n, &v);
4466                         switch (width) {
4467                         case 4:
4468                                 target_buffer_set_u32(target, &buffer[i * width], v);
4469                                 break;
4470                         case 2:
4471                                 target_buffer_set_u16(target, &buffer[i * width], v);
4472                                 break;
4473                         case 1:
4474                                 buffer[i] = v & 0x0ff;
4475                                 break;
4476                         }
4477                 }
4478                 len -= count;
4479
4480                 if (is_phys)
4481                         retval = target_write_phys_memory(target, addr, width, count, buffer);
4482                 else
4483                         retval = target_write_memory(target, addr, width, count, buffer);
4484                 if (retval != ERROR_OK) {
4485                         /* BOO !*/
4486                         LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4487                                           addr,
4488                                           width,
4489                                           count);
4490                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4491                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4492                         e = JIM_ERR;
4493                         break;
4494                 }
4495                 addr += count * width;
4496         }
4497
4498         free(buffer);
4499
4500         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4501
4502         return e;
4503 }
4504
4505 /* FIX? should we propagate errors here rather than printing them
4506  * and continuing?
4507  */
4508 void target_handle_event(struct target *target, enum target_event e)
4509 {
4510         struct target_event_action *teap;
4511
4512         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4513                 if (teap->event == e) {
4514                         LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4515                                            target->target_number,
4516                                            target_name(target),
4517                                            target_type_name(target),
4518                                            e,
4519                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4520                                            Jim_GetString(teap->body, NULL));
4521
4522                         /* Override current target by the target an event
4523                          * is issued from (lot of scripts need it).
4524                          * Return back to previous override as soon
4525                          * as the handler processing is done */
4526                         struct command_context *cmd_ctx = current_command_context(teap->interp);
4527                         struct target *saved_target_override = cmd_ctx->current_target_override;
4528                         cmd_ctx->current_target_override = target;
4529
4530                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4531                                 Jim_MakeErrorMessage(teap->interp);
4532                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4533                         }
4534
4535                         cmd_ctx->current_target_override = saved_target_override;
4536                 }
4537         }
4538 }
4539
4540 /**
4541  * Returns true only if the target has a handler for the specified event.
4542  */
4543 bool target_has_event_action(struct target *target, enum target_event event)
4544 {
4545         struct target_event_action *teap;
4546
4547         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4548                 if (teap->event == event)
4549                         return true;
4550         }
4551         return false;
4552 }
4553
4554 enum target_cfg_param {
4555         TCFG_TYPE,
4556         TCFG_EVENT,
4557         TCFG_WORK_AREA_VIRT,
4558         TCFG_WORK_AREA_PHYS,
4559         TCFG_WORK_AREA_SIZE,
4560         TCFG_WORK_AREA_BACKUP,
4561         TCFG_ENDIAN,
4562         TCFG_COREID,
4563         TCFG_CHAIN_POSITION,
4564         TCFG_DBGBASE,
4565         TCFG_RTOS,
4566         TCFG_DEFER_EXAMINE,
4567         TCFG_GDB_PORT,
4568 };
4569
4570 static Jim_Nvp nvp_config_opts[] = {
4571         { .name = "-type",             .value = TCFG_TYPE },
4572         { .name = "-event",            .value = TCFG_EVENT },
4573         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4574         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4575         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4576         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4577         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4578         { .name = "-coreid",           .value = TCFG_COREID },
4579         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4580         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4581         { .name = "-rtos",             .value = TCFG_RTOS },
4582         { .name = "-defer-examine",    .value = TCFG_DEFER_EXAMINE },
4583         { .name = "-gdb-port",         .value = TCFG_GDB_PORT },
4584         { .name = NULL, .value = -1 }
4585 };
4586
4587 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4588 {
4589         Jim_Nvp *n;
4590         Jim_Obj *o;
4591         jim_wide w;
4592         int e;
4593
4594         /* parse config or cget options ... */
4595         while (goi->argc > 0) {
4596                 Jim_SetEmptyResult(goi->interp);
4597                 /* Jim_GetOpt_Debug(goi); */
4598
4599                 if (target->type->target_jim_configure) {
4600                         /* target defines a configure function */
4601                         /* target gets first dibs on parameters */
4602                         e = (*(target->type->target_jim_configure))(target, goi);
4603                         if (e == JIM_OK) {
4604                                 /* more? */
4605                                 continue;
4606                         }
4607                         if (e == JIM_ERR) {
4608                                 /* An error */
4609                                 return e;
4610                         }
4611                         /* otherwise we 'continue' below */
4612                 }
4613                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4614                 if (e != JIM_OK) {
4615                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4616                         return e;
4617                 }
4618                 switch (n->value) {
4619                 case TCFG_TYPE:
4620                         /* not setable */
4621                         if (goi->isconfigure) {
4622                                 Jim_SetResultFormatted(goi->interp,
4623                                                 "not settable: %s", n->name);
4624                                 return JIM_ERR;
4625                         } else {
4626 no_params:
4627                                 if (goi->argc != 0) {
4628                                         Jim_WrongNumArgs(goi->interp,
4629                                                         goi->argc, goi->argv,
4630                                                         "NO PARAMS");
4631                                         return JIM_ERR;
4632                                 }
4633                         }
4634                         Jim_SetResultString(goi->interp,
4635                                         target_type_name(target), -1);
4636                         /* loop for more */
4637                         break;
4638                 case TCFG_EVENT:
4639                         if (goi->argc == 0) {
4640                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4641                                 return JIM_ERR;
4642                         }
4643
4644                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4645                         if (e != JIM_OK) {
4646                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4647                                 return e;
4648                         }
4649
4650                         if (goi->isconfigure) {
4651                                 if (goi->argc != 1) {
4652                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4653                                         return JIM_ERR;
4654                                 }
4655                         } else {
4656                                 if (goi->argc != 0) {
4657                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4658                                         return JIM_ERR;
4659                                 }
4660                         }
4661
4662                         {
4663                                 struct target_event_action *teap;
4664
4665                                 teap = target->event_action;
4666                                 /* replace existing? */
4667                                 while (teap) {
4668                                         if (teap->event == (enum target_event)n->value)
4669                                                 break;
4670                                         teap = teap->next;
4671                                 }
4672
4673                                 if (goi->isconfigure) {
4674                                         bool replace = true;
4675                                         if (teap == NULL) {
4676                                                 /* create new */
4677                                                 teap = calloc(1, sizeof(*teap));
4678                                                 replace = false;
4679                                         }
4680                                         teap->event = n->value;
4681                                         teap->interp = goi->interp;
4682                                         Jim_GetOpt_Obj(goi, &o);
4683                                         if (teap->body)
4684                                                 Jim_DecrRefCount(teap->interp, teap->body);
4685                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4686                                         /*
4687                                          * FIXME:
4688                                          *     Tcl/TK - "tk events" have a nice feature.
4689                                          *     See the "BIND" command.
4690                                          *    We should support that here.
4691                                          *     You can specify %X and %Y in the event code.
4692                                          *     The idea is: %T - target name.
4693                                          *     The idea is: %N - target number
4694                                          *     The idea is: %E - event name.
4695                                          */
4696                                         Jim_IncrRefCount(teap->body);
4697
4698                                         if (!replace) {
4699                                                 /* add to head of event list */
4700                                                 teap->next = target->event_action;
4701                                                 target->event_action = teap;
4702                                         }
4703                                         Jim_SetEmptyResult(goi->interp);
4704                                 } else {
4705                                         /* get */
4706                                         if (teap == NULL)
4707                                                 Jim_SetEmptyResult(goi->interp);
4708                                         else
4709                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4710                                 }
4711                         }
4712                         /* loop for more */
4713                         break;
4714
4715                 case TCFG_WORK_AREA_VIRT:
4716                         if (goi->isconfigure) {
4717                                 target_free_all_working_areas(target);
4718                                 e = Jim_GetOpt_Wide(goi, &w);
4719                                 if (e != JIM_OK)
4720                                         return e;
4721                                 target->working_area_virt = w;
4722                                 target->working_area_virt_spec = true;
4723                         } else {
4724                                 if (goi->argc != 0)
4725                                         goto no_params;
4726                         }
4727                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4728                         /* loop for more */
4729                         break;
4730
4731                 case TCFG_WORK_AREA_PHYS:
4732                         if (goi->isconfigure) {
4733                                 target_free_all_working_areas(target);
4734                                 e = Jim_GetOpt_Wide(goi, &w);
4735                                 if (e != JIM_OK)
4736                                         return e;
4737                                 target->working_area_phys = w;
4738                                 target->working_area_phys_spec = true;
4739                         } else {
4740                                 if (goi->argc != 0)
4741                                         goto no_params;
4742                         }
4743                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4744                         /* loop for more */
4745                         break;
4746
4747                 case TCFG_WORK_AREA_SIZE:
4748                         if (goi->isconfigure) {
4749                                 target_free_all_working_areas(target);
4750                                 e = Jim_GetOpt_Wide(goi, &w);
4751                                 if (e != JIM_OK)
4752                                         return e;
4753                                 target->working_area_size = w;
4754                         } else {
4755                                 if (goi->argc != 0)
4756                                         goto no_params;
4757                         }
4758                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4759                         /* loop for more */
4760                         break;
4761
4762                 case TCFG_WORK_AREA_BACKUP:
4763                         if (goi->isconfigure) {
4764                                 target_free_all_working_areas(target);
4765                                 e = Jim_GetOpt_Wide(goi, &w);
4766                                 if (e != JIM_OK)
4767                                         return e;
4768                                 /* make this exactly 1 or 0 */
4769                                 target->backup_working_area = (!!w);
4770                         } else {
4771                                 if (goi->argc != 0)
4772                                         goto no_params;
4773                         }
4774                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4775                         /* loop for more e*/
4776                         break;
4777
4778
4779                 case TCFG_ENDIAN:
4780                         if (goi->isconfigure) {
4781                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4782                                 if (e != JIM_OK) {
4783                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4784                                         return e;
4785                                 }
4786                                 target->endianness = n->value;
4787                         } else {
4788                                 if (goi->argc != 0)
4789                                         goto no_params;
4790                         }
4791                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4792                         if (n->name == NULL) {
4793                                 target->endianness = TARGET_LITTLE_ENDIAN;
4794                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4795                         }
4796                         Jim_SetResultString(goi->interp, n->name, -1);
4797                         /* loop for more */
4798                         break;
4799
4800                 case TCFG_COREID:
4801                         if (goi->isconfigure) {
4802                                 e = Jim_GetOpt_Wide(goi, &w);
4803                                 if (e != JIM_OK)
4804                                         return e;
4805                                 target->coreid = (int32_t)w;
4806                         } else {
4807                                 if (goi->argc != 0)
4808                                         goto no_params;
4809                         }
4810                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4811                         /* loop for more */
4812                         break;
4813
4814                 case TCFG_CHAIN_POSITION:
4815                         if (goi->isconfigure) {
4816                                 Jim_Obj *o_t;
4817                                 struct jtag_tap *tap;
4818
4819                                 if (target->has_dap) {
4820                                         Jim_SetResultString(goi->interp,
4821                                                 "target requires -dap parameter instead of -chain-position!", -1);
4822                                         return JIM_ERR;
4823                                 }
4824
4825                                 target_free_all_working_areas(target);
4826                                 e = Jim_GetOpt_Obj(goi, &o_t);
4827                                 if (e != JIM_OK)
4828                                         return e;
4829                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4830                                 if (tap == NULL)
4831                                         return JIM_ERR;
4832                                 target->tap = tap;
4833                                 target->tap_configured = true;
4834                         } else {
4835                                 if (goi->argc != 0)
4836                                         goto no_params;
4837                         }
4838                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4839                         /* loop for more e*/
4840                         break;
4841                 case TCFG_DBGBASE:
4842                         if (goi->isconfigure) {
4843                                 e = Jim_GetOpt_Wide(goi, &w);
4844                                 if (e != JIM_OK)
4845                                         return e;
4846                                 target->dbgbase = (uint32_t)w;
4847                                 target->dbgbase_set = true;
4848                         } else {
4849                                 if (goi->argc != 0)
4850                                         goto no_params;
4851                         }
4852                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4853                         /* loop for more */
4854                         break;
4855                 case TCFG_RTOS:
4856                         /* RTOS */
4857                         {
4858                                 int result = rtos_create(goi, target);
4859                                 if (result != JIM_OK)
4860                                         return result;
4861                         }
4862                         /* loop for more */
4863                         break;
4864
4865                 case TCFG_DEFER_EXAMINE:
4866                         /* DEFER_EXAMINE */
4867                         target->defer_examine = true;
4868                         /* loop for more */
4869                         break;
4870
4871                 case TCFG_GDB_PORT:
4872                         if (goi->isconfigure) {
4873                                 const char *s;
4874                                 e = Jim_GetOpt_String(goi, &s, NULL);
4875                                 if (e != JIM_OK)
4876                                         return e;
4877                                 target->gdb_port_override = strdup(s);
4878                         } else {
4879                                 if (goi->argc != 0)
4880                                         goto no_params;
4881                         }
4882                         Jim_SetResultString(goi->interp, target->gdb_port_override ? : "undefined", -1);
4883                         /* loop for more */
4884                         break;
4885                 }
4886         } /* while (goi->argc) */
4887
4888
4889                 /* done - we return */
4890         return JIM_OK;
4891 }
4892
4893 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4894 {
4895         Jim_GetOptInfo goi;
4896
4897         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4898         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4899         if (goi.argc < 1) {
4900                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4901                                  "missing: -option ...");
4902                 return JIM_ERR;
4903         }
4904         struct target *target = Jim_CmdPrivData(goi.interp);
4905         return target_configure(&goi, target);
4906 }
4907
4908 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4909 {
4910         const char *cmd_name = Jim_GetString(argv[0], NULL);
4911
4912         Jim_GetOptInfo goi;
4913         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4914
4915         if (goi.argc < 2 || goi.argc > 4) {
4916                 Jim_SetResultFormatted(goi.interp,
4917                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4918                 return JIM_ERR;
4919         }
4920
4921         target_write_fn fn;
4922         fn = target_write_memory;
4923
4924         int e;
4925         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4926                 /* consume it */
4927                 struct Jim_Obj *obj;
4928                 e = Jim_GetOpt_Obj(&goi, &obj);
4929                 if (e != JIM_OK)
4930                         return e;
4931
4932                 fn = target_write_phys_memory;
4933         }
4934
4935         jim_wide a;
4936         e = Jim_GetOpt_Wide(&goi, &a);
4937         if (e != JIM_OK)
4938                 return e;
4939
4940         jim_wide b;
4941         e = Jim_GetOpt_Wide(&goi, &b);
4942         if (e != JIM_OK)
4943                 return e;
4944
4945         jim_wide c = 1;
4946         if (goi.argc == 1) {
4947                 e = Jim_GetOpt_Wide(&goi, &c);
4948                 if (e != JIM_OK)
4949                         return e;
4950         }
4951
4952         /* all args must be consumed */
4953         if (goi.argc != 0)
4954                 return JIM_ERR;
4955
4956         struct target *target = Jim_CmdPrivData(goi.interp);
4957         unsigned data_size;
4958         if (strcasecmp(cmd_name, "mww") == 0)
4959                 data_size = 4;
4960         else if (strcasecmp(cmd_name, "mwh") == 0)
4961                 data_size = 2;
4962         else if (strcasecmp(cmd_name, "mwb") == 0)
4963                 data_size = 1;
4964         else {
4965                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4966                 return JIM_ERR;
4967         }
4968
4969         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4970 }
4971
4972 /**
4973 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4974 *
4975 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4976 *         mdh [phys] <address> [<count>] - for 16 bit reads
4977 *         mdb [phys] <address> [<count>] - for  8 bit reads
4978 *
4979 *  Count defaults to 1.
4980 *
4981 *  Calls target_read_memory or target_read_phys_memory depending on
4982 *  the presence of the "phys" argument
4983 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4984 *  to int representation in base16.
4985 *  Also outputs read data in a human readable form using command_print
4986 *
4987 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4988 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4989 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4990 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4991 *  on success, with [<count>] number of elements.
4992 *
4993 *  In case of little endian target:
4994 *      Example1: "mdw 0x00000000"  returns "10123456"
4995 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4996 *      Example3: "mdb 0x00000000" returns "56"
4997 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4998 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4999 **/
5000 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5001 {
5002         const char *cmd_name = Jim_GetString(argv[0], NULL);
5003
5004         Jim_GetOptInfo goi;
5005         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5006
5007         if ((goi.argc < 1) || (goi.argc > 3)) {
5008                 Jim_SetResultFormatted(goi.interp,
5009                                 "usage: %s [phys] <address> [<count>]", cmd_name);
5010                 return JIM_ERR;
5011         }
5012
5013         int (*fn)(struct target *target,
5014                         target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
5015         fn = target_read_memory;
5016
5017         int e;
5018         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
5019                 /* consume it */
5020                 struct Jim_Obj *obj;
5021                 e = Jim_GetOpt_Obj(&goi, &obj);
5022                 if (e != JIM_OK)
5023                         return e;
5024
5025                 fn = target_read_phys_memory;
5026         }
5027
5028         /* Read address parameter */
5029         jim_wide addr;
5030         e = Jim_GetOpt_Wide(&goi, &addr);
5031         if (e != JIM_OK)
5032                 return JIM_ERR;
5033
5034         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
5035         jim_wide count;
5036         if (goi.argc == 1) {
5037                 e = Jim_GetOpt_Wide(&goi, &count);
5038                 if (e != JIM_OK)
5039                         return JIM_ERR;
5040         } else
5041                 count = 1;
5042
5043         /* all args must be consumed */
5044         if (goi.argc != 0)
5045                 return JIM_ERR;
5046
5047         jim_wide dwidth = 1; /* shut up gcc */
5048         if (strcasecmp(cmd_name, "mdw") == 0)
5049                 dwidth = 4;
5050         else if (strcasecmp(cmd_name, "mdh") == 0)
5051                 dwidth = 2;
5052         else if (strcasecmp(cmd_name, "mdb") == 0)
5053                 dwidth = 1;
5054         else {
5055                 LOG_ERROR("command '%s' unknown: ", cmd_name);
5056                 return JIM_ERR;
5057         }
5058
5059         /* convert count to "bytes" */
5060         int bytes = count * dwidth;
5061
5062         struct target *target = Jim_CmdPrivData(goi.interp);
5063         uint8_t  target_buf[32];
5064         jim_wide x, y, z;
5065         while (bytes > 0) {
5066                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
5067
5068                 /* Try to read out next block */
5069                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
5070
5071                 if (e != ERROR_OK) {
5072                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
5073                         return JIM_ERR;
5074                 }
5075
5076                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
5077                 switch (dwidth) {
5078                 case 4:
5079                         for (x = 0; x < 16 && x < y; x += 4) {
5080                                 z = target_buffer_get_u32(target, &(target_buf[x]));
5081                                 command_print_sameline(NULL, "%08x ", (int)(z));
5082                         }
5083                         for (; (x < 16) ; x += 4)
5084                                 command_print_sameline(NULL, "         ");
5085                         break;
5086                 case 2:
5087                         for (x = 0; x < 16 && x < y; x += 2) {
5088                                 z = target_buffer_get_u16(target, &(target_buf[x]));
5089                                 command_print_sameline(NULL, "%04x ", (int)(z));
5090                         }
5091                         for (; (x < 16) ; x += 2)
5092                                 command_print_sameline(NULL, "     ");
5093                         break;
5094                 case 1:
5095                 default:
5096                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
5097                                 z = target_buffer_get_u8(target, &(target_buf[x]));
5098                                 command_print_sameline(NULL, "%02x ", (int)(z));
5099                         }
5100                         for (; (x < 16) ; x += 1)
5101                                 command_print_sameline(NULL, "   ");
5102                         break;
5103                 }
5104                 /* ascii-ify the bytes */
5105                 for (x = 0 ; x < y ; x++) {
5106                         if ((target_buf[x] >= 0x20) &&
5107                                 (target_buf[x] <= 0x7e)) {
5108                                 /* good */
5109                         } else {
5110                                 /* smack it */
5111                                 target_buf[x] = '.';
5112                         }
5113                 }
5114                 /* space pad  */
5115                 while (x < 16) {
5116                         target_buf[x] = ' ';
5117                         x++;
5118                 }
5119                 /* terminate */
5120                 target_buf[16] = 0;
5121                 /* print - with a newline */
5122                 command_print_sameline(NULL, "%s\n", target_buf);
5123                 /* NEXT... */
5124                 bytes -= 16;
5125                 addr += 16;
5126         }
5127         return JIM_OK;
5128 }
5129
5130 static int jim_target_mem2array(Jim_Interp *interp,
5131                 int argc, Jim_Obj *const *argv)
5132 {
5133         struct target *target = Jim_CmdPrivData(interp);
5134         return target_mem2array(interp, target, argc - 1, argv + 1);
5135 }
5136
5137 static int jim_target_array2mem(Jim_Interp *interp,
5138                 int argc, Jim_Obj *const *argv)
5139 {
5140         struct target *target = Jim_CmdPrivData(interp);
5141         return target_array2mem(interp, target, argc - 1, argv + 1);
5142 }
5143
5144 static int jim_target_tap_disabled(Jim_Interp *interp)
5145 {
5146         Jim_SetResultFormatted(interp, "[TAP is disabled]");
5147         return JIM_ERR;
5148 }
5149
5150 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5151 {
5152         bool allow_defer = false;
5153
5154         Jim_GetOptInfo goi;
5155         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5156         if (goi.argc > 1) {
5157                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5158                 Jim_SetResultFormatted(goi.interp,
5159                                 "usage: %s ['allow-defer']", cmd_name);
5160                 return JIM_ERR;
5161         }
5162         if (goi.argc > 0 &&
5163             strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5164                 /* consume it */
5165                 struct Jim_Obj *obj;
5166                 int e = Jim_GetOpt_Obj(&goi, &obj);
5167                 if (e != JIM_OK)
5168                         return e;
5169                 allow_defer = true;
5170         }
5171
5172         struct target *target = Jim_CmdPrivData(interp);
5173         if (!target->tap->enabled)
5174                 return jim_target_tap_disabled(interp);
5175
5176         if (allow_defer && target->defer_examine) {
5177                 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5178                 LOG_INFO("Use arp_examine command to examine it manually!");
5179                 return JIM_OK;
5180         }
5181
5182         int e = target->type->examine(target);
5183         if (e != ERROR_OK)
5184                 return JIM_ERR;
5185         return JIM_OK;
5186 }
5187
5188 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5189 {
5190         struct target *target = Jim_CmdPrivData(interp);
5191
5192         Jim_SetResultBool(interp, target_was_examined(target));
5193         return JIM_OK;
5194 }
5195
5196 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5197 {
5198         struct target *target = Jim_CmdPrivData(interp);
5199
5200         Jim_SetResultBool(interp, target->defer_examine);
5201         return JIM_OK;
5202 }
5203
5204 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5205 {
5206         if (argc != 1) {
5207                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5208                 return JIM_ERR;
5209         }
5210         struct target *target = Jim_CmdPrivData(interp);
5211
5212         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5213                 return JIM_ERR;
5214
5215         return JIM_OK;
5216 }
5217
5218 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5219 {
5220         if (argc != 1) {
5221                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5222                 return JIM_ERR;
5223         }
5224         struct target *target = Jim_CmdPrivData(interp);
5225         if (!target->tap->enabled)
5226                 return jim_target_tap_disabled(interp);
5227
5228         int e;
5229         if (!(target_was_examined(target)))
5230                 e = ERROR_TARGET_NOT_EXAMINED;
5231         else
5232                 e = target->type->poll(target);
5233         if (e != ERROR_OK)
5234                 return JIM_ERR;
5235         return JIM_OK;
5236 }
5237
5238 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5239 {
5240         Jim_GetOptInfo goi;
5241         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5242
5243         if (goi.argc != 2) {
5244                 Jim_WrongNumArgs(interp, 0, argv,
5245                                 "([tT]|[fF]|assert|deassert) BOOL");
5246                 return JIM_ERR;
5247         }
5248
5249         Jim_Nvp *n;
5250         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5251         if (e != JIM_OK) {
5252                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5253                 return e;
5254         }
5255         /* the halt or not param */
5256         jim_wide a;
5257         e = Jim_GetOpt_Wide(&goi, &a);
5258         if (e != JIM_OK)
5259                 return e;
5260
5261         struct target *target = Jim_CmdPrivData(goi.interp);
5262         if (!target->tap->enabled)
5263                 return jim_target_tap_disabled(interp);
5264
5265         if (!target->type->assert_reset || !target->type->deassert_reset) {
5266                 Jim_SetResultFormatted(interp,
5267                                 "No target-specific reset for %s",
5268                                 target_name(target));
5269                 return JIM_ERR;
5270         }
5271
5272         if (target->defer_examine)
5273                 target_reset_examined(target);
5274
5275         /* determine if we should halt or not. */
5276         target->reset_halt = !!a;
5277         /* When this happens - all workareas are invalid. */
5278         target_free_all_working_areas_restore(target, 0);
5279
5280         /* do the assert */
5281         if (n->value == NVP_ASSERT)
5282                 e = target->type->assert_reset(target);
5283         else
5284                 e = target->type->deassert_reset(target);
5285         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5286 }
5287
5288 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5289 {
5290         if (argc != 1) {
5291                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5292                 return JIM_ERR;
5293         }
5294         struct target *target = Jim_CmdPrivData(interp);
5295         if (!target->tap->enabled)
5296                 return jim_target_tap_disabled(interp);
5297         int e = target->type->halt(target);
5298         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5299 }
5300
5301 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5302 {
5303         Jim_GetOptInfo goi;
5304         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5305
5306         /* params:  <name>  statename timeoutmsecs */
5307         if (goi.argc != 2) {
5308                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5309                 Jim_SetResultFormatted(goi.interp,
5310                                 "%s <state_name> <timeout_in_msec>", cmd_name);
5311                 return JIM_ERR;
5312         }
5313
5314         Jim_Nvp *n;
5315         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5316         if (e != JIM_OK) {
5317                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5318                 return e;
5319         }
5320         jim_wide a;
5321         e = Jim_GetOpt_Wide(&goi, &a);
5322         if (e != JIM_OK)
5323                 return e;
5324         struct target *target = Jim_CmdPrivData(interp);
5325         if (!target->tap->enabled)
5326                 return jim_target_tap_disabled(interp);
5327
5328         e = target_wait_state(target, n->value, a);
5329         if (e != ERROR_OK) {
5330                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5331                 Jim_SetResultFormatted(goi.interp,
5332                                 "target: %s wait %s fails (%#s) %s",
5333                                 target_name(target), n->name,
5334                                 eObj, target_strerror_safe(e));
5335                 Jim_FreeNewObj(interp, eObj);
5336                 return JIM_ERR;
5337         }
5338         return JIM_OK;
5339 }
5340 /* List for human, Events defined for this target.
5341  * scripts/programs should use 'name cget -event NAME'
5342  */
5343 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5344 {
5345         struct command_context *cmd_ctx = current_command_context(interp);
5346         assert(cmd_ctx != NULL);
5347
5348         struct target *target = Jim_CmdPrivData(interp);
5349         struct target_event_action *teap = target->event_action;
5350         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5351                                    target->target_number,
5352                                    target_name(target));
5353         command_print(cmd_ctx, "%-25s | Body", "Event");
5354         command_print(cmd_ctx, "------------------------- | "
5355                         "----------------------------------------");
5356         while (teap) {
5357                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5358                 command_print(cmd_ctx, "%-25s | %s",
5359                                 opt->name, Jim_GetString(teap->body, NULL));
5360                 teap = teap->next;
5361         }
5362         command_print(cmd_ctx, "***END***");
5363         return JIM_OK;
5364 }
5365 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5366 {
5367         if (argc != 1) {
5368                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5369                 return JIM_ERR;
5370         }
5371         struct target *target = Jim_CmdPrivData(interp);
5372         Jim_SetResultString(interp, target_state_name(target), -1);
5373         return JIM_OK;
5374 }
5375 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5376 {
5377         Jim_GetOptInfo goi;
5378         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5379         if (goi.argc != 1) {
5380                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5381                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5382                 return JIM_ERR;
5383         }
5384         Jim_Nvp *n;
5385         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5386         if (e != JIM_OK) {
5387                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5388                 return e;
5389         }
5390         struct target *target = Jim_CmdPrivData(interp);
5391         target_handle_event(target, n->value);
5392         return JIM_OK;
5393 }
5394
5395 static const struct command_registration target_instance_command_handlers[] = {
5396         {
5397                 .name = "configure",
5398                 .mode = COMMAND_CONFIG,
5399                 .jim_handler = jim_target_configure,
5400                 .help  = "configure a new target for use",
5401                 .usage = "[target_attribute ...]",
5402         },
5403         {
5404                 .name = "cget",
5405                 .mode = COMMAND_ANY,
5406                 .jim_handler = jim_target_configure,
5407                 .help  = "returns the specified target attribute",
5408                 .usage = "target_attribute",
5409         },
5410         {
5411                 .name = "mww",
5412                 .mode = COMMAND_EXEC,
5413                 .jim_handler = jim_target_mw,
5414                 .help = "Write 32-bit word(s) to target memory",
5415                 .usage = "address data [count]",
5416         },
5417         {
5418                 .name = "mwh",
5419                 .mode = COMMAND_EXEC,
5420                 .jim_handler = jim_target_mw,
5421                 .help = "Write 16-bit half-word(s) to target memory",
5422                 .usage = "address data [count]",
5423         },
5424         {
5425                 .name = "mwb",
5426                 .mode = COMMAND_EXEC,
5427                 .jim_handler = jim_target_mw,
5428                 .help = "Write byte(s) to target memory",
5429                 .usage = "address data [count]",
5430         },
5431         {
5432                 .name = "mdw",
5433                 .mode = COMMAND_EXEC,
5434                 .jim_handler = jim_target_md,
5435                 .help = "Display target memory as 32-bit words",
5436                 .usage = "address [count]",
5437         },
5438         {
5439                 .name = "mdh",
5440                 .mode = COMMAND_EXEC,
5441                 .jim_handler = jim_target_md,
5442                 .help = "Display target memory as 16-bit half-words",
5443                 .usage = "address [count]",
5444         },
5445         {
5446                 .name = "mdb",
5447                 .mode = COMMAND_EXEC,
5448                 .jim_handler = jim_target_md,
5449                 .help = "Display target memory as 8-bit bytes",
5450                 .usage = "address [count]",
5451         },
5452         {
5453                 .name = "array2mem",
5454                 .mode = COMMAND_EXEC,
5455                 .jim_handler = jim_target_array2mem,
5456                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5457                         "to target memory",
5458                 .usage = "arrayname bitwidth address count",
5459         },
5460         {
5461                 .name = "mem2array",
5462                 .mode = COMMAND_EXEC,
5463                 .jim_handler = jim_target_mem2array,
5464                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5465                         "from target memory",
5466                 .usage = "arrayname bitwidth address count",
5467         },
5468         {
5469                 .name = "eventlist",
5470                 .mode = COMMAND_EXEC,
5471                 .jim_handler = jim_target_event_list,
5472                 .help = "displays a table of events defined for this target",
5473         },
5474         {
5475                 .name = "curstate",
5476                 .mode = COMMAND_EXEC,
5477                 .jim_handler = jim_target_current_state,
5478                 .help = "displays the current state of this target",
5479         },
5480         {
5481                 .name = "arp_examine",
5482                 .mode = COMMAND_EXEC,
5483                 .jim_handler = jim_target_examine,
5484                 .help = "used internally for reset processing",
5485                 .usage = "['allow-defer']",
5486         },
5487         {
5488                 .name = "was_examined",
5489                 .mode = COMMAND_EXEC,
5490                 .jim_handler = jim_target_was_examined,
5491                 .help = "used internally for reset processing",
5492         },
5493         {
5494                 .name = "examine_deferred",
5495                 .mode = COMMAND_EXEC,
5496                 .jim_handler = jim_target_examine_deferred,
5497                 .help = "used internally for reset processing",
5498         },
5499         {
5500                 .name = "arp_halt_gdb",
5501                 .mode = COMMAND_EXEC,
5502                 .jim_handler = jim_target_halt_gdb,
5503                 .help = "used internally for reset processing to halt GDB",
5504         },
5505         {
5506                 .name = "arp_poll",
5507                 .mode = COMMAND_EXEC,
5508                 .jim_handler = jim_target_poll,
5509                 .help = "used internally for reset processing",
5510         },
5511         {
5512                 .name = "arp_reset",
5513                 .mode = COMMAND_EXEC,
5514                 .jim_handler = jim_target_reset,
5515                 .help = "used internally for reset processing",
5516         },
5517         {
5518                 .name = "arp_halt",
5519                 .mode = COMMAND_EXEC,
5520                 .jim_handler = jim_target_halt,
5521                 .help = "used internally for reset processing",
5522         },
5523         {
5524                 .name = "arp_waitstate",
5525                 .mode = COMMAND_EXEC,
5526                 .jim_handler = jim_target_wait_state,
5527                 .help = "used internally for reset processing",
5528         },
5529         {
5530                 .name = "invoke-event",
5531                 .mode = COMMAND_EXEC,
5532                 .jim_handler = jim_target_invoke_event,
5533                 .help = "invoke handler for specified event",
5534                 .usage = "event_name",
5535         },
5536         COMMAND_REGISTRATION_DONE
5537 };
5538
5539 static int target_create(Jim_GetOptInfo *goi)
5540 {
5541         Jim_Obj *new_cmd;
5542         Jim_Cmd *cmd;
5543         const char *cp;
5544         int e;
5545         int x;
5546         struct target *target;
5547         struct command_context *cmd_ctx;
5548
5549         cmd_ctx = current_command_context(goi->interp);
5550         assert(cmd_ctx != NULL);
5551
5552         if (goi->argc < 3) {
5553                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5554                 return JIM_ERR;
5555         }
5556
5557         /* COMMAND */
5558         Jim_GetOpt_Obj(goi, &new_cmd);
5559         /* does this command exist? */
5560         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5561         if (cmd) {
5562                 cp = Jim_GetString(new_cmd, NULL);
5563                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5564                 return JIM_ERR;
5565         }
5566
5567         /* TYPE */
5568         e = Jim_GetOpt_String(goi, &cp, NULL);
5569         if (e != JIM_OK)
5570                 return e;
5571         struct transport *tr = get_current_transport();
5572         if (tr->override_target) {
5573                 e = tr->override_target(&cp);
5574                 if (e != ERROR_OK) {
5575                         LOG_ERROR("The selected transport doesn't support this target");
5576                         return JIM_ERR;
5577                 }
5578                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5579         }
5580         /* now does target type exist */
5581         for (x = 0 ; target_types[x] ; x++) {
5582                 if (0 == strcmp(cp, target_types[x]->name)) {
5583                         /* found */
5584                         break;
5585                 }
5586
5587                 /* check for deprecated name */
5588                 if (target_types[x]->deprecated_name) {
5589                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5590                                 /* found */
5591                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5592                                 break;
5593                         }
5594                 }
5595         }
5596         if (target_types[x] == NULL) {
5597                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5598                 for (x = 0 ; target_types[x] ; x++) {
5599                         if (target_types[x + 1]) {
5600                                 Jim_AppendStrings(goi->interp,
5601                                                                    Jim_GetResult(goi->interp),
5602                                                                    target_types[x]->name,
5603                                                                    ", ", NULL);
5604                         } else {
5605                                 Jim_AppendStrings(goi->interp,
5606                                                                    Jim_GetResult(goi->interp),
5607                                                                    " or ",
5608                                                                    target_types[x]->name, NULL);
5609                         }
5610                 }
5611                 return JIM_ERR;
5612         }
5613
5614         /* Create it */
5615         target = calloc(1, sizeof(struct target));
5616         /* set target number */
5617         target->target_number = new_target_number();
5618         cmd_ctx->current_target = target;
5619
5620         /* allocate memory for each unique target type */
5621         target->type = calloc(1, sizeof(struct target_type));
5622
5623         memcpy(target->type, target_types[x], sizeof(struct target_type));
5624
5625         /* will be set by "-endian" */
5626         target->endianness = TARGET_ENDIAN_UNKNOWN;
5627
5628         /* default to first core, override with -coreid */
5629         target->coreid = 0;
5630
5631         target->working_area        = 0x0;
5632         target->working_area_size   = 0x0;
5633         target->working_areas       = NULL;
5634         target->backup_working_area = 0;
5635
5636         target->state               = TARGET_UNKNOWN;
5637         target->debug_reason        = DBG_REASON_UNDEFINED;
5638         target->reg_cache           = NULL;
5639         target->breakpoints         = NULL;
5640         target->watchpoints         = NULL;
5641         target->next                = NULL;
5642         target->arch_info           = NULL;
5643
5644         target->verbose_halt_msg        = true;
5645
5646         target->halt_issued                     = false;
5647
5648         /* initialize trace information */
5649         target->trace_info = calloc(1, sizeof(struct trace));
5650
5651         target->dbgmsg          = NULL;
5652         target->dbg_msg_enabled = 0;
5653
5654         target->endianness = TARGET_ENDIAN_UNKNOWN;
5655
5656         target->rtos = NULL;
5657         target->rtos_auto_detect = false;
5658
5659         target->gdb_port_override = NULL;
5660
5661         /* Do the rest as "configure" options */
5662         goi->isconfigure = 1;
5663         e = target_configure(goi, target);
5664
5665         if (e == JIM_OK) {
5666                 if (target->has_dap) {
5667                         if (!target->dap_configured) {
5668                                 Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5669                                 e = JIM_ERR;
5670                         }
5671                 } else {
5672                         if (!target->tap_configured) {
5673                                 Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5674                                 e = JIM_ERR;
5675                         }
5676                 }
5677                 /* tap must be set after target was configured */
5678                 if (target->tap == NULL)
5679                         e = JIM_ERR;
5680         }
5681
5682         if (e != JIM_OK) {
5683                 free(target->gdb_port_override);
5684                 free(target->type);
5685                 free(target);
5686                 return e;
5687         }
5688
5689         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5690                 /* default endian to little if not specified */
5691                 target->endianness = TARGET_LITTLE_ENDIAN;
5692         }
5693
5694         cp = Jim_GetString(new_cmd, NULL);
5695         target->cmd_name = strdup(cp);
5696
5697         if (target->type->target_create) {
5698                 e = (*(target->type->target_create))(target, goi->interp);
5699                 if (e != ERROR_OK) {
5700                         LOG_DEBUG("target_create failed");
5701                         free(target->gdb_port_override);
5702                         free(target->type);
5703                         free(target->cmd_name);
5704                         free(target);
5705                         return JIM_ERR;
5706                 }
5707         }
5708
5709         /* create the target specific commands */
5710         if (target->type->commands) {
5711                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5712                 if (ERROR_OK != e)
5713                         LOG_ERROR("unable to register '%s' commands", cp);
5714         }
5715
5716         /* append to end of list */
5717         {
5718                 struct target **tpp;
5719                 tpp = &(all_targets);
5720                 while (*tpp)
5721                         tpp = &((*tpp)->next);
5722                 *tpp = target;
5723         }
5724
5725         /* now - create the new target name command */
5726         const struct command_registration target_subcommands[] = {
5727                 {
5728                         .chain = target_instance_command_handlers,
5729                 },
5730                 {
5731                         .chain = target->type->commands,
5732                 },
5733                 COMMAND_REGISTRATION_DONE
5734         };
5735         const struct command_registration target_commands[] = {
5736                 {
5737                         .name = cp,
5738                         .mode = COMMAND_ANY,
5739                         .help = "target command group",
5740                         .usage = "",
5741                         .chain = target_subcommands,
5742                 },
5743                 COMMAND_REGISTRATION_DONE
5744         };
5745         e = register_commands(cmd_ctx, NULL, target_commands);
5746         if (ERROR_OK != e)
5747                 return JIM_ERR;
5748
5749         struct command *c = command_find_in_context(cmd_ctx, cp);
5750         assert(c);
5751         command_set_handler_data(c, target);
5752
5753         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5754 }
5755
5756 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5757 {
5758         if (argc != 1) {
5759                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5760                 return JIM_ERR;
5761         }
5762         struct command_context *cmd_ctx = current_command_context(interp);
5763         assert(cmd_ctx != NULL);
5764
5765         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5766         return JIM_OK;
5767 }
5768
5769 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5770 {
5771         if (argc != 1) {
5772                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5773                 return JIM_ERR;
5774         }
5775         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5776         for (unsigned x = 0; NULL != target_types[x]; x++) {
5777                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5778                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5779         }
5780         return JIM_OK;
5781 }
5782
5783 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5784 {
5785         if (argc != 1) {
5786                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5787                 return JIM_ERR;
5788         }
5789         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5790         struct target *target = all_targets;
5791         while (target) {
5792                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5793                         Jim_NewStringObj(interp, target_name(target), -1));
5794                 target = target->next;
5795         }
5796         return JIM_OK;
5797 }
5798
5799 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5800 {
5801         int i;
5802         const char *targetname;
5803         int retval, len;
5804         struct target *target = (struct target *) NULL;
5805         struct target_list *head, *curr, *new;
5806         curr = (struct target_list *) NULL;
5807         head = (struct target_list *) NULL;
5808
5809         retval = 0;
5810         LOG_DEBUG("%d", argc);
5811         /* argv[1] = target to associate in smp
5812          * argv[2] = target to assoicate in smp
5813          * argv[3] ...
5814          */
5815
5816         for (i = 1; i < argc; i++) {
5817
5818                 targetname = Jim_GetString(argv[i], &len);
5819                 target = get_target(targetname);
5820                 LOG_DEBUG("%s ", targetname);
5821                 if (target) {
5822                         new = malloc(sizeof(struct target_list));
5823                         new->target = target;
5824                         new->next = (struct target_list *)NULL;
5825                         if (head == (struct target_list *)NULL) {
5826                                 head = new;
5827                                 curr = head;
5828                         } else {
5829                                 curr->next = new;
5830                                 curr = new;
5831                         }
5832                 }
5833         }
5834         /*  now parse the list of cpu and put the target in smp mode*/
5835         curr = head;
5836
5837         while (curr != (struct target_list *)NULL) {
5838                 target = curr->target;
5839                 target->smp = 1;
5840                 target->head = head;
5841                 curr = curr->next;
5842         }
5843
5844         if (target && target->rtos)
5845                 retval = rtos_smp_init(head->target);
5846
5847         return retval;
5848 }
5849
5850
5851 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5852 {
5853         Jim_GetOptInfo goi;
5854         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5855         if (goi.argc < 3) {
5856                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5857                         "<name> <target_type> [<target_options> ...]");
5858                 return JIM_ERR;
5859         }
5860         return target_create(&goi);
5861 }
5862
5863 static const struct command_registration target_subcommand_handlers[] = {
5864         {
5865                 .name = "init",
5866                 .mode = COMMAND_CONFIG,
5867                 .handler = handle_target_init_command,
5868                 .help = "initialize targets",
5869         },
5870         {
5871                 .name = "create",
5872                 /* REVISIT this should be COMMAND_CONFIG ... */
5873                 .mode = COMMAND_ANY,
5874                 .jim_handler = jim_target_create,
5875                 .usage = "name type '-chain-position' name [options ...]",
5876                 .help = "Creates and selects a new target",
5877         },
5878         {
5879                 .name = "current",
5880                 .mode = COMMAND_ANY,
5881                 .jim_handler = jim_target_current,
5882                 .help = "Returns the currently selected target",
5883         },
5884         {
5885                 .name = "types",
5886                 .mode = COMMAND_ANY,
5887                 .jim_handler = jim_target_types,
5888                 .help = "Returns the available target types as "
5889                                 "a list of strings",
5890         },
5891         {
5892                 .name = "names",
5893                 .mode = COMMAND_ANY,
5894                 .jim_handler = jim_target_names,
5895                 .help = "Returns the names of all targets as a list of strings",
5896         },
5897         {
5898                 .name = "smp",
5899                 .mode = COMMAND_ANY,
5900                 .jim_handler = jim_target_smp,
5901                 .usage = "targetname1 targetname2 ...",
5902                 .help = "gather several target in a smp list"
5903         },
5904
5905         COMMAND_REGISTRATION_DONE
5906 };
5907
5908 struct FastLoad {
5909         target_addr_t address;
5910         uint8_t *data;
5911         int length;
5912
5913 };
5914
5915 static int fastload_num;
5916 static struct FastLoad *fastload;
5917
5918 static void free_fastload(void)
5919 {
5920         if (fastload != NULL) {
5921                 int i;
5922                 for (i = 0; i < fastload_num; i++) {
5923                         if (fastload[i].data)
5924                                 free(fastload[i].data);
5925                 }
5926                 free(fastload);
5927                 fastload = NULL;
5928         }
5929 }
5930
5931 COMMAND_HANDLER(handle_fast_load_image_command)
5932 {
5933         uint8_t *buffer;
5934         size_t buf_cnt;
5935         uint32_t image_size;
5936         target_addr_t min_address = 0;
5937         target_addr_t max_address = -1;
5938         int i;
5939
5940         struct image image;
5941
5942         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5943                         &image, &min_address, &max_address);
5944         if (ERROR_OK != retval)
5945                 return retval;
5946
5947         struct duration bench;
5948         duration_start(&bench);
5949
5950         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5951         if (retval != ERROR_OK)
5952                 return retval;
5953
5954         image_size = 0x0;
5955         retval = ERROR_OK;
5956         fastload_num = image.num_sections;
5957         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5958         if (fastload == NULL) {
5959                 command_print(CMD_CTX, "out of memory");
5960                 image_close(&image);
5961                 return ERROR_FAIL;
5962         }
5963         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5964         for (i = 0; i < image.num_sections; i++) {
5965                 buffer = malloc(image.sections[i].size);
5966                 if (buffer == NULL) {
5967                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5968                                                   (int)(image.sections[i].size));
5969                         retval = ERROR_FAIL;
5970                         break;
5971                 }
5972
5973                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5974                 if (retval != ERROR_OK) {
5975                         free(buffer);
5976                         break;
5977                 }
5978
5979                 uint32_t offset = 0;
5980                 uint32_t length = buf_cnt;
5981
5982                 /* DANGER!!! beware of unsigned comparision here!!! */
5983
5984                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5985                                 (image.sections[i].base_address < max_address)) {
5986                         if (image.sections[i].base_address < min_address) {
5987                                 /* clip addresses below */
5988                                 offset += min_address-image.sections[i].base_address;
5989                                 length -= offset;
5990                         }
5991
5992                         if (image.sections[i].base_address + buf_cnt > max_address)
5993                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5994
5995                         fastload[i].address = image.sections[i].base_address + offset;
5996                         fastload[i].data = malloc(length);
5997                         if (fastload[i].data == NULL) {
5998                                 free(buffer);
5999                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
6000                                                           length);
6001                                 retval = ERROR_FAIL;
6002                                 break;
6003                         }
6004                         memcpy(fastload[i].data, buffer + offset, length);
6005                         fastload[i].length = length;
6006
6007                         image_size += length;
6008                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
6009                                                   (unsigned int)length,
6010                                                   ((unsigned int)(image.sections[i].base_address + offset)));
6011                 }
6012
6013                 free(buffer);
6014         }
6015
6016         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
6017                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
6018                                 "in %fs (%0.3f KiB/s)", image_size,
6019                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
6020
6021                 command_print(CMD_CTX,
6022                                 "WARNING: image has not been loaded to target!"
6023                                 "You can issue a 'fast_load' to finish loading.");
6024         }
6025
6026         image_close(&image);
6027
6028         if (retval != ERROR_OK)
6029                 free_fastload();
6030
6031         return retval;
6032 }
6033
6034 COMMAND_HANDLER(handle_fast_load_command)
6035 {
6036         if (CMD_ARGC > 0)
6037                 return ERROR_COMMAND_SYNTAX_ERROR;
6038         if (fastload == NULL) {
6039                 LOG_ERROR("No image in memory");
6040                 return ERROR_FAIL;
6041         }
6042         int i;
6043         int64_t ms = timeval_ms();
6044         int size = 0;
6045         int retval = ERROR_OK;
6046         for (i = 0; i < fastload_num; i++) {
6047                 struct target *target = get_current_target(CMD_CTX);
6048                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
6049                                           (unsigned int)(fastload[i].address),
6050                                           (unsigned int)(fastload[i].length));
6051                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
6052                 if (retval != ERROR_OK)
6053                         break;
6054                 size += fastload[i].length;
6055         }
6056         if (retval == ERROR_OK) {
6057                 int64_t after = timeval_ms();
6058                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
6059         }
6060         return retval;
6061 }
6062
6063 static const struct command_registration target_command_handlers[] = {
6064         {
6065                 .name = "targets",
6066                 .handler = handle_targets_command,
6067                 .mode = COMMAND_ANY,
6068                 .help = "change current default target (one parameter) "
6069                         "or prints table of all targets (no parameters)",
6070                 .usage = "[target]",
6071         },
6072         {
6073                 .name = "target",
6074                 .mode = COMMAND_CONFIG,
6075                 .help = "configure target",
6076
6077                 .chain = target_subcommand_handlers,
6078         },
6079         COMMAND_REGISTRATION_DONE
6080 };
6081
6082 int target_register_commands(struct command_context *cmd_ctx)
6083 {
6084         return register_commands(cmd_ctx, NULL, target_command_handlers);
6085 }
6086
6087 static bool target_reset_nag = true;
6088
6089 bool get_target_reset_nag(void)
6090 {
6091         return target_reset_nag;
6092 }
6093
6094 COMMAND_HANDLER(handle_target_reset_nag)
6095 {
6096         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
6097                         &target_reset_nag, "Nag after each reset about options to improve "
6098                         "performance");
6099 }
6100
6101 COMMAND_HANDLER(handle_ps_command)
6102 {
6103         struct target *target = get_current_target(CMD_CTX);
6104         char *display;
6105         if (target->state != TARGET_HALTED) {
6106                 LOG_INFO("target not halted !!");
6107                 return ERROR_OK;
6108         }
6109
6110         if ((target->rtos) && (target->rtos->type)
6111                         && (target->rtos->type->ps_command)) {
6112                 display = target->rtos->type->ps_command(target);
6113                 command_print(CMD_CTX, "%s", display);
6114                 free(display);
6115                 return ERROR_OK;
6116         } else {
6117                 LOG_INFO("failed");
6118                 return ERROR_TARGET_FAILURE;
6119         }
6120 }
6121
6122 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
6123 {
6124         if (text != NULL)
6125                 command_print_sameline(cmd_ctx, "%s", text);
6126         for (int i = 0; i < size; i++)
6127                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
6128         command_print(cmd_ctx, " ");
6129 }
6130
6131 COMMAND_HANDLER(handle_test_mem_access_command)
6132 {
6133         struct target *target = get_current_target(CMD_CTX);
6134         uint32_t test_size;
6135         int retval = ERROR_OK;
6136
6137         if (target->state != TARGET_HALTED) {
6138                 LOG_INFO("target not halted !!");
6139                 return ERROR_FAIL;
6140         }
6141
6142         if (CMD_ARGC != 1)
6143                 return ERROR_COMMAND_SYNTAX_ERROR;
6144
6145         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6146
6147         /* Test reads */
6148         size_t num_bytes = test_size + 4;
6149
6150         struct working_area *wa = NULL;
6151         retval = target_alloc_working_area(target, num_bytes, &wa);
6152         if (retval != ERROR_OK) {
6153                 LOG_ERROR("Not enough working area");
6154                 return ERROR_FAIL;
6155         }
6156
6157         uint8_t *test_pattern = malloc(num_bytes);
6158
6159         for (size_t i = 0; i < num_bytes; i++)
6160                 test_pattern[i] = rand();
6161
6162         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6163         if (retval != ERROR_OK) {
6164                 LOG_ERROR("Test pattern write failed");
6165                 goto out;
6166         }
6167
6168         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6169                 for (int size = 1; size <= 4; size *= 2) {
6170                         for (int offset = 0; offset < 4; offset++) {
6171                                 uint32_t count = test_size / size;
6172                                 size_t host_bufsiz = (count + 2) * size + host_offset;
6173                                 uint8_t *read_ref = malloc(host_bufsiz);
6174                                 uint8_t *read_buf = malloc(host_bufsiz);
6175
6176                                 for (size_t i = 0; i < host_bufsiz; i++) {
6177                                         read_ref[i] = rand();
6178                                         read_buf[i] = read_ref[i];
6179                                 }
6180                                 command_print_sameline(CMD_CTX,
6181                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6182                                                 size, offset, host_offset ? "un" : "");
6183
6184                                 struct duration bench;
6185                                 duration_start(&bench);
6186
6187                                 retval = target_read_memory(target, wa->address + offset, size, count,
6188                                                 read_buf + size + host_offset);
6189
6190                                 duration_measure(&bench);
6191
6192                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6193                                         command_print(CMD_CTX, "Unsupported alignment");
6194                                         goto next;
6195                                 } else if (retval != ERROR_OK) {
6196                                         command_print(CMD_CTX, "Memory read failed");
6197                                         goto next;
6198                                 }
6199
6200                                 /* replay on host */
6201                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6202
6203                                 /* check result */
6204                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
6205                                 if (result == 0) {
6206                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6207                                                         duration_elapsed(&bench),
6208                                                         duration_kbps(&bench, count * size));
6209                                 } else {
6210                                         command_print(CMD_CTX, "Compare failed");
6211                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6212                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6213                                 }
6214 next:
6215                                 free(read_ref);
6216                                 free(read_buf);
6217                         }
6218                 }
6219         }
6220
6221 out:
6222         free(test_pattern);
6223
6224         if (wa != NULL)
6225                 target_free_working_area(target, wa);
6226
6227         /* Test writes */
6228         num_bytes = test_size + 4 + 4 + 4;
6229
6230         retval = target_alloc_working_area(target, num_bytes, &wa);
6231         if (retval != ERROR_OK) {
6232                 LOG_ERROR("Not enough working area");
6233                 return ERROR_FAIL;
6234         }
6235
6236         test_pattern = malloc(num_bytes);
6237
6238         for (size_t i = 0; i < num_bytes; i++)
6239                 test_pattern[i] = rand();
6240
6241         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6242                 for (int size = 1; size <= 4; size *= 2) {
6243                         for (int offset = 0; offset < 4; offset++) {
6244                                 uint32_t count = test_size / size;
6245                                 size_t host_bufsiz = count * size + host_offset;
6246                                 uint8_t *read_ref = malloc(num_bytes);
6247                                 uint8_t *read_buf = malloc(num_bytes);
6248                                 uint8_t *write_buf = malloc(host_bufsiz);
6249
6250                                 for (size_t i = 0; i < host_bufsiz; i++)
6251                                         write_buf[i] = rand();
6252                                 command_print_sameline(CMD_CTX,
6253                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6254                                                 size, offset, host_offset ? "un" : "");
6255
6256                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6257                                 if (retval != ERROR_OK) {
6258                                         command_print(CMD_CTX, "Test pattern write failed");
6259                                         goto nextw;
6260                                 }
6261
6262                                 /* replay on host */
6263                                 memcpy(read_ref, test_pattern, num_bytes);
6264                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6265
6266                                 struct duration bench;
6267                                 duration_start(&bench);
6268
6269                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
6270                                                 write_buf + host_offset);
6271
6272                                 duration_measure(&bench);
6273
6274                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6275                                         command_print(CMD_CTX, "Unsupported alignment");
6276                                         goto nextw;
6277                                 } else if (retval != ERROR_OK) {
6278                                         command_print(CMD_CTX, "Memory write failed");
6279                                         goto nextw;
6280                                 }
6281
6282                                 /* read back */
6283                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6284                                 if (retval != ERROR_OK) {
6285                                         command_print(CMD_CTX, "Test pattern write failed");
6286                                         goto nextw;
6287                                 }
6288
6289                                 /* check result */
6290                                 int result = memcmp(read_ref, read_buf, num_bytes);
6291                                 if (result == 0) {
6292                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6293                                                         duration_elapsed(&bench),
6294                                                         duration_kbps(&bench, count * size));
6295                                 } else {
6296                                         command_print(CMD_CTX, "Compare failed");
6297                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6298                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6299                                 }
6300 nextw:
6301                                 free(read_ref);
6302                                 free(read_buf);
6303                         }
6304                 }
6305         }
6306
6307         free(test_pattern);
6308
6309         if (wa != NULL)
6310                 target_free_working_area(target, wa);
6311         return retval;
6312 }
6313
6314 static const struct command_registration target_exec_command_handlers[] = {
6315         {
6316                 .name = "fast_load_image",
6317                 .handler = handle_fast_load_image_command,
6318                 .mode = COMMAND_ANY,
6319                 .help = "Load image into server memory for later use by "
6320                         "fast_load; primarily for profiling",
6321                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6322                         "[min_address [max_length]]",
6323         },
6324         {
6325                 .name = "fast_load",
6326                 .handler = handle_fast_load_command,
6327                 .mode = COMMAND_EXEC,
6328                 .help = "loads active fast load image to current target "
6329                         "- mainly for profiling purposes",
6330                 .usage = "",
6331         },
6332         {
6333                 .name = "profile",
6334                 .handler = handle_profile_command,
6335                 .mode = COMMAND_EXEC,
6336                 .usage = "seconds filename [start end]",
6337                 .help = "profiling samples the CPU PC",
6338         },
6339         /** @todo don't register virt2phys() unless target supports it */
6340         {
6341                 .name = "virt2phys",
6342                 .handler = handle_virt2phys_command,
6343                 .mode = COMMAND_ANY,
6344                 .help = "translate a virtual address into a physical address",
6345                 .usage = "virtual_address",
6346         },
6347         {
6348                 .name = "reg",
6349                 .handler = handle_reg_command,
6350                 .mode = COMMAND_EXEC,
6351                 .help = "display (reread from target with \"force\") or set a register; "
6352                         "with no arguments, displays all registers and their values",
6353                 .usage = "[(register_number|register_name) [(value|'force')]]",
6354         },
6355         {
6356                 .name = "poll",
6357                 .handler = handle_poll_command,
6358                 .mode = COMMAND_EXEC,
6359                 .help = "poll target state; or reconfigure background polling",
6360                 .usage = "['on'|'off']",
6361         },
6362         {
6363                 .name = "wait_halt",
6364                 .handler = handle_wait_halt_command,
6365                 .mode = COMMAND_EXEC,
6366                 .help = "wait up to the specified number of milliseconds "
6367                         "(default 5000) for a previously requested halt",
6368                 .usage = "[milliseconds]",
6369         },
6370         {
6371                 .name = "halt",
6372                 .handler = handle_halt_command,
6373                 .mode = COMMAND_EXEC,
6374                 .help = "request target to halt, then wait up to the specified"
6375                         "number of milliseconds (default 5000) for it to complete",
6376                 .usage = "[milliseconds]",
6377         },
6378         {
6379                 .name = "resume",
6380                 .handler = handle_resume_command,
6381                 .mode = COMMAND_EXEC,
6382                 .help = "resume target execution from current PC or address",
6383                 .usage = "[address]",
6384         },
6385         {
6386                 .name = "reset",
6387                 .handler = handle_reset_command,
6388                 .mode = COMMAND_EXEC,
6389                 .usage = "[run|halt|init]",
6390                 .help = "Reset all targets into the specified mode."
6391                         "Default reset mode is run, if not given.",
6392         },
6393         {
6394                 .name = "soft_reset_halt",
6395                 .handler = handle_soft_reset_halt_command,
6396                 .mode = COMMAND_EXEC,
6397                 .usage = "",
6398                 .help = "halt the target and do a soft reset",
6399         },
6400         {
6401                 .name = "step",
6402                 .handler = handle_step_command,
6403                 .mode = COMMAND_EXEC,
6404                 .help = "step one instruction from current PC or address",
6405                 .usage = "[address]",
6406         },
6407         {
6408                 .name = "mdd",
6409                 .handler = handle_md_command,
6410                 .mode = COMMAND_EXEC,
6411                 .help = "display memory words",
6412                 .usage = "['phys'] address [count]",
6413         },
6414         {
6415                 .name = "mdw",
6416                 .handler = handle_md_command,
6417                 .mode = COMMAND_EXEC,
6418                 .help = "display memory words",
6419                 .usage = "['phys'] address [count]",
6420         },
6421         {
6422                 .name = "mdh",
6423                 .handler = handle_md_command,
6424                 .mode = COMMAND_EXEC,
6425                 .help = "display memory half-words",
6426                 .usage = "['phys'] address [count]",
6427         },
6428         {
6429                 .name = "mdb",
6430                 .handler = handle_md_command,
6431                 .mode = COMMAND_EXEC,
6432                 .help = "display memory bytes",
6433                 .usage = "['phys'] address [count]",
6434         },
6435         {
6436                 .name = "mwd",
6437                 .handler = handle_mw_command,
6438                 .mode = COMMAND_EXEC,
6439                 .help = "write memory word",
6440                 .usage = "['phys'] address value [count]",
6441         },
6442         {
6443                 .name = "mww",
6444                 .handler = handle_mw_command,
6445                 .mode = COMMAND_EXEC,
6446                 .help = "write memory word",
6447                 .usage = "['phys'] address value [count]",
6448         },
6449         {
6450                 .name = "mwh",
6451                 .handler = handle_mw_command,
6452                 .mode = COMMAND_EXEC,
6453                 .help = "write memory half-word",
6454                 .usage = "['phys'] address value [count]",
6455         },
6456         {
6457                 .name = "mwb",
6458                 .handler = handle_mw_command,
6459                 .mode = COMMAND_EXEC,
6460                 .help = "write memory byte",
6461                 .usage = "['phys'] address value [count]",
6462         },
6463         {
6464                 .name = "bp",
6465                 .handler = handle_bp_command,
6466                 .mode = COMMAND_EXEC,
6467                 .help = "list or set hardware or software breakpoint",
6468                 .usage = "<address> [<asid>] <length> ['hw'|'hw_ctx']",
6469         },
6470         {
6471                 .name = "rbp",
6472                 .handler = handle_rbp_command,
6473                 .mode = COMMAND_EXEC,
6474                 .help = "remove breakpoint",
6475                 .usage = "address",
6476         },
6477         {
6478                 .name = "wp",
6479                 .handler = handle_wp_command,
6480                 .mode = COMMAND_EXEC,
6481                 .help = "list (no params) or create watchpoints",
6482                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6483         },
6484         {
6485                 .name = "rwp",
6486                 .handler = handle_rwp_command,
6487                 .mode = COMMAND_EXEC,
6488                 .help = "remove watchpoint",
6489                 .usage = "address",
6490         },
6491         {
6492                 .name = "load_image",
6493                 .handler = handle_load_image_command,
6494                 .mode = COMMAND_EXEC,
6495                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6496                         "[min_address] [max_length]",
6497         },
6498         {
6499                 .name = "dump_image",
6500                 .handler = handle_dump_image_command,
6501                 .mode = COMMAND_EXEC,
6502                 .usage = "filename address size",
6503         },
6504         {
6505                 .name = "verify_image_checksum",
6506                 .handler = handle_verify_image_checksum_command,
6507                 .mode = COMMAND_EXEC,
6508                 .usage = "filename [offset [type]]",
6509         },
6510         {
6511                 .name = "verify_image",
6512                 .handler = handle_verify_image_command,
6513                 .mode = COMMAND_EXEC,
6514                 .usage = "filename [offset [type]]",
6515         },
6516         {
6517                 .name = "test_image",
6518                 .handler = handle_test_image_command,
6519                 .mode = COMMAND_EXEC,
6520                 .usage = "filename [offset [type]]",
6521         },
6522         {
6523                 .name = "mem2array",
6524                 .mode = COMMAND_EXEC,
6525                 .jim_handler = jim_mem2array,
6526                 .help = "read 8/16/32 bit memory and return as a TCL array "
6527                         "for script processing",
6528                 .usage = "arrayname bitwidth address count",
6529         },
6530         {
6531                 .name = "array2mem",
6532                 .mode = COMMAND_EXEC,
6533                 .jim_handler = jim_array2mem,
6534                 .help = "convert a TCL array to memory locations "
6535                         "and write the 8/16/32 bit values",
6536                 .usage = "arrayname bitwidth address count",
6537         },
6538         {
6539                 .name = "reset_nag",
6540                 .handler = handle_target_reset_nag,
6541                 .mode = COMMAND_ANY,
6542                 .help = "Nag after each reset about options that could have been "
6543                                 "enabled to improve performance. ",
6544                 .usage = "['enable'|'disable']",
6545         },
6546         {
6547                 .name = "ps",
6548                 .handler = handle_ps_command,
6549                 .mode = COMMAND_EXEC,
6550                 .help = "list all tasks ",
6551                 .usage = " ",
6552         },
6553         {
6554                 .name = "test_mem_access",
6555                 .handler = handle_test_mem_access_command,
6556                 .mode = COMMAND_EXEC,
6557                 .help = "Test the target's memory access functions",
6558                 .usage = "size",
6559         },
6560
6561         COMMAND_REGISTRATION_DONE
6562 };
6563 static int target_register_user_commands(struct command_context *cmd_ctx)
6564 {
6565         int retval = ERROR_OK;
6566         retval = target_request_register_commands(cmd_ctx);
6567         if (retval != ERROR_OK)
6568                 return retval;
6569
6570         retval = trace_register_commands(cmd_ctx);
6571         if (retval != ERROR_OK)
6572                 return retval;
6573
6574
6575         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6576 }