]> git.sur5r.net Git - u-boot/blob - drivers/net/pfe_eth/pfe_hw.c
12bb0da9b9f587e538b10c14f41e41c60952a655
[u-boot] / drivers / net / pfe_eth / pfe_hw.c
1 /*
2  * Copyright 2015-2016 Freescale Semiconductor, Inc.
3  * Copyright 2017 NXP
4  *
5  * SPDX-License-Identifier:GPL-2.0+
6  */
7 #include <net/pfe_eth/pfe_eth.h>
8 #include <net/pfe_eth/pfe/pfe_hw.h>
9
10 static struct pe_info pe[MAX_PE];
11
12 /*
13  * Initializes the PFE library.
14  * Must be called before using any of the library functions.
15  */
16 void pfe_lib_init(void)
17 {
18         int pfe_pe_id;
19
20         for (pfe_pe_id = CLASS0_ID; pfe_pe_id <= CLASS_MAX_ID; pfe_pe_id++) {
21                 pe[pfe_pe_id].dmem_base_addr =
22                         (u32)CLASS_DMEM_BASE_ADDR(pfe_pe_id);
23                 pe[pfe_pe_id].pmem_base_addr =
24                         (u32)CLASS_IMEM_BASE_ADDR(pfe_pe_id);
25                 pe[pfe_pe_id].pmem_size = (u32)CLASS_IMEM_SIZE;
26                 pe[pfe_pe_id].mem_access_wdata =
27                         (void *)CLASS_MEM_ACCESS_WDATA;
28                 pe[pfe_pe_id].mem_access_addr = (void *)CLASS_MEM_ACCESS_ADDR;
29                 pe[pfe_pe_id].mem_access_rdata = (void *)CLASS_MEM_ACCESS_RDATA;
30         }
31
32         for (pfe_pe_id = TMU0_ID; pfe_pe_id <= TMU_MAX_ID; pfe_pe_id++) {
33                 if (pfe_pe_id == TMU2_ID)
34                         continue;
35                 pe[pfe_pe_id].dmem_base_addr =
36                         (u32)TMU_DMEM_BASE_ADDR(pfe_pe_id - TMU0_ID);
37                 pe[pfe_pe_id].pmem_base_addr =
38                         (u32)TMU_IMEM_BASE_ADDR(pfe_pe_id - TMU0_ID);
39                 pe[pfe_pe_id].pmem_size = (u32)TMU_IMEM_SIZE;
40                 pe[pfe_pe_id].mem_access_wdata = (void *)TMU_MEM_ACCESS_WDATA;
41                 pe[pfe_pe_id].mem_access_addr = (void *)TMU_MEM_ACCESS_ADDR;
42                 pe[pfe_pe_id].mem_access_rdata = (void *)TMU_MEM_ACCESS_RDATA;
43         }
44 }
45
46 /*
47  * Writes a buffer to PE internal memory from the host
48  * through indirect access registers.
49  *
50  * @param[in] id               PE identification (CLASS0_ID, ..., TMU0_ID,
51  *                              ..., UTIL_ID)
52  * @param[in] mem_access_addr   DMEM destination address (must be 32bit
53  *                              aligned)
54  * @param[in] src               Buffer source address
55  * @param[in] len               Number of bytes to copy
56  */
57 static void pe_mem_memcpy_to32(int id, u32 mem_access_addr, const void *src,
58                                unsigned int len)
59 {
60         u32 offset = 0, val, addr;
61         unsigned int len32 = len >> 2;
62         int i;
63
64         addr = mem_access_addr | PE_MEM_ACCESS_WRITE |
65                 PE_MEM_ACCESS_BYTE_ENABLE(0, 4);
66
67         for (i = 0; i < len32; i++, offset += 4, src += 4) {
68                 val = *(u32 *)src;
69                 writel(cpu_to_be32(val), pe[id].mem_access_wdata);
70                 writel(addr + offset, pe[id].mem_access_addr);
71         }
72
73         len = (len & 0x3);
74         if (len) {
75                 val = 0;
76
77                 addr = (mem_access_addr | PE_MEM_ACCESS_WRITE |
78                         PE_MEM_ACCESS_BYTE_ENABLE(0, len)) + offset;
79
80                 for (i = 0; i < len; i++, src++)
81                         val |= (*(u8 *)src) << (8 * i);
82
83                 writel(cpu_to_be32(val), pe[id].mem_access_wdata);
84                 writel(addr, pe[id].mem_access_addr);
85         }
86 }
87
88 /*
89  * Writes a buffer to PE internal data memory (DMEM) from the host
90  * through indirect access registers.
91  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID,
92  *                      ..., UTIL_ID)
93  * @param[in] dst       DMEM destination address (must be 32bit
94  *                      aligned)
95  * @param[in] src       Buffer source address
96  * @param[in] len       Number of bytes to copy
97  */
98 static void pe_dmem_memcpy_to32(int id, u32 dst, const void *src,
99                                 unsigned int len)
100 {
101         pe_mem_memcpy_to32(id, pe[id].dmem_base_addr | dst | PE_MEM_ACCESS_DMEM,
102                            src, len);
103 }
104
105 /*
106  * Writes a buffer to PE internal program memory (PMEM) from the host
107  * through indirect access registers.
108  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID,
109  *                      ..., TMU3_ID)
110  * @param[in] dst       PMEM destination address (must be 32bit
111  *                      aligned)
112  * @param[in] src       Buffer source address
113  * @param[in] len       Number of bytes to copy
114  */
115 static void pe_pmem_memcpy_to32(int id, u32 dst, const void *src,
116                                 unsigned int len)
117 {
118         pe_mem_memcpy_to32(id, pe[id].pmem_base_addr | (dst & (pe[id].pmem_size
119                                 - 1)) | PE_MEM_ACCESS_IMEM, src, len);
120 }
121
122 /*
123  * Reads PE internal program memory (IMEM) from the host
124  * through indirect access registers.
125  * @param[in] id                PE identification (CLASS0_ID, ..., TMU0_ID,
126  *                              ..., TMU3_ID)
127  * @param[in] addr              PMEM read address (must be aligned on size)
128  * @param[in] size              Number of bytes to read (maximum 4, must not
129  *                              cross 32bit boundaries)
130  * @return                      the data read (in PE endianness, i.e BE).
131  */
132 u32 pe_pmem_read(int id, u32 addr, u8 size)
133 {
134         u32 offset = addr & 0x3;
135         u32 mask = 0xffffffff >> ((4 - size) << 3);
136         u32 val;
137
138         addr = pe[id].pmem_base_addr | ((addr & ~0x3) & (pe[id].pmem_size - 1))
139                 | PE_MEM_ACCESS_READ | PE_MEM_ACCESS_IMEM |
140                 PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
141
142         writel(addr, pe[id].mem_access_addr);
143         val = be32_to_cpu(readl(pe[id].mem_access_rdata));
144
145         return (val >> (offset << 3)) & mask;
146 }
147
148 /*
149  * Writes PE internal data memory (DMEM) from the host
150  * through indirect access registers.
151  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID,
152  *                      ..., UTIL_ID)
153  * @param[in] val       Value to write (in PE endianness, i.e BE)
154  * @param[in] addr      DMEM write address (must be aligned on size)
155  * @param[in] size      Number of bytes to write (maximum 4, must not
156  *                      cross 32bit boundaries)
157  */
158 void pe_dmem_write(int id, u32 val, u32 addr, u8 size)
159 {
160         u32 offset = addr & 0x3;
161
162         addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_WRITE |
163                 PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
164
165         /* Indirect access interface is byte swapping data being written */
166         writel(cpu_to_be32(val << (offset << 3)), pe[id].mem_access_wdata);
167         writel(addr, pe[id].mem_access_addr);
168 }
169
170 /*
171  * Reads PE internal data memory (DMEM) from the host
172  * through indirect access registers.
173  * @param[in] id                PE identification (CLASS0_ID, ..., TMU0_ID,
174  *                              ..., UTIL_ID)
175  * @param[in] addr              DMEM read address (must be aligned on size)
176  * @param[in] size              Number of bytes to read (maximum 4, must not
177  *                              cross 32bit boundaries)
178  * @return                      the data read (in PE endianness, i.e BE).
179  */
180 u32 pe_dmem_read(int id, u32 addr, u8 size)
181 {
182         u32 offset = addr & 0x3;
183         u32 mask = 0xffffffff >> ((4 - size) << 3);
184         u32 val;
185
186         addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_READ |
187                 PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
188
189         writel(addr, pe[id].mem_access_addr);
190
191         /* Indirect access interface is byte swapping data being read */
192         val = be32_to_cpu(readl(pe[id].mem_access_rdata));
193
194         return (val >> (offset << 3)) & mask;
195 }
196
197 /*
198  * This function is used to write to CLASS internal bus peripherals (ccu,
199  * pe-lem) from the host
200  * through indirect access registers.
201  * @param[in]   val     value to write
202  * @param[in]   addr    Address to write to (must be aligned on size)
203  * @param[in]   size    Number of bytes to write (1, 2 or 4)
204  *
205  */
206 static void class_bus_write(u32 val, u32 addr, u8 size)
207 {
208         u32 offset = addr & 0x3;
209
210         writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);
211
212         addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | PE_MEM_ACCESS_WRITE |
213                 (size << 24);
214
215         writel(cpu_to_be32(val << (offset << 3)), CLASS_BUS_ACCESS_WDATA);
216         writel(addr, CLASS_BUS_ACCESS_ADDR);
217 }
218
219 /*
220  * Reads from CLASS internal bus peripherals (ccu, pe-lem) from the host
221  * through indirect access registers.
222  * @param[in] addr      Address to read from (must be aligned on size)
223  * @param[in] size      Number of bytes to read (1, 2 or 4)
224  * @return              the read data
225  */
226 static u32 class_bus_read(u32 addr, u8 size)
227 {
228         u32 offset = addr & 0x3;
229         u32 mask = 0xffffffff >> ((4 - size) << 3);
230         u32 val;
231
232         writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);
233
234         addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | (size << 24);
235
236         writel(addr, CLASS_BUS_ACCESS_ADDR);
237         val = be32_to_cpu(readl(CLASS_BUS_ACCESS_RDATA));
238
239         return (val >> (offset << 3)) & mask;
240 }
241
242 /*
243  * Writes data to the cluster memory (PE_LMEM)
244  * @param[in] dst       PE LMEM destination address (must be 32bit aligned)
245  * @param[in] src       Buffer source address
246  * @param[in] len       Number of bytes to copy
247  */
248 static void class_pe_lmem_memcpy_to32(u32 dst, const void *src,
249                                       unsigned int len)
250 {
251         u32 len32 = len >> 2;
252         int i;
253
254         for (i = 0; i < len32; i++, src += 4, dst += 4)
255                 class_bus_write(*(u32 *)src, dst, 4);
256
257         if (len & 0x2) {
258                 class_bus_write(*(u16 *)src, dst, 2);
259                 src += 2;
260                 dst += 2;
261         }
262
263         if (len & 0x1) {
264                 class_bus_write(*(u8 *)src, dst, 1);
265                 src++;
266                 dst++;
267         }
268 }
269
270 /*
271  * Writes value to the cluster memory (PE_LMEM)
272  * @param[in] dst       PE LMEM destination address (must be 32bit aligned)
273  * @param[in] val       Value to write
274  * @param[in] len       Number of bytes to write
275  */
276 static void class_pe_lmem_memset(u32 dst, int val, unsigned int len)
277 {
278         u32 len32 = len >> 2;
279         int i;
280
281         val = val | (val << 8) | (val << 16) | (val << 24);
282
283         for (i = 0; i < len32; i++, dst += 4)
284                 class_bus_write(val, dst, 4);
285
286         if (len & 0x2) {
287                 class_bus_write(val, dst, 2);
288                 dst += 2;
289         }
290
291         if (len & 0x1) {
292                 class_bus_write(val, dst, 1);
293                 dst++;
294         }
295 }
296
297 /*
298  * Reads data from the cluster memory (PE_LMEM)
299  * @param[out] dst      pointer to the source buffer data are copied to
300  * @param[in] len       length in bytes of the amount of data to read
301  *                      from cluster memory
302  * @param[in] offset    offset in bytes in the cluster memory where data are
303  *                      read from
304  */
305 void pe_lmem_read(u32 *dst, u32 len, u32 offset)
306 {
307         u32 len32 = len >> 2;
308         int i = 0;
309
310         for (i = 0; i < len32; dst++, i++, offset += 4)
311                 *dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, 4);
312
313         if (len & 0x03)
314                 *dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, (len & 0x03));
315 }
316
317 /*
318  * Writes data to the cluster memory (PE_LMEM)
319  * @param[in] src       pointer to the source buffer data are copied from
320  * @param[in] len       length in bytes of the amount of data to write to the
321  *                              cluster memory
322  * @param[in] offset    offset in bytes in the cluster memory where data are
323  *                              written to
324  */
325 void pe_lmem_write(u32 *src, u32 len, u32 offset)
326 {
327         u32 len32 = len >> 2;
328         int i = 0;
329
330         for (i = 0; i < len32; src++, i++, offset += 4)
331                 class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, 4);
332
333         if (len & 0x03)
334                 class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, (len &
335                                         0x03));
336 }
337
338 /*
339  * Loads an elf section into pmem
340  * Code needs to be at least 16bit aligned and only PROGBITS sections are
341  * supported
342  *
343  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID, ...,
344  *                                      TMU3_ID)
345  * @param[in] data      pointer to the elf firmware
346  * @param[in] shdr      pointer to the elf section header
347  */
348 static int pe_load_pmem_section(int id, const void *data, Elf32_Shdr *shdr)
349 {
350         u32 offset = be32_to_cpu(shdr->sh_offset);
351         u32 addr = be32_to_cpu(shdr->sh_addr);
352         u32 size = be32_to_cpu(shdr->sh_size);
353         u32 type = be32_to_cpu(shdr->sh_type);
354
355         if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
356                 printf(
357                         "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
358                         __func__, addr, (unsigned long)data + offset);
359
360                 return -1;
361         }
362
363         if (addr & 0x1) {
364                 printf("%s: load address(%x) is not 16bit aligned\n",
365                        __func__, addr);
366                 return -1;
367         }
368
369         if (size & 0x1) {
370                 printf("%s: load size(%x) is not 16bit aligned\n", __func__,
371                        size);
372                 return -1;
373         }
374
375                 debug("pmem pe%d @%x len %d\n", id, addr, size);
376         switch (type) {
377         case SHT_PROGBITS:
378                 pe_pmem_memcpy_to32(id, addr, data + offset, size);
379                 break;
380
381         default:
382                 printf("%s: unsupported section type(%x)\n", __func__, type);
383                 return -1;
384         }
385
386         return 0;
387 }
388
389 /*
390  * Loads an elf section into dmem
391  * Data needs to be at least 32bit aligned, NOBITS sections are correctly
392  * initialized to 0
393  *
394  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID,
395  *                      ..., UTIL_ID)
396  * @param[in] data      pointer to the elf firmware
397  * @param[in] shdr      pointer to the elf section header
398  */
399 static int pe_load_dmem_section(int id, const void *data, Elf32_Shdr *shdr)
400 {
401         u32 offset = be32_to_cpu(shdr->sh_offset);
402         u32 addr = be32_to_cpu(shdr->sh_addr);
403         u32 size = be32_to_cpu(shdr->sh_size);
404         u32 type = be32_to_cpu(shdr->sh_type);
405         u32 size32 = size >> 2;
406         int i;
407
408         if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
409                 printf(
410                         "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
411                         __func__, addr, (unsigned long)data + offset);
412
413                 return -1;
414         }
415
416         if (addr & 0x3) {
417                 printf("%s: load address(%x) is not 32bit aligned\n",
418                        __func__, addr);
419                 return -1;
420         }
421
422         switch (type) {
423         case SHT_PROGBITS:
424                 debug("dmem pe%d @%x len %d\n", id, addr, size);
425                 pe_dmem_memcpy_to32(id, addr, data + offset, size);
426                 break;
427
428         case SHT_NOBITS:
429                 debug("dmem zero pe%d @%x len %d\n", id, addr, size);
430                 for (i = 0; i < size32; i++, addr += 4)
431                         pe_dmem_write(id, 0, addr, 4);
432
433                 if (size & 0x3)
434                         pe_dmem_write(id, 0, addr, size & 0x3);
435
436                 break;
437
438         default:
439                 printf("%s: unsupported section type(%x)\n", __func__, type);
440                 return -1;
441         }
442
443         return 0;
444 }
445
446 /*
447  * Loads an elf section into DDR
448  * Data needs to be at least 32bit aligned, NOBITS sections are correctly
449  *              initialized to 0
450  *
451  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID,
452  *                      ..., UTIL_ID)
453  * @param[in] data      pointer to the elf firmware
454  * @param[in] shdr      pointer to the elf section header
455  */
456 static int pe_load_ddr_section(int id, const void *data, Elf32_Shdr *shdr)
457 {
458         u32 offset = be32_to_cpu(shdr->sh_offset);
459         u32 addr = be32_to_cpu(shdr->sh_addr);
460         u32 size = be32_to_cpu(shdr->sh_size);
461         u32 type = be32_to_cpu(shdr->sh_type);
462         u32 flags = be32_to_cpu(shdr->sh_flags);
463
464         switch (type) {
465         case SHT_PROGBITS:
466                 debug("ddr  pe%d @%x len %d\n", id, addr, size);
467                 if (flags & SHF_EXECINSTR) {
468                         if (id <= CLASS_MAX_ID) {
469                                 /* DO the loading only once in DDR */
470                                 if (id == CLASS0_ID) {
471                                         debug(
472                                                 "%s: load address(%x) and elf file address(%lx) rcvd\n"
473                                                 , __func__, addr,
474                                                 (unsigned long)data + offset);
475                                         if (((unsigned long)(data + offset)
476                                                 & 0x3) != (addr & 0x3)) {
477                                                 printf(
478                                                         "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
479                                                         __func__, addr,
480                                                         (unsigned long)data +
481                                                         offset);
482
483                                                 return -1;
484                                         }
485
486                                         if (addr & 0x1) {
487                                                 printf(
488                                                         "%s: load address(%x) is not 16bit aligned\n"
489                                                         , __func__, addr);
490                                                 return -1;
491                                         }
492
493                                         if (size & 0x1) {
494                                                 printf(
495                                                         "%s: load length(%x) is not 16bit aligned\n"
496                                                         , __func__, size);
497                                                 return -1;
498                                         }
499
500                                         memcpy((void *)DDR_PFE_TO_VIRT(addr),
501                                                data + offset, size);
502                                 }
503                         } else {
504                                 printf(
505                                         "%s: unsupported ddr section type(%x) for PE(%d)\n"
506                                         , __func__, type, id);
507                                 return -1;
508                         }
509
510                 } else {
511                         memcpy((void *)DDR_PFE_TO_VIRT(addr), data + offset,
512                                size);
513                 }
514
515                 break;
516
517         case SHT_NOBITS:
518                 debug("ddr zero pe%d @%x len %d\n", id, addr, size);
519                 memset((void *)DDR_PFE_TO_VIRT(addr), 0, size);
520
521                 break;
522
523         default:
524                 printf("%s: unsupported section type(%x)\n", __func__, type);
525                 return -1;
526         }
527
528         return 0;
529 }
530
531 /*
532  * Loads an elf section into pe lmem
533  * Data needs to be at least 32bit aligned, NOBITS sections are correctly
534  * initialized to 0
535  *
536  * @param[in] id        PE identification (CLASS0_ID,..., CLASS5_ID)
537  * @param[in] data      pointer to the elf firmware
538  * @param[in] shdr      pointer to the elf section header
539  */
540 static int pe_load_pe_lmem_section(int id, const void *data, Elf32_Shdr *shdr)
541 {
542         u32 offset = be32_to_cpu(shdr->sh_offset);
543         u32 addr = be32_to_cpu(shdr->sh_addr);
544         u32 size = be32_to_cpu(shdr->sh_size);
545         u32 type = be32_to_cpu(shdr->sh_type);
546
547         if (id > CLASS_MAX_ID) {
548                 printf("%s: unsupported pe-lmem section type(%x) for PE(%d)\n",
549                        __func__, type, id);
550                 return -1;
551         }
552
553         if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
554                 printf(
555                         "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
556                         __func__, addr, (unsigned long)data + offset);
557
558                 return -1;
559         }
560
561         if (addr & 0x3) {
562                 printf("%s: load address(%x) is not 32bit aligned\n",
563                        __func__, addr);
564                 return -1;
565         }
566
567         debug("lmem  pe%d @%x len %d\n", id, addr, size);
568
569         switch (type) {
570         case SHT_PROGBITS:
571                 class_pe_lmem_memcpy_to32(addr, data + offset, size);
572                 break;
573
574         case SHT_NOBITS:
575                 class_pe_lmem_memset(addr, 0, size);
576                 break;
577
578         default:
579                 printf("%s: unsupported section type(%x)\n", __func__, type);
580                 return -1;
581         }
582
583         return 0;
584 }
585
586 /*
587  * Loads an elf section into a PE
588  * For now only supports loading a section to dmem (all PE's), pmem (class and
589  * tmu PE's), DDDR (util PE code)
590  * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
591  * ..., UTIL_ID)
592  * @param[in] data      pointer to the elf firmware
593  * @param[in] shdr      pointer to the elf section header
594  */
595 int pe_load_elf_section(int id, const void *data, Elf32_Shdr *shdr)
596 {
597         u32 addr = be32_to_cpu(shdr->sh_addr);
598         u32 size = be32_to_cpu(shdr->sh_size);
599
600         if (IS_DMEM(addr, size))
601                 return pe_load_dmem_section(id, data, shdr);
602         else if (IS_PMEM(addr, size))
603                 return pe_load_pmem_section(id, data, shdr);
604         else if (IS_PFE_LMEM(addr, size))
605                 return 0;
606         else if (IS_PHYS_DDR(addr, size))
607                 return pe_load_ddr_section(id, data, shdr);
608         else if (IS_PE_LMEM(addr, size))
609                 return pe_load_pe_lmem_section(id, data, shdr);
610
611         printf("%s: unsupported memory range(%x)\n", __func__, addr);
612
613         return 0;
614 }
615
616 /**************************** BMU ***************************/
617 /*
618  * Resets a BMU block.
619  * @param[in] base      BMU block base address
620  */
621 static inline void bmu_reset(void *base)
622 {
623         writel(CORE_SW_RESET, base + BMU_CTRL);
624
625         /* Wait for self clear */
626         while (readl(base + BMU_CTRL) & CORE_SW_RESET)
627                 ;
628 }
629
630 /*
631  * Enabled a BMU block.
632  * @param[in] base      BMU block base address
633  */
634 void bmu_enable(void *base)
635 {
636         writel(CORE_ENABLE, base + BMU_CTRL);
637 }
638
639 /*
640  * Disables a BMU block.
641  * @param[in] base      BMU block base address
642  */
643 static inline void bmu_disable(void *base)
644 {
645         writel(CORE_DISABLE, base + BMU_CTRL);
646 }
647
648 /*
649  * Sets the configuration of a BMU block.
650  * @param[in] base      BMU block base address
651  * @param[in] cfg       BMU configuration
652  */
653 static inline void bmu_set_config(void *base, struct bmu_cfg *cfg)
654 {
655         writel(cfg->baseaddr, base + BMU_UCAST_BASE_ADDR);
656         writel(cfg->count & 0xffff, base + BMU_UCAST_CONFIG);
657         writel(cfg->size & 0xffff, base + BMU_BUF_SIZE);
658
659         /* Interrupts are never used */
660         writel(0x0, base + BMU_INT_ENABLE);
661 }
662
663 /*
664  * Initializes a BMU block.
665  * @param[in] base      BMU block base address
666  * @param[in] cfg       BMU configuration
667  */
668 void bmu_init(void *base, struct bmu_cfg *cfg)
669 {
670         bmu_disable(base);
671
672         bmu_set_config(base, cfg);
673
674         bmu_reset(base);
675 }
676
677 /**************************** GPI ***************************/
678 /*
679  * Resets a GPI block.
680  * @param[in] base      GPI base address
681  */
682 static inline void gpi_reset(void *base)
683 {
684         writel(CORE_SW_RESET, base + GPI_CTRL);
685 }
686
687 /*
688  * Enables a GPI block.
689  * @param[in] base      GPI base address
690  */
691 void gpi_enable(void *base)
692 {
693         writel(CORE_ENABLE, base + GPI_CTRL);
694 }
695
696 /*
697  * Disables a GPI block.
698  * @param[in] base      GPI base address
699  */
700 void gpi_disable(void *base)
701 {
702         writel(CORE_DISABLE, base + GPI_CTRL);
703 }
704
705 /*
706  * Sets the configuration of a GPI block.
707  * @param[in] base      GPI base address
708  * @param[in] cfg       GPI configuration
709  */
710 static inline void gpi_set_config(void *base, struct gpi_cfg *cfg)
711 {
712         writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_ALLOC_CTRL), base
713                + GPI_LMEM_ALLOC_ADDR);
714         writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_FREE_CTRL), base
715                + GPI_LMEM_FREE_ADDR);
716         writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_ALLOC_CTRL), base
717                + GPI_DDR_ALLOC_ADDR);
718         writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL), base
719                + GPI_DDR_FREE_ADDR);
720         writel(CBUS_VIRT_TO_PFE(CLASS_INQ_PKTPTR), base + GPI_CLASS_ADDR);
721         writel(DDR_HDR_SIZE, base + GPI_DDR_DATA_OFFSET);
722         writel(LMEM_HDR_SIZE, base + GPI_LMEM_DATA_OFFSET);
723         writel(0, base + GPI_LMEM_SEC_BUF_DATA_OFFSET);
724         writel(0, base + GPI_DDR_SEC_BUF_DATA_OFFSET);
725         writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, base + GPI_HDR_SIZE);
726         writel((DDR_BUF_SIZE << 16) | LMEM_BUF_SIZE, base + GPI_BUF_SIZE);
727
728         writel(((cfg->lmem_rtry_cnt << 16) | (GPI_DDR_BUF_EN << 1) |
729                 GPI_LMEM_BUF_EN), base + GPI_RX_CONFIG);
730         writel(cfg->tmlf_txthres, base + GPI_TMLF_TX);
731         writel(cfg->aseq_len, base + GPI_DTX_ASEQ);
732
733         /*Make GPI AXI transactions non-bufferable */
734         writel(0x1, base + GPI_AXI_CTRL);
735 }
736
737 /*
738  * Initializes a GPI block.
739  * @param[in] base      GPI base address
740  * @param[in] cfg       GPI configuration
741  */
742 void gpi_init(void *base, struct gpi_cfg *cfg)
743 {
744         gpi_reset(base);
745
746         gpi_disable(base);
747
748         gpi_set_config(base, cfg);
749 }
750
751 /**************************** CLASSIFIER ***************************/
752 /*
753  * Resets CLASSIFIER block.
754  */
755 static inline void class_reset(void)
756 {
757         writel(CORE_SW_RESET, CLASS_TX_CTRL);
758 }
759
760 /*
761  * Enables all CLASS-PE's cores.
762  */
763 void class_enable(void)
764 {
765         writel(CORE_ENABLE, CLASS_TX_CTRL);
766 }
767
768 /*
769  * Disables all CLASS-PE's cores.
770  */
771 void class_disable(void)
772 {
773         writel(CORE_DISABLE, CLASS_TX_CTRL);
774 }
775
776 /*
777  * Sets the configuration of the CLASSIFIER block.
778  * @param[in] cfg       CLASSIFIER configuration
779  */
780 static inline void class_set_config(struct class_cfg *cfg)
781 {
782         if (PLL_CLK_EN == 0) {
783                 /* Clock ratio: for 1:1 the value is 0 */
784                 writel(0x0, CLASS_PE_SYS_CLK_RATIO);
785         } else {
786                 /* Clock ratio: for 1:2 the value is 1 */
787                 writel(0x1, CLASS_PE_SYS_CLK_RATIO);
788         }
789         writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, CLASS_HDR_SIZE);
790         writel(LMEM_BUF_SIZE, CLASS_LMEM_BUF_SIZE);
791         writel(CLASS_ROUTE_ENTRY_SIZE(CLASS_ROUTE_SIZE) |
792                 CLASS_ROUTE_HASH_SIZE(cfg->route_table_hash_bits),
793                 CLASS_ROUTE_HASH_ENTRY_SIZE);
794         writel(HASH_CRC_PORT_IP | QB2BUS_LE, CLASS_ROUTE_MULTI);
795
796         writel(cfg->route_table_baseaddr, CLASS_ROUTE_TABLE_BASE);
797         memset((void *)DDR_PFE_TO_VIRT(cfg->route_table_baseaddr), 0,
798                ROUTE_TABLE_SIZE);
799
800         writel(CLASS_PE0_RO_DM_ADDR0_VAL, CLASS_PE0_RO_DM_ADDR0);
801         writel(CLASS_PE0_RO_DM_ADDR1_VAL, CLASS_PE0_RO_DM_ADDR1);
802         writel(CLASS_PE0_QB_DM_ADDR0_VAL, CLASS_PE0_QB_DM_ADDR0);
803         writel(CLASS_PE0_QB_DM_ADDR1_VAL, CLASS_PE0_QB_DM_ADDR1);
804         writel(CBUS_VIRT_TO_PFE(TMU_PHY_INQ_PKTPTR), CLASS_TM_INQ_ADDR);
805
806         writel(23, CLASS_AFULL_THRES);
807         writel(23, CLASS_TSQ_FIFO_THRES);
808
809         writel(24, CLASS_MAX_BUF_CNT);
810         writel(24, CLASS_TSQ_MAX_CNT);
811
812         /*Make Class AXI transactions non-bufferable */
813         writel(0x1, CLASS_AXI_CTRL);
814
815         /*Make Util AXI transactions non-bufferable */
816         /*Util is disabled in U-boot, do it from here */
817         writel(0x1, UTIL_AXI_CTRL);
818 }
819
820 /*
821  * Initializes CLASSIFIER block.
822  * @param[in] cfg       CLASSIFIER configuration
823  */
824 void class_init(struct class_cfg *cfg)
825 {
826         class_reset();
827
828         class_disable();
829
830         class_set_config(cfg);
831 }
832
833 /**************************** TMU ***************************/
834 /*
835  * Enables TMU-PE cores.
836  * @param[in] pe_mask   TMU PE mask
837  */
838 void tmu_enable(u32 pe_mask)
839 {
840         writel(readl(TMU_TX_CTRL) | (pe_mask & 0xF), TMU_TX_CTRL);
841 }
842
843 /*
844  * Disables TMU cores.
845  * @param[in] pe_mask   TMU PE mask
846  */
847 void tmu_disable(u32 pe_mask)
848 {
849         writel(readl(TMU_TX_CTRL) & ~(pe_mask & 0xF), TMU_TX_CTRL);
850 }
851
852 /*
853  * Initializes TMU block.
854  * @param[in] cfg       TMU configuration
855  */
856 void tmu_init(struct tmu_cfg *cfg)
857 {
858         int q, phyno;
859
860         /* keep in soft reset */
861         writel(SW_RESET, TMU_CTRL);
862
863         /*Make Class AXI transactions non-bufferable */
864         writel(0x1, TMU_AXI_CTRL);
865
866         /* enable EMAC PHY ports */
867         writel(0x3, TMU_SYS_GENERIC_CONTROL);
868
869         writel(750, TMU_INQ_WATERMARK);
870
871         writel(CBUS_VIRT_TO_PFE(EGPI1_BASE_ADDR + GPI_INQ_PKTPTR),
872                TMU_PHY0_INQ_ADDR);
873         writel(CBUS_VIRT_TO_PFE(EGPI2_BASE_ADDR + GPI_INQ_PKTPTR),
874                TMU_PHY1_INQ_ADDR);
875
876         writel(CBUS_VIRT_TO_PFE(HGPI_BASE_ADDR + GPI_INQ_PKTPTR),
877                TMU_PHY3_INQ_ADDR);
878         writel(CBUS_VIRT_TO_PFE(HIF_NOCPY_RX_INQ0_PKTPTR), TMU_PHY4_INQ_ADDR);
879         writel(CBUS_VIRT_TO_PFE(UTIL_INQ_PKTPTR), TMU_PHY5_INQ_ADDR);
880         writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL),
881                TMU_BMU_INQ_ADDR);
882
883         /* enabling all 10 schedulers [9:0] of each TDQ  */
884         writel(0x3FF, TMU_TDQ0_SCH_CTRL);
885         writel(0x3FF, TMU_TDQ1_SCH_CTRL);
886         writel(0x3FF, TMU_TDQ3_SCH_CTRL);
887
888         if (PLL_CLK_EN == 0) {
889                 /* Clock ratio: for 1:1 the value is 0 */
890                 writel(0x0, TMU_PE_SYS_CLK_RATIO);
891         } else {
892                 /* Clock ratio: for 1:2 the value is 1 */
893                 writel(0x1, TMU_PE_SYS_CLK_RATIO);
894         }
895
896         /* Extra packet pointers will be stored from this address onwards */
897         debug("TMU_LLM_BASE_ADDR %x\n", cfg->llm_base_addr);
898         writel(cfg->llm_base_addr, TMU_LLM_BASE_ADDR);
899
900         debug("TMU_LLM_QUE_LEN %x\n", cfg->llm_queue_len);
901         writel(cfg->llm_queue_len,      TMU_LLM_QUE_LEN);
902
903         writel(5, TMU_TDQ_IIFG_CFG);
904         writel(DDR_BUF_SIZE, TMU_BMU_BUF_SIZE);
905
906         writel(0x0, TMU_CTRL);
907
908         /* MEM init */
909         writel(MEM_INIT, TMU_CTRL);
910
911         while (!(readl(TMU_CTRL) & MEM_INIT_DONE))
912                 ;
913
914         /* LLM init */
915         writel(LLM_INIT, TMU_CTRL);
916
917         while (!(readl(TMU_CTRL) & LLM_INIT_DONE))
918                 ;
919
920         /* set up each queue for tail drop */
921         for (phyno = 0; phyno < 4; phyno++) {
922                 if (phyno == 2)
923                         continue;
924                 for (q = 0; q < 16; q++) {
925                         u32 qmax;
926
927                         writel((phyno << 8) | q, TMU_TEQ_CTRL);
928                         writel(BIT(22), TMU_TEQ_QCFG);
929
930                         if (phyno == 3)
931                                 qmax = DEFAULT_TMU3_QDEPTH;
932                         else
933                                 qmax = (q == 0) ? DEFAULT_Q0_QDEPTH :
934                                         DEFAULT_MAX_QDEPTH;
935
936                         writel(qmax << 18, TMU_TEQ_HW_PROB_CFG2);
937                         writel(qmax >> 14, TMU_TEQ_HW_PROB_CFG3);
938                 }
939         }
940         writel(0x05, TMU_TEQ_DISABLE_DROPCHK);
941         writel(0, TMU_CTRL);
942 }
943
944 /**************************** HIF ***************************/
945 /*
946  * Enable hif tx DMA and interrupt
947  */
948 void hif_tx_enable(void)
949 {
950         writel(HIF_CTRL_DMA_EN, HIF_TX_CTRL);
951 }
952
953 /*
954  * Disable hif tx DMA and interrupt
955  */
956 void hif_tx_disable(void)
957 {
958         u32 hif_int;
959
960         writel(0, HIF_TX_CTRL);
961
962         hif_int = readl(HIF_INT_ENABLE);
963         hif_int &= HIF_TXPKT_INT_EN;
964         writel(hif_int, HIF_INT_ENABLE);
965 }
966
967 /*
968  * Enable hif rx DMA and interrupt
969  */
970 void hif_rx_enable(void)
971 {
972         writel((HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB), HIF_RX_CTRL);
973 }
974
975 /*
976  * Disable hif rx DMA and interrupt
977  */
978 void hif_rx_disable(void)
979 {
980         u32 hif_int;
981
982         writel(0, HIF_RX_CTRL);
983
984         hif_int = readl(HIF_INT_ENABLE);
985         hif_int &= HIF_RXPKT_INT_EN;
986         writel(hif_int, HIF_INT_ENABLE);
987 }
988
989 /*
990  * Initializes HIF copy block.
991  */
992 void hif_init(void)
993 {
994         /* Initialize HIF registers */
995         writel(HIF_RX_POLL_CTRL_CYCLE << 16 | HIF_TX_POLL_CTRL_CYCLE,
996                HIF_POLL_CTRL);
997         /* Make HIF AXI transactions non-bufferable */
998         writel(0x1, HIF_AXI_CTRL);
999 }