]> git.sur5r.net Git - u-boot/blobdiff - fs/zfs/zfs.c
zfs: Add ZFS filesystem support
[u-boot] / fs / zfs / zfs.c
diff --git a/fs/zfs/zfs.c b/fs/zfs/zfs.c
new file mode 100644 (file)
index 0000000..360f723
--- /dev/null
@@ -0,0 +1,2395 @@
+/*
+ *
+ * ZFS filesystem ported to u-boot by
+ * Jorgen Lundman <lundman at lundman.net>
+ *
+ *     GRUB  --  GRand Unified Bootloader
+ *     Copyright (C) 1999,2000,2001,2002,2003,2004
+ *     Free Software Foundation, Inc.
+ *     Copyright 2004  Sun Microsystems, Inc.
+ *
+ *     GRUB is free software; you can redistribute it and/or modify
+ *     it under the terms of the GNU General Public License as published by
+ *     the Free Software Foundation; either version 2 of the License, or
+ *     (at your option) any later version.
+ *
+ *     GRUB is distributed in the hope that it will be useful,
+ *     but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *     GNU General Public License for more details.
+ *
+ *     You should have received a copy of the GNU General Public License
+ *     along with GRUB.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ */
+
+#include <common.h>
+#include <malloc.h>
+#include <linux/stat.h>
+#include <linux/time.h>
+#include <linux/ctype.h>
+#include <asm/byteorder.h>
+#include "zfs_common.h"
+
+block_dev_desc_t *zfs_dev_desc;
+
+/*
+ * The zfs plug-in routines for GRUB are:
+ *
+ * zfs_mount() - locates a valid uberblock of the root pool and reads
+ *             in its MOS at the memory address MOS.
+ *
+ * zfs_open() - locates a plain file object by following the MOS
+ *             and places its dnode at the memory address DNODE.
+ *
+ * zfs_read() - read in the data blocks pointed by the DNODE.
+ *
+ */
+
+#include <zfs/zfs.h>
+#include <zfs/zio.h>
+#include <zfs/dnode.h>
+#include <zfs/uberblock_impl.h>
+#include <zfs/vdev_impl.h>
+#include <zfs/zio_checksum.h>
+#include <zfs/zap_impl.h>
+#include <zfs/zap_leaf.h>
+#include <zfs/zfs_znode.h>
+#include <zfs/dmu.h>
+#include <zfs/dmu_objset.h>
+#include <zfs/sa_impl.h>
+#include <zfs/dsl_dir.h>
+#include <zfs/dsl_dataset.h>
+
+
+#define        ZPOOL_PROP_BOOTFS               "bootfs"
+
+
+/*
+ * For nvlist manipulation. (from nvpair.h)
+ */
+#define        NV_ENCODE_NATIVE        0
+#define        NV_ENCODE_XDR           1
+#define        NV_BIG_ENDIAN                   0
+#define        NV_LITTLE_ENDIAN        1
+#define        DATA_TYPE_UINT64        8
+#define        DATA_TYPE_STRING        9
+#define        DATA_TYPE_NVLIST        19
+#define        DATA_TYPE_NVLIST_ARRAY  20
+
+
+/*
+ * Macros to get fields in a bp or DVA.
+ */
+#define        P2PHASE(x, align)               ((x) & ((align) - 1))
+#define        DVA_OFFSET_TO_PHYS_SECTOR(offset)                                       \
+       ((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT)
+
+/*
+ * return x rounded down to an align boundary
+ * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
+ * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
+ * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
+ * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
+ */
+#define        P2ALIGN(x, align)               ((x) & -(align))
+
+/*
+ * FAT ZAP data structures
+ */
+#define        ZFS_CRC64_POLY 0xC96C5795D7870F42ULL    /* ECMA-182, reflected form */
+#define        ZAP_HASH_IDX(hash, n)   (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
+#define        CHAIN_END       0xffff  /* end of the chunk chain */
+
+/*
+ * The amount of space within the chunk available for the array is:
+ * chunk size - space for type (1) - space for next pointer (2)
+ */
+#define        ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
+
+#define        ZAP_LEAF_HASH_SHIFT(bs) (bs - 5)
+#define        ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs))
+#define        LEAF_HASH(bs, h)                                                                                                \
+       ((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) &                                                                     \
+        ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len)))
+
+/*
+ * The amount of space available for chunks is:
+ * block size shift - hash entry size (2) * number of hash
+ * entries - header space (2*chunksize)
+ */
+#define        ZAP_LEAF_NUMCHUNKS(bs)                                          \
+       (((1<<bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(bs)) /   \
+        ZAP_LEAF_CHUNKSIZE - 2)
+
+/*
+ * The chunks start immediately after the hash table.  The end of the
+ * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
+ * chunk_t.
+ */
+#define        ZAP_LEAF_CHUNK(l, bs, idx)                                                                              \
+       ((zap_leaf_chunk_t *)(l->l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx]
+#define        ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry)
+
+
+/*
+ * Decompression Entry - lzjb
+ */
+#ifndef        NBBY
+#define        NBBY    8
+#endif
+
+
+
+typedef int zfs_decomp_func_t(void *s_start, void *d_start,
+                                                         uint32_t s_len, uint32_t d_len);
+typedef struct decomp_entry {
+       char *name;
+       zfs_decomp_func_t *decomp_func;
+} decomp_entry_t;
+
+typedef struct dnode_end {
+       dnode_phys_t dn;
+       zfs_endian_t endian;
+} dnode_end_t;
+
+struct zfs_data {
+       /* cache for a file block of the currently zfs_open()-ed file */
+       char *file_buf;
+       uint64_t file_start;
+       uint64_t file_end;
+
+       /* XXX: ashift is per vdev, not per pool.  We currently only ever touch
+        * a single vdev, but when/if raid-z or stripes are supported, this
+        * may need revision.
+        */
+       uint64_t vdev_ashift;
+       uint64_t label_txg;
+       uint64_t pool_guid;
+
+       /* cache for a dnode block */
+       dnode_phys_t *dnode_buf;
+       dnode_phys_t *dnode_mdn;
+       uint64_t dnode_start;
+       uint64_t dnode_end;
+       zfs_endian_t dnode_endian;
+
+       uberblock_t current_uberblock;
+
+       dnode_end_t mos;
+       dnode_end_t mdn;
+       dnode_end_t dnode;
+
+       uint64_t vdev_phys_sector;
+
+       int (*userhook)(const char *, const struct zfs_dirhook_info *);
+       struct zfs_dirhook_info *dirinfo;
+
+};
+
+
+
+
+static int
+zlib_decompress(void *s, void *d,
+                               uint32_t slen, uint32_t dlen)
+{
+       if (zlib_decompress(s, d, slen, dlen) < 0)
+               return ZFS_ERR_BAD_FS;
+       return ZFS_ERR_NONE;
+}
+
+static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = {
+       {"inherit", NULL},              /* ZIO_COMPRESS_INHERIT */
+       {"on", lzjb_decompress},        /* ZIO_COMPRESS_ON */
+       {"off", NULL},          /* ZIO_COMPRESS_OFF */
+       {"lzjb", lzjb_decompress},      /* ZIO_COMPRESS_LZJB */
+       {"empty", NULL},                /* ZIO_COMPRESS_EMPTY */
+       {"gzip-1", zlib_decompress},  /* ZIO_COMPRESS_GZIP1 */
+       {"gzip-2", zlib_decompress},  /* ZIO_COMPRESS_GZIP2 */
+       {"gzip-3", zlib_decompress},  /* ZIO_COMPRESS_GZIP3 */
+       {"gzip-4", zlib_decompress},  /* ZIO_COMPRESS_GZIP4 */
+       {"gzip-5", zlib_decompress},  /* ZIO_COMPRESS_GZIP5 */
+       {"gzip-6", zlib_decompress},  /* ZIO_COMPRESS_GZIP6 */
+       {"gzip-7", zlib_decompress},  /* ZIO_COMPRESS_GZIP7 */
+       {"gzip-8", zlib_decompress},  /* ZIO_COMPRESS_GZIP8 */
+       {"gzip-9", zlib_decompress},  /* ZIO_COMPRESS_GZIP9 */
+};
+
+
+
+static int zio_read_data(blkptr_t *bp, zfs_endian_t endian,
+                                                void *buf, struct zfs_data *data);
+
+static int
+zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
+                size_t *size, struct zfs_data *data);
+
+/*
+ * Our own version of log2().  Same thing as highbit()-1.
+ */
+static int
+zfs_log2(uint64_t num)
+{
+       int i = 0;
+
+       while (num > 1) {
+               i++;
+               num = num >> 1;
+       }
+
+       return i;
+}
+
+
+/* Checksum Functions */
+static void
+zio_checksum_off(const void *buf __attribute__ ((unused)),
+                                uint64_t size __attribute__ ((unused)),
+                                zfs_endian_t endian __attribute__ ((unused)),
+                                zio_cksum_t *zcp)
+{
+       ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
+}
+
+/* Checksum Table and Values */
+static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
+       {NULL, 0, 0, "inherit"},
+       {NULL, 0, 0, "on"},
+       {zio_checksum_off, 0, 0, "off"},
+       {zio_checksum_SHA256, 1, 1, "label"},
+       {zio_checksum_SHA256, 1, 1, "gang_header"},
+       {NULL, 0, 0, "zilog"},
+       {fletcher_2_endian, 0, 0, "fletcher2"},
+       {fletcher_4_endian, 1, 0, "fletcher4"},
+       {zio_checksum_SHA256, 1, 0, "SHA256"},
+       {NULL, 0, 0, "zilog2"},
+};
+
+/*
+ * zio_checksum_verify: Provides support for checksum verification.
+ *
+ * Fletcher2, Fletcher4, and SHA256 are supported.
+ *
+ */
+static int
+zio_checksum_verify(zio_cksum_t zc, uint32_t checksum,
+                                       zfs_endian_t endian, char *buf, int size)
+{
+       zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1;
+       zio_checksum_info_t *ci = &zio_checksum_table[checksum];
+       zio_cksum_t actual_cksum, expected_cksum;
+
+       if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) {
+               printf("zfs unknown checksum function %d\n", checksum);
+               return ZFS_ERR_NOT_IMPLEMENTED_YET;
+       }
+
+       if (ci->ci_eck) {
+               expected_cksum = zec->zec_cksum;
+               zec->zec_cksum = zc;
+               ci->ci_func(buf, size, endian, &actual_cksum);
+               zec->zec_cksum = expected_cksum;
+               zc = expected_cksum;
+       } else {
+               ci->ci_func(buf, size, endian, &actual_cksum);
+       }
+
+       if ((actual_cksum.zc_word[0] != zc.zc_word[0])
+               || (actual_cksum.zc_word[1] != zc.zc_word[1])
+               || (actual_cksum.zc_word[2] != zc.zc_word[2])
+               || (actual_cksum.zc_word[3] != zc.zc_word[3])) {
+               return ZFS_ERR_BAD_FS;
+       }
+
+       return ZFS_ERR_NONE;
+}
+
+/*
+ * vdev_uberblock_compare takes two uberblock structures and returns an integer
+ * indicating the more recent of the two.
+ *     Return Value = 1 if ub2 is more recent
+ *     Return Value = -1 if ub1 is more recent
+ * The most recent uberblock is determined using its transaction number and
+ * timestamp.  The uberblock with the highest transaction number is
+ * considered "newer". If the transaction numbers of the two blocks match, the
+ * timestamps are compared to determine the "newer" of the two.
+ */
+static int
+vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
+{
+       zfs_endian_t ub1_endian, ub2_endian;
+       if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
+               ub1_endian = LITTLE_ENDIAN;
+       else
+               ub1_endian = BIG_ENDIAN;
+       if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
+               ub2_endian = LITTLE_ENDIAN;
+       else
+               ub2_endian = BIG_ENDIAN;
+
+       if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
+               < zfs_to_cpu64(ub2->ub_txg, ub2_endian))
+               return -1;
+       if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
+               > zfs_to_cpu64(ub2->ub_txg, ub2_endian))
+               return 1;
+
+       if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
+               < zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
+               return -1;
+       if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
+               > zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
+               return 1;
+
+       return 0;
+}
+
+/*
+ * Three pieces of information are needed to verify an uberblock: the magic
+ * number, the version number, and the checksum.
+ *
+ * Currently Implemented: version number, magic number, label txg
+ * Need to Implement: checksum
+ *
+ */
+static int
+uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data)
+{
+       int err;
+       zfs_endian_t endian = UNKNOWN_ENDIAN;
+       zio_cksum_t zc;
+
+       if (uber->ub_txg < data->label_txg) {
+               debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n",
+                         uber->ub_txg, data->label_txg);
+               return ZFS_ERR_BAD_FS;
+       }
+
+       if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
+               && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) > 0
+               && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION)
+               endian = LITTLE_ENDIAN;
+
+       if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC
+               && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) > 0
+               && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) <= SPA_VERSION)
+               endian = BIG_ENDIAN;
+
+       if (endian == UNKNOWN_ENDIAN) {
+               printf("invalid uberblock magic\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       memset(&zc, 0, sizeof(zc));
+       zc.zc_word[0] = cpu_to_zfs64(offset, endian);
+       err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian,
+                                                         (char *) uber, UBERBLOCK_SIZE(data->vdev_ashift));
+
+       if (!err) {
+               /* Check that the data pointed by the rootbp is usable. */
+               void *osp = NULL;
+               size_t ospsize;
+               err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data);
+               free(osp);
+
+               if (!err && ospsize < OBJSET_PHYS_SIZE_V14) {
+                       printf("uberblock rootbp points to invalid data\n");
+                       return ZFS_ERR_BAD_FS;
+               }
+       }
+
+       return err;
+}
+
+/*
+ * Find the best uberblock.
+ * Return:
+ *       Success - Pointer to the best uberblock.
+ *       Failure - NULL
+ */
+static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data)
+{
+       const uint64_t sector = data->vdev_phys_sector;
+       uberblock_t *ubbest = NULL;
+       uberblock_t *ubnext;
+       unsigned int i, offset, pickedub = 0;
+       int err = ZFS_ERR_NONE;
+
+       const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift);
+       const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift);
+
+       for (i = 0; i < UBCOUNT; i++) {
+               ubnext = (uberblock_t *) (i * UBBYTES + ub_array);
+               offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES);
+
+               err = uberblock_verify(ubnext, offset, data);
+               if (err)
+                       continue;
+
+               if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) {
+                       ubbest = ubnext;
+                       pickedub = i;
+               }
+       }
+
+       if (ubbest)
+               debug("zfs Found best uberblock at idx %d, txg %llu\n",
+                         pickedub, (unsigned long long) ubbest->ub_txg);
+
+       return ubbest;
+}
+
+static inline size_t
+get_psize(blkptr_t *bp, zfs_endian_t endian)
+{
+       return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1)
+                       << SPA_MINBLOCKSHIFT;
+}
+
+static uint64_t
+dva_get_offset(dva_t *dva, zfs_endian_t endian)
+{
+       return zfs_to_cpu64((dva)->dva_word[1],
+                                                        endian) << SPA_MINBLOCKSHIFT;
+}
+
+/*
+ * Read a block of data based on the gang block address dva,
+ * and put its data in buf.
+ *
+ */
+static int
+zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf,
+                         struct zfs_data *data)
+{
+       zio_gbh_phys_t *zio_gb;
+       uint64_t offset, sector;
+       unsigned i;
+       int err;
+       zio_cksum_t zc;
+
+       memset(&zc, 0, sizeof(zc));
+
+       zio_gb = malloc(SPA_GANGBLOCKSIZE);
+       if (!zio_gb)
+               return ZFS_ERR_OUT_OF_MEMORY;
+
+       offset = dva_get_offset(dva, endian);
+       sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
+
+       /* read in the gang block header */
+       err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb);
+
+       if (err) {
+               free(zio_gb);
+               return err;
+       }
+
+       /* XXX */
+       /* self checksuming the gang block header */
+       ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva),
+                                        dva_get_offset(dva, endian), bp->blk_birth, 0);
+       err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian,
+                                                         (char *) zio_gb, SPA_GANGBLOCKSIZE);
+       if (err) {
+               free(zio_gb);
+               return err;
+       }
+
+       endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
+
+       for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
+               if (zio_gb->zg_blkptr[i].blk_birth == 0)
+                       continue;
+
+               err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data);
+               if (err) {
+                       free(zio_gb);
+                       return err;
+               }
+               buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian);
+       }
+       free(zio_gb);
+       return ZFS_ERR_NONE;
+}
+
+/*
+ * Read in a block of raw data to buf.
+ */
+static int
+zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf,
+                         struct zfs_data *data)
+{
+       int i, psize;
+       int err = ZFS_ERR_NONE;
+
+       psize = get_psize(bp, endian);
+
+       /* pick a good dva from the block pointer */
+       for (i = 0; i < SPA_DVAS_PER_BP; i++) {
+               uint64_t offset, sector;
+
+               if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0)
+                       continue;
+
+               if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) {
+                       err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data);
+               } else {
+                       /* read in a data block */
+                       offset = dva_get_offset(&bp->blk_dva[i], endian);
+                       sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
+
+                       err = zfs_devread(sector, 0, psize, buf);
+               }
+
+               if (!err) {
+                       /*Check the underlying checksum before we rule this DVA as "good"*/
+                       uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff;
+
+                       err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize);
+                       if (!err)
+                               return ZFS_ERR_NONE;
+               }
+
+               /* If read failed or checksum bad, reset the error.      Hopefully we've got some more DVA's to try.*/
+       }
+
+       if (!err) {
+               printf("couldn't find a valid DVA\n");
+               err = ZFS_ERR_BAD_FS;
+       }
+
+       return err;
+}
+
+/*
+ * Read in a block of data, verify its checksum, decompress if needed,
+ * and put the uncompressed data in buf.
+ */
+static int
+zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
+                size_t *size, struct zfs_data *data)
+{
+       size_t lsize, psize;
+       unsigned int comp;
+       char *compbuf = NULL;
+       int err;
+
+       *buf = NULL;
+
+       comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff;
+       lsize = (BP_IS_HOLE(bp) ? 0 :
+                        (((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1)
+                         << SPA_MINBLOCKSHIFT));
+       psize = get_psize(bp, endian);
+
+       if (size)
+               *size = lsize;
+
+       if (comp >= ZIO_COMPRESS_FUNCTIONS) {
+               printf("compression algorithm %u not supported\n", (unsigned int) comp);
+               return ZFS_ERR_NOT_IMPLEMENTED_YET;
+       }
+
+       if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) {
+               printf("compression algorithm %s not supported\n", decomp_table[comp].name);
+               return ZFS_ERR_NOT_IMPLEMENTED_YET;
+       }
+
+       if (comp != ZIO_COMPRESS_OFF) {
+               compbuf = malloc(psize);
+               if (!compbuf)
+                       return ZFS_ERR_OUT_OF_MEMORY;
+       } else {
+               compbuf = *buf = malloc(lsize);
+       }
+
+       err = zio_read_data(bp, endian, compbuf, data);
+       if (err) {
+               free(compbuf);
+               *buf = NULL;
+               return err;
+       }
+
+       if (comp != ZIO_COMPRESS_OFF) {
+               *buf = malloc(lsize);
+               if (!*buf) {
+                       free(compbuf);
+                       return ZFS_ERR_OUT_OF_MEMORY;
+               }
+
+               err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize);
+               free(compbuf);
+               if (err) {
+                       free(*buf);
+                       *buf = NULL;
+                       return err;
+               }
+       }
+
+       return ZFS_ERR_NONE;
+}
+
+/*
+ * Get the block from a block id.
+ * push the block onto the stack.
+ *
+ */
+static int
+dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf,
+                zfs_endian_t *endian_out, struct zfs_data *data)
+{
+       int idx, level;
+       blkptr_t *bp_array = dn->dn.dn_blkptr;
+       int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT;
+       blkptr_t *bp;
+       void *tmpbuf = 0;
+       zfs_endian_t endian;
+       int err = ZFS_ERR_NONE;
+
+       bp = malloc(sizeof(blkptr_t));
+       if (!bp)
+               return ZFS_ERR_OUT_OF_MEMORY;
+
+       endian = dn->endian;
+       for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) {
+               idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1);
+               *bp = bp_array[idx];
+               if (bp_array != dn->dn.dn_blkptr) {
+                       free(bp_array);
+                       bp_array = 0;
+               }
+
+               if (BP_IS_HOLE(bp)) {
+                       size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec,
+                                                                                       dn->endian)
+                               << SPA_MINBLOCKSHIFT;
+                       *buf = malloc(size);
+                       if (*buf) {
+                               err = ZFS_ERR_OUT_OF_MEMORY;
+                               break;
+                       }
+                       memset(*buf, 0, size);
+                       endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
+                       break;
+               }
+               if (level == 0) {
+                       err = zio_read(bp, endian, buf, 0, data);
+                       endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
+                       break;
+               }
+               err = zio_read(bp, endian, &tmpbuf, 0, data);
+               endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
+               if (err)
+                       break;
+               bp_array = tmpbuf;
+       }
+       if (bp_array != dn->dn.dn_blkptr)
+               free(bp_array);
+       if (endian_out)
+               *endian_out = endian;
+
+       free(bp);
+       return err;
+}
+
+/*
+ * mzap_lookup: Looks up property described by "name" and returns the value
+ * in "value".
+ */
+static int
+mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian,
+                       int objsize, char *name, uint64_t * value)
+{
+       int i, chunks;
+       mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
+
+       chunks = objsize / MZAP_ENT_LEN - 1;
+       for (i = 0; i < chunks; i++) {
+               if (strcmp(mzap_ent[i].mze_name, name) == 0) {
+                       *value = zfs_to_cpu64(mzap_ent[i].mze_value, endian);
+                       return ZFS_ERR_NONE;
+               }
+       }
+
+       printf("couldn't find '%s'\n", name);
+       return ZFS_ERR_FILE_NOT_FOUND;
+}
+
+static int
+mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize,
+                        int (*hook)(const char *name,
+                                                uint64_t val,
+                                                struct zfs_data *data),
+                        struct zfs_data *data)
+{
+       int i, chunks;
+       mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
+
+       chunks = objsize / MZAP_ENT_LEN - 1;
+       for (i = 0; i < chunks; i++) {
+               if (hook(mzap_ent[i].mze_name,
+                                zfs_to_cpu64(mzap_ent[i].mze_value, endian),
+                                data))
+                       return 1;
+       }
+
+       return 0;
+}
+
+static uint64_t
+zap_hash(uint64_t salt, const char *name)
+{
+       static uint64_t table[256];
+       const uint8_t *cp;
+       uint8_t c;
+       uint64_t crc = salt;
+
+       if (table[128] == 0) {
+               uint64_t *ct;
+               int i, j;
+               for (i = 0; i < 256; i++) {
+                       for (ct = table + i, *ct = i, j = 8; j > 0; j--)
+                               *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
+               }
+       }
+
+       for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++)
+               crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF];
+
+       /*
+        * Only use 28 bits, since we need 4 bits in the cookie for the
+        * collision differentiator.  We MUST use the high bits, since
+        * those are the onces that we first pay attention to when
+        * chosing the bucket.
+        */
+       crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
+
+       return crc;
+}
+
+/*
+ * Only to be used on 8-bit arrays.
+ * array_len is actual len in bytes (not encoded le_value_length).
+ * buf is null-terminated.
+ */
+/* XXX */
+static int
+zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian,
+                                        int blksft, int chunk, int array_len, const char *buf)
+{
+       int bseen = 0;
+
+       while (bseen < array_len) {
+               struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
+               int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
+
+               if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
+                       return 0;
+
+               if (memcmp(la->la_array, buf + bseen, toread) != 0)
+                       break;
+               chunk = zfs_to_cpu16(la->la_next, endian);
+               bseen += toread;
+       }
+       return (bseen == array_len);
+}
+
+/* XXX */
+static int
+zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft,
+                                  int chunk, int array_len, char *buf)
+{
+       int bseen = 0;
+
+       while (bseen < array_len) {
+               struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
+               int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
+
+               if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
+                       /* Don't use errno because this error is to be ignored.  */
+                       return ZFS_ERR_BAD_FS;
+
+               memcpy(buf + bseen, la->la_array,  toread);
+               chunk = zfs_to_cpu16(la->la_next, endian);
+               bseen += toread;
+       }
+       return ZFS_ERR_NONE;
+}
+
+
+/*
+ * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the
+ * value for the property "name".
+ *
+ */
+/* XXX */
+static int
+zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian,
+                               int blksft, uint64_t h,
+                               const char *name, uint64_t *value)
+{
+       uint16_t chunk;
+       struct zap_leaf_entry *le;
+
+       /* Verify if this is a valid leaf block */
+       if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
+               printf("invalid leaf type\n");
+               return ZFS_ERR_BAD_FS;
+       }
+       if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
+               printf("invalid leaf magic\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian);
+                chunk != CHAIN_END; chunk = le->le_next) {
+
+               if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) {
+                       printf("invalid chunk number\n");
+                       return ZFS_ERR_BAD_FS;
+               }
+
+               le = ZAP_LEAF_ENTRY(l, blksft, chunk);
+
+               /* Verify the chunk entry */
+               if (le->le_type != ZAP_CHUNK_ENTRY) {
+                       printf("invalid chunk entry\n");
+                       return ZFS_ERR_BAD_FS;
+               }
+
+               if (zfs_to_cpu64(le->le_hash, endian) != h)
+                       continue;
+
+               if (zap_leaf_array_equal(l, endian, blksft,
+                                                                zfs_to_cpu16(le->le_name_chunk, endian),
+                                                                zfs_to_cpu16(le->le_name_length, endian),
+                                                                name)) {
+                       struct zap_leaf_array *la;
+
+                       if (le->le_int_size != 8 || le->le_value_length != 1) {
+                               printf("invalid leaf chunk entry\n");
+                               return ZFS_ERR_BAD_FS;
+                       }
+                       /* get the uint64_t property value */
+                       la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
+
+                       *value = be64_to_cpu(la->la_array64);
+
+                       return ZFS_ERR_NONE;
+               }
+       }
+
+       printf("couldn't find '%s'\n", name);
+       return ZFS_ERR_FILE_NOT_FOUND;
+}
+
+
+/* Verify if this is a fat zap header block */
+static int
+zap_verify(zap_phys_t *zap)
+{
+       if (zap->zap_magic != (uint64_t) ZAP_MAGIC) {
+               printf("bad ZAP magic\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       if (zap->zap_flags != 0) {
+               printf("bad ZAP flags\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       if (zap->zap_salt == 0) {
+               printf("bad ZAP salt\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       return ZFS_ERR_NONE;
+}
+
+/*
+ * Fat ZAP lookup
+ *
+ */
+/* XXX */
+static int
+fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap,
+                       char *name, uint64_t *value, struct zfs_data *data)
+{
+       void *l;
+       uint64_t hash, idx, blkid;
+       int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
+                                                                                       zap_dnode->endian) << DNODE_SHIFT);
+       int err;
+       zfs_endian_t leafendian;
+
+       err = zap_verify(zap);
+       if (err)
+               return err;
+
+       hash = zap_hash(zap->zap_salt, name);
+
+       /* get block id from index */
+       if (zap->zap_ptrtbl.zt_numblks != 0) {
+               printf("external pointer tables not supported\n");
+               return ZFS_ERR_NOT_IMPLEMENTED_YET;
+       }
+       idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift);
+       blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
+
+       /* Get the leaf block */
+       if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
+               printf("ZAP leaf is too small\n");
+               return ZFS_ERR_BAD_FS;
+       }
+       err = dmu_read(zap_dnode, blkid, &l, &leafendian, data);
+       if (err)
+               return err;
+
+       err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value);
+       free(l);
+       return err;
+}
+
+/* XXX */
+static int
+fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap,
+                        int (*hook)(const char *name,
+                                                uint64_t val,
+                                                struct zfs_data *data),
+                        struct zfs_data *data)
+{
+       zap_leaf_phys_t *l;
+       void *l_in;
+       uint64_t idx, blkid;
+       uint16_t chunk;
+       int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
+                                                                                       zap_dnode->endian) << DNODE_SHIFT);
+       int err;
+       zfs_endian_t endian;
+
+       if (zap_verify(zap))
+               return 0;
+
+       /* get block id from index */
+       if (zap->zap_ptrtbl.zt_numblks != 0) {
+               printf("external pointer tables not supported\n");
+               return 0;
+       }
+       /* Get the leaf block */
+       if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
+               printf("ZAP leaf is too small\n");
+               return 0;
+       }
+       for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) {
+               blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
+
+               err = dmu_read(zap_dnode, blkid, &l_in, &endian, data);
+               l = l_in;
+               if (err)
+                       continue;
+
+               /* Verify if this is a valid leaf block */
+               if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
+                       free(l);
+                       continue;
+               }
+               if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
+                       free(l);
+                       continue;
+               }
+
+               for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) {
+                       char *buf;
+                       struct zap_leaf_array *la;
+                       struct zap_leaf_entry *le;
+                       uint64_t val;
+                       le = ZAP_LEAF_ENTRY(l, blksft, chunk);
+
+                       /* Verify the chunk entry */
+                       if (le->le_type != ZAP_CHUNK_ENTRY)
+                               continue;
+
+                       buf = malloc(zfs_to_cpu16(le->le_name_length, endian)
+                                                + 1);
+                       if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk,
+                                                                  le->le_name_length, buf)) {
+                               free(buf);
+                               continue;
+                       }
+                       buf[le->le_name_length] = 0;
+
+                       if (le->le_int_size != 8
+                               || zfs_to_cpu16(le->le_value_length, endian) != 1)
+                               continue;
+
+                       /* get the uint64_t property value */
+                       la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
+                       val = be64_to_cpu(la->la_array64);
+                       if (hook(buf, val, data))
+                               return 1;
+                       free(buf);
+               }
+       }
+       return 0;
+}
+
+
+/*
+ * Read in the data of a zap object and find the value for a matching
+ * property name.
+ *
+ */
+static int
+zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val,
+                  struct zfs_data *data)
+{
+       uint64_t block_type;
+       int size;
+       void *zapbuf;
+       int err;
+       zfs_endian_t endian;
+
+       /* Read in the first block of the zap object data. */
+       size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
+                                                        zap_dnode->endian) << SPA_MINBLOCKSHIFT;
+       err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
+       if (err)
+               return err;
+       block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
+
+       if (block_type == ZBT_MICRO) {
+               err = (mzap_lookup(zapbuf, endian, size, name, val));
+               free(zapbuf);
+               return err;
+       } else if (block_type == ZBT_HEADER) {
+               /* this is a fat zap */
+               err = (fzap_lookup(zap_dnode, zapbuf, name, val, data));
+               free(zapbuf);
+               return err;
+       }
+
+       printf("unknown ZAP type\n");
+       return ZFS_ERR_BAD_FS;
+}
+
+static int
+zap_iterate(dnode_end_t *zap_dnode,
+                       int (*hook)(const char *name, uint64_t val,
+                                               struct zfs_data *data),
+                       struct zfs_data *data)
+{
+       uint64_t block_type;
+       int size;
+       void *zapbuf;
+       int err;
+       int ret;
+       zfs_endian_t endian;
+
+       /* Read in the first block of the zap object data. */
+       size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT;
+       err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
+       if (err)
+               return 0;
+       block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
+
+       if (block_type == ZBT_MICRO) {
+               ret = mzap_iterate(zapbuf, endian, size, hook, data);
+               free(zapbuf);
+               return ret;
+       } else if (block_type == ZBT_HEADER) {
+               /* this is a fat zap */
+               ret = fzap_iterate(zap_dnode, zapbuf, hook, data);
+               free(zapbuf);
+               return ret;
+       }
+       printf("unknown ZAP type\n");
+       return 0;
+}
+
+
+/*
+ * Get the dnode of an object number from the metadnode of an object set.
+ *
+ * Input
+ *     mdn - metadnode to get the object dnode
+ *     objnum - object number for the object dnode
+ *     buf - data buffer that holds the returning dnode
+ */
+static int
+dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type,
+                 dnode_end_t *buf, struct zfs_data *data)
+{
+       uint64_t blkid, blksz;  /* the block id this object dnode is in */
+       int epbs;                       /* shift of number of dnodes in a block */
+       int idx;                        /* index within a block */
+       void *dnbuf;
+       int err;
+       zfs_endian_t endian;
+
+       blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec,
+                                                         mdn->endian) << SPA_MINBLOCKSHIFT;
+
+       epbs = zfs_log2(blksz) - DNODE_SHIFT;
+       blkid = objnum >> epbs;
+       idx = objnum & ((1 << epbs) - 1);
+
+       if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn,
+                                                                                 sizeof(*mdn)) == 0
+               && objnum >= data->dnode_start && objnum < data->dnode_end) {
+               memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE);
+               buf->endian = data->dnode_endian;
+               if (type && buf->dn.dn_type != type)  {
+                       printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type);
+                       return ZFS_ERR_BAD_FS;
+               }
+               return ZFS_ERR_NONE;
+       }
+
+       err = dmu_read(mdn, blkid, &dnbuf, &endian, data);
+       if (err)
+               return err;
+
+       free(data->dnode_buf);
+       free(data->dnode_mdn);
+       data->dnode_mdn = malloc(sizeof(*mdn));
+       if (!data->dnode_mdn) {
+               data->dnode_buf = 0;
+       } else {
+               memcpy(data->dnode_mdn, mdn, sizeof(*mdn));
+               data->dnode_buf = dnbuf;
+               data->dnode_start = blkid << epbs;
+               data->dnode_end = (blkid + 1) << epbs;
+               data->dnode_endian = endian;
+       }
+
+       memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE);
+       buf->endian = endian;
+       if (type && buf->dn.dn_type != type) {
+               printf("incorrect dnode type\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       return ZFS_ERR_NONE;
+}
+
+/*
+ * Get the file dnode for a given file name where mdn is the meta dnode
+ * for this ZFS object set. When found, place the file dnode in dn.
+ * The 'path' argument will be mangled.
+ *
+ */
+static int
+dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn,
+                          struct zfs_data *data)
+{
+       uint64_t objnum, version;
+       char *cname, ch;
+       int err = ZFS_ERR_NONE;
+       char *path, *path_buf;
+       struct dnode_chain {
+               struct dnode_chain *next;
+               dnode_end_t dn;
+       };
+       struct dnode_chain *dnode_path = 0, *dn_new, *root;
+
+       dn_new = malloc(sizeof(*dn_new));
+       if (!dn_new)
+               return ZFS_ERR_OUT_OF_MEMORY;
+       dn_new->next = 0;
+       dnode_path = root = dn_new;
+
+       err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
+                                       &(dnode_path->dn), data);
+       if (err) {
+               free(dn_new);
+               return err;
+       }
+
+       err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data);
+       if (err) {
+               free(dn_new);
+               return err;
+       }
+       if (version > ZPL_VERSION) {
+               free(dn_new);
+               printf("too new ZPL version\n");
+               return ZFS_ERR_NOT_IMPLEMENTED_YET;
+       }
+
+       err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data);
+       if (err) {
+               free(dn_new);
+               return err;
+       }
+
+       err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
+       if (err) {
+               free(dn_new);
+               return err;
+       }
+
+       path = path_buf = strdup(path_in);
+       if (!path_buf) {
+               free(dn_new);
+               return ZFS_ERR_OUT_OF_MEMORY;
+       }
+
+       while (1) {
+               /* skip leading slashes */
+               while (*path == '/')
+                       path++;
+               if (!*path)
+                       break;
+               /* get the next component name */
+               cname = path;
+               while (*path && *path != '/')
+                       path++;
+               /* Skip dot.  */
+               if (cname + 1 == path && cname[0] == '.')
+                       continue;
+               /* Handle double dot.  */
+               if (cname + 2 == path && cname[0] == '.' && cname[1] == '.')  {
+                       if (dn_new->next) {
+                               dn_new = dnode_path;
+                               dnode_path = dn_new->next;
+                               free(dn_new);
+                       } else {
+                               printf("can't resolve ..\n");
+                               err = ZFS_ERR_FILE_NOT_FOUND;
+                               break;
+                       }
+                       continue;
+               }
+
+               ch = *path;
+               *path = 0;              /* ensure null termination */
+
+               if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
+                       free(path_buf);
+                       printf("not a directory\n");
+                       return ZFS_ERR_BAD_FILE_TYPE;
+               }
+               err = zap_lookup(&(dnode_path->dn), cname, &objnum, data);
+               if (err)
+                       break;
+
+               dn_new = malloc(sizeof(*dn_new));
+               if (!dn_new) {
+                       err = ZFS_ERR_OUT_OF_MEMORY;
+                       break;
+               }
+               dn_new->next = dnode_path;
+               dnode_path = dn_new;
+
+               objnum = ZFS_DIRENT_OBJ(objnum);
+               err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
+               if (err)
+                       break;
+
+               *path = ch;
+       }
+
+       if (!err)
+               memcpy(dn, &(dnode_path->dn), sizeof(*dn));
+
+       while (dnode_path) {
+               dn_new = dnode_path->next;
+               free(dnode_path);
+               dnode_path = dn_new;
+       }
+       free(path_buf);
+       return err;
+}
+
+
+/*
+ * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
+ * e.g. pool/rootfs, or a given object number (obj), e.g. the object number
+ * of pool/rootfs.
+ *
+ * If no fsname and no obj are given, return the DSL_DIR metadnode.
+ * If fsname is given, return its metadnode and its matching object number.
+ * If only obj is given, return the metadnode for this object number.
+ *
+ */
+static int
+get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname,
+                                        dnode_end_t *mdn, struct zfs_data *data)
+{
+       uint64_t objnum;
+       int err;
+
+       err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
+                                       DMU_OT_OBJECT_DIRECTORY, mdn, data);
+       if (err)
+               return err;
+
+       err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data);
+       if (err)
+               return err;
+
+       err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
+       if (err)
+               return err;
+
+       while (*fsname) {
+               uint64_t childobj;
+               char *cname, ch;
+
+               while (*fsname == '/')
+                       fsname++;
+
+               if (!*fsname || *fsname == '@')
+                       break;
+
+               cname = fsname;
+               while (*fsname && !isspace(*fsname) && *fsname != '/')
+                       fsname++;
+               ch = *fsname;
+               *fsname = 0;
+
+               childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian);
+               err = dnode_get(mosmdn, childobj,
+                                               DMU_OT_DSL_DIR_CHILD_MAP, mdn, data);
+               if (err)
+                       return err;
+
+               err = zap_lookup(mdn, cname, &objnum, data);
+               if (err)
+                       return err;
+
+               err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
+               if (err)
+                       return err;
+
+               *fsname = ch;
+       }
+       return ZFS_ERR_NONE;
+}
+
+static int
+make_mdn(dnode_end_t *mdn, struct zfs_data *data)
+{
+       void *osp;
+       blkptr_t *bp;
+       size_t ospsize;
+       int err;
+
+       bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp);
+       err = zio_read(bp, mdn->endian, &osp, &ospsize, data);
+       if (err)
+               return err;
+       if (ospsize < OBJSET_PHYS_SIZE_V14) {
+               free(osp);
+               printf("too small osp\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1;
+       memmove((char *) &(mdn->dn),
+                       (char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
+       free(osp);
+       return ZFS_ERR_NONE;
+}
+
+static int
+dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn,
+                                  uint64_t *mdnobj, dnode_end_t *dn, int *isfs,
+                                  struct zfs_data *data)
+{
+       char *fsname, *snapname;
+       const char *ptr_at, *filename;
+       uint64_t headobj;
+       int err;
+
+       ptr_at = strchr(fullpath, '@');
+       if (!ptr_at) {
+               *isfs = 1;
+               filename = 0;
+               snapname = 0;
+               fsname = strdup(fullpath);
+       } else {
+               const char *ptr_slash = strchr(ptr_at, '/');
+
+               *isfs = 0;
+               fsname = malloc(ptr_at - fullpath + 1);
+               if (!fsname)
+                       return ZFS_ERR_OUT_OF_MEMORY;
+               memcpy(fsname, fullpath, ptr_at - fullpath);
+               fsname[ptr_at - fullpath] = 0;
+               if (ptr_at[1] && ptr_at[1] != '/') {
+                       snapname = malloc(ptr_slash - ptr_at);
+                       if (!snapname) {
+                               free(fsname);
+                               return ZFS_ERR_OUT_OF_MEMORY;
+                       }
+                       memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1);
+                       snapname[ptr_slash - ptr_at - 1] = 0;
+               } else {
+                       snapname = 0;
+               }
+               if (ptr_slash)
+                       filename = ptr_slash;
+               else
+                       filename = "/";
+               printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n",
+                          fsname, snapname, filename);
+       }
+
+
+       err = get_filesystem_dnode(&(data->mos), fsname, dn, data);
+
+       if (err) {
+               free(fsname);
+               free(snapname);
+               return err;
+       }
+
+       headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian);
+
+       err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
+       if (err) {
+               free(fsname);
+               free(snapname);
+               return err;
+       }
+
+       if (snapname) {
+               uint64_t snapobj;
+
+               snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian);
+
+               err = dnode_get(&(data->mos), snapobj,
+                                               DMU_OT_DSL_DS_SNAP_MAP, mdn, data);
+               if (!err)
+                       err = zap_lookup(mdn, snapname, &headobj, data);
+               if (!err)
+                       err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
+               if (err) {
+                       free(fsname);
+                       free(snapname);
+                       return err;
+               }
+       }
+
+       if (mdnobj)
+               *mdnobj = headobj;
+
+       make_mdn(mdn, data);
+
+       if (*isfs) {
+               free(fsname);
+               free(snapname);
+               return ZFS_ERR_NONE;
+       }
+       err = dnode_get_path(mdn, filename, dn, data);
+       free(fsname);
+       free(snapname);
+       return err;
+}
+
+/*
+ * For a given XDR packed nvlist, verify the first 4 bytes and move on.
+ *
+ * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
+ *
+ *             encoding method/host endian             (4 bytes)
+ *             nvl_version                                             (4 bytes)
+ *             nvl_nvflag                                              (4 bytes)
+ *     encoded nvpairs:
+ *             encoded size of the nvpair              (4 bytes)
+ *             decoded size of the nvpair              (4 bytes)
+ *             name string size                                (4 bytes)
+ *             name string data                                (sizeof(NV_ALIGN4(string))
+ *             data type                                               (4 bytes)
+ *             # of elements in the nvpair             (4 bytes)
+ *             data
+ *             2 zero's for the last nvpair
+ *             (end of the entire list)        (8 bytes)
+ *
+ */
+
+static int
+nvlist_find_value(char *nvlist, char *name, int valtype, char **val,
+                                 size_t *size_out, size_t *nelm_out)
+{
+       int name_len, type, encode_size;
+       char *nvpair, *nvp_name;
+
+       /* Verify if the 1st and 2nd byte in the nvlist are valid. */
+       /* NOTE: independently of what endianness header announces all
+          subsequent values are big-endian.  */
+       if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN
+                                                                          && nvlist[1] != NV_BIG_ENDIAN)) {
+               printf("zfs incorrect nvlist header\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       /* skip the header, nvl_version, and nvl_nvflag */
+       nvlist = nvlist + 4 * 3;
+       /*
+        * Loop thru the nvpair list
+        * The XDR representation of an integer is in big-endian byte order.
+        */
+       while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) {
+               int nelm;
+
+               nvpair = nvlist + 4 * 2;        /* skip the encode/decode size */
+
+               name_len = be32_to_cpu(*(uint32_t *) nvpair);
+               nvpair += 4;
+
+               nvp_name = nvpair;
+               nvpair = nvpair + ((name_len + 3) & ~3);        /* align */
+
+               type = be32_to_cpu(*(uint32_t *) nvpair);
+               nvpair += 4;
+
+               nelm = be32_to_cpu(*(uint32_t *) nvpair);
+               if (nelm < 1) {
+                       printf("empty nvpair\n");
+                       return ZFS_ERR_BAD_FS;
+               }
+
+               nvpair += 4;
+
+               if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) {
+                       *val = nvpair;
+                       *size_out = encode_size;
+                       if (nelm_out)
+                               *nelm_out = nelm;
+                       return 1;
+               }
+
+               nvlist += encode_size;  /* goto the next nvpair */
+       }
+       return 0;
+}
+
+int
+zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out)
+{
+       char *nvpair;
+       size_t size;
+       int found;
+
+       found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0);
+       if (!found)
+               return 0;
+       if (size < sizeof(uint64_t)) {
+               printf("invalid uint64\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       *out = be64_to_cpu(*(uint64_t *) nvpair);
+       return 1;
+}
+
+char *
+zfs_nvlist_lookup_string(char *nvlist, char *name)
+{
+       char *nvpair;
+       char *ret;
+       size_t slen;
+       size_t size;
+       int found;
+
+       found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0);
+       if (!found)
+               return 0;
+       if (size < 4) {
+               printf("invalid string\n");
+               return 0;
+       }
+       slen = be32_to_cpu(*(uint32_t *) nvpair);
+       if (slen > size - 4)
+               slen = size - 4;
+       ret = malloc(slen + 1);
+       if (!ret)
+               return 0;
+       memcpy(ret, nvpair + 4, slen);
+       ret[slen] = 0;
+       return ret;
+}
+
+char *
+zfs_nvlist_lookup_nvlist(char *nvlist, char *name)
+{
+       char *nvpair;
+       char *ret;
+       size_t size;
+       int found;
+
+       found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
+                                                         &size, 0);
+       if (!found)
+               return 0;
+       ret = calloc(1, size + 3 * sizeof(uint32_t));
+       if (!ret)
+               return 0;
+       memcpy(ret, nvlist, sizeof(uint32_t));
+
+       memcpy(ret + sizeof(uint32_t), nvpair, size);
+       return ret;
+}
+
+int
+zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name)
+{
+       char *nvpair;
+       size_t nelm, size;
+       int found;
+
+       found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
+                                                         &size, &nelm);
+       if (!found)
+               return -1;
+       return nelm;
+}
+
+char *
+zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name,
+                                                                       size_t index)
+{
+       char *nvpair, *nvpairptr;
+       int found;
+       char *ret;
+       size_t size;
+       unsigned i;
+       size_t nelm;
+
+       found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
+                                                         &size, &nelm);
+       if (!found)
+               return 0;
+       if (index >= nelm) {
+               printf("trying to lookup past nvlist array\n");
+               return 0;
+       }
+
+       nvpairptr = nvpair;
+
+       for (i = 0; i < index; i++) {
+               uint32_t encode_size;
+
+               /* skip the header, nvl_version, and nvl_nvflag */
+               nvpairptr = nvpairptr + 4 * 2;
+
+               while (nvpairptr < nvpair + size
+                          && (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr)))
+                       nvlist += encode_size;  /* goto the next nvpair */
+
+               nvlist = nvlist + 4 * 2;        /* skip the ending 2 zeros - 8 bytes */
+       }
+
+       if (nvpairptr >= nvpair + size
+               || nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
+               >= nvpair + size) {
+               printf("incorrect nvlist array\n");
+               return 0;
+       }
+
+       ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
+                                + 3 * sizeof(uint32_t));
+       if (!ret)
+               return 0;
+       memcpy(ret, nvlist, sizeof(uint32_t));
+
+       memcpy(ret + sizeof(uint32_t), nvpairptr, size);
+       return ret;
+}
+
+static int
+int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist)
+{
+       int err;
+
+       *nvlist = malloc(VDEV_PHYS_SIZE);
+       /* Read in the vdev name-value pair list (112K). */
+       err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist);
+       if (err) {
+               free(*nvlist);
+               *nvlist = 0;
+               return err;
+       }
+       return ZFS_ERR_NONE;
+}
+
+/*
+ * Check the disk label information and retrieve needed vdev name-value pairs.
+ *
+ */
+static int
+check_pool_label(struct zfs_data *data)
+{
+       uint64_t pool_state;
+       char *nvlist;                   /* for the pool */
+       char *vdevnvlist;               /* for the vdev */
+       uint64_t diskguid;
+       uint64_t version;
+       int found;
+       int err;
+
+       err = int_zfs_fetch_nvlist(data, &nvlist);
+       if (err)
+               return err;
+
+       found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE,
+                                                                                 &pool_state);
+       if (!found) {
+               free(nvlist);
+               printf("zfs pool state not found\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       if (pool_state == POOL_STATE_DESTROYED) {
+               free(nvlist);
+               printf("zpool is marked as destroyed\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       data->label_txg = 0;
+       found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG,
+                                                                                 &data->label_txg);
+       if (!found) {
+               free(nvlist);
+               printf("zfs pool txg not found\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       /* not an active device */
+       if (data->label_txg == 0) {
+               free(nvlist);
+               printf("zpool is not active\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION,
+                                                                                 &version);
+       if (!found) {
+               free(nvlist);
+               printf("zpool config version not found\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       if (version > SPA_VERSION) {
+               free(nvlist);
+               printf("SPA version too new %llu > %llu\n",
+                          (unsigned long long) version,
+                          (unsigned long long) SPA_VERSION);
+               return ZFS_ERR_NOT_IMPLEMENTED_YET;
+       }
+
+       vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE);
+       if (!vdevnvlist) {
+               free(nvlist);
+               printf("ZFS config vdev tree not found\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT,
+                                                                                 &data->vdev_ashift);
+       free(vdevnvlist);
+       if (!found) {
+               free(nvlist);
+               printf("ZPOOL config ashift not found\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid);
+       if (!found) {
+               free(nvlist);
+               printf("ZPOOL config guid not found\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid);
+       if (!found) {
+               free(nvlist);
+               printf("ZPOOL config pool guid not found\n");
+               return ZFS_ERR_BAD_FS;
+       }
+
+       free(nvlist);
+
+       printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n",
+                  (unsigned long long) data->pool_guid,
+                  (unsigned long long) data->pool_guid,
+                  (unsigned long long) diskguid,
+                  (unsigned long long) diskguid,
+                  (unsigned long long) data->label_txg,
+                  (unsigned long long) version,
+                  (unsigned long long) data->vdev_ashift);
+
+       return ZFS_ERR_NONE;
+}
+
+/*
+ * vdev_label_start returns the physical disk offset (in bytes) of
+ * label "l".
+ */
+static uint64_t vdev_label_start(uint64_t psize, int l)
+{
+       return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ?
+                                                                               0 : psize -
+                                                                               VDEV_LABELS * sizeof(vdev_label_t)));
+}
+
+void
+zfs_unmount(struct zfs_data *data)
+{
+       free(data->dnode_buf);
+       free(data->dnode_mdn);
+       free(data->file_buf);
+       free(data);
+}
+
+/*
+ * zfs_mount() locates a valid uberblock of the root pool and read in its MOS
+ * to the memory address MOS.
+ *
+ */
+struct zfs_data *
+zfs_mount(device_t dev)
+{
+       struct zfs_data *data = 0;
+       int label = 0, bestlabel = -1;
+       char *ub_array;
+       uberblock_t *ubbest;
+       uberblock_t *ubcur = NULL;
+       void *osp = 0;
+       size_t ospsize;
+       int err;
+
+       data = malloc(sizeof(*data));
+       if (!data)
+               return 0;
+       memset(data, 0, sizeof(*data));
+
+       ub_array = malloc(VDEV_UBERBLOCK_RING);
+       if (!ub_array) {
+               zfs_unmount(data);
+               return 0;
+       }
+
+       ubbest = malloc(sizeof(*ubbest));
+       if (!ubbest) {
+               zfs_unmount(data);
+               return 0;
+       }
+       memset(ubbest, 0, sizeof(*ubbest));
+
+       /*
+        * some eltorito stacks don't give us a size and
+        * we end up setting the size to MAXUINT, further
+        * some of these devices stop working once a single
+        * read past the end has been issued. Checking
+        * for a maximum part_length and skipping the backup
+        * labels at the end of the slice/partition/device
+        * avoids breaking down on such devices.
+        */
+       const int vdevnum =
+               dev->part_length == 0 ?
+               VDEV_LABELS / 2 : VDEV_LABELS;
+
+       /* Size in bytes of the device (disk or partition) aligned to label size*/
+       uint64_t device_size =
+               dev->part_length << SECTOR_BITS;
+
+       const uint64_t alignedbytes =
+               P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t));
+
+       for (label = 0; label < vdevnum; label++) {
+               uint64_t labelstartbytes = vdev_label_start(alignedbytes, label);
+               uint64_t labelstart = labelstartbytes >> SECTOR_BITS;
+
+               debug("zfs reading label %d at sector %llu (byte %llu)\n",
+                         label, (unsigned long long) labelstart,
+                         (unsigned long long) labelstartbytes);
+
+               data->vdev_phys_sector = labelstart +
+                       ((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS);
+
+               err = check_pool_label(data);
+               if (err) {
+                       printf("zfs error checking label %d\n", label);
+                       continue;
+               }
+
+               /* Read in the uberblock ring (128K). */
+               err = zfs_devread(data->vdev_phys_sector  +
+                                                 (VDEV_PHYS_SIZE >> SECTOR_BITS),
+                                                 0, VDEV_UBERBLOCK_RING, ub_array);
+               if (err) {
+                       printf("zfs error reading uberblock ring for label %d\n", label);
+                       continue;
+               }
+
+               ubcur = find_bestub(ub_array, data);
+               if (!ubcur) {
+                       printf("zfs No good uberblocks found in label %d\n", label);
+                       continue;
+               }
+
+               if (vdev_uberblock_compare(ubcur, ubbest) > 0) {
+                       /* Looks like the block is good, so use it.*/
+                       memcpy(ubbest, ubcur, sizeof(*ubbest));
+                       bestlabel = label;
+                       debug("zfs Current best uberblock found in label %d\n", label);
+               }
+       }
+       free(ub_array);
+
+       /* We zero'd the structure to begin with.  If we never assigned to it,
+          magic will still be zero. */
+       if (!ubbest->ub_magic) {
+               printf("couldn't find a valid ZFS label\n");
+               zfs_unmount(data);
+               free(ubbest);
+               return 0;
+       }
+
+       debug("zfs ubbest %p in label %d\n", ubbest, bestlabel);
+
+       zfs_endian_t ub_endian =
+               zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
+               ? LITTLE_ENDIAN : BIG_ENDIAN;
+
+       debug("zfs endian set to %s\n", !ub_endian ? "big" : "little");
+
+       err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data);
+
+       if (err) {
+               printf("couldn't zio_read object directory\n");
+               zfs_unmount(data);
+               free(ubbest);
+               return 0;
+       }
+
+       if (ospsize < OBJSET_PHYS_SIZE_V14) {
+               printf("osp too small\n");
+               zfs_unmount(data);
+               free(osp);
+               free(ubbest);
+               return 0;
+       }
+
+       /* Got the MOS. Save it at the memory addr MOS. */
+       memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
+       data->mos.endian =
+               (zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1;
+       memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t));
+
+       free(osp);
+       free(ubbest);
+
+       return data;
+}
+
+int
+zfs_fetch_nvlist(device_t dev, char **nvlist)
+{
+       struct zfs_data *zfs;
+       int err;
+
+       zfs = zfs_mount(dev);
+       if (!zfs)
+               return ZFS_ERR_BAD_FS;
+       err = int_zfs_fetch_nvlist(zfs, nvlist);
+       zfs_unmount(zfs);
+       return err;
+}
+
+static int
+zfs_label(device_t device, char **label)
+{
+       char *nvlist;
+       int err;
+       struct zfs_data *data;
+
+       data = zfs_mount(device);
+       if (!data)
+               return ZFS_ERR_BAD_FS;
+
+       err = int_zfs_fetch_nvlist(data, &nvlist);
+       if (err) {
+               zfs_unmount(data);
+               return err;
+       }
+
+       *label = zfs_nvlist_lookup_string(nvlist, ZPOOL_CONFIG_POOL_NAME);
+       free(nvlist);
+       zfs_unmount(data);
+       return ZFS_ERR_NONE;
+}
+
+static int
+zfs_uuid(device_t device, char **uuid)
+{
+       struct zfs_data *data;
+
+       data = zfs_mount(device);
+       if (!data)
+               return ZFS_ERR_BAD_FS;
+
+       *uuid = malloc(17); /* %016llx + nil */
+       if (!*uuid)
+               return ZFS_ERR_OUT_OF_MEMORY;
+
+       /* *uuid = xasprintf ("%016llx", (long long unsigned) data->pool_guid);*/
+       snprintf(*uuid, 17, "%016llx", (long long unsigned) data->pool_guid);
+       zfs_unmount(data);
+
+       return ZFS_ERR_NONE;
+}
+
+/*
+ * zfs_open() locates a file in the rootpool by following the
+ * MOS and places the dnode of the file in the memory address DNODE.
+ */
+int
+zfs_open(struct zfs_file *file, const char *fsfilename)
+{
+       struct zfs_data *data;
+       int err;
+       int isfs;
+
+       data = zfs_mount(file->device);
+       if (!data)
+               return ZFS_ERR_BAD_FS;
+
+       err = dnode_get_fullpath(fsfilename, &(data->mdn), 0,
+                                                        &(data->dnode), &isfs, data);
+       if (err) {
+               zfs_unmount(data);
+               return err;
+       }
+
+       if (isfs) {
+               zfs_unmount(data);
+               printf("Missing @ or / separator\n");
+               return ZFS_ERR_FILE_NOT_FOUND;
+       }
+
+       /* We found the dnode for this file. Verify if it is a plain file. */
+       if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) {
+               zfs_unmount(data);
+               printf("not a file\n");
+               return ZFS_ERR_BAD_FILE_TYPE;
+       }
+
+       /* get the file size and set the file position to 0 */
+
+       /*
+        * For DMU_OT_SA we will need to locate the SIZE attribute
+        * attribute, which could be either in the bonus buffer
+        * or the "spill" block.
+        */
+       if (data->dnode.dn.dn_bonustype == DMU_OT_SA) {
+               void *sahdrp;
+               int hdrsize;
+
+               if (data->dnode.dn.dn_bonuslen != 0) {
+                       sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn);
+               } else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
+                       blkptr_t *bp = &data->dnode.dn.dn_spill;
+
+                       err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data);
+                       if (err)
+                               return err;
+               } else {
+                       printf("filesystem is corrupt :(\n");
+                       return ZFS_ERR_BAD_FS;
+               }
+
+               hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp));
+               file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET);
+       } else {
+               file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian);
+       }
+
+       file->data = data;
+       file->offset = 0;
+
+       return ZFS_ERR_NONE;
+}
+
+uint64_t
+zfs_read(zfs_file_t file, char *buf, uint64_t len)
+{
+       struct zfs_data *data = (struct zfs_data *) file->data;
+       int blksz, movesize;
+       uint64_t length;
+       int64_t red;
+       int err;
+
+       if (data->file_buf == NULL) {
+               data->file_buf = malloc(SPA_MAXBLOCKSIZE);
+               if (!data->file_buf)
+                       return -1;
+               data->file_start = data->file_end = 0;
+       }
+
+       /*
+        * If offset is in memory, move it into the buffer provided and return.
+        */
+       if (file->offset >= data->file_start
+               && file->offset + len <= data->file_end) {
+               memmove(buf, data->file_buf + file->offset - data->file_start,
+                               len);
+               return len;
+       }
+
+       blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec,
+                                                         data->dnode.endian) << SPA_MINBLOCKSHIFT;
+
+       /*
+        * Entire Dnode is too big to fit into the space available.      We
+        * will need to read it in chunks.      This could be optimized to
+        * read in as large a chunk as there is space available, but for
+        * now, this only reads in one data block at a time.
+        */
+       length = len;
+       red = 0;
+       while (length) {
+               void *t;
+               /*
+                * Find requested blkid and the offset within that block.
+                */
+               uint64_t blkid = (file->offset + red) /  blksz;
+               free(data->file_buf);
+               data->file_buf = 0;
+
+               err = dmu_read(&(data->dnode), blkid, &t,
+                                          0, data);
+               data->file_buf = t;
+               if (err)
+                       return -1;
+
+               data->file_start = blkid * blksz;
+               data->file_end = data->file_start + blksz;
+
+               movesize = MIN(length, data->file_end - (int) file->offset - red);
+
+               memmove(buf, data->file_buf + file->offset + red
+                               - data->file_start, movesize);
+               buf += movesize;
+               length -= movesize;
+               red += movesize;
+       }
+
+       return len;
+}
+
+int
+zfs_close(zfs_file_t file)
+{
+       zfs_unmount((struct zfs_data *) file->data);
+       return ZFS_ERR_NONE;
+}
+
+int
+zfs_getmdnobj(device_t dev, const char *fsfilename,
+                                  uint64_t *mdnobj)
+{
+       struct zfs_data *data;
+       int err;
+       int isfs;
+
+       data = zfs_mount(dev);
+       if (!data)
+               return ZFS_ERR_BAD_FS;
+
+       err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj,
+                                                        &(data->dnode), &isfs, data);
+       zfs_unmount(data);
+       return err;
+}
+
+static void
+fill_fs_info(struct zfs_dirhook_info *info,
+                        dnode_end_t mdn, struct zfs_data *data)
+{
+       int err;
+       dnode_end_t dn;
+       uint64_t objnum;
+       uint64_t headobj;
+
+       memset(info, 0, sizeof(*info));
+
+       info->dir = 1;
+
+       if (mdn.dn.dn_type == DMU_OT_DSL_DIR) {
+               headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian);
+
+               err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data);
+               if (err) {
+                       printf("zfs failed here 1\n");
+                       return;
+               }
+       }
+       make_mdn(&mdn, data);
+       err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
+                                       &dn, data);
+       if (err) {
+               printf("zfs failed here 2\n");
+               return;
+       }
+
+       err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data);
+       if (err) {
+               printf("zfs failed here 3\n");
+               return;
+       }
+
+       err = dnode_get(&mdn, objnum, 0, &dn, data);
+       if (err) {
+               printf("zfs failed here 4\n");
+               return;
+       }
+
+       info->mtimeset = 1;
+       info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
+
+       return;
+}
+
+static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data)
+{
+       struct zfs_dirhook_info info;
+       dnode_end_t dn;
+
+       memset(&info, 0, sizeof(info));
+
+       dnode_get(&(data->mdn), val, 0, &dn, data);
+       info.mtimeset = 1;
+       info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
+       info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS);
+       debug("zfs type=%d, name=%s\n",
+                 (int)dn.dn.dn_type, (char *)name);
+       if (!data->userhook)
+               return 0;
+       return data->userhook(name, &info);
+}
+
+static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data)
+{
+       struct zfs_dirhook_info info;
+       dnode_end_t mdn;
+       int err;
+       err = dnode_get(&(data->mos), val, 0, &mdn, data);
+       if (err)
+               return 0;
+       if (mdn.dn.dn_type != DMU_OT_DSL_DIR)
+               return 0;
+
+       fill_fs_info(&info, mdn, data);
+
+       if (!data->userhook)
+               return 0;
+       return data->userhook(name, &info);
+}
+
+static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data)
+{
+       struct zfs_dirhook_info info;
+       char *name2;
+       int ret = 0;
+       dnode_end_t mdn;
+       int err;
+
+       err = dnode_get(&(data->mos), val, 0, &mdn, data);
+       if (err)
+               return 0;
+
+       if (mdn.dn.dn_type != DMU_OT_DSL_DATASET)
+               return 0;
+
+       fill_fs_info(&info, mdn, data);
+
+       name2 = malloc(strlen(name) + 2);
+       name2[0] = '@';
+       memcpy(name2 + 1, name, strlen(name) + 1);
+       if (data->userhook)
+               ret = data->userhook(name2, &info);
+       free(name2);
+       return ret;
+}
+
+int
+zfs_ls(device_t device, const char *path,
+          int (*hook)(const char *, const struct zfs_dirhook_info *))
+{
+       struct zfs_data *data;
+       int err;
+       int isfs;
+#if 0
+       char *label = NULL;
+
+       zfs_label(device, &label);
+       if (label)
+               printf("ZPOOL label '%s'\n",
+                          label);
+#endif
+
+       data = zfs_mount(device);
+       if (!data)
+               return ZFS_ERR_BAD_FS;
+
+       data->userhook = hook;
+
+       err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data);
+       if (err) {
+               zfs_unmount(data);
+               return err;
+       }
+       if (isfs) {
+               uint64_t childobj, headobj;
+               uint64_t snapobj;
+               dnode_end_t dn;
+               struct zfs_dirhook_info info;
+
+               fill_fs_info(&info, data->dnode, data);
+               hook("@", &info);
+
+               childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian);
+               headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian);
+               err = dnode_get(&(data->mos), childobj,
+                                               DMU_OT_DSL_DIR_CHILD_MAP, &dn, data);
+               if (err) {
+                       zfs_unmount(data);
+                       return err;
+               }
+
+
+               zap_iterate(&dn, iterate_zap_fs, data);
+
+               err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data);
+               if (err) {
+                       zfs_unmount(data);
+                       return err;
+               }
+
+               snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian);
+
+               err = dnode_get(&(data->mos), snapobj,
+                                               DMU_OT_DSL_DS_SNAP_MAP, &dn, data);
+               if (err) {
+                       zfs_unmount(data);
+                       return err;
+               }
+
+               zap_iterate(&dn, iterate_zap_snap, data);
+       } else {
+               if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
+                       zfs_unmount(data);
+                       printf("not a directory\n");
+                       return ZFS_ERR_BAD_FILE_TYPE;
+               }
+               zap_iterate(&(data->dnode), iterate_zap, data);
+       }
+       zfs_unmount(data);
+       return ZFS_ERR_NONE;
+}