]> git.sur5r.net Git - openocd/blob - src/target/target.c
feddc1c0fe7b726edffc85ba52b510fa4b7e245e
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52
53 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56
57 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60
61 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
79
80 /* targets
81  */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 enum daemon_startup_mode startup_mode = DAEMON_ATTACH;
135
136 static int target_continous_poll = 1;
137
138 /* read a u32 from a buffer in target memory endianness */
139 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
140 {
141         if (target->endianness == TARGET_LITTLE_ENDIAN)
142                 return le_to_h_u32(buffer);
143         else
144                 return be_to_h_u32(buffer);
145 }
146
147 /* read a u16 from a buffer in target memory endianness */
148 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
149 {
150         if (target->endianness == TARGET_LITTLE_ENDIAN)
151                 return le_to_h_u16(buffer);
152         else
153                 return be_to_h_u16(buffer);
154 }
155
156 /* write a u32 to a buffer in target memory endianness */
157 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
158 {
159         if (target->endianness == TARGET_LITTLE_ENDIAN)
160                 h_u32_to_le(buffer, value);
161         else
162                 h_u32_to_be(buffer, value);
163 }
164
165 /* write a u16 to a buffer in target memory endianness */
166 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
167 {
168         if (target->endianness == TARGET_LITTLE_ENDIAN)
169                 h_u16_to_le(buffer, value);
170         else
171                 h_u16_to_be(buffer, value);
172 }
173
174 /* returns a pointer to the n-th configured target */
175 target_t* get_target_by_num(int num)
176 {
177         target_t *target = targets;
178         int i = 0;
179
180         while (target)
181         {
182                 if (num == i)
183                         return target;
184                 target = target->next;
185                 i++;
186         }
187
188         return NULL;
189 }
190
191 int get_num_by_target(target_t *query_target)
192 {
193         target_t *target = targets;
194         int i = 0;      
195         
196         while (target)
197         {
198                 if (target == query_target)
199                         return i;
200                 target = target->next;
201                 i++;
202         }
203         
204         return -1;
205 }
206
207 target_t* get_current_target(command_context_t *cmd_ctx)
208 {
209         target_t *target = get_target_by_num(cmd_ctx->current_target);
210         
211         if (target == NULL)
212         {
213                 ERROR("BUG: current_target out of bounds");
214                 exit(-1);
215         }
216         
217         return target;
218 }
219
220 /* Process target initialization, when target entered debug out of reset
221  * the handler is unregistered at the end of this function, so it's only called once
222  */
223 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
224 {
225         FILE *script;
226         struct command_context_s *cmd_ctx = priv;
227         
228         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
229         {
230                 target_unregister_event_callback(target_init_handler, priv);
231
232                 script = open_file_from_path(target->reset_script, "r");
233                 if (!script)
234                 {
235                         ERROR("couldn't open script file %s", target->reset_script);
236                                 return ERROR_OK;
237                 }
238
239                 INFO("executing reset script '%s'", target->reset_script);
240                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
241                 fclose(script);
242
243                 jtag_execute_queue();
244         }
245         
246         return ERROR_OK;
247 }
248
249 int target_run_and_halt_handler(void *priv)
250 {
251         target_t *target = priv;
252         
253         target->type->halt(target);
254         
255         return ERROR_OK;
256 }
257
258 int target_process_reset(struct command_context_s *cmd_ctx)
259 {
260         int retval = ERROR_OK;
261         target_t *target;
262         struct timeval timeout, now;
263         
264         /* prepare reset_halt where necessary */
265         target = targets;
266         while (target)
267         {
268                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
269                 {
270                         switch (target->reset_mode)
271                         {
272                                 case RESET_HALT:
273                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
274                                         target->reset_mode = RESET_RUN_AND_HALT;
275                                         break;
276                                 case RESET_INIT:
277                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
278                                         target->reset_mode = RESET_RUN_AND_INIT;
279                                         break;
280                                 default:
281                                         break;
282                         } 
283                 }
284                 switch (target->reset_mode)
285                 {
286                         case RESET_HALT:
287                         case RESET_INIT:
288                                 target->type->prepare_reset_halt(target);
289                                 break;
290                         default:
291                                 break;
292                 }
293                 target = target->next;
294         }
295         
296         target = targets;
297         while (target)
298         {
299                 target->type->assert_reset(target);
300                 target = target->next;
301         }
302         jtag_execute_queue();
303         
304         /* request target halt if necessary, and schedule further action */
305         target = targets;
306         while (target)
307         {
308                 switch (target->reset_mode)
309                 {
310                         case RESET_RUN:
311                                 /* nothing to do if target just wants to be run */
312                                 break;
313                         case RESET_RUN_AND_HALT:
314                                 /* schedule halt */
315                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
316                                 break;
317                         case RESET_RUN_AND_INIT:
318                                 /* schedule halt */
319                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
320                                 target_register_event_callback(target_init_handler, cmd_ctx);
321                                 break;
322                         case RESET_HALT:
323                                 target->type->halt(target);
324                                 break;
325                         case RESET_INIT:
326                                 target->type->halt(target);
327                                 target_register_event_callback(target_init_handler, cmd_ctx);
328                                 break;
329                         default:
330                                 ERROR("BUG: unknown target->reset_mode");
331                 }
332                 target = target->next;
333         }
334         
335         target = targets;
336         while (target)
337         {
338                 target->type->deassert_reset(target);
339                 target = target->next;
340         }
341         jtag_execute_queue();
342
343         /* Wait for reset to complete, maximum 5 seconds. */    
344         gettimeofday(&timeout, NULL);
345         timeval_add_time(&timeout, 5, 0);
346         for(;;)
347         {
348                 gettimeofday(&now, NULL);
349                 
350                 target_call_timer_callbacks();
351                 
352                 target = targets;
353                 while (target)
354                 {
355                         target->type->poll(target);
356                         if ((target->reset_mode == RESET_RUN_AND_INIT) || (target->reset_mode == RESET_RUN_AND_HALT))
357                         {
358                                 if (target->state != TARGET_HALTED)
359                                 {
360                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
361                                         {
362                                                 command_print(cmd_ctx, "Timed out waiting for reset");
363                                                 goto done;
364                                         }
365                                         usleep(100*1000); /* Do not eat all cpu */
366                                         goto again;
367                                 }
368                         }
369                         target = target->next;
370                 }
371                 /* All targets we're waiting for are halted */
372                 break;
373                 
374                 again:;
375         }
376         done:
377         
378         
379         /* We want any events to be processed before the prompt */
380         target_call_timer_callbacks();
381         
382         return retval;
383 }
384
385 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
386 {
387         *physical = virtual;
388         return ERROR_OK;
389 }
390
391 static int default_mmu(struct target_s *target, int *enabled)
392 {
393         *enabled = 0;
394         return ERROR_OK;
395 }
396
397 int target_init(struct command_context_s *cmd_ctx)
398 {
399         target_t *target = targets;
400         
401         while (target)
402         {
403                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
404                 {
405                         ERROR("target '%s' init failed", target->type->name);
406                         exit(-1);
407                 }
408                 
409                 /* Set up default functions if none are provided by target */
410                 if (target->type->virt2phys == NULL)
411                 {
412                         target->type->virt2phys = default_virt2phys;
413                 }
414                 if (target->type->mmu == NULL)
415                 {
416                         target->type->mmu = default_mmu;
417                 }
418                 target = target->next;
419         }
420         
421         if (targets)
422         {
423                 target_register_user_commands(cmd_ctx);
424                 target_register_timer_callback(handle_target, 100, 1, NULL);
425         }
426                 
427         return ERROR_OK;
428 }
429
430 int target_init_reset(struct command_context_s *cmd_ctx)
431 {
432         if (startup_mode == DAEMON_RESET)
433                 target_process_reset(cmd_ctx);
434         
435         return ERROR_OK;
436 }
437
438 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
439 {
440         target_event_callback_t **callbacks_p = &target_event_callbacks;
441         
442         if (callback == NULL)
443         {
444                 return ERROR_INVALID_ARGUMENTS;
445         }
446         
447         if (*callbacks_p)
448         {
449                 while ((*callbacks_p)->next)
450                         callbacks_p = &((*callbacks_p)->next);
451                 callbacks_p = &((*callbacks_p)->next);
452         }
453         
454         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
455         (*callbacks_p)->callback = callback;
456         (*callbacks_p)->priv = priv;
457         (*callbacks_p)->next = NULL;
458         
459         return ERROR_OK;
460 }
461
462 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
463 {
464         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
465         struct timeval now;
466         
467         if (callback == NULL)
468         {
469                 return ERROR_INVALID_ARGUMENTS;
470         }
471         
472         if (*callbacks_p)
473         {
474                 while ((*callbacks_p)->next)
475                         callbacks_p = &((*callbacks_p)->next);
476                 callbacks_p = &((*callbacks_p)->next);
477         }
478         
479         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
480         (*callbacks_p)->callback = callback;
481         (*callbacks_p)->periodic = periodic;
482         (*callbacks_p)->time_ms = time_ms;
483         
484         gettimeofday(&now, NULL);
485         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
486         time_ms -= (time_ms % 1000);
487         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
488         if ((*callbacks_p)->when.tv_usec > 1000000)
489         {
490                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
491                 (*callbacks_p)->when.tv_sec += 1;
492         }
493         
494         (*callbacks_p)->priv = priv;
495         (*callbacks_p)->next = NULL;
496         
497         return ERROR_OK;
498 }
499
500 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
501 {
502         target_event_callback_t **p = &target_event_callbacks;
503         target_event_callback_t *c = target_event_callbacks;
504         
505         if (callback == NULL)
506         {
507                 return ERROR_INVALID_ARGUMENTS;
508         }
509                 
510         while (c)
511         {
512                 target_event_callback_t *next = c->next;
513                 if ((c->callback == callback) && (c->priv == priv))
514                 {
515                         *p = next;
516                         free(c);
517                         return ERROR_OK;
518                 }
519                 else
520                         p = &(c->next);
521                 c = next;
522         }
523         
524         return ERROR_OK;
525 }
526
527 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
528 {
529         target_timer_callback_t **p = &target_timer_callbacks;
530         target_timer_callback_t *c = target_timer_callbacks;
531         
532         if (callback == NULL)
533         {
534                 return ERROR_INVALID_ARGUMENTS;
535         }
536                 
537         while (c)
538         {
539                 target_timer_callback_t *next = c->next;
540                 if ((c->callback == callback) && (c->priv == priv))
541                 {
542                         *p = next;
543                         free(c);
544                         return ERROR_OK;
545                 }
546                 else
547                         p = &(c->next);
548                 c = next;
549         }
550         
551         return ERROR_OK;
552 }
553
554 int target_call_event_callbacks(target_t *target, enum target_event event)
555 {
556         target_event_callback_t *callback = target_event_callbacks;
557         target_event_callback_t *next_callback;
558         
559         DEBUG("target event %i", event);
560         
561         while (callback)
562         {
563                 next_callback = callback->next;
564                 callback->callback(target, event, callback->priv);
565                 callback = next_callback;
566         }
567         
568         return ERROR_OK;
569 }
570
571 int target_call_timer_callbacks()
572 {
573         target_timer_callback_t *callback = target_timer_callbacks;
574         target_timer_callback_t *next_callback;
575         struct timeval now;
576
577         gettimeofday(&now, NULL);
578         
579         while (callback)
580         {
581                 next_callback = callback->next;
582                 
583                 if (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
584                         || (now.tv_sec > callback->when.tv_sec))
585                 {
586                         callback->callback(callback->priv);
587                         if (callback->periodic)
588                         {
589                                 int time_ms = callback->time_ms;
590                                 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
591                                 time_ms -= (time_ms % 1000);
592                                 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
593                                 if (callback->when.tv_usec > 1000000)
594                                 {
595                                         callback->when.tv_usec = callback->when.tv_usec - 1000000;
596                                         callback->when.tv_sec += 1;
597                                 }
598                         }
599                         else
600                                 target_unregister_timer_callback(callback->callback, callback->priv);
601                 }
602                         
603                 callback = next_callback;
604         }
605         
606         return ERROR_OK;
607 }
608
609 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
610 {
611         working_area_t *c = target->working_areas;
612         working_area_t *new_wa = NULL;
613         
614         /* Reevaluate working area address based on MMU state*/
615         if (target->working_areas == NULL)
616         {
617                 int retval;
618                 int enabled;
619                 retval = target->type->mmu(target, &enabled);
620                 if (retval != ERROR_OK)
621                 {
622                         return retval;
623                 }
624                 if (enabled)
625                 {
626                         target->working_area = target->working_area_virt;
627                 }
628                 else
629                 {
630                         target->working_area = target->working_area_phys;
631                 }
632         }
633         
634         /* only allocate multiples of 4 byte */
635         if (size % 4)
636         {
637                 ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
638                 size = CEIL(size, 4);
639         }
640         
641         /* see if there's already a matching working area */
642         while (c)
643         {
644                 if ((c->free) && (c->size == size))
645                 {
646                         new_wa = c;
647                         break;
648                 }
649                 c = c->next;
650         }
651         
652         /* if not, allocate a new one */
653         if (!new_wa)
654         {
655                 working_area_t **p = &target->working_areas;
656                 u32 first_free = target->working_area;
657                 u32 free_size = target->working_area_size;
658                 
659                 DEBUG("allocating new working area");
660                 
661                 c = target->working_areas;
662                 while (c)
663                 {
664                         first_free += c->size;
665                         free_size -= c->size;
666                         p = &c->next;
667                         c = c->next;
668                 }
669                 
670                 if (free_size < size)
671                 {
672                         WARNING("not enough working area available(requested %d, free %d)", size, free_size);
673                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
674                 }
675                 
676                 new_wa = malloc(sizeof(working_area_t));
677                 new_wa->next = NULL;
678                 new_wa->size = size;
679                 new_wa->address = first_free;
680                 
681                 if (target->backup_working_area)
682                 {
683                         new_wa->backup = malloc(new_wa->size);
684                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
685                 }
686                 else
687                 {
688                         new_wa->backup = NULL;
689                 }
690                 
691                 /* put new entry in list */
692                 *p = new_wa;
693         }
694         
695         /* mark as used, and return the new (reused) area */
696         new_wa->free = 0;
697         *area = new_wa;
698         
699         /* user pointer */
700         new_wa->user = area;
701         
702         return ERROR_OK;
703 }
704
705 int target_free_working_area(struct target_s *target, working_area_t *area)
706 {
707         if (area->free)
708                 return ERROR_OK;
709         
710         if (target->backup_working_area)
711                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
712         
713         area->free = 1;
714         
715         /* mark user pointer invalid */
716         *area->user = NULL;
717         area->user = NULL;
718         
719         return ERROR_OK;
720 }
721
722 int target_free_all_working_areas(struct target_s *target)
723 {
724         working_area_t *c = target->working_areas;
725
726         while (c)
727         {
728                 working_area_t *next = c->next;
729                 target_free_working_area(target, c);
730                 
731                 if (c->backup)
732                         free(c->backup);
733                 
734                 free(c);
735                 
736                 c = next;
737         }
738         
739         target->working_areas = NULL;
740         
741         return ERROR_OK;
742 }
743
744 int target_register_commands(struct command_context_s *cmd_ctx)
745 {
746         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, NULL);
747         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
748         register_command(cmd_ctx, NULL, "daemon_startup", handle_daemon_startup_command, COMMAND_CONFIG, NULL);
749         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
750         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, NULL);
751         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
752         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
753
754         return ERROR_OK;
755 }
756
757 int target_arch_state(struct target_s *target)
758 {
759         int retval;
760         if (target==NULL)
761         {
762                 USER("No target has been configured");
763                 return ERROR_OK;
764         }
765         
766         USER("target state: %s", target_state_strings[target->state]);
767         
768         if (target->state!=TARGET_HALTED)
769                 return ERROR_OK;
770         
771         retval=target->type->arch_state(target);
772         return retval;
773 }
774
775 /* Single aligned words are guaranteed to use 16 or 32 bit access 
776  * mode respectively, otherwise data is handled as quickly as 
777  * possible
778  */
779 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
780 {
781         int retval;
782         
783         DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
784         
785         if (((address % 2) == 0) && (size == 2))
786         {
787                 return target->type->write_memory(target, address, 2, 1, buffer);
788         }
789         
790         /* handle unaligned head bytes */
791         if (address % 4)
792         {
793                 int unaligned = 4 - (address % 4);
794                 
795                 if (unaligned > size)
796                         unaligned = size;
797
798                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
799                         return retval;
800                 
801                 buffer += unaligned;
802                 address += unaligned;
803                 size -= unaligned;
804         }
805                 
806         /* handle aligned words */
807         if (size >= 4)
808         {
809                 int aligned = size - (size % 4);
810         
811                 /* use bulk writes above a certain limit. This may have to be changed */
812                 if (aligned > 128)
813                 {
814                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
815                                 return retval;
816                 }
817                 else
818                 {
819                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
820                                 return retval;
821                 }
822                 
823                 buffer += aligned;
824                 address += aligned;
825                 size -= aligned;
826         }
827         
828         /* handle tail writes of less than 4 bytes */
829         if (size > 0)
830         {
831                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
832                         return retval;
833         }
834         
835         return ERROR_OK;
836 }
837
838
839 /* Single aligned words are guaranteed to use 16 or 32 bit access 
840  * mode respectively, otherwise data is handled as quickly as 
841  * possible
842  */
843 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
844 {
845         int retval;
846         
847         DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
848         
849         if (((address % 2) == 0) && (size == 2))
850         {
851                 return target->type->read_memory(target, address, 2, 1, buffer);
852         }
853         
854         /* handle unaligned head bytes */
855         if (address % 4)
856         {
857                 int unaligned = 4 - (address % 4);
858                 
859                 if (unaligned > size)
860                         unaligned = size;
861
862                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
863                         return retval;
864                 
865                 buffer += unaligned;
866                 address += unaligned;
867                 size -= unaligned;
868         }
869                 
870         /* handle aligned words */
871         if (size >= 4)
872         {
873                 int aligned = size - (size % 4);
874         
875                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
876                         return retval;
877                 
878                 buffer += aligned;
879                 address += aligned;
880                 size -= aligned;
881         }
882         
883         /* handle tail writes of less than 4 bytes */
884         if (size > 0)
885         {
886                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
887                         return retval;
888         }
889         
890         return ERROR_OK;
891 }
892
893 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
894 {
895         u8 *buffer;
896         int retval;
897         int i;
898         u32 checksum = 0;
899         
900         if ((retval = target->type->checksum_memory(target, address,
901                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
902         {
903                 buffer = malloc(size);
904                 if (buffer == NULL)
905                 {
906                         ERROR("error allocating buffer for section (%d bytes)", size);
907                         return ERROR_INVALID_ARGUMENTS;
908                 }
909                 retval = target_read_buffer(target, address, size, buffer);
910                 if (retval != ERROR_OK)
911                 {
912                         free(buffer);
913                         return retval;
914                 }
915
916                 /* convert to target endianess */
917                 for (i = 0; i < (size/sizeof(u32)); i++)
918                 {
919                         u32 target_data;
920                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
921                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
922                 }
923
924                 retval = image_calculate_checksum( buffer, size, &checksum );
925                 free(buffer);
926         }
927         
928         *crc = checksum;
929         
930         return retval;
931 }
932
933 int target_read_u32(struct target_s *target, u32 address, u32 *value)
934 {
935         u8 value_buf[4];
936
937         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
938         
939         if (retval == ERROR_OK)
940         {
941                 *value = target_buffer_get_u32(target, value_buf);
942                 DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
943         }
944         else
945         {
946                 *value = 0x0;
947                 DEBUG("address: 0x%8.8x failed", address);
948         }
949         
950         return retval;
951 }
952
953 int target_read_u16(struct target_s *target, u32 address, u16 *value)
954 {
955         u8 value_buf[2];
956         
957         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
958         
959         if (retval == ERROR_OK)
960         {
961                 *value = target_buffer_get_u16(target, value_buf);
962                 DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
963         }
964         else
965         {
966                 *value = 0x0;
967                 DEBUG("address: 0x%8.8x failed", address);
968         }
969         
970         return retval;
971 }
972
973 int target_read_u8(struct target_s *target, u32 address, u8 *value)
974 {
975         int retval = target->type->read_memory(target, address, 1, 1, value);
976
977         if (retval == ERROR_OK)
978         {
979                 DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
980         }
981         else
982         {
983                 *value = 0x0;
984                 DEBUG("address: 0x%8.8x failed", address);
985         }
986         
987         return retval;
988 }
989
990 int target_write_u32(struct target_s *target, u32 address, u32 value)
991 {
992         int retval;
993         u8 value_buf[4];
994
995         DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
996
997         target_buffer_set_u32(target, value_buf, value);        
998         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
999         {
1000                 DEBUG("failed: %i", retval);
1001         }
1002         
1003         return retval;
1004 }
1005
1006 int target_write_u16(struct target_s *target, u32 address, u16 value)
1007 {
1008         int retval;
1009         u8 value_buf[2];
1010         
1011         DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1012
1013         target_buffer_set_u16(target, value_buf, value);        
1014         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1015         {
1016                 DEBUG("failed: %i", retval);
1017         }
1018         
1019         return retval;
1020 }
1021
1022 int target_write_u8(struct target_s *target, u32 address, u8 value)
1023 {
1024         int retval;
1025         
1026         DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1027
1028         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1029         {
1030                 DEBUG("failed: %i", retval);
1031         }
1032         
1033         return retval;
1034 }
1035
1036 int target_register_user_commands(struct command_context_s *cmd_ctx)
1037 {
1038         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1039         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1040         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1041         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1042         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1043         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1044         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1045         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1046
1047         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1048         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1049         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1050         
1051         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value>");
1052         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value>");
1053         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value>");
1054         
1055         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1056         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1057         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1058         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1059         
1060         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1061         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1062         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1063         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1064         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1065         
1066         target_request_register_commands(cmd_ctx);
1067         trace_register_commands(cmd_ctx);
1068         
1069         return ERROR_OK;
1070 }
1071
1072 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1073 {
1074         target_t *target = targets;
1075         int count = 0;
1076         
1077         if (argc == 1)
1078         {
1079                 int num = strtoul(args[0], NULL, 0);
1080                 
1081                 while (target)
1082                 {
1083                         count++;
1084                         target = target->next;
1085                 }
1086                 
1087                 if (num < count)
1088                         cmd_ctx->current_target = num;
1089                 else
1090                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1091                         
1092                 return ERROR_OK;
1093         }
1094                 
1095         while (target)
1096         {
1097                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1098                 target = target->next;
1099         }
1100         
1101         return ERROR_OK;
1102 }
1103
1104 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1105 {
1106         int i;
1107         int found = 0;
1108         
1109         if (argc < 3)
1110         {
1111                 ERROR("target command requires at least three arguments: <type> <endianess> <reset_mode>");
1112                 exit(-1);
1113         }
1114         
1115         /* search for the specified target */
1116         if (args[0] && (args[0][0] != 0))
1117         {
1118                 for (i = 0; target_types[i]; i++)
1119                 {
1120                         if (strcmp(args[0], target_types[i]->name) == 0)
1121                         {
1122                                 target_t **last_target_p = &targets;
1123                                 
1124                                 /* register target specific commands */
1125                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1126                                 {
1127                                         ERROR("couldn't register '%s' commands", args[0]);
1128                                         exit(-1);
1129                                 }
1130
1131                                 if (*last_target_p)
1132                                 {
1133                                         while ((*last_target_p)->next)
1134                                                 last_target_p = &((*last_target_p)->next);
1135                                         last_target_p = &((*last_target_p)->next);
1136                                 }
1137
1138                                 *last_target_p = malloc(sizeof(target_t));
1139                                 
1140                                 (*last_target_p)->type = target_types[i];
1141                                 
1142                                 if (strcmp(args[1], "big") == 0)
1143                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1144                                 else if (strcmp(args[1], "little") == 0)
1145                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1146                                 else
1147                                 {
1148                                         ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1149                                         exit(-1);
1150                                 }
1151                                 
1152                                 /* what to do on a target reset */
1153                                 if (strcmp(args[2], "reset_halt") == 0)
1154                                         (*last_target_p)->reset_mode = RESET_HALT;
1155                                 else if (strcmp(args[2], "reset_run") == 0)
1156                                         (*last_target_p)->reset_mode = RESET_RUN;
1157                                 else if (strcmp(args[2], "reset_init") == 0)
1158                                         (*last_target_p)->reset_mode = RESET_INIT;
1159                                 else if (strcmp(args[2], "run_and_halt") == 0)
1160                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1161                                 else if (strcmp(args[2], "run_and_init") == 0)
1162                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1163                                 else
1164                                 {
1165                                         ERROR("unknown target startup mode %s", args[2]);
1166                                         exit(-1);
1167                                 }
1168                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1169                                 
1170                                 (*last_target_p)->reset_script = NULL;
1171                                 (*last_target_p)->post_halt_script = NULL;
1172                                 (*last_target_p)->pre_resume_script = NULL;
1173                                 (*last_target_p)->gdb_program_script = NULL;
1174                                 
1175                                 (*last_target_p)->working_area = 0x0;
1176                                 (*last_target_p)->working_area_size = 0x0;
1177                                 (*last_target_p)->working_areas = NULL;
1178                                 (*last_target_p)->backup_working_area = 0;
1179                                 
1180                                 (*last_target_p)->state = TARGET_UNKNOWN;
1181                                 (*last_target_p)->reg_cache = NULL;
1182                                 (*last_target_p)->breakpoints = NULL;
1183                                 (*last_target_p)->watchpoints = NULL;
1184                                 (*last_target_p)->next = NULL;
1185                                 (*last_target_p)->arch_info = NULL;
1186                                 
1187                                 /* initialize trace information */
1188                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1189                                 (*last_target_p)->trace_info->num_trace_points = 0;
1190                                 (*last_target_p)->trace_info->trace_points_size = 0;
1191                                 (*last_target_p)->trace_info->trace_points = NULL;
1192                                 (*last_target_p)->trace_info->trace_history_size = 0;
1193                                 (*last_target_p)->trace_info->trace_history = NULL;
1194                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1195                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1196                                 
1197                                 (*last_target_p)->dbgmsg = NULL;
1198                                 (*last_target_p)->dbg_msg_enabled = 0;
1199                                                                 
1200                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1201                                 
1202                                 found = 1;
1203                                 break;
1204                         }
1205                 }
1206         }
1207         
1208         /* no matching target found */
1209         if (!found)
1210         {
1211                 ERROR("target '%s' not found", args[0]);
1212                 exit(-1);
1213         }
1214
1215         return ERROR_OK;
1216 }
1217
1218 /* usage: target_script <target#> <event> <script_file> */
1219 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1220 {
1221         target_t *target = NULL;
1222         
1223         if (argc < 3)
1224         {
1225                 ERROR("incomplete target_script command");
1226                 exit(-1);
1227         }
1228         
1229         target = get_target_by_num(strtoul(args[0], NULL, 0));
1230         
1231         if (!target)
1232         {
1233                 ERROR("target number '%s' not defined", args[0]);
1234                 exit(-1);
1235         }
1236         
1237         if (strcmp(args[1], "reset") == 0)
1238         {
1239                 if (target->reset_script)
1240                         free(target->reset_script);
1241                 target->reset_script = strdup(args[2]);
1242         }
1243         else if (strcmp(args[1], "post_halt") == 0)
1244         {
1245                 if (target->post_halt_script)
1246                         free(target->post_halt_script);
1247                 target->post_halt_script = strdup(args[2]);
1248         }
1249         else if (strcmp(args[1], "pre_resume") == 0)
1250         {
1251                 if (target->pre_resume_script)
1252                         free(target->pre_resume_script);
1253                 target->pre_resume_script = strdup(args[2]);
1254         }
1255         else if (strcmp(args[1], "gdb_program_config") == 0)
1256         {
1257                 if (target->gdb_program_script)
1258                         free(target->gdb_program_script);
1259                 target->gdb_program_script = strdup(args[2]);
1260         }
1261         else
1262         {
1263                 ERROR("unknown event type: '%s", args[1]);
1264                 exit(-1);       
1265         }
1266         
1267         return ERROR_OK;
1268 }
1269
1270 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1271 {
1272         target_t *target = NULL;
1273         
1274         if (argc < 2)
1275         {
1276                 ERROR("incomplete run_and_halt_time command");
1277                 exit(-1);
1278         }
1279         
1280         target = get_target_by_num(strtoul(args[0], NULL, 0));
1281         
1282         if (!target)
1283         {
1284                 ERROR("target number '%s' not defined", args[0]);
1285                 exit(-1);
1286         }
1287         
1288         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1289         
1290         return ERROR_OK;
1291 }
1292
1293 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1294 {
1295         target_t *target = NULL;
1296         
1297         if ((argc < 4) || (argc > 5))
1298         {
1299                 return ERROR_COMMAND_SYNTAX_ERROR;
1300         }
1301         
1302         target = get_target_by_num(strtoul(args[0], NULL, 0));
1303         
1304         if (!target)
1305         {
1306                 ERROR("target number '%s' not defined", args[0]);
1307                 exit(-1);
1308         }
1309         target_free_all_working_areas(target);
1310         
1311         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1312         if (argc == 5)
1313         {
1314                 target->working_area_virt = strtoul(args[4], NULL, 0);
1315         }
1316         target->working_area_size = strtoul(args[2], NULL, 0);
1317         
1318         if (strcmp(args[3], "backup") == 0)
1319         {
1320                 target->backup_working_area = 1;
1321         }
1322         else if (strcmp(args[3], "nobackup") == 0)
1323         {
1324                 target->backup_working_area = 0;
1325         }
1326         else
1327         {
1328                 ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1329                 return ERROR_COMMAND_SYNTAX_ERROR;
1330         }
1331         
1332         return ERROR_OK;
1333 }
1334
1335
1336 /* process target state changes */
1337 int handle_target(void *priv)
1338 {
1339         int retval;
1340         target_t *target = targets;
1341         
1342         while (target)
1343         {
1344                 /* only poll if target isn't already halted */
1345                 if (target->state != TARGET_HALTED)
1346                 {
1347                         if (target_continous_poll)
1348                                 if ((retval = target->type->poll(target)) != ERROR_OK)
1349                                 {
1350                                         ERROR("couldn't poll target(%d). It's due for a reset.", retval);
1351                                 }
1352                 }
1353         
1354                 target = target->next;
1355         }
1356         
1357         return ERROR_OK;
1358 }
1359
1360 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1361 {
1362         target_t *target;
1363         reg_t *reg = NULL;
1364         int count = 0;
1365         char *value;
1366         
1367         DEBUG("-");
1368         
1369         target = get_current_target(cmd_ctx);
1370         
1371         /* list all available registers for the current target */
1372         if (argc == 0)
1373         {
1374                 reg_cache_t *cache = target->reg_cache;
1375                 
1376                 count = 0;
1377                 while(cache)
1378                 {
1379                         int i;
1380                         for (i = 0; i < cache->num_regs; i++)
1381                         {
1382                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1383                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1384                                 free(value);
1385                         }
1386                         cache = cache->next;
1387                 }
1388                 
1389                 return ERROR_OK;
1390         }
1391         
1392         /* access a single register by its ordinal number */
1393         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1394         {
1395                 int num = strtoul(args[0], NULL, 0);
1396                 reg_cache_t *cache = target->reg_cache;
1397                 
1398                 count = 0;
1399                 while(cache)
1400                 {
1401                         int i;
1402                         for (i = 0; i < cache->num_regs; i++)
1403                         {
1404                                 if (count++ == num)
1405                                 {
1406                                         reg = &cache->reg_list[i];
1407                                         break;
1408                                 }
1409                         }
1410                         if (reg)
1411                                 break;
1412                         cache = cache->next;
1413                 }
1414                 
1415                 if (!reg)
1416                 {
1417                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1418                         return ERROR_OK;
1419                 }
1420         } else /* access a single register by its name */
1421         {
1422                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1423                 
1424                 if (!reg)
1425                 {
1426                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1427                         return ERROR_OK;
1428                 }
1429         }
1430
1431         /* display a register */
1432         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1433         {
1434                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1435                         reg->valid = 0;
1436                 
1437                 if (reg->valid == 0)
1438                 {
1439                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1440                         if (arch_type == NULL)
1441                         {
1442                                 ERROR("BUG: encountered unregistered arch type");
1443                                 return ERROR_OK;
1444                         }
1445                         arch_type->get(reg);
1446                 }
1447                 value = buf_to_str(reg->value, reg->size, 16);
1448                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1449                 free(value);
1450                 return ERROR_OK;
1451         }
1452         
1453         /* set register value */
1454         if (argc == 2)
1455         {
1456                 u8 *buf = malloc(CEIL(reg->size, 8));
1457                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1458
1459                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1460                 if (arch_type == NULL)
1461                 {
1462                         ERROR("BUG: encountered unregistered arch type");
1463                         return ERROR_OK;
1464                 }
1465                 
1466                 arch_type->set(reg, buf);
1467                 
1468                 value = buf_to_str(reg->value, reg->size, 16);
1469                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1470                 free(value);
1471                 
1472                 free(buf);
1473                 
1474                 return ERROR_OK;
1475         }
1476         
1477         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1478         
1479         return ERROR_OK;
1480 }
1481
1482 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1483
1484 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1485 {
1486         target_t *target = get_current_target(cmd_ctx);
1487
1488         if (argc == 0)
1489         {
1490                 target->type->poll(target);
1491                         target_arch_state(target);
1492         }
1493         else
1494         {
1495                 if (strcmp(args[0], "on") == 0)
1496                 {
1497                         target_continous_poll = 1;
1498                 }
1499                 else if (strcmp(args[0], "off") == 0)
1500                 {
1501                         target_continous_poll = 0;
1502                 }
1503                 else
1504                 {
1505                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1506                 }
1507         }
1508         
1509         
1510         return ERROR_OK;
1511 }
1512
1513 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1514 {
1515         int ms = 5000;
1516         
1517         if (argc > 0)
1518         {
1519                 char *end;
1520
1521                 ms = strtoul(args[0], &end, 0) * 1000;
1522                 if (*end)
1523                 {
1524                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1525                         return ERROR_OK;
1526                 }
1527         }
1528
1529         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1530 }
1531
1532 static void target_process_events(struct command_context_s *cmd_ctx)
1533 {
1534         target_t *target = get_current_target(cmd_ctx);
1535         target->type->poll(target);
1536         target_call_timer_callbacks();
1537 }
1538
1539 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1540 {
1541         int retval;
1542         struct timeval timeout, now;
1543         int once=1;
1544         gettimeofday(&timeout, NULL);
1545         timeval_add_time(&timeout, 0, ms * 1000);
1546         
1547         target_t *target = get_current_target(cmd_ctx);
1548         for (;;)
1549         {
1550                 if ((retval=target->type->poll(target))!=ERROR_OK)
1551                         return retval;
1552                 target_call_timer_callbacks();
1553                 if (target->state == state)
1554                 {
1555                         break;
1556                 }
1557                 if (once)
1558                 {
1559                         once=0;
1560                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1561                 }
1562                 
1563                 gettimeofday(&now, NULL);
1564                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1565                 {
1566                         ERROR("timed out while waiting for target %s", target_state_strings[state]);
1567                         break;
1568                 }
1569         }
1570         
1571         return ERROR_OK;
1572 }
1573
1574 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1575 {
1576         int retval;
1577         target_t *target = get_current_target(cmd_ctx);
1578
1579         DEBUG("-");
1580         
1581         command_print(cmd_ctx, "requesting target halt...");
1582
1583         if ((retval = target->type->halt(target)) != ERROR_OK)
1584         {       
1585                 switch (retval)
1586                 {
1587                         case ERROR_TARGET_ALREADY_HALTED:
1588                                 command_print(cmd_ctx, "target already halted");
1589                                 break;
1590                         case ERROR_TARGET_TIMEOUT:
1591                                 command_print(cmd_ctx, "target timed out... shutting down");
1592                                 return retval;
1593                         default:
1594                                 command_print(cmd_ctx, "unknown error... shutting down");
1595                                 return retval;
1596                 }
1597         }
1598         
1599         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1600 }
1601
1602 /* what to do on daemon startup */
1603 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1604 {
1605         if (argc == 1)
1606         {
1607                 if (strcmp(args[0], "attach") == 0)
1608                 {
1609                         startup_mode = DAEMON_ATTACH;
1610                         return ERROR_OK;
1611                 }
1612                 else if (strcmp(args[0], "reset") == 0)
1613                 {
1614                         startup_mode = DAEMON_RESET;
1615                         return ERROR_OK;
1616                 }
1617         }
1618         
1619         WARNING("invalid daemon_startup configuration directive: %s", args[0]);
1620         return ERROR_OK;
1621
1622 }
1623                 
1624 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1625 {
1626         target_t *target = get_current_target(cmd_ctx);
1627         int retval;
1628         
1629         command_print(cmd_ctx, "requesting target halt and executing a soft reset");
1630         
1631         if ((retval = target->type->soft_reset_halt(target)) != ERROR_OK)
1632         {       
1633                 switch (retval)
1634                 {
1635                         case ERROR_TARGET_TIMEOUT:
1636                                 command_print(cmd_ctx, "target timed out... shutting down");
1637                                 exit(-1);
1638                         default:
1639                                 command_print(cmd_ctx, "unknown error... shutting down");
1640                                 exit(-1);
1641                 }
1642         }
1643         
1644         return ERROR_OK;
1645 }
1646
1647 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1648 {
1649         target_t *target = get_current_target(cmd_ctx);
1650         enum target_reset_mode reset_mode = target->reset_mode;
1651         enum target_reset_mode save = target->reset_mode;
1652         
1653         DEBUG("-");
1654         
1655         if (argc >= 1)
1656         {
1657                 if (strcmp("run", args[0]) == 0)
1658                         reset_mode = RESET_RUN;
1659                 else if (strcmp("halt", args[0]) == 0)
1660                         reset_mode = RESET_HALT;
1661                 else if (strcmp("init", args[0]) == 0)
1662                         reset_mode = RESET_INIT;
1663                 else if (strcmp("run_and_halt", args[0]) == 0)
1664                 {
1665                         reset_mode = RESET_RUN_AND_HALT;
1666                         if (argc >= 2)
1667                         {
1668                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1669                         }
1670                 }
1671                 else if (strcmp("run_and_init", args[0]) == 0)
1672                 {
1673                         reset_mode = RESET_RUN_AND_INIT;
1674                         if (argc >= 2)
1675                         {
1676                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1677                         }
1678                 }
1679                 else
1680                 {
1681                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1682                         return ERROR_OK;
1683                 }
1684         }
1685         
1686         /* temporarily modify mode of current reset target */
1687         target->reset_mode = reset_mode;
1688
1689         /* reset *all* targets */
1690         target_process_reset(cmd_ctx);
1691         
1692         /* Restore default reset mode for this target */
1693     target->reset_mode = save;
1694         
1695         return ERROR_OK;
1696 }
1697
1698 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1699 {
1700         int retval;
1701         target_t *target = get_current_target(cmd_ctx);
1702         
1703         if (argc == 0)
1704                 retval = target->type->resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1705         else if (argc == 1)
1706                 retval = target->type->resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1707         else
1708         {
1709                 return ERROR_COMMAND_SYNTAX_ERROR;
1710         }
1711
1712         target_process_events(cmd_ctx);
1713         
1714         target_arch_state(target);
1715         
1716         return retval;
1717 }
1718
1719 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1720 {
1721         target_t *target = get_current_target(cmd_ctx);
1722         
1723         DEBUG("-");
1724         
1725         if (argc == 0)
1726                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1727
1728         if (argc == 1)
1729                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1730         
1731         return ERROR_OK;
1732 }
1733
1734 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1735 {
1736         const int line_bytecnt = 32;
1737         int count = 1;
1738         int size = 4;
1739         u32 address = 0;
1740         int line_modulo;
1741         int i;
1742
1743         char output[128];
1744         int output_len;
1745
1746         int retval;
1747
1748         u8 *buffer;
1749         target_t *target = get_current_target(cmd_ctx);
1750
1751         if (argc < 1)
1752                 return ERROR_OK;
1753
1754         if (argc == 2)
1755                 count = strtoul(args[1], NULL, 0);
1756
1757         address = strtoul(args[0], NULL, 0);
1758         
1759
1760         switch (cmd[2])
1761         {
1762                 case 'w':
1763                         size = 4; line_modulo = line_bytecnt / 4;
1764                         break;
1765                 case 'h':
1766                         size = 2; line_modulo = line_bytecnt / 2;
1767                         break;
1768                 case 'b':
1769                         size = 1; line_modulo = line_bytecnt / 1;
1770                         break;
1771                 default:
1772                         return ERROR_OK;
1773         }
1774
1775         buffer = calloc(count, size);
1776         retval  = target->type->read_memory(target, address, size, count, buffer);
1777         if (retval != ERROR_OK)
1778         {
1779                 switch (retval)
1780                 {
1781                         case ERROR_TARGET_UNALIGNED_ACCESS:
1782                                 command_print(cmd_ctx, "error: address not aligned");
1783                                 break;
1784                         case ERROR_TARGET_NOT_HALTED:
1785                                 command_print(cmd_ctx, "error: target must be halted for memory accesses");
1786                                 break;                  
1787                         case ERROR_TARGET_DATA_ABORT:
1788                                 command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted");
1789                                 break;
1790                         default:
1791                                 command_print(cmd_ctx, "error: unknown error");
1792                                 break;
1793                 }
1794                 return ERROR_OK;
1795         }
1796
1797         output_len = 0;
1798
1799         for (i = 0; i < count; i++)
1800         {
1801                 if (i%line_modulo == 0)
1802                         output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1803                 
1804                 switch (size)
1805                 {
1806                         case 4:
1807                                 output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1808                                 break;
1809                         case 2:
1810                                 output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1811                                 break;
1812                         case 1:
1813                                 output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1814                                 break;
1815                 }
1816
1817                 if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1818                 {
1819                         command_print(cmd_ctx, output);
1820                         output_len = 0;
1821                 }
1822         }
1823
1824         free(buffer);
1825         
1826         return ERROR_OK;
1827 }
1828
1829 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1830 {
1831         u32 address = 0;
1832         u32 value = 0;
1833         int retval;
1834         target_t *target = get_current_target(cmd_ctx);
1835         u8 value_buf[4];
1836
1837         if (argc < 2)
1838                 return ERROR_OK;
1839
1840         address = strtoul(args[0], NULL, 0);
1841         value = strtoul(args[1], NULL, 0);
1842
1843         switch (cmd[2])
1844         {
1845                 case 'w':
1846                         target_buffer_set_u32(target, value_buf, value);
1847                         retval = target->type->write_memory(target, address, 4, 1, value_buf);
1848                         break;
1849                 case 'h':
1850                         target_buffer_set_u16(target, value_buf, value);
1851                         retval = target->type->write_memory(target, address, 2, 1, value_buf);
1852                         break;
1853                 case 'b':
1854                         value_buf[0] = value;
1855                         retval = target->type->write_memory(target, address, 1, 1, value_buf);
1856                         break;
1857                 default:
1858                         return ERROR_OK;
1859         }
1860
1861         switch (retval)
1862         {
1863                 case ERROR_TARGET_UNALIGNED_ACCESS:
1864                         command_print(cmd_ctx, "error: address not aligned");
1865                         break;
1866                 case ERROR_TARGET_DATA_ABORT:
1867                         command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted");
1868                         break;
1869                 case ERROR_TARGET_NOT_HALTED:
1870                         command_print(cmd_ctx, "error: target must be halted for memory accesses");
1871                         break;
1872                 case ERROR_OK:
1873                         break;
1874                 default:
1875                         command_print(cmd_ctx, "error: unknown error");
1876                         break;
1877         }
1878
1879         return ERROR_OK;
1880
1881 }
1882
1883 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1884 {
1885         u8 *buffer;
1886         u32 buf_cnt;
1887         u32 image_size;
1888         int i;
1889         int retval;
1890
1891         image_t image;  
1892         
1893         duration_t duration;
1894         char *duration_text;
1895         
1896         target_t *target = get_current_target(cmd_ctx);
1897
1898         if (argc < 1)
1899         {
1900                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
1901                 return ERROR_OK;
1902         }
1903         
1904         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
1905         if (argc >= 2)
1906         {
1907                 image.base_address_set = 1;
1908                 image.base_address = strtoul(args[1], NULL, 0);
1909         }
1910         else
1911         {
1912                 image.base_address_set = 0;
1913         }
1914         
1915         image.start_address_set = 0;
1916
1917         duration_start_measure(&duration);
1918         
1919         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
1920         {
1921                 return ERROR_OK;
1922         }
1923         
1924         image_size = 0x0;
1925         for (i = 0; i < image.num_sections; i++)
1926         {
1927                 buffer = malloc(image.sections[i].size);
1928                 if (buffer == NULL)
1929                 {
1930                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
1931                         break;
1932                 }
1933                 
1934                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
1935                 {
1936                         ERROR("image_read_section failed with error code: %i", retval);
1937                         command_print(cmd_ctx, "image reading failed, download aborted");
1938                         free(buffer);
1939                         image_close(&image);
1940                         return ERROR_OK;
1941                 }
1942                 target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer);
1943                 image_size += buf_cnt;
1944                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
1945                 
1946                 free(buffer);
1947         }
1948
1949         duration_stop_measure(&duration, &duration_text);
1950         command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
1951         free(duration_text);
1952         
1953         image_close(&image);
1954
1955         return ERROR_OK;
1956
1957 }
1958
1959 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1960 {
1961         fileio_t fileio;
1962         
1963         u32 address;
1964         u32 size;
1965         u8 buffer[560];
1966         int retval;
1967         
1968         duration_t duration;
1969         char *duration_text;
1970         
1971         target_t *target = get_current_target(cmd_ctx);
1972
1973         if (argc != 3)
1974         {
1975                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
1976                 return ERROR_OK;
1977         }
1978
1979         address = strtoul(args[1], NULL, 0);
1980         size = strtoul(args[2], NULL, 0);
1981
1982         if ((address & 3) || (size & 3))
1983         {
1984                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
1985                 return ERROR_OK;
1986         }
1987         
1988         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
1989         {
1990                 return ERROR_OK;
1991         }
1992         
1993         duration_start_measure(&duration);
1994         
1995         while (size > 0)
1996         {
1997                 u32 size_written;
1998                 u32 this_run_size = (size > 560) ? 560 : size;
1999                 
2000                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2001                 if (retval != ERROR_OK)
2002                 {
2003                         command_print(cmd_ctx, "Reading memory failed %d", retval);
2004                         break;
2005                 }
2006                 
2007                 fileio_write(&fileio, this_run_size, buffer, &size_written);
2008                 
2009                 size -= this_run_size;
2010                 address += this_run_size;
2011         }
2012
2013         fileio_close(&fileio);
2014
2015         duration_stop_measure(&duration, &duration_text);
2016         command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2017         free(duration_text);
2018         
2019         return ERROR_OK;
2020 }
2021
2022 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2023 {
2024         u8 *buffer;
2025         u32 buf_cnt;
2026         u32 image_size;
2027         int i;
2028         int retval;
2029         u32 checksum = 0;
2030         u32 mem_checksum = 0;
2031
2032         image_t image;  
2033         
2034         duration_t duration;
2035         char *duration_text;
2036         
2037         target_t *target = get_current_target(cmd_ctx);
2038         
2039         if (argc < 1)
2040         {
2041                 command_print(cmd_ctx, "usage: verify_image <file> [offset] [type]");
2042                 return ERROR_OK;
2043         }
2044         
2045         if (!target)
2046         {
2047                 ERROR("no target selected");
2048                 return ERROR_OK;
2049         }
2050         
2051         duration_start_measure(&duration);
2052         
2053         if (argc >= 2)
2054         {
2055                 image.base_address_set = 1;
2056                 image.base_address = strtoul(args[1], NULL, 0);
2057         }
2058         else
2059         {
2060                 image.base_address_set = 0;
2061                 image.base_address = 0x0;
2062         }
2063
2064         image.start_address_set = 0;
2065
2066         if (image_open(&image, args[0], (argc == 3) ? args[2] : NULL) != ERROR_OK)
2067         {
2068                 return ERROR_OK;
2069         }
2070         
2071         image_size = 0x0;
2072         for (i = 0; i < image.num_sections; i++)
2073         {
2074                 buffer = malloc(image.sections[i].size);
2075                 if (buffer == NULL)
2076                 {
2077                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2078                         break;
2079                 }
2080                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2081                 {
2082                         ERROR("image_read_section failed with error code: %i", retval);
2083                         command_print(cmd_ctx, "image reading failed, verify aborted");
2084                         free(buffer);
2085                         image_close(&image);
2086                         return ERROR_OK;
2087                 }
2088                 
2089                 /* calculate checksum of image */
2090                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2091                 
2092                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2093                 
2094                 if( retval != ERROR_OK )
2095                 {
2096                         command_print(cmd_ctx, "could not calculate checksum, verify aborted");
2097                         free(buffer);
2098                         image_close(&image);
2099                         return ERROR_OK;
2100                 }
2101                 
2102                 if( checksum != mem_checksum )
2103                 {
2104                         /* failed crc checksum, fall back to a binary compare */
2105                         u8 *data;
2106                         
2107                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2108                         
2109                         data = (u8*)malloc(buf_cnt);
2110                         
2111                         /* Can we use 32bit word accesses? */
2112                         int size = 1;
2113                         int count = buf_cnt;
2114                         if ((count % 4) == 0)
2115                         {
2116                                 size *= 4;
2117                                 count /= 4;
2118                         }
2119                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2120         
2121                         if (retval == ERROR_OK)
2122                         {
2123                                 int t;
2124                                 for (t = 0; t < buf_cnt; t++)
2125                                 {
2126                                         if (data[t] != buffer[t])
2127                                         {
2128                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2129                                                 free(data);
2130                                                 free(buffer);
2131                                                 image_close(&image);
2132                                                 return ERROR_OK;
2133                                         }
2134                                 }
2135                         }
2136                         
2137                         free(data);
2138                 }
2139                 
2140                 free(buffer);
2141                 image_size += buf_cnt;
2142         }
2143         
2144         duration_stop_measure(&duration, &duration_text);
2145         command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2146         free(duration_text);
2147         
2148         image_close(&image);
2149         
2150         return ERROR_OK;
2151 }
2152
2153 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2154 {
2155         int retval;
2156         target_t *target = get_current_target(cmd_ctx);
2157
2158         if (argc == 0)
2159         {
2160                 breakpoint_t *breakpoint = target->breakpoints;
2161
2162                 while (breakpoint)
2163                 {
2164                         if (breakpoint->type == BKPT_SOFT)
2165                         {
2166                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2167                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2168                                 free(buf);
2169                         }
2170                         else
2171                         {
2172                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2173                         }
2174                         breakpoint = breakpoint->next;
2175                 }
2176         }
2177         else if (argc >= 2)
2178         {
2179                 int hw = BKPT_SOFT;
2180                 u32 length = 0;
2181
2182                 length = strtoul(args[1], NULL, 0);
2183                 
2184                 if (argc >= 3)
2185                         if (strcmp(args[2], "hw") == 0)
2186                                 hw = BKPT_HARD;
2187
2188                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2189                 {
2190                         switch (retval)
2191                         {
2192                                 case ERROR_TARGET_NOT_HALTED:
2193                                         command_print(cmd_ctx, "target must be halted to set breakpoints");
2194                                         break;
2195                                 case ERROR_TARGET_RESOURCE_NOT_AVAILABLE:
2196                                         command_print(cmd_ctx, "no more breakpoints available");
2197                                         break;
2198                                 default:
2199                                         command_print(cmd_ctx, "unknown error, breakpoint not set");
2200                                         break;
2201                         }
2202                 }
2203                 else
2204                 {
2205                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2206                 }
2207         }
2208         else
2209         {
2210                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2211         }
2212
2213         return ERROR_OK;
2214 }
2215
2216 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2217 {
2218         target_t *target = get_current_target(cmd_ctx);
2219
2220         if (argc > 0)
2221                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2222
2223         return ERROR_OK;
2224 }
2225
2226 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2227 {
2228         target_t *target = get_current_target(cmd_ctx);
2229         int retval;
2230
2231         if (argc == 0)
2232         {
2233                 watchpoint_t *watchpoint = target->watchpoints;
2234
2235                 while (watchpoint)
2236                 {
2237                         command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2238                         watchpoint = watchpoint->next;
2239                 }
2240         } 
2241         else if (argc >= 2)
2242         {
2243                 enum watchpoint_rw type = WPT_ACCESS;
2244                 u32 data_value = 0x0;
2245                 u32 data_mask = 0xffffffff;
2246                 
2247                 if (argc >= 3)
2248                 {
2249                         switch(args[2][0])
2250                         {
2251                                 case 'r':
2252                                         type = WPT_READ;
2253                                         break;
2254                                 case 'w':
2255                                         type = WPT_WRITE;
2256                                         break;
2257                                 case 'a':
2258                                         type = WPT_ACCESS;
2259                                         break;
2260                                 default:
2261                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2262                                         return ERROR_OK;
2263                         }
2264                 }
2265                 if (argc >= 4)
2266                 {
2267                         data_value = strtoul(args[3], NULL, 0);
2268                 }
2269                 if (argc >= 5)
2270                 {
2271                         data_mask = strtoul(args[4], NULL, 0);
2272                 }
2273                 
2274                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2275                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2276                 {
2277                         switch (retval)
2278                         {
2279                                 case ERROR_TARGET_NOT_HALTED:
2280                                         command_print(cmd_ctx, "target must be halted to set watchpoints");
2281                                         break;
2282                                 case ERROR_TARGET_RESOURCE_NOT_AVAILABLE:
2283                                         command_print(cmd_ctx, "no more watchpoints available");
2284                                         break;
2285                                 default:
2286                                         command_print(cmd_ctx, "unknown error, watchpoint not set");
2287                                         break;
2288                         }       
2289                 }
2290         }
2291         else
2292         {
2293                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2294         }
2295                 
2296         return ERROR_OK;
2297 }
2298
2299 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2300 {
2301         target_t *target = get_current_target(cmd_ctx);
2302
2303         if (argc > 0)
2304                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2305         
2306         return ERROR_OK;
2307 }
2308
2309 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2310 {
2311         int retval;
2312         target_t *target = get_current_target(cmd_ctx);
2313         u32 va;
2314         u32 pa;
2315
2316         if (argc != 1)
2317         {
2318                 return ERROR_COMMAND_SYNTAX_ERROR;
2319         }
2320         va = strtoul(args[0], NULL, 0);
2321
2322         retval = target->type->virt2phys(target, va, &pa);
2323         if (retval == ERROR_OK)
2324         {
2325                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2326         }
2327         else
2328         {
2329                 /* lower levels will have logged a detailed error which is 
2330                  * forwarded to telnet/GDB session.  
2331                  */
2332         }
2333         return retval;
2334 }