]> git.sur5r.net Git - u-boot/blob - drivers/net/fsl-mc/dpio/qbman_portal.c
6e31244f208c48a30dfd80424abfdb1eec5e08a6
[u-boot] / drivers / net / fsl-mc / dpio / qbman_portal.c
1 /*
2  * Copyright (C) 2014 Freescale Semiconductor
3  *
4  * SPDX-License-Identifier:     GPL-2.0+
5  */
6
7 #include <asm/arch/clock.h>
8 #include "qbman_portal.h"
9
10 /* QBMan portal management command codes */
11 #define QBMAN_MC_ACQUIRE       0x30
12 #define QBMAN_WQCHAN_CONFIGURE 0x46
13
14 /* CINH register offsets */
15 #define QBMAN_CINH_SWP_EQAR    0x8c0
16 #define QBMAN_CINH_SWP_DCAP    0xac0
17 #define QBMAN_CINH_SWP_SDQCR   0xb00
18 #define QBMAN_CINH_SWP_RAR     0xcc0
19
20 /* CENA register offsets */
21 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((uint32_t)(n) << 6))
22 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((uint32_t)(n) << 6))
23 #define QBMAN_CENA_SWP_RCR(n)  (0x400 + ((uint32_t)(n) << 6))
24 #define QBMAN_CENA_SWP_CR      0x600
25 #define QBMAN_CENA_SWP_RR(vb)  (0x700 + ((uint32_t)(vb) >> 1))
26 #define QBMAN_CENA_SWP_VDQCR   0x780
27
28 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
29 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)p & 0x1ff) >> 6)
30
31 /*******************************/
32 /* Pre-defined attribute codes */
33 /*******************************/
34
35 struct qb_attr_code code_generic_verb = QB_CODE(0, 0, 7);
36 struct qb_attr_code code_generic_rslt = QB_CODE(0, 8, 8);
37
38 /*************************/
39 /* SDQCR attribute codes */
40 /*************************/
41
42 /* we put these here because at least some of them are required by
43  * qbman_swp_init() */
44 struct qb_attr_code code_sdqcr_dct = QB_CODE(0, 24, 2);
45 struct qb_attr_code code_sdqcr_fc = QB_CODE(0, 29, 1);
46 struct qb_attr_code code_sdqcr_tok = QB_CODE(0, 16, 8);
47 #define CODE_SDQCR_DQSRC(n) QB_CODE(0, n, 1)
48 enum qbman_sdqcr_dct {
49         qbman_sdqcr_dct_null = 0,
50         qbman_sdqcr_dct_prio_ics,
51         qbman_sdqcr_dct_active_ics,
52         qbman_sdqcr_dct_active
53 };
54 enum qbman_sdqcr_fc {
55         qbman_sdqcr_fc_one = 0,
56         qbman_sdqcr_fc_up_to_3 = 1
57 };
58
59 /*********************************/
60 /* Portal constructor/destructor */
61 /*********************************/
62
63 /* Software portals should always be in the power-on state when we initialise,
64  * due to the CCSR-based portal reset functionality that MC has. */
65 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
66 {
67         int ret;
68         struct qbman_swp *p = malloc(sizeof(struct qbman_swp));
69         u32 major = 0, minor = 0;
70
71         if (!p)
72                 return NULL;
73         p->desc = d;
74 #ifdef QBMAN_CHECKING
75         p->mc.check = swp_mc_can_start;
76 #endif
77         p->mc.valid_bit = QB_VALID_BIT;
78         p->sdq = 0;
79         qb_attr_code_encode(&code_sdqcr_dct, &p->sdq, qbman_sdqcr_dct_prio_ics);
80         qb_attr_code_encode(&code_sdqcr_fc, &p->sdq, qbman_sdqcr_fc_up_to_3);
81         qb_attr_code_encode(&code_sdqcr_tok, &p->sdq, 0xbb);
82         atomic_set(&p->vdq.busy, 1);
83         p->vdq.valid_bit = QB_VALID_BIT;
84         p->dqrr.next_idx = 0;
85
86         qbman_version(&major, &minor);
87         if (!major) {
88                 printf("invalid qbman version\n");
89                 return NULL;
90         }
91
92         if (major >= 4 && minor >= 1)
93                 p->dqrr.dqrr_size = QBMAN_VER_4_1_DQRR_SIZE;
94         else
95                 p->dqrr.dqrr_size = QBMAN_VER_4_0_DQRR_SIZE;
96
97         p->dqrr.valid_bit = QB_VALID_BIT;
98         ret = qbman_swp_sys_init(&p->sys, d, p->dqrr.dqrr_size);
99         if (ret) {
100                 free(p);
101                 printf("qbman_swp_sys_init() failed %d\n", ret);
102                 return NULL;
103         }
104         qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_SDQCR, p->sdq);
105         return p;
106 }
107
108 /***********************/
109 /* Management commands */
110 /***********************/
111
112 /*
113  * Internal code common to all types of management commands.
114  */
115
116 void *qbman_swp_mc_start(struct qbman_swp *p)
117 {
118         void *ret;
119         int *return_val;
120 #ifdef QBMAN_CHECKING
121         BUG_ON(p->mc.check != swp_mc_can_start);
122 #endif
123         ret = qbman_cena_write_start(&p->sys, QBMAN_CENA_SWP_CR);
124 #ifdef QBMAN_CHECKING
125         return_val = (int *)ret;
126         if (!(*return_val))
127                 p->mc.check = swp_mc_can_submit;
128 #endif
129         return ret;
130 }
131
132 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, uint32_t cmd_verb)
133 {
134         uint32_t *v = cmd;
135 #ifdef QBMAN_CHECKING
136         BUG_ON(p->mc.check != swp_mc_can_submit);
137 #endif
138         lwsync();
139         /* TBD: "|=" is going to hurt performance. Need to move as many fields
140          * out of word zero, and for those that remain, the "OR" needs to occur
141          * at the caller side. This debug check helps to catch cases where the
142          * caller wants to OR but has forgotten to do so. */
143         BUG_ON((*v & cmd_verb) != *v);
144         *v = cmd_verb | p->mc.valid_bit;
145         qbman_cena_write_complete(&p->sys, QBMAN_CENA_SWP_CR, cmd);
146         /* TODO: add prefetch support for GPP */
147 #ifdef QBMAN_CHECKING
148         p->mc.check = swp_mc_can_poll;
149 #endif
150 }
151
152 void *qbman_swp_mc_result(struct qbman_swp *p)
153 {
154         uint32_t *ret, verb;
155 #ifdef QBMAN_CHECKING
156         BUG_ON(p->mc.check != swp_mc_can_poll);
157 #endif
158         ret = qbman_cena_read(&p->sys, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
159         /* Remove the valid-bit - command completed iff the rest is non-zero */
160         verb = ret[0] & ~QB_VALID_BIT;
161         if (!verb)
162                 return NULL;
163 #ifdef QBMAN_CHECKING
164         p->mc.check = swp_mc_can_start;
165 #endif
166         p->mc.valid_bit ^= QB_VALID_BIT;
167         return ret;
168 }
169
170 /***********/
171 /* Enqueue */
172 /***********/
173
174 /* These should be const, eventually */
175 static struct qb_attr_code code_eq_cmd = QB_CODE(0, 0, 2);
176 static struct qb_attr_code code_eq_orp_en = QB_CODE(0, 2, 1);
177 static struct qb_attr_code code_eq_tgt_id = QB_CODE(2, 0, 24);
178 /* static struct qb_attr_code code_eq_tag = QB_CODE(3, 0, 32); */
179 static struct qb_attr_code code_eq_qd_en = QB_CODE(0, 4, 1);
180 static struct qb_attr_code code_eq_qd_bin = QB_CODE(4, 0, 16);
181 static struct qb_attr_code code_eq_qd_pri = QB_CODE(4, 16, 4);
182 static struct qb_attr_code code_eq_rsp_stash = QB_CODE(5, 16, 1);
183 static struct qb_attr_code code_eq_rsp_lo = QB_CODE(6, 0, 32);
184
185 enum qbman_eq_cmd_e {
186         /* No enqueue, primarily for plugging ORP gaps for dropped frames */
187         qbman_eq_cmd_empty,
188         /* DMA an enqueue response once complete */
189         qbman_eq_cmd_respond,
190         /* DMA an enqueue response only if the enqueue fails */
191         qbman_eq_cmd_respond_reject
192 };
193
194 void qbman_eq_desc_clear(struct qbman_eq_desc *d)
195 {
196         memset(d, 0, sizeof(*d));
197 }
198
199 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
200 {
201         uint32_t *cl = qb_cl(d);
202
203         qb_attr_code_encode(&code_eq_orp_en, cl, 0);
204         qb_attr_code_encode(&code_eq_cmd, cl,
205                             respond_success ? qbman_eq_cmd_respond :
206                                               qbman_eq_cmd_respond_reject);
207 }
208
209 void qbman_eq_desc_set_response(struct qbman_eq_desc *d,
210                                 dma_addr_t storage_phys,
211                                 int stash)
212 {
213         uint32_t *cl = qb_cl(d);
214
215         qb_attr_code_encode_64(&code_eq_rsp_lo, (uint64_t *)cl, storage_phys);
216         qb_attr_code_encode(&code_eq_rsp_stash, cl, !!stash);
217 }
218
219
220 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, uint32_t qdid,
221                           uint32_t qd_bin, uint32_t qd_prio)
222 {
223         uint32_t *cl = qb_cl(d);
224
225         qb_attr_code_encode(&code_eq_qd_en, cl, 1);
226         qb_attr_code_encode(&code_eq_tgt_id, cl, qdid);
227         qb_attr_code_encode(&code_eq_qd_bin, cl, qd_bin);
228         qb_attr_code_encode(&code_eq_qd_pri, cl, qd_prio);
229 }
230
231 #define EQAR_IDX(eqar)     ((eqar) & 0x7)
232 #define EQAR_VB(eqar)      ((eqar) & 0x80)
233 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
234
235 int qbman_swp_enqueue(struct qbman_swp *s, const struct qbman_eq_desc *d,
236                       const struct qbman_fd *fd)
237 {
238         uint32_t *p;
239         const uint32_t *cl = qb_cl(d);
240         uint32_t eqar = qbman_cinh_read(&s->sys, QBMAN_CINH_SWP_EQAR);
241         debug("EQAR=%08x\n", eqar);
242         if (!EQAR_SUCCESS(eqar))
243                 return -EBUSY;
244         p = qbman_cena_write_start(&s->sys,
245                                    QBMAN_CENA_SWP_EQCR(EQAR_IDX(eqar)));
246         word_copy(&p[1], &cl[1], 7);
247         word_copy(&p[8], fd, sizeof(*fd) >> 2);
248         lwsync();
249         /* Set the verb byte, have to substitute in the valid-bit */
250         p[0] = cl[0] | EQAR_VB(eqar);
251         qbman_cena_write_complete(&s->sys,
252                                   QBMAN_CENA_SWP_EQCR(EQAR_IDX(eqar)),
253                                   p);
254         return 0;
255 }
256
257 /***************************/
258 /* Volatile (pull) dequeue */
259 /***************************/
260
261 /* These should be const, eventually */
262 static struct qb_attr_code code_pull_dct = QB_CODE(0, 0, 2);
263 static struct qb_attr_code code_pull_dt = QB_CODE(0, 2, 2);
264 static struct qb_attr_code code_pull_rls = QB_CODE(0, 4, 1);
265 static struct qb_attr_code code_pull_stash = QB_CODE(0, 5, 1);
266 static struct qb_attr_code code_pull_numframes = QB_CODE(0, 8, 4);
267 static struct qb_attr_code code_pull_token = QB_CODE(0, 16, 8);
268 static struct qb_attr_code code_pull_dqsource = QB_CODE(1, 0, 24);
269 static struct qb_attr_code code_pull_rsp_lo = QB_CODE(2, 0, 32);
270
271 enum qb_pull_dt_e {
272         qb_pull_dt_channel,
273         qb_pull_dt_workqueue,
274         qb_pull_dt_framequeue
275 };
276
277 void qbman_pull_desc_clear(struct qbman_pull_desc *d)
278 {
279         memset(d, 0, sizeof(*d));
280 }
281
282 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
283                                  struct ldpaa_dq *storage,
284                                  dma_addr_t storage_phys,
285                                  int stash)
286 {
287         uint32_t *cl = qb_cl(d);
288
289         /* Squiggle the pointer 'storage' into the extra 2 words of the
290          * descriptor (which aren't copied to the hw command) */
291         *(void **)&cl[4] = storage;
292         if (!storage) {
293                 qb_attr_code_encode(&code_pull_rls, cl, 0);
294                 return;
295         }
296         qb_attr_code_encode(&code_pull_rls, cl, 1);
297         qb_attr_code_encode(&code_pull_stash, cl, !!stash);
298         qb_attr_code_encode_64(&code_pull_rsp_lo, (uint64_t *)cl, storage_phys);
299 }
300
301 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, uint8_t numframes)
302 {
303         uint32_t *cl = qb_cl(d);
304
305         BUG_ON(!numframes || (numframes > 16));
306         qb_attr_code_encode(&code_pull_numframes, cl,
307                             (uint32_t)(numframes - 1));
308 }
309
310 void qbman_pull_desc_set_token(struct qbman_pull_desc *d, uint8_t token)
311 {
312         uint32_t *cl = qb_cl(d);
313
314         qb_attr_code_encode(&code_pull_token, cl, token);
315 }
316
317 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, uint32_t fqid)
318 {
319         uint32_t *cl = qb_cl(d);
320
321         qb_attr_code_encode(&code_pull_dct, cl, 1);
322         qb_attr_code_encode(&code_pull_dt, cl, qb_pull_dt_framequeue);
323         qb_attr_code_encode(&code_pull_dqsource, cl, fqid);
324 }
325
326 int qbman_swp_pull(struct qbman_swp *s, struct qbman_pull_desc *d)
327 {
328         uint32_t *p;
329         uint32_t *cl = qb_cl(d);
330
331         if (!atomic_dec_and_test(&s->vdq.busy)) {
332                 atomic_inc(&s->vdq.busy);
333                 return -EBUSY;
334         }
335         s->vdq.storage = *(void **)&cl[4];
336         s->vdq.token = qb_attr_code_decode(&code_pull_token, cl);
337         p = qbman_cena_write_start(&s->sys, QBMAN_CENA_SWP_VDQCR);
338         word_copy(&p[1], &cl[1], 3);
339         lwsync();
340         /* Set the verb byte, have to substitute in the valid-bit */
341         p[0] = cl[0] | s->vdq.valid_bit;
342         s->vdq.valid_bit ^= QB_VALID_BIT;
343         qbman_cena_write_complete(&s->sys, QBMAN_CENA_SWP_VDQCR, p);
344         return 0;
345 }
346
347 /****************/
348 /* Polling DQRR */
349 /****************/
350
351 static struct qb_attr_code code_dqrr_verb = QB_CODE(0, 0, 8);
352 static struct qb_attr_code code_dqrr_response = QB_CODE(0, 0, 7);
353 static struct qb_attr_code code_dqrr_stat = QB_CODE(0, 8, 8);
354
355 #define QBMAN_DQRR_RESPONSE_DQ        0x60
356 #define QBMAN_DQRR_RESPONSE_FQRN      0x21
357 #define QBMAN_DQRR_RESPONSE_FQRNI     0x22
358 #define QBMAN_DQRR_RESPONSE_FQPN      0x24
359 #define QBMAN_DQRR_RESPONSE_FQDAN     0x25
360 #define QBMAN_DQRR_RESPONSE_CDAN      0x26
361 #define QBMAN_DQRR_RESPONSE_CSCN_MEM  0x27
362 #define QBMAN_DQRR_RESPONSE_CGCU      0x28
363 #define QBMAN_DQRR_RESPONSE_BPSCN     0x29
364 #define QBMAN_DQRR_RESPONSE_CSCN_WQ   0x2a
365
366
367 /* NULL return if there are no unconsumed DQRR entries. Returns a DQRR entry
368  * only once, so repeated calls can return a sequence of DQRR entries, without
369  * requiring they be consumed immediately or in any particular order. */
370 const struct ldpaa_dq *qbman_swp_dqrr_next(struct qbman_swp *s)
371 {
372         uint32_t verb;
373         uint32_t response_verb;
374         uint32_t flags;
375         const struct ldpaa_dq *dq;
376         const uint32_t *p;
377
378         dq = qbman_cena_read(&s->sys, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
379         p = qb_cl(dq);
380         verb = qb_attr_code_decode(&code_dqrr_verb, p);
381
382         /* If the valid-bit isn't of the expected polarity, nothing there. Note,
383          * in the DQRR reset bug workaround, we shouldn't need to skip these
384          * check, because we've already determined that a new entry is available
385          * and we've invalidated the cacheline before reading it, so the
386          * valid-bit behaviour is repaired and should tell us what we already
387          * knew from reading PI.
388          */
389         if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
390                 qbman_cena_invalidate_prefetch(&s->sys,
391                                         QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
392                 return NULL;
393         }
394         /* There's something there. Move "next_idx" attention to the next ring
395          * entry (and prefetch it) before returning what we found. */
396         s->dqrr.next_idx++;
397         s->dqrr.next_idx &= s->dqrr.dqrr_size - 1;/* Wrap around at dqrr_size */
398         /* TODO: it's possible to do all this without conditionals, optimise it
399          * later. */
400         if (!s->dqrr.next_idx)
401                 s->dqrr.valid_bit ^= QB_VALID_BIT;
402
403         /* If this is the final response to a volatile dequeue command
404            indicate that the vdq is no longer busy */
405         flags = ldpaa_dq_flags(dq);
406         response_verb = qb_attr_code_decode(&code_dqrr_response, &verb);
407         if ((response_verb == QBMAN_DQRR_RESPONSE_DQ) &&
408             (flags & LDPAA_DQ_STAT_VOLATILE) &&
409             (flags & LDPAA_DQ_STAT_EXPIRED))
410                         atomic_inc(&s->vdq.busy);
411
412         qbman_cena_invalidate_prefetch(&s->sys,
413                                        QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
414         return dq;
415 }
416
417 /* Consume DQRR entries previously returned from qbman_swp_dqrr_next(). */
418 void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct ldpaa_dq *dq)
419 {
420         qbman_cinh_write(&s->sys, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
421 }
422
423 /*********************************/
424 /* Polling user-provided storage */
425 /*********************************/
426
427 void qbman_dq_entry_set_oldtoken(struct ldpaa_dq *dq,
428                                  unsigned int num_entries,
429                                  uint8_t oldtoken)
430 {
431         memset(dq, oldtoken, num_entries * sizeof(*dq));
432 }
433
434 int qbman_dq_entry_has_newtoken(struct qbman_swp *s,
435                                 const struct ldpaa_dq *dq,
436                                 uint8_t newtoken)
437 {
438         /* To avoid converting the little-endian DQ entry to host-endian prior
439          * to us knowing whether there is a valid entry or not (and run the
440          * risk of corrupting the incoming hardware LE write), we detect in
441          * hardware endianness rather than host. This means we need a different
442          * "code" depending on whether we are BE or LE in software, which is
443          * where DQRR_TOK_OFFSET comes in... */
444         static struct qb_attr_code code_dqrr_tok_detect =
445                                         QB_CODE(0, DQRR_TOK_OFFSET, 8);
446         /* The user trying to poll for a result treats "dq" as const. It is
447          * however the same address that was provided to us non-const in the
448          * first place, for directing hardware DMA to. So we can cast away the
449          * const because it is mutable from our perspective. */
450         uint32_t *p = qb_cl((struct ldpaa_dq *)dq);
451         uint32_t token;
452
453         token = qb_attr_code_decode(&code_dqrr_tok_detect, &p[1]);
454         if (token != newtoken)
455                 return 0;
456
457         /* Only now do we convert from hardware to host endianness. Also, as we
458          * are returning success, the user has promised not to call us again, so
459          * there's no risk of us converting the endianness twice... */
460         make_le32_n(p, 16);
461
462         /* VDQCR "no longer busy" hook - not quite the same as DQRR, because the
463          * fact "VDQCR" shows busy doesn't mean that the result we're looking at
464          * is from the same command. Eg. we may be looking at our 10th dequeue
465          * result from our first VDQCR command, yet the second dequeue command
466          * could have been kicked off already, after seeing the 1st result. Ie.
467          * the result we're looking at is not necessarily proof that we can
468          * reset "busy".  We instead base the decision on whether the current
469          * result is sitting at the first 'storage' location of the busy
470          * command. */
471         if (s->vdq.storage == dq) {
472                 s->vdq.storage = NULL;
473                         atomic_inc(&s->vdq.busy);
474         }
475         return 1;
476 }
477
478 /********************************/
479 /* Categorising dequeue entries */
480 /********************************/
481
482 static inline int __qbman_dq_entry_is_x(const struct ldpaa_dq *dq, uint32_t x)
483 {
484         const uint32_t *p = qb_cl(dq);
485         uint32_t response_verb = qb_attr_code_decode(&code_dqrr_response, p);
486
487         return response_verb == x;
488 }
489
490 int qbman_dq_entry_is_DQ(const struct ldpaa_dq *dq)
491 {
492         return __qbman_dq_entry_is_x(dq, QBMAN_DQRR_RESPONSE_DQ);
493 }
494
495 /*********************************/
496 /* Parsing frame dequeue results */
497 /*********************************/
498
499 /* These APIs assume qbman_dq_entry_is_DQ() is TRUE */
500
501 uint32_t ldpaa_dq_flags(const struct ldpaa_dq *dq)
502 {
503         const uint32_t *p = qb_cl(dq);
504
505         return qb_attr_code_decode(&code_dqrr_stat, p);
506 }
507
508 const struct dpaa_fd *ldpaa_dq_fd(const struct ldpaa_dq *dq)
509 {
510         const uint32_t *p = qb_cl(dq);
511
512         return (const struct dpaa_fd *)&p[8];
513 }
514
515 /******************/
516 /* Buffer release */
517 /******************/
518
519 /* These should be const, eventually */
520 /* static struct qb_attr_code code_release_num = QB_CODE(0, 0, 3); */
521 static struct qb_attr_code code_release_set_me = QB_CODE(0, 5, 1);
522 static struct qb_attr_code code_release_bpid = QB_CODE(0, 16, 16);
523
524 void qbman_release_desc_clear(struct qbman_release_desc *d)
525 {
526         uint32_t *cl;
527
528         memset(d, 0, sizeof(*d));
529         cl = qb_cl(d);
530         qb_attr_code_encode(&code_release_set_me, cl, 1);
531 }
532
533 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, uint32_t bpid)
534 {
535         uint32_t *cl = qb_cl(d);
536
537         qb_attr_code_encode(&code_release_bpid, cl, bpid);
538 }
539
540 #define RAR_IDX(rar)     ((rar) & 0x7)
541 #define RAR_VB(rar)      ((rar) & 0x80)
542 #define RAR_SUCCESS(rar) ((rar) & 0x100)
543
544 int qbman_swp_release(struct qbman_swp *s, const struct qbman_release_desc *d,
545                       const uint64_t *buffers, unsigned int num_buffers)
546 {
547         uint32_t *p;
548         const uint32_t *cl = qb_cl(d);
549         uint32_t rar = qbman_cinh_read(&s->sys, QBMAN_CINH_SWP_RAR);
550         debug("RAR=%08x\n", rar);
551         if (!RAR_SUCCESS(rar))
552                 return -EBUSY;
553         BUG_ON(!num_buffers || (num_buffers > 7));
554         /* Start the release command */
555         p = qbman_cena_write_start(&s->sys,
556                                    QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
557         /* Copy the caller's buffer pointers to the command */
558         u64_to_le32_copy(&p[2], buffers, num_buffers);
559         lwsync();
560         /* Set the verb byte, have to substitute in the valid-bit and the number
561          * of buffers. */
562         p[0] = cl[0] | RAR_VB(rar) | num_buffers;
563         qbman_cena_write_complete(&s->sys,
564                                   QBMAN_CENA_SWP_RCR(RAR_IDX(rar)),
565                                   p);
566         return 0;
567 }
568
569 /*******************/
570 /* Buffer acquires */
571 /*******************/
572
573 /* These should be const, eventually */
574 static struct qb_attr_code code_acquire_bpid = QB_CODE(0, 16, 16);
575 static struct qb_attr_code code_acquire_num = QB_CODE(1, 0, 3);
576 static struct qb_attr_code code_acquire_r_num = QB_CODE(1, 0, 3);
577
578 int qbman_swp_acquire(struct qbman_swp *s, uint32_t bpid, uint64_t *buffers,
579                       unsigned int num_buffers)
580 {
581         uint32_t *p;
582         uint32_t verb, rslt, num;
583
584         BUG_ON(!num_buffers || (num_buffers > 7));
585
586         /* Start the management command */
587         p = qbman_swp_mc_start(s);
588
589         if (!p)
590                 return -EBUSY;
591
592         /* Encode the caller-provided attributes */
593         qb_attr_code_encode(&code_acquire_bpid, p, bpid);
594         qb_attr_code_encode(&code_acquire_num, p, num_buffers);
595
596         /* Complete the management command */
597         p = qbman_swp_mc_complete(s, p, p[0] | QBMAN_MC_ACQUIRE);
598
599         /* Decode the outcome */
600         verb = qb_attr_code_decode(&code_generic_verb, p);
601         rslt = qb_attr_code_decode(&code_generic_rslt, p);
602         num = qb_attr_code_decode(&code_acquire_r_num, p);
603         BUG_ON(verb != QBMAN_MC_ACQUIRE);
604
605         /* Determine success or failure */
606         if (unlikely(rslt != QBMAN_MC_RSLT_OK)) {
607                 printf("Acquire buffers from BPID 0x%x failed, code=0x%02x\n",
608                        bpid, rslt);
609                 return -EIO;
610         }
611         BUG_ON(num > num_buffers);
612         /* Copy the acquired buffers to the caller's array */
613         u64_from_le32_copy(buffers, &p[2], num);
614         return (int)num;
615 }